2. Compute the orthogonal projection of the vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ onto the plane spanned by $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$.

Solution. We look for the orthogonal projection in the form $x \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} +$

$$y \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
 such that the difference $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - x \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - y \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ is perpendicular

to both $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$. This gives us the equations

$$\begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - x \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - y \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = 0 \text{ and}$$

$$\begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - x \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - y \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = 0$$

that is,

$$2 - 2x - y = 0$$
 and $2 - x - 2y = 0$.

Solving the system (computations omitted), we get x = y = 2/3, so the orthogonal projection is $\frac{2}{3} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \frac{2}{3} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2/3 \\ 4/3 \\ 2/3 \end{bmatrix}$.

Answer. The orthogonal projection is $\begin{bmatrix} 2/3 \\ 4/3 \\ 2/3 \end{bmatrix}$.