Jeffrey C. Lagarias: Zeta Functions and Related Topics
- Effective versions of the Chebotarev density theorem,
J. C. Lagarias and A. M. Odlyzko,
pp. 409-464 in
Algebraic Number Fields,
A. Frohlich (ed.),
Academic Press, 1977.
- A bound for the least prime ideal in the Chebotarev density theorem,
J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko,
Inventiones math.,
54 (1979),
pp. 271-296.
- On computing Artin L-functions in the critical strip,
J. C. Lagarias and A. M. Odlyzko,
Math. Comp.,
33 (1979), pp. 1081-1095.
- Sets of primes determined by systems of polynomial
congruences ,
J. C. Lagarias,
Illinois J. Math. 27 (1983), pp. 224-239.
- New algorithms for computing pi(x),
J. C. Lagarias and A. M. Odlyzko,
pp. 176-193 in
Number Theory: New York 1982,
(D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn and M. B. Nathanson,eds.),
Springer-Verlag, Lecture Notes in Mathematics #1052, 1984.
- Is there a density for the set of primes p such that the class
number of Q(sqrt(-p)) is divisible by 16? ,
H. Cohn and J. C. Lagarias,
in: Topics in Classical Number Theory ,
(G. Halasz, Ed.), Colloquium Soc. Janos Bolyai No. 34, 1984, pp. 257-279.
- Computing pi(x): The Meissel-Lehmer method,
J. C. Lagarias, V. S. Miller, and A. M. Odlyzko,
Math. Comp.,
44 (1985), pp. 537-560.
[PostScript]
- The set of primes dividing the Lucas numbers has density 2/3 ,
J. C. Lagarias,
Pacific J. Math. 118 (1985), pp. 449-461.
[ Errata , Pacific J. Math. 162 (1994), pp. 393-396.]
- Computing pi(x): An analytic method,
J. C. Lagarias and A. M. Odlyzko,
J. Algorithms,
8 (1987), pp. 173-191.
[PostScript]
- Number Theory and Dynamical Systems ,
Jeffrey C. Lagarias,
in: The Unreasonable Effectiveness of Number Theory ,
(S. A. Burr, Ed.), Proc. Symp. Applied Math. No. 46, AMS: Providence
1992, pp. 35-72.
- The Zeta Function of the Beta Transformation ,
Leopold Flatto and Jeffrey C. Lagarias,
Ergodic Th. & Dynam. Sys. 14 (1994),pp. 237-266.
-
The lap counting function for linear mod one transformations I.
explicit formulas and renormalizability ,
Leopold Flatto and Jeffrey C. Lagarias,
Ergodic Th. & Dynam. Sys. 16 (1996), pp. 451-492.
- The lap counting function for linear mod one transformations II.
the Markov chain for generalized lap numbers ,
Leopold Flatto and Jeffrey C. Lagarias,
Ergodic Th. & Dynam. Sys. 17 (1997), pp. 123-146.
- The lap counting function for linear mod one transformations III.
the period of a Markov chain ,
Leopold Flatto and Jeffrey C. Lagarias,
Ergodic Th. & Dynam. Sys. 17 (1997), pp. 369-403.
- Beurling generalized integers with the Delone property ,
Jeffrey C. Lagarias,
Forum Math. 11 (1999), pp. 295-312.
[PostScript]
- Number theory zeta functions and dynamical zeta functions ,
Jeffrey C. Lagarias,
in: Spectral Problems in Geometry and Arithmetic
(T. Branson, Ed.),
Contemporary Math. Vo1. 237, AMS: Providence 1999, pp. 45-86>.
[PostScript]
- Complements to Li's criterion for the Riemann hypothesis ,
Enrico Bombieri and Jeffrey C. Lagarias,
J. Number Theory 77 (1999), pp. 274-287.
[PostScript]
- On a positivity property of the Riemann xi function ,
Jeffrey C. Lagarias,
Acta Arithmetica, 89 (1999), pp. 217-234 >.
[PostScript]
-
An elementary problem equivalent to the Riemann hypothesis ,
J. C. Lagarias,
Amer. Math. Monthly ,
109 (2002), 534--543>.
[PostScript]
-
On a two-variable zeta function for number fields ,
J. C. Lagarias and E. Rains,
Annales Inst. Fourier ,
53 (2003), No. 1, 1--68 >.
[PostScript]
Up [
Return to home page
]