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Abstract. Let X be a symmetric space of non-compact type and GnX a locally sym-
metric space. Then the bottom spectrum l1ðGnX Þ satisfies the inequality l1ðGnXÞe l1ðX Þ.
We show that if equality l1ðGnXÞ ¼ l1ðX Þ holds, then GnX has either one end, which is
necessarily of infinite volume, or two ends, one of infinite volume and another of finite vol-
ume. In the latter case, GnX is isometric to R1 � N endowed with a multi-warped metric,
where N is compact.

§0. Introduction

A Riemannian symmetric space X of noncompact type and its quotients GnX have
been studied from various points of view. One important problem is to study relations be-
tween their geometry and spectral theory. The spectral theory of locally symmetric spaces
of finite volume is part of the vast subject of spectral theory of automorphic forms. The ge-
ometry of such finite volume locally symmetric spaces GnX can be understood by combin-
ing the reduction theory for arithmetic subgroups of semisimple Lie groups [B2] and lat-
tices in rank one semisimple Lie groups [GaR], and the arithmeticity of irreducible lattices
of higher rank semisimple Lie groups [Ma2]. In fact, the structure at infinity (end structure)
of such spaces GnX can be understood quite well and is connected with the Tits buildings of
the associated groups.

For general locally symmetric spaces GnX of infinite volume, their geometry at infin-
ity is not so well understood. For example, various geometric finiteness conditions have
been proposed to give control of the geometry and topology at infinity.

One purpose of this paper is to study the end structure of a particular class of locally
symmetric spaces M ¼ GnX consisting of those satisfying the extremal condition

The first author was partially supported by NSF grant DMS-0604878.

The second author was partially supported by NSF grant DMS-0503735.

The third author was partially supported by NSF grant DMS-0706706.

Brought to you by | University of Michigan
Authenticated | 141.211.62.152

Download Date | 9/15/12 1:05 AM



l1ðMÞ ¼ l1ðXÞ, where l1ðMÞ denotes the greatest lower bound of the L2 spectrum of the
Laplacian acting on functions defined on M.

Let us first recall the following well-known monotonicity property of l1.

Proposition 0.1. If ~MM is a complete Riemannian manifold and G is any discrete group

acting isometrically on ~MM, then

l1ðGn ~MMÞe l1ð ~MMÞ:

Proof. Note that l1ð ~MMÞ can be characterized by

l1ðMÞ ¼ supfl A R jDu ¼ �lu for some positive function u on ~MMg:

If u > 0 is a function on Gn ~MM satisfying Du ¼ �lu, then its lift ~uu on ~MM also satisfies the
equation D~uu ¼ �l~uu. This implies the desired inequality. r

If GnX has finite volume, then l1ðGnX Þ ¼ 0. Since it is known that l1ðXÞ > 0, it fol-
lows that in this case the strict inequality

l1ðGnX Þ < l1ðXÞ

is valid.

On the other hand, if G is an amenable group, then it can be shown (Theorem 5.1) that

l1ðGnXÞ ¼ l1ðXÞ:

So the class of spaces GnX with l1ðGnXÞ ¼ l1ðX Þ lies at the extreme opposite to the class
of finite volume ones.

If G is a finite group, then it clearly contains nontrivial torsion elements. On the other
hand, many naturally defined infinite groups G also contain nontrivial torsion elements.
For example, arithmetic subgroups such as SLðn;ZÞ and Spðn;ZÞ contain nontrivial torsion
elements, and their associated locally symmetric spaces are natural moduli spaces in alge-
braic geometry. Other infinite groups G containing torsion elements with the volume of
GnX being infinite can also be constructed.

If G contains nontrivial torsion elements, then the space GnX is not a manifold, but
rather an orbifold. An important point is that the techniques employed in this article can be
easily carried over to orbifold setting. In particular, the relationship between the spectral
geometry and the end structure of GnX follows without much e¤ort.

While it is true that if GnX is an orbifold and G is finitely generated, then there exists
a finite smooth covering G 0nX ! GnX , by using the so-called Selberg lemma. In this case,
some analytical and geometric problems of GnX can be studied by lifting them to the finite
smooth cover G 0nX . However, it is, nonetheless, natural to study GnX .

It is also important to point out that it is not known if any orbifold GnX admits a
finite smooth cover. In fact, the following conjecture of Margulis [Ma1] is still open: If
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X is a complete and simply connected, nonpositively curved Riemannian manifold and G is a

discrete group acting properly and isometrically on X, then there exists a torsion-free sub-

group G 0 HG of finite index.

To be precise, in this paper, by an orbifold, we mean an orbifold which is not locally
Rn divided out by a reflection. So the singularities are of the cone type, and the set of sin-
gular points is of codimension at least 2. This assumption is natural. Indeed, if an orbifold
has singular points of the form Rn divided out by a reflection, then it is locally a manifold
with non-empty boundary. On the other hand, if an orbifold arises from such group ac-
tions, then one can exclude the reflections by restricting to orientation preserving actions.

If X is a Riemannian symmetric space as above, and G is the isometry group of X ,
then G is a semisimple Lie group acting transitively on X . For any point x A X , the stabi-
lizer Gx ¼ fg A G j gx ¼ xg is a maximal compact subgroup of G, usually denoted by K,
and hence X can be written as X ¼ G=K.

While the symmetric space X is arguably the most important Riemannian homo-
geneous space associated with G, there are other important Riemannian homogeneous
spaces associated with G. For example, with respect to a left invariant Riemannian metric,
G is a homogeneous Riemannian manifold, but is not a symmetric space (note that G is not
a compact Lie group). If GHG is a discrete subgroup, then GnG is a locally Riemannian
homogeneous space. Such spaces are important for various applications. For instance,
when G ¼ SLðn;RÞ and G ¼ SLðn;ZÞ, the quotient SLðn;ZÞnSLðn;RÞ is the moduli space
of all unimodular lattices in Rn.

Let K be a maximal compact subgroup of G as above. Then K acts on GnG on the
right, and the quotient GnG=K is the locally symmetric space GnX discussed earlier. If the
left invariant metric of G is right invariant under K , then it descends to a Riemannian met-
ric on G=K, which is proportional to the Riemannian metric associated with the symmetric
space X . There is one advantage of GnG over GnX in the sense that G acts on the former
but not on the latter. This action of G on GnG gives the regular representation of G on
L2ðGnGÞ, which is the fundamental object in the theory of automorphic representations.

Another important class of homogeneous spaces arising from the above set-up is of
the form G=H, where H HK is not necessarily a maximal compact subgroup of G. Period
domains in the theory of variation of Hodge structures is of this form, and arithmetic quo-
tients of the form GnG=H are important in the study of Hodge structures and their varia-
tions. We refer the interested reader to the books [CMP] and [Vl for more details about
period domains.

If the invariant metric on G is invariant on the right under K, then it is also invariant
under H, and hence it descends to a Riemannian metric on G=H.

As a natural generalization of the results for locally symmetric spaces discussed in this
paper, we also study, in §4, the end structure of spaces GnG satisfying the extremal condi-
tion l1ðGnGÞ ¼ l1ðGÞ, and also spaces GnG=H with l1ðGnG=HÞ ¼ l1ðG=HÞ.

The idea behind the main techniques in this study was originated in a series of work
by the second and the third author [LW1]–[LW5]. To understand the ends of these spaces
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it is important to separate them into two distinct categories. Recall that an end E of a
complete manifold (or orbifold) M is simply an unbounded component of MnD for
some smooth compact domain DHM. In particular, E is a manifold (or orbifold) with
boundary.

Definition 0.2. Let E be an end of a complete manifold (orbifold) M. It is said to be
nonparabolic if it admits a positive Neumann Green’s function for the Laplacian acting on
functions. Otherwise, E is parabolic.

While the above definition is for an arbitrary complete manifold M, the notion of
nonparabolicity has a precise geometric interpretation when the manifold has

l1ðMÞ > 0:ð0:1Þ

In this case, nonparabolicity is equivalent to the end having infinite volume. In fact, in
[LW1] the authors proved that under the condition of (0.1), a nonparabolic end must
have volume growth satisfying

VEðRÞfC exp
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðMÞ

p
R
�
;

where VEðRÞ denotes the volume of the set given by the intersection of the geodesic ball of
radius R centered at some fixed point with the end E. They also proved that a parabolic
end must have finite volume with decay rate

VðEÞ � VEðRÞeC exp
�
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðMÞ

p
R
�
;

where VðEÞ is the volume of the end E. This equivalence allows us to bridge from analysis
to geometry.

It was proved in [LT2] that the number of nonparabolic ends of M is given by the
dimension of some space of bounded harmonic functions with finite Dirichlet integral. It
is through this theory that the authors prove that for most locally symmetric spaces GnX

whose associated symmetric spaces X are irreducible, there is exactly one (nonparabolic)
end of infinite volume. The exceptional cases occur only when X is a rank one symmetric
space. The readers should refer to [LW1], [LW5], [KLZ], and [Lm] for more details.

With the number of infinite volume ends under control, our remaining e¤ort is to uti-
lize the assumption

l1ðGnXÞ ¼ l1ðXÞ;

to conclude that either M ¼ GnX has no finite volume ends, or it must be di¤eomorphic to
a product manifold R� N for some compact manifold N. In the latter case, M has exactly
one finite volume and one infinite volume end, respectively.

The paper is structured so that §1 deals with the situation when M is a general
Riemannian manifold. In §2, we prove the main theorem for X being an irreducible sym-
metric space of noncompact type. The case when X ¼ X1 � � � � � Xm is given by a product
of m irreducible symmetric spaces is considered in §3. We also deal with homogeneous
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spaces in §4 by reducing to the locally symmetric space case. Finally, in §5 we gave some
examples of M ¼ GnX that satisfy

l1ðMÞ ¼ l1ðXÞ:

Quotients of irreducible symmetric spaces are the most familiar locally symmetric
spaces, and include important quotients of the upper half plane (or more generally hyper-
bolic spaces) and the Siegel upper half spaces. On the other hand, it might be helpful to
point out that among locally symmetric spaces, it is natural and important to consider lo-
cally symmetric spaces which are irreducible (i.e., no finite covers split as isometric pro-
ducts) but their universal covering spaces are reducible symmetric spaces, i.e., products of
irreducible symmetric spaces. For example, the Hilbert modular varieties are such locally
symmetric spaces. It is also important to consider reducible locally symmetric spaces.

One way to obtain examples of such locally symmetric spaces is a generalization of
the construction of the above example of Hilbert modular varieties. Briefly, if we consider
a semisimple linear algebraic group G defined over a number field k which is not equal to
the field of rational numbers, and a subgroup G of GðkÞ, then the natural spaces for G to
act on are nontrivial products of symmetric spaces, and locally symmetric spaces associated
with G are of the above type.

Since there are infinitely many number fields di¤erent from the field of rational num-
bers, this is really the generic case in some sense.

The second author would like to acknowledge S. T. Yau for raising the question of
considering locally symmetric spaces of higher rank.

§1. General situation

We will first discuss the more general situation of an arbitrary complete, noncompact,
Riemannian manifold M n of real dimension n.

Theorem 1.1. Let M n be a complete Riemannian orbifold of dimension n. Suppose

f : ð0;yÞ ! R is a function with the property that

lim
r!y

f ðrÞ ¼ 2a > 0:

Assume that for any point p A M, and if rðxÞ is the distance function to the point p, we have

DrðxÞe f
�
rðxÞ

�
in the weak sense. If M has at least one parabolic end, then

l1ðMÞe a2:

Moreover, if l1ðMÞ ¼ a2 and let gðtÞ be a geodesic ray issuing from a fixed point p to infinity

of the parabolic end, then the Buseman function

bðxÞ ¼ lim
t!y

�
t � r

�
gðtÞ; x

��
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with respect to g must satisfy

Db ¼ �2a;

j‘bj ¼ 1:

In particular, M must be homeomorphic to R� N for some compact orbifold N given by the

level set of b.

Proof. Let us first observe that the singular set in M is of at most codimension 2
hence most analysis involving the Laplace operator, such as integration by parts, is valid
due to similar argument provided by [LTi]. Also, following the argument of [BoZ], the
splitting of M into products also follows. Hence, our proof reduces to the case when M is
smooth, as long as we do not involve any techniques that are sensitive to orbifold singular-
ities, such as the positivity of injectivity radius, in our argument.

We may assume that l1ðMÞ > 0 as otherwise the theorem is trivial. In this case, M

must be nonparabolic. By assumption, let E be a parabolic end of M. We can consider
E1 ¼ MnE as a nonparabolic end. Let g : ½0;yÞ ! M be a geodesic ray with gð0Þ ¼ p

and gðtÞ ! EðyÞ, where EðyÞ denotes the infinity of the end E. Using the inequality on
DrðxÞ, we conclude that

Dbf�2að1:1Þ

and b is Lipschitz with Lipschitz constant 1 as proved in [LW5], Theorem 1.1. Setting
u ¼ expðabÞ and using (1.1), we have

Duf auDb þ a2uj‘bj2ð1:2Þ

¼ �a2u:

For any nonnegative cut-o¤ function f, we consider

Ð
M

j‘ðfuÞj2 ¼ �
Ð

M

f2uDu þ
Ð

M

j‘fj2u2

e a2
Ð

M

f2u2 þ
Ð

M

j‘fj2u2:

Combining with the variational principal of l1ðMÞ, we conclude that

�
l1ðMÞ � a2

� Ð
M

f2u2
e

Ð
M

j‘fj2u2:ð1:3Þ

Assuming the contrary that l1 > a2, we obtain a contradiction if we can justify the right-
hand side tends to 0 for a sequence of cut-o¤ functions f unless l1ðMÞ ¼ a2 and all the
above inequalities are equalities.

To estimate the right-hand side of (1.3) on the parabolic end E, we first show that

VEðRÞnVEðR � 1Þe exp
�
�2aðR � 1Þ

�
;ð1:4Þ
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where VEðRÞ denotes the volume of the set BEðRÞ ¼ BpðRÞXE given by the intersection of
the geodesic ball centered at p A M of radius R and E. Indeed, this follows from the volume
estimate of Theorem 2.1 in [LW3] stating that

VEðRÞnVEðR � 1Þe exp
�
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðMÞ

p
ðR � 1Þ

�
e exp

�
�2aðR � 1Þ

�
:

Using j‘bj ¼ 1, we observe that

uðxÞeC exp
�
arðxÞ

�
hence together with (1.4), we have

Ð
BEðRÞnBEðR�1Þ

u2
eC:

Choosing the cut-o¤ function on E to be

fðxÞ ¼

1 if rðxÞeR;

2R � rðxÞ
R

if Re rðxÞe 2R;

0 if 2Re rðxÞ;

8>>><
>>>:

the right-hand side of (1.3) on E can be estimated by

Ð
E

j‘fj2u2
eR�2

Ð
BEð2RÞnBEðRÞ

u2

¼ R�2 P½R�

i¼1

Ð
BEðRþiÞnBEðRþi�1Þ

u2

eCR�1;

which tends to 0 as R ! y.

For the non-parabolic end MnE, we choose the cut-o¤ function f to be

fðxÞ ¼

1 if �bðxÞeR;

2R þ bðxÞ
R

if Re�bðxÞe 2R;

0 if 2Re�bðxÞ:

8>>><
>>>:

Note that since MnE and E can be disconnected by a compact set, it was proved in [LW5],
Theorem 1.1, that �b is equivalent to the distance function to the compact set BpðR0Þ. In-
deed, for any point x A M, let us consider the geodesic segment tt joining x ¼ ttð0Þ to gðtÞ.
Letting t ! y, the sequence tt converges to a geodesic ray emanating from x ¼ tð0Þ to
EðyÞ. If x is in MnBpðR0Þ but not in E, say x A E1, then t must pass through BpðR0Þ.
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Let us denote y ¼ tðsÞ to be the first point on t that intersects BpðR0Þ. Then by the triangle
inequality,

b
�
tðsÞ

�
� b

�
tð0Þ

�
¼ lim

t!y

�
r
�
tð0Þ; gðtÞ

�
� r

�
tðsÞ; gðtÞ

��
f lim

t!y

�
r
�
tð0Þ; gðtÞ

�
� r

�
ttðsÞ; gðtÞ

�
� r

�
ttðsÞ; tðsÞ

��
f lim

t!y

�
r
�
tð0Þ; gðtÞ

�
� r

�
ttðsÞ; gðtÞ

��
¼ s:

So

bðyÞ � bðxÞf rðy; xÞ

and

�bðxÞf inf
z ABpðR0Þ

rðz; xÞ � sup
z ABpðR0Þ

bðzÞ:

Combining with j‘bj ¼ 1, we conclude that, when restricted on E1, �b is equivalent to the
distance function to the set BpðR0Þ.

In particular, the function �b is proper on MnE. Also, because j‘bj ¼ 1, we have

Ð
MnE

j‘fj2u2 ¼ R�2
Ð

BðR;2RÞ
expð2abÞð1:5Þ

where BðR; 2RÞ ¼ fx A MnE jR < �bðxÞ < 2Rg. We now claim that the volume of the set
BðR;R þ 1Þ, denoted by VðR;R þ 1Þ, is bounded by

VðR;R þ 1ÞeC expð2aRÞ

for su‰ciently large R. Indeed, integrating (1.1) yields

2aVðR0; tÞf�
Ð

BðR0; tÞ
Db

¼ �
Ð

lðtÞ

qb

qn
þ

Ð
lðR0Þ

qb

qn

¼ AðtÞ � AðR0Þ;

where lðRÞ ¼ fx A MnE j bðxÞ ¼ �Rg and AðRÞ denotes its ðn � 1Þ-dimensional area.
Hence integrating from R0 to R þ 1, the above inequality and co-area formula yield

2aðR þ 1 � R0Þf
ÐRþ1

R0

AðtÞ
�
VðR0; tÞ þ ð2aÞ�1

AðR0Þ
��1

dt

¼ log
�
VðR0;R þ 1Þ þ ð2aÞ�1

AðR0Þ
�
� log

�
ð2aÞ�1

AðR0Þ
�
;
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implying

VðR0;R þ 1ÞeC expð2aRÞ

as claimed. Hence we can estimate

Ð
BðR;2RÞ

expð2abÞe
P½R�

i¼1

Ð
BðRþi�1;RþiÞ

expð2abÞ

e
P½R�

i¼1

VðR þ i � 1;R þ iÞ exp
�
�2aðR þ i � 1Þ

�
eCR;

and conclude that the right-hand side of (1.5) tends to 0. In particular, l1ðMÞe a2.

In the event if

l1ðMÞ ¼ a2;

then we conclude that

Db ¼ �2a;ð1:6Þ

j‘bj ¼ 1;ð1:7Þ

and b has no critical points. In particular, M must be homeomorphic to R� N for some
compact orbifold N. r

Note that in the case when l1ðMÞ ¼ a2 in Theorem 1.1, the Bochner formula together
with (1.6) and (1.7) implies that

0 ¼ Dj‘bj2

¼ 2b2
ij þ 2h‘b;‘Dbiþ 2 Ric11

¼ 2b2
ij þ 2 Ric11

for the unit vector e1 ¼ ‘b. Using (1.7) again, this implies that b1i ¼ 0 for all i and the sec-
ond fundamental form II of a level set of b satisfies

jII j2 ¼ �Ric11:ð1:8Þ

On the other hand, the Gauss curvature equation asserts that for a3 t,

KNðea; etÞ ¼ KMðea; etÞ þ lalt

for an orthonormal frame feagn
a¼2 on the level set of b that diagonalizes II with correspond-

ing eigenvalues flagn
a¼2. Since the scalar curvature of M is given by
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SM ¼
Pn

i¼1

Ricii

¼ Ric11 þ
Pn

a¼2

Ricaa

¼ 2 Ric11 þ
P

a; t31

KMðea; etÞ

¼ 2 Ric11 þ
P
t3a

KNðea; etÞ �
P
t3a

lalt

¼ 2 Ric11 þ SN �
P
t3a

lalt;

this implies that

SN � SM þ 2 Ric11 ¼
P
t3a

lalt:ð1:9Þ

On the other hand, (1.6) and (1.7) assert that

H ¼ �2a

where H is the mean curvature of the level set of b. Combining with (1.8) and (1.9), we
conclude that

4a2 ¼ H 2 ¼ jII j2 þ
P
t3a

lalt

¼ SN � SM þ Ric11:

Hence

SN ¼ 4a2 þ SM � Ric11ð1:10Þ

and

P
t3a

lalt ¼ 4a2 þ Ric11:

Also note that the inequality

jII j2 f H 2

n � 1

implies that

�ðn � 1ÞRic11 f 4a2ð1:11Þ

with equality if and only if la ¼ lt for all a and t.

We first observe that the above theorem allows us to recover a theorem proved in
[LW2].

10 Ji, Li and Wang, Symmetric spaces

Brought to you by | University of Michigan
Authenticated | 141.211.62.152

Download Date | 9/15/12 1:05 AM



Corollary 1.2. Let M n be a complete manifold of dimension nf 2. Assume that

RicM f�ðn � 1Þ

and

l1ðMÞf ðn � 1Þ2

4
:

Then M must either have no finite volume end or it must be a warped product M ¼ R� N

with metric given by

ds2
M ¼ dt2 þ expð2tÞ ds2

N ;

where N is a compact manifold whose metric ds2
N has nonnegative Ricci curvature.

Proof. We first observe that the assumption on the Ricci curvature and Laplacian
comparison theorem asserts that

Dre ðn � 1Þ coth r;

hence one checks readily that the function f ðrÞ ¼ ðn � 1Þ coth r satisfies the hypothesis

of Theorem 1.1 with a ¼ n � 1

2
. Therefore we conclude that if M has a parabolic end

it must be homeomorphic to R� N for some compact manifold. Moreover, since

l1ðMÞ ¼ ðn � 1Þ2

4
> 0, an end being parabolic is equivalent to having finite volume. Also,

(1.11) takes the form

�ðn � 1ÞfRic11

f�ðn � 1Þ

of an equality and we conclude that

II ¼ �ðdatÞ

is a diagonal matrix. In this case, the metric on M must be of the form

ds2
M ¼ dt2 þ expð�2tÞ ds2

N :

A direct computation shows that the sectional curvature for the section spanned by

e1 ¼ q

qt
; ea

� �
is given by

KMðe1; eaÞ ¼ �1:

The Gauss curvature equation implies that

KMðea; etÞ ¼ KNðea; etÞ � 1;
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and hence

Ricaa ¼ Ricaa � ðn � 1Þ;

where Ricaa is the Ricci curvature of N. This implies that

Ricaa f 0:

The theorem follows by setting t to be �t. r

Let us remark a special case of Theorem 1.1 when M is an Einstein manifold with
Einstein constant �C < 0. In particular, (1.10) and (1.11) become

SN ¼ 4a2 � ðn � 1ÞC

and

ðn � 1ÞC f 4a2:

This implies that SN e 0 with SN ¼ 0 if and only if

II ¼ � 2a

n � 1
ðdatÞ:

In the case of equality, using the same argument as in the above corollary, we conclude that

ds2
M ¼ dt2 þ exp � 4a

n � 1
t

� �
ds2

N ;

hence

Kðe1; eaÞ ¼ � 4a2

ðn � 1Þ2

and

� 4a2

n � 1
¼ �C ¼ Ricaa

¼ Ricaa �
4a2

n � 1
:

We conclude that N must be Ricci flat.

§2. Quotients of irreducible symmetric spaces

This section deals with the case when M ¼ GnX is a quotient of an irreducible sym-
metric space X by a discrete group of isometry G acting e¤ectively on X . It should be
stressed that G is not necessarily torsion-free, and hence GnG=K is in general an orbifold.
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Theorem 2.1. Let X ¼ G=K be an irreducible symmetric space of noncompact type

with rank at least 2. Suppose M ¼ GnG=K is noncompact quotient of G=K by a discrete sub-

group G. Then M has no nontrivial L2-harmonic 1-forms. In particular, M has at most one

nonparabolic end.

Proof. The theorem is basically a noncompact version of the Matsushima vanishing
theorem [M]. A Bochner type argument for this case was observed by Calabi and general-
ized by Jost and Yau [JY] to harmonic maps. The vanishing of L2 harmonic 1-form can be
used to rule out the existence of a second nonparabolic end for M. Indeed, if M has two
nonparabolic ends, then the Li-Tam [LT2] theory asserts the existence of a nonconstant
bounded harmonic function, f , with finite Dirichlet integral. In particular, df is an L2 har-
monic 1-form, contradicting the vanishing theorem. For the sake of completeness, we will
give a quick outline of the vanishing theorem.

We first assume M is a smooth manifold. Let W ¼
Pn

i¼1

aioi be an L2 harmonic 1-form,

with foig being an orthonormal coframe near a point in M. Since W is L2 and harmonic, it
is known that it satisfies the conditions

Pn

i¼1

ai; i ¼ 0

and

ai; j ¼ aj; i for 1e i; j e n;

where the subscripts denote covariant derivatives of W. The Bochner formula for harmonic
1-form asserts that

DjWj2 ¼ 2 Ricij aiaj þ 2
P
i; j

a2
i; j:ð2:1Þ

In particular, using a computation (see [LW1], Theorem 2.1) originated by Yau [Y], we
have

j‘Wj2 ¼
P
i; j

a2
i; jð2:2Þ

f
n

n � 1

��‘jWj
��2
;

and hence

DjWjf jWj�1 Ricij aiaj þ
1

n
ðjWjÞ�1Pn

i¼1

a2
i; j:ð2:3Þ

We first claim that
P
i; j

a2
i; j is integrable. Indeed, let f be the cut-o¤ function defined by

f ¼

1 on BpðRÞ;
2R � r

R
on Bpð2RÞnBpðRÞ;

0 on MnBpð2RÞ:

8>>><
>>>:

ð2:4Þ
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Then (2.3) implies that

Ð
M

f2jWjDjWjf
Ð

M

f2 Ricij aiaj þ
1

n

Ð
M

f2 Pn

i¼1

a2
i; jð2:5Þ

f�C
Ð

M

f2jWj2 þ 1

n

Ð
M

f2 Pn

i¼1

a2
i; j;

where we have used the fact that M is Einstein with Einstein constant �C. However,

Ð
M

f2jWjDjWj ¼ �2
Ð

M

fjWjh‘f;‘jWji�
Ð

M

f2
��‘jWj

��2

e
1

e

Ð
M

j‘fj2jWj2 þ ðe� 1Þ
Ð

M

f2
��‘jWj

��2
:

Hence together with (2.5), we conclude that

1

e

Ð
M

j‘fj2 þ ðC � 1 þ eÞ
Ð

M

f2jWj2 f 1

n

Ð
M

f2 Pn

i¼1

a2
i; j:

First letting R ! y in the definition of f and using the assumption that W is L2, then by
letting e ! 0, we obtain

nðC � 1Þ
Ð

M

jWj2 f
Ð

M

Pn

i¼1

j‘Wj2:ð2:6Þ

Taking the same cut-o¤ function f as in (2.4) and using (2.1), we derive

Ð
M

f2 Ricij aiaj þ
Ð

M

f2 P
i; j

a2
i; j ¼

1

2

Ð
M

f2DjWj2

¼ �2
Ð

M

fjWjh‘f;‘jWji:

However, using Schwarz inequality and (2.2), the last term can be estimated by

����2 Ð
M

fjWjh‘f;‘jWji
����e e

Ð
M

f2j‘Wj2 þ 1

e

Ð
M

j‘fj2jWj2:

Hence, we obtain

���� Ð
M

f2 Ricij aiaj þ
Ð

M

f2 P
i; j

a2
i; j

����� e
Ð

M

f2 P
i; j

a2
i; j e

1

e

Ð
M

j‘fj2jWj2:

The assumption that W is L2 implies that the right-hand side tends to 0 as R ! y. After
letting e ! 0, we conclude that

�
Ð

M

Ricij aiaj ¼
Ð

M

P
i; j

a2
i; j:ð2:7Þ
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Now for any 1-form W (not necessarily harmonic), we consider the commutation
formula

ai; jk � ai;kj ¼ �Rlijkal;

which implies

�2
Ð

M

f2 P
i; j;k;l

Rlijkalai; jk ¼ �
Ð

M

f2 P
i; j;k;l

Rlijkalðai; jk � ai;kjÞð2:8Þ

¼
Ð

M

f2 P
i; j;k;l;m

RlijkRmijkalam:

On the other hand, integration by parts and using the assumption that M is locally sym-
metric imply

�2
Ð

M

f2 P
i; j;k;l

Rlijkalai; jk ¼ 4
Ð

M

f
P

i; j;k;l

Rlijkalai; jfk þ 2
Ð

M

f2 P
i; j;k;l

Rlijkal;kai; j:ð2:9Þ

However, since both jWj2 and
P
i; j

a2
i; j ¼ j‘Wj2 are integrable, by choosing f as given by (2.4)

and letting R ! y, we conclude that

����4 Ð
M

f
P

i; j;k;l

Rlijkalai; jfk

����eC
Ð

M

jfj j‘fj jWj j‘Wj

eCR�1
Ð

M

jWj j‘Wj

tends to 0 as R ! y. Hence combining with (2.8) and (2.9) yields the identity

Ð
M

P
i; j;k;l;m

RlijkRmijkalam ¼ 2
Ð

M

P
i; j;k;l

Rlijkal;kai; j:ð2:10Þ

Note that we have only used the facts that W and j‘Wj are L2.

We now follow the argument as in Jost-Yau [JY]. For irreducible symmetric spaces, it
was computed by Calabi-Vesentini [CV], Borel [B1] and Kaneyuki-Nagano [KN] that there
exists l depending on G=K , such that

P
i; j;k;l

Rlijkal;kai; j ¼ �l
P
i; j

a2
i; j:

Moreover, there is also a constant m depending on G=K , such that

P
i; j;k;l;m

RlijkRmijkalam ¼ �m
P
ij

Ricij aiaj:

Hence (2.10) becomes

m
Ð

M

P
i; j

Ricij aiaj ¼ 2l
Ð

M

P
i; j

a2
i; j:

Substituting (2.7), we conclude that

0 ¼ ðmþ 2lÞ
Ð

M

P
i; j

a2
i; j:
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However, it was shown in [KN] that if the rank of G=K is at least 2, then m > �2l and we
conclude that ai; j ¼ 0 for all 1e i; j e n, hence W is parallel. This contradicts (2.1) since
the Einstein constant is negative.

In the case M is an orbifold, the singular set of M is of co-dimension at least two. So
the cut-o¤ argument in [LTi] can be applied to justify the preceding argument. r

Theorem 2.2. Let M ¼ GnX , where X is an irreducible symmetric space of noncom-

pact type X ¼ G=K and G is a not necessarily torsion-free discrete group acting e¤ectively

and isometrically on X. Suppose l1ðMÞ ¼ l1ðXÞ. Then either

(1) M has only one end; or

(2) M is isometric to R� N with metric

ds2
M ¼ dt2 þ

Pm
a¼2

expð�2batÞo2
a ;

where fo2; . . . ;ong is an orthonormal basis at the smooth points of N. Moreover, N is given

by a compact quotient of some horosphere of X and ba are the nonnegative constants such

that f�b2
ag are the eigenvalues of the symmetric tensor

Aag ¼ R1a1g

for a fixed direction e1.

Proof. We first deal with the case that M is smooth. If X is of rank one, then it must
be either the real hyperbolic space, the complex hyperbolic space, the quaternionic hyper-
bolic space, or the Cayley plane. For the case when X is the real hyperbolic space, the
theorem follows from the previous work of the authors [LW1] and [LW2] as indicated
by Corollary 1.2. In this case, the cross section is a flat manifold since M is assumed
to have constant �1 curvature and the horosphere of Hn is simply the Euclidean space
Rn�1. In the case when X is the complex hyperbolic space, this was covered by [LW5],
Theorem 1.1. The remaining two rank one cases given by the quaternionic hyperbolic
space and the Cayley plane are separately studied in [KLZ] and [Lm].

Assume now that M is an irreducible locally symmetric space of rank at least 2. The
assumption and Theorem 2.1 assert that M has exactly one nonparabolic end. Let us now
assume that M has at least one parabolic end. We first observe that Theorem 1.1 is appli-
cable here. Indeed, for the geodesic distance function rðxÞ to a fixed point p on X , we may
choose a parallel orthonormal frame fe1; e2; . . . ; eng along the normal geodesic gðtÞ from p

to x such that e1 ¼ g 0ðtÞ and fe2; . . . ; eng diagonalizes the curvature tensor R1a1m with cor-
responding eigenvalues �b2

a , a ¼ 2; . . . ; n. Then it is easy to see that

Dr ¼
Pn

a¼2

ba cothðbarÞ:

In this formula, when ba ¼ 0, the term ba cothðbarÞ is interpreted as r�1.
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Also, one computes that

l1ðX Þ ¼

�Pn

a¼2

ba

�2

4
:

Now it is not di‰cult to see that Theorem 1.1 can be applied to M with

f ðrÞ ¼
Pn

a¼2

ba cothðbarÞ

and

2a ¼
Pn

a¼2

ba:

Thus, M has no finite volume end or

Db ¼ a2;

j‘bj ¼ 1:

In the latter case, following the argument as in [LW5], Theorem 1.1, we fix a level set
N0 of b and consider a geodesic t given by t 0 ¼ ‘b with tð0Þ A N0. At the point tð0Þ, let us
consider the curvature R1a1m as a bilinear form restricted on the tangent space of N0. In
particular, there exists an orthonormal frame fe1; e2; . . . ; eng with e1 ¼ t 0 and ea A TN0 for
all 2e ae n such that fe2; . . . ; eng diagonalizes R1a1m. Since M is an irreducible locally
symmetric manifold of noncompact type, the sectional curvature of M must be nonposi-
tive, hence

R1a1m ¼ �b2
adam

for some ba f 0. We extend the orthonormal frame along t by parallel translating the basis
fe1; e2; . . . ; eng. Since M is locally symmetric, the curvature satisfies

qR1a1m

qt
¼ R1a1m;1 ¼ 0:

So

R1a1m ¼ �b2
adam

along t. We consider the vector field

VaðtÞ ¼ expð�batÞea

and verify that

‘t 0‘t 0Va ¼ b2
aVa:
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On the other hand,

Rt 0Va
t 0 ¼ expð�batÞR1a1aea

¼ �b2
aVa:

Hence, Va is a Jacobi field along t. Since this is true for all 2e ae n, we conclude that the
metric on Nt must be of the form

ds2
t ¼

Pn

a¼2

expð�2batÞo2
a ;

where foagn
a¼2 is the dual coframe to feagn

a¼2 at N0. In particular, the second fundamental
form on Nt must be a diagonal matrix when written in terms of the basis feagn

a¼2 with
eigenvalues given by f�bagn

a¼2. Moreover, since the Buseman function b has no critical
points, and for any x0 A N, the curve ðt; x0Þ is a geodesic line which can be used to define
b, the level sets Nt must be a compact quotient of some horosphere on X .

For the case that M has orbifold singularities, according to [BoZ], the same
Laplacian comparison theorem for the distance function still holds globally on M in the
weak sense. So the preceding argument works also, again by noticing that the singular set
is at least of codimension two, hence posing no problem for the cut-o¤ argument (see
[LTi]). r

§3. Quotients of products

In this section, we consider the case when X is an arbitrary symmetric space that is
not necessarily irreducible. In particular, let us assume that X ¼ X1 � � � � � Xm are pro-
ducts of m irreducible factors, where each Xi is of noncompact type. We assume that
M ¼ GnX is a quotient of X by a discrete subgroup G, which is a not-necessarily torsion-
free discrete group acting isometrically and properly on X . Hence, M ¼ GnX is an
orbifold.

First we will establish a vanishing theorem similar to that of Theorem 2.1 for this sit-
uation. Our proof combines the argument of Theorem 2.1 and an argument of Mok, Siu,
and Yeung [MSY].

Theorem 3.1. Let M be a noncompact quotient of X by a discrete group G. Suppose

all the irreducible factors Xi are of rank at least 2, then M has no non-trivial L2 harmonic

1-form. In particular, M has at most 1 nonparabolic end. If X has some rank-1 factors, then

any L2 harmonic 1-form W can be lifted to a harmonic 1-form on those factors alone.

Proof. Let us first assume that all isometries g A G are of the form g ¼ ðg1; . . . ; gmÞ
where gi is an isometry of Xi for all 1e iem.

For each factor Xi of dimension ni, let fui
a j 1e ae nig be local orthonormal frames

for the tangent bundle. Let us choose local orthonormal frames fei
a j 1e iem; 1e ae nig

on X so that for a fixed i if pp : TX ! TXi is the projection on the i-th factor, then
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piðe j
aÞ ¼ diju

j
a. Note that since the metric on X is the product metric, the curvature tensor of

X splits into the form

h ~RRei
a; e

i
b
ei
g; ei

ti ¼ hRi
ui
a;u

i
b

ui
g; u

i
ti

for all 1e a; b; g; te ni, where Ri denotes the curvature tensor of the factor Xi. Moreover,
~RR vanishes for all other indices. Suppose W is an L2 harmonic 1-form on M given by

W ¼
Pm
i¼1

Pni

a¼1

ai
ao

i
a;

where fo i
ag is the dual coframe to fei

ag. Using W being harmonic, (2.7) implies that

�
Pm
i¼1

P
a;b

Ð
M

Ric i
ab ai

aa
i
b ¼

Pm
i¼1

Ð
M

Pni

a;b¼1

ðai
a;bÞ

2 þ
Pm
i¼1

Pni

a¼1

P
p

Ð
M

ðai
a;pÞ

2;ð3:1Þ

where p denotes the index for those directions e
j
b with j 3 i.

For 1e iem, define the 1-form W i on M by W i ¼
Pni

a¼1

ai
ao

i
a. This can be viewed as

lifting W to a G-invariant harmonic 1-form ~WW on X and then restrict to Xi to give a G-
invariant 1-form locally given by

~WW i ¼
Pni

a¼1

ai
ah

i
a;

where fh i
ag is the dual coframe to fui

ag. The 1-form ~WW i is G-invariant because of the as-
sumption on G. Globally speaking ~WWi is a 1-form on X when restricted to the sub-bundle
spanned by the tangent vectors of TXi.

Obviously ~WWi defines a 1-form W i on M. The same argument as in the proof of The-
orem 2.1 asserts that since jWj is L2, the norm of its covariant derivative j‘Wj is also L2.

This implies that jW ij2 and
Pni

a;b¼1

ðai
a;bÞ

2 are integrable on M. Since the metric is the product

metric, the same commutation formula and integration by parts argument as in the proof
of (2.10) applying to W i asserts that

Ð
M

P
a;b; g; t;h

Ri
agthR

i
bgtha

i
aa

i
b ¼ 2

Ð
M

P
abgt

Ri
abgta

i
a; ta

i
b; g;ð3:2Þ

for all 1e iem. Again, as noted in the proof of Theorem 2.1, there exists l i depending on
Xi, such that P

abgt

Ri
abgta

i
a; ta

i
b; g ¼ �l iP

a;b

ðai
a;bÞ

2:

Moreover, there is also a constant m i depending on Xi, such that

P
a;b; g; t;h

Ri
agthR

i
bgtha

i
aa

i
b ¼ �m i

P
a;b

Ric i
ab ai

aa
i
b:
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Hence (3.2) becomes

m i
Ð

M

P
a;b

Ric i
ab ai

aa
i
b ¼ 2l i

Ð
M

P
a;b

ðai
a;bÞ

2:ð3:3Þ

Notice that all l i and m i are nonzero constants satisfying m i f�2l i with equality if and
only if Xi is of rank 1. After combining with (3.1), we conclude that

ai
a;p ¼ 0ð3:4Þ

for all 1e iem and

ai
a;b ¼ 0

for those factors Xi that are of rank at least 2. As before, the first part of the theorem fol-
lows.

In general, for any higher rank factor Xi, we conclude that the 1-form ~WW i, treated as a
form on Xi when Xi is embedded into X as a submanifold, is parallel and after applying
(2.1) on Xi, we conclude that ~WW i ¼ 0. Therefore ~WW has no components in the higher rank
factors. Moreover, if Xj is a factor of higher rank, then (3.4) implies that W j is parallel
along any direction in Xi for i3 j. Let us write

X ¼ X 0 � X 00;

where X 0 is the product of all the rank-1 factors and X 00 is the product of all the higher
rank factors. For any g A G, we write g ¼ ðg 0; g 00Þ with g 0 and g 00 being isometries of X 0

and X 00, respectively. Since W has no components involving X 00 and W is parallel in the di-
rections of X 00, W is invariant under the isometry

�
id; ðg 00Þ�1�. In particular, since W is in-

variant under g ¼ ðg 0; g 00Þ, we conclude that W is invariant under ðg 0; idÞ. Let us define the
discrete subgroup of isometries acting on X 0 by G 0 ¼ fg 0 j ðg 0; g 00Þ A Gg. The 1-form W is
obviously defined on X 0, which is invariant under G 0. Moreover, it is harmonic and hence
defines a harmonic 1-form on G 0nX 0.

In general, the isometry group G might contain elements not of the form ðg1; . . . ; gmÞ.
In this case, we consider the subgroup G ¼ fg A G j g ¼ ðg1; . . . ; gmÞg. It can be seen easily
that G has index at most m! in G. Hence, after lifting to a finite covering M of M,
M ¼ GnX . Any L2 harmonic 1-form defined on M can be lifted to an L2 harmonic 1-
form defined on M. We now apply the above argument on M. r

Let us now recall that when X is an irreducible rank one symmetric space, vanishing
of L2 harmonic 1-forms is no longer automatic. In fact, there are examples of M ¼ GnX

that have two infinite volume ends. In paricular, it was proved [LW1] that if X is the real
hyperbolic space of dimension nf 3 and if l1ðMÞf n � 2 then M either has one infinite
volume end or it must be a warped product with l1ðMÞ ¼ n � 2. In [LW5], Li-Wang con-
sidered the case when X ¼ CHm is the complex hyperbolic space with complex dimension

m and Ricci curvature normalized to be �2ðm þ 1Þ, if l1ðMÞ > m þ 1

2
then M has only one

infinite volume end. In [KLZ], the authors treated the case when X ¼ QHm is the quater-
nionic hyperbolic space of real dimension 2m. They showed that if the Ricci curvature is
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normalized to be �4ðm þ 2Þ and if l1ðMÞf 8ðm þ 2Þ
3

, then M must have only one infi-

nite volume end. Similarly, when X ¼ OH is the Cayley hyperbolic space of dimension
16, it was proved by [Lm] that by normalizing the Ricci curvature to be �36 and if

l1ðMÞf 216

7
, then M must have only one infinite volume end. Note that after using the

fact that H2 ¼ CH1, the above list covered all the rank one cases. For the sake of book-
keeping, it is convenient to unify the normalization. Let us assume X n is any of the rank
one symmetric space of noncompact type. Let us define the constant

A ¼

n � 1

n � 2
if X ¼ Hn and nf 3;

4 if X ¼ CHm;

3

2
if X ¼ QHm;

7

6
if X ¼ OH:

8>>>>>>>>><
>>>>>>>>>:

ð3:5Þ

If M ¼ GnX and

RicM > �Al1ðMÞ

then M must have only one infinite volume end. If

RicM ¼ �Al1ðMÞ

and M has more than one infinite volume end, then either X ¼ Hn with nf 3 and M is a
warped product, or X ¼ CHm.

We can now state the theorems for quotients of products of rank one symmetric
spaces. The first theorem deals with products of real hyperbolic spaces of dimension at
least 3.

Theorem 3.2. Let X ¼ X1 � X2 � � � � � Xm be the product of m irreducible, rank

one, symmetric spaces of non-compact type. Assume that each of the factors Xi is a scalar

multiple of some real hyperbolic space Hni of dimension ni f 3. Let us denote �Ci to

be the Ricci curvature of Xi. Suppose G is a discrete subgroup of the isometry group

acting on X and M ¼ GnX is its quotient space. Assume that M is noncompact with

l1ðMÞfmaxm
i¼1

ni � 2

ni � 1
Ci

� �
. Then M must either have only one infinite volume end, or

it is di¤eomorphic to a product manifold R� N where N is compact. In the latter case,

l1ðMÞ ¼ maxm
i¼1

ni � 2

ni � 1
Ci

� �
.

Proof. As in the argument of the proof of Theorem 3.1, if necessary by lifting to a
finite covering, we may assume that all g A G are of the form g ¼ ðg1; . . . ; gmÞ. Since we as-
sume l1ðMÞ > 0, an end of M is nonparabolic if and only if its volume is infinite by [LW1].
Now suppose that M has more than one infinite volume end. Then by [LT2] there exists a
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bounded nonconstant harmonic function f on M with finite total Dirichlet integral. Apply-
ing Theorem 3.1 to W ¼ df , we conclude from (3.4) that the Hessian of f satisfies fpq ¼ 0
for all p and q, where p denotes the index for directions ei

a and q for directions e
j
b with

i3 j. Lifting the harmonic function f to the covering X and applying a result of Freire
[F], we conclude that f is harmonic on each factor Xi. Let us decompose the exterior deriv-
ative

d ¼
Pm
i¼1

di

with respect to the decomposition of the tangent space TM ¼
Lm
i¼1

TXi. In particular,

di f ¼ W i ¼
Pni

a¼1

f i
ao

i
a:

Using the product structure, di commutes with the Laplacian D, hence di f ¼ W i is also har-
monic on M and

Pni

a¼1

f i
aa ¼ 0:ð3:6Þ

One readily checks that the Bochner formula yields

Djdi f j2 ¼ 2 RicMi
ðdi f ; di f Þ þ 2

Pni

a;p¼1

f i
ap:

Using (3.6), we conclude that

Djdi f j2 f�2Cijdi f j2 þ
2ni

ni � 1

��dijdi f j
��2
:ð3:7Þ

Let us define hi ¼ jW ij
ni�2

ni�1, and (3.7) can be expressed as

Dhi f� ni � 2

ni � 1
Cihi:ð3:9Þ

We now claim that using the assumption l1ðMÞfmaxm
i¼1

ni � 2

ni � 1
Ci

� �
implies that either

hi ¼ 0 or (3.9) becomes equality with hi being nonzero everywhere (see [LW4]). Indeed this
follows from a similar argument as in [LW4] by justifying

Ð
M

j‘fj2h2
i ! 0

for a sequence of appropriate cut-o¤ functions f. Since hi ¼ jdi f j
ni�2

ni�1 e j‘f j
ni�2

ni�1, it su‰ces to
show that Ð

M

j‘fj2j‘f j
2ðni�2Þ

ni�1 ! 0;
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which is exactly what was shown in [LW4]. We can conclude that either df ¼ 0 or it is non-
vanishing everywhere on M. Since f is nonconstant, we must have df nonzero everywhere
and M splits into R� N, where N is any fixed level set of f . As M is assumed to have at
least two ends, N must be compact. Note that on those Xi such that di f is not identically

zero, we must have l1ðMÞ ¼ maxm
j¼1

nj � 2

nj � 1
Cj

� �
¼ ni � 2

ni � 1
Ci. At this point, we should also

point out that in case we need to argue on the finite covering G 0nX of M ¼ GnX , the pro-
duct R� N is di¤eomorphic to G 0nX . Since N is given by a level set of f and f is invari-
ant under the deck transformations G ¼ G=G 0, N is invariant under G also. In particular,
R� N=G is di¤eomorphic to M. We can now conclude that N=G is compact. This com-
pletes the proof. r

Theorem 3.3. Let X ¼ X1 � X2 � � � � � Xm be the product of m irreducible, rank one,
symmetric spaces of non-compact type. Let us denote �Ci to be the Ricci curvature of Xi.

Suppose G is a discrete subgroup of the isometry group acting on X and M ¼ GnX is its quo-

tient space. Assume that M is noncompact with l1ðMÞ > maxm
i¼1fA�1

i Cig, where Ai is the

corresponding constant of Xi defined by (3.5). Then M must have only one infinite volume

end.

Proof. We essentially follow a similar argument as in the proof of Theorem 3.2 and
combine with the vanishing theorem of Siu and Corlette. The main issue is to deal with the
case when Xi is either CHm, QHm, or OH. The technique is similar for all these cases, so
we will just assume Xi is a scalar multiple of some CHm. Following the proof of the previ-
ous theorem, we claim that the Bochner formular (3.7) can be improved to

Djdi f j2 f�2Cijdi f j2 þ 4
��dijdi f j

��2
:ð3:10Þ

Once the claim is verified, the proof of [LW5], Theorem 2.1 will imply that di f ¼ 0.

To prove (3.10), we apply the noncompact version of Corlette’s vanishing theorem
stated in [KLZ]. Note that since Xi has a parallel Kähler form, W, it can be viewed as a
parallel form on X . [KLZ], Theorem 3.1 asserts that

d � ðdf5WÞ ¼ 0:

Following the computation and the notation of [KLZ], Lemma 3.1, this implies that

P2

i; j¼1

fijoj5lðeiÞW ¼ 0;

where lðeiÞ is the interior product by ei. In particular, this implies that f is pluri-harmonic
on Xi. The improved Bochner formula (3.10) now follows from [L]. The cases of QHm and
OH follow the same way as in [KLZ] and [Lm]. r

Theorem 3.4. Let X ¼ X1 � X2 � � � � � Xm be the product of m irreducible symmetric

spaces of non-compact type. Suppose G is a discrete subgroup of the isometry group acting on

X and M ¼ GnX is its quotient space. Assume that M is noncompact with l1ðMÞ ¼ l1ðX Þ.
Then M either has no finite volume ends, or it must be di¤eomorphic to the product R� N,
where N is a compact quotient of the level set of the Buseman function with respect to some
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geodesic line gðsÞ ¼
�
g1ðsÞ; g2ðsÞ; . . . ; gmðsÞ

�
with gi being geodesics in Xi for i ¼ 1; . . . ;m, re-

spectively. Moreover, jg 0i j ¼
BiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1

B2
i

s with Bi ¼
Pni

a¼2

bi
a where f�ðbi

aÞ
2g is the set of sectional

curvatures of Xi.

Proof. First let us observe that by the uniqueness of geodesic, if gðsÞ is a normal geo-
desic in X , then g must be given by gðsÞ ¼

�
g1ðsÞ; g2ðsÞ; . . . ; gmðsÞ

�
where gi are geodesics in

Xi for i ¼ 1; . . . ;m, respectively. Let us denote the tangent vector v ¼ g 0ðsÞ at gðsÞ. It has
the decomposition v ¼ ðv1; v2; . . . ; vmÞ with vi ¼ g 0iðsÞ. Let us choose an orthonormal frame

fe1; e2; . . . ; eNg with N ¼
Pm
i¼1

ni at the point gðsÞ such that e1 ¼ v. We choose fui
1; . . . ; ui

ni
g

to be orthonormal frames of Xi, so that vi ¼ yiu
i
1 for 0e yi e 1 satisfying

Pm
i¼1

y2
i ¼ 1. Let us

denote Ri to be the curvature tensors of Xi for i ¼ 1; . . . ;m, respectively. We now choose
the set fui

ag for a ¼ 2; . . . ; ni so that

hRi
ui

1
ui
a
ui
a; u

i
1i ¼ �ðbi

aÞ
2

as indicated in the proof of Theorem 2.2. We now parallel translate the frames fui
1; . . . ; ui

ni
g

along gi for each i ¼ 1; . . . ;m. Note that for any tangent vector of the form
r ¼ ða1u1

1 ; a2u2
1 ; . . . ; amum

1 Þ, we have

hRvrr; vi ¼
Pm
i¼1

a2
i hRi

vi;u
i
1
ui

1; vii ¼ 0

by the property of the curvature tensor R of X and the fact that it is a product metric.
Hence, if we choose fe

T
i�1

j¼1

njþ1
j i ¼ 1; . . . ;mg to be the set of orthonormal basis spanning

the subspace defined by fða1u1
1 ; . . . ; amum

1 Þ j ai A Rg, then

hRe1e
T

i�1

j¼1
njþ1

e
T
i�1

j¼1

njþ1
; e1i ¼ 0

for i ¼ 2; . . . ;m. We also choose e
T
i�1

j¼1

njþa
¼ ð0; . . . ; 0; ui

a; 0; . . . ; 0Þ for 2e ae n and

1e iem, where ui
a is in the

�Pi�1

j¼1

nj þ a

�
-th slot, then

hRe1e
T

i�1

j¼1
njþa

e
T
i�1

j¼1

njþa
; e1i ¼ �y2

i ðbi
aÞ

2:

Following the argument as in [LW3], we conclude that

Drðp; xÞe
Pm
i¼1

Pni

a¼2

yib
i
a coth

�
yib

i
arðxÞ

�
þ r�1ðxÞð3:11Þ

where x ¼ gðsÞ and p ¼ gð0Þ. Once again, when bi
a ¼ 0 we adopt the convention that

yib
i
a coth

�
yib

i
arðxÞ

�
¼ r�1:
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Let us now assume M has at least one finite volume end and that l1ðMÞ ¼
Pm
i¼1

l1ðXiÞ.
Note that since

l1ðXiÞ ¼
B2

i

4
with Bi ¼

P
a

bi
a

for i ¼ 1; . . . ;m, we conclude that

l1ðX Þ ¼ jBj2

4
;

where jBj2 ¼
Pm
i¼1

B2
i . In particular, M has maximal l1 among all quotients of X . Let E be

the finite volume end, and MnE can be viewed as an infinite volume end. If t is a geodesic
line in M with tðtÞ ! EðyÞ and tð�tÞ ! ðMnEÞðyÞ as t ! y, where EðyÞ denotes the
infinity of the end E. We define

btðxÞ ¼ lim
t!y

�
t � r

�
tðtÞ; x

��
to be the Buseman function with respect to the geodesic ray t. For a fixed x A M and e > 0,
then by taking t su‰ciently large, (3.11) asserts that

Dr
�
tðtÞ; x

�
e ð1 þ eÞ

Pm
i¼1

yiBi þ e:

Hence,

DbtðxÞf�ð1 þ eÞ
Pm
i¼1

yiBi � e

and using the fact that e is arbitrary, we conclude

Dbt f�
Pm
i¼1

yiðxÞBi f�jBj:

The last inequality follows from the fact that the function

f ðyÞ ¼
Pm
i¼1

yiBi

maximizes at yi ¼
Bi

jBj for 0e yi e 1 satisfying
Pm
i¼1

y2
i ¼ 1.

Note that due to the presence of the cut-locus created by taking the quotient, the in-
equality

Dbt f�jBj
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is valid in the weak sense. Let us now define the function

u ¼ exp
jBj
2

bt

� �
:

It satisfies the di¤erential inequality

Du ¼ jBj
2

uDbt þ
jBj2

4
uj‘btj

2

f� jBj2

4
u;

where we have used the fact that j‘bj ¼ 1 as argued in [W-L5]. A similar argument as in
the proof of Theorem 1.1 implies that

Dbt ¼ �jBjð3:12Þ

and M must be di¤eomorphic to R� N where N is a compact orbifold given by the level
set of bt.

We now claim that a lift of the geodesic t to X , denoted by ~tt must be of the form

~tt ¼ ðg1; g2; . . . ; gmÞ

with

g 0i ¼
Bi

jBj ui

for some unit vectors ui A TðMiÞ. Indeed, if x ¼ tðsÞ, then

Dr
�
tðtÞ; x

�
e

Pm
i¼1

yi

P
a

bi
a coth

�
yib

i
ar
�
tðtÞ; x

��
þ 1

r
�
tðtÞ; x

� ;
where yi is determined by

~tt 0 ¼ y1
g 01ðsÞ
jg 01ðsÞj

; y2
g 02ðsÞ
jg 02ðsÞj

; . . . ; ym

g 0mðsÞ
jg 0mðsÞj

� �
:

Hence

DbðxÞf�
Pm
i¼1

yiBi:

Compared with (3.12), we conclude that yi ¼
Bi

jBj . It is also obvious that N is given by a

compact quotient of the level set of the Buseman function with respect to the geodesic ~tt.
r
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The following corollary can be derived by combining Theorem 3.2, Theorem 3.3 and
Theorem 3.4.

Corollary 3.5. Let X ¼ X1 � X2 � � � � � Xm be the product of m irreducible symmet-

ric spaces of non-compact type, with mf 2. Suppose G is a discrete subgroup of the isometry

group acting on X and M ¼ GnX is its quotient space. Assume that M is noncompact with

l1ðMÞ ¼ l1ðXÞ. Then M either has one end, or it must be di¤eomorphic to the product mani-

fold R� N, where N is a compact orbifold.

Proof. In view of Theorem 3.4, we only need to rule out the case that M has at least
two ends of infinite volume. Assuming this is the case, following the notation and the argu-
ment of Theorem 3.2, we obtained a nonconstant, bounded harmonic function f with finite
Dirichlet integral. The Bochner identity (3.7) asserts that

Djdi f jf�Cijdi f j:ð3:13Þ

To get a contradiction, it su‰ces to show that di f ¼ 0 for all 1e iem. Note that Theo-
rem 3.1 asserts that di f ¼ 0 if Xi is of rank at least 2. Hence we only need to consider those

Xi that are of rank one. Our assumption that l1ðMÞ ¼
Pm
i¼1

l1ðXiÞ, with mf 2, asserts that

l1ðMÞ > l1ðXiÞfA�1
i Ci. So by Theorem 3.2, we conclude that jdi f j ¼ 0 if Xi ¼ Hn for

nf 3. The remaining case can be handled by applying Theorem 3.3. r

§4. Homogeneous spaces

Let G be a connected noncompact semisimple Lie group with finite center, and
K HG a maximal compact subgroup. Let us denote their Lie algebras by g ¼ pl k as in
the Cartan decomposition, which is clearly invariant under the adjoint action of K. The
Killing form B of g defines a non-degenerate bilinear form on g satisfying the following
conditions:

(1) p and k are perpendicular with respect to B.

(2) Bjp is positive definite, and Bjk is negative definite.

One defines a new inner product h� ; �i on g by reversing the negative sign on k and
preserving other conditions. Under the left translation by elements of G, it defines a left-
invariant Riemannian metric on G. Since the inner product h� ; �i on g is invariant under
the adjoint action of K , the Riemannian metric on G is invariant under the right action of
K . It is important to note that it is not invariant under the right action of G. Hence this
Riemannian metric induces an invariant metric on X ¼ G=K and X is a symmetric space
with respect to it. For any compact subgroup H HK , the homogeneous space G=H also
inherits an invariant Riemannian.

Remark 4.1. Instead of the Killing form B on g and the modified inner product
h� ; �i, we can also use any inner product on g which is invariant under the adjoint action
of K, and then the induced left invariant Riemannian metric on G, G=H, etc. If X ¼ G=K

is an irreducible symmetric space, then such an inner product is unique up to di¤erent
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scalings on the subspaces p and k. If X is reducible, there are further choices of scaling
constants in di¤erent irreducible factors of X . Therefore, the inner product h� ; �i induced
from the Killing form B is a natural and general choice. See also the paper [BG] for related
discussion.

In the following, the spaces G and G=H are given the Riemannian metric discussed
above unless indicated otherwise.

Theorem 4.2. Let G be a connected semisimple non-compact Lie group as above and

GHG be any discrete subgroup, not necessarily torsion-free. If l1ðGnGÞ ¼ l1ðGÞ, then one

of the following alternatives holds:

(1) GnG has exactly one end, and this end has infinite volume.

(2) GnG is di¤eomorphic to a product R� N, where N is a compact orbifold, and has

exactly one infinite volume end and a finite volume end.

Theorem 4.3. Let G be a connected semisimple non-compact Lie group, GHG be any

discrete subgroup, and H HK a compact subgroup of G. If l1ðGnG=HÞ ¼ l1ðG=HÞ, then the

same alternative as in the previous theorem holds.

Though the first result is a special case of the second more general one, the proof of
the second one depends on the first. This is one of the reasons for stating them separately.

Proof of Theorem 4.2. The basic idea is to reduce it to the result for locally symmet-
ric spaces GnX with l1ðGnXÞ ¼ l1ðX Þ. Briefly, K acts on GnG on the right and hence also
acts on L2ðGnGÞ. This gives a decomposition

L2ðGnGÞ ¼
L
s A K̂K

L2ðGnX ;EsÞ;ð4:1Þ

where K̂K is the set of all irreducible unitary representations of K , and for each s A K̂K acting
on its representation space Vs, Es ¼ G nK Vs is the associated homogeneous vector bundle
over X .

When s is the trivial representation, then

L2ðGnX ;EsÞ ¼ L2ðGnG=KÞ ¼ L2ðGnGÞK ;ð4:2Þ

the subspace of functions invariant under K .

The simple but crucial observation here is that the bottom of the spectrum of the La-
place operator of GnG is achieved on the subspace L2ðGnX Þ ¼ L2ðGnG=KÞ.

A closely related fact is that

l1ðGÞ ¼ l1ðG=KÞ:ð4:3Þ

Then the equality

l1ðGnGÞ ¼ l1ðGÞ
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implies the following equality for locally symmetric spaces:

l1ðGnXÞ ¼ l1ðXÞ:

The previous result for locally symmetric spaces in Corollary 3.5 applies and shows
that either GnX has exactly one end, which has infinite volume, or is a product and hence
has exactly one infinite volume end and one finite volume end. Since GnG fibers over GnX

and G is connected (and hence K is connected), the number of ends of GnG is the same as
the number of ends of GnX , and the result of Theorem 4.2 follows.

Now we need to justify the above observation on the bottom of the spectrum by using
the characterization

l1ðMÞ ¼ supfl A R jDu ¼ �lu for some positive function u on Mg:ð4:4Þ

Suppose u is a positive function on GnG satisfying Du ¼ �lu, then its average over K under
the right action

uðxÞ ¼
Ð

k AK

uðxkÞ dk;

where dk is the Haar measure on K of total measure 1, defines a positive function on GnX .
Since the Laplace operator D of G commutes with the right action of K, the function u also
satisfies the equation

Du ¼ �lu:

When u is considered as a function on GnX , the above equation reduces to an eigen-
equation on GnX . This implies that

l1ðGnXÞf l1ðGnGÞ:

But the reverse inequality follows from decomposition in (4.1) and the identification in
(4.2). Therefore, the following equality holds:

l1ðGnX Þ ¼ l1ðGnGÞ:ð4:5Þ

The equation (4.3) can be proved in the same way. The proof of Theorem 4.2 is com-
plete. r

Proof of Theorem 4.3. The basic idea is to prove that if

l1ðGnG=HÞ ¼ l1ðG=HÞ;

then

l1ðGnGÞ ¼ l1ðGÞ;

and hence Theorem 4.2 can be applied.

First we prove that

l1ðG=HÞ ¼ l1ðG=KÞ:ð4:6Þ
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For this purpose, note that the inclusions

L2ðGÞK ¼ L2ðG=KÞHL2ðGÞH ¼ L2ðG=HÞHL2ðGÞ

imply

l1ðG=KÞe l1ðG=HÞe l1ðGÞ:

Hence combining with equality (4.3) yields

l1ðG=HÞ ¼ l1ðGÞ:

On the other hand, using the inclusions

L2ðGnGÞK ¼ L2ðGnG=KÞHL2ðGnGÞH ¼ L2ðGnG=HÞHL2ðGnGÞ;

and equality (4.5), we obtain

l1ðGnG=HÞ ¼ l1ðGnG=KÞ:ð4:7Þ

The assumption l1ðGnG=HÞ ¼ l1ðG=HÞ together with (4.6) and (4.7) imply that
l1ðGnGÞ ¼ l1ðGÞ. Therefore Theorem 4.3 follows from Theorem 4.2. r

Remark 4.4. In the above discussions, the Riemannian metric on G and the homo-
geneous space G=H is somewhat restrictive. Specifically, on G, we could start with any in-
ner product on g without requiring invariance under the adjoint action of K . But one di‰-
culty is that the induced left invariant metric on G is not necessarily invariant under the
right K-action. This prevents us from the reduction to locally symmetric spaces GnG=K ,
which was used crucially in the preceding proofs.

Similarly, when H is a non-maximal compact subgroup, then an invariant Riemann-
ian metric on the homogeneous space G=H comes from an inner product on g which is
invariant under the adjoint action of H, but not of K. If the metric on G lifted from G=H

is not invariant under the right action of K, we could not appeal to the reduction to results
on locally symmetric spaces.

Remark 4.5. Besides homogeneous spaces associated with semisimple Lie groups, it
is also natural to consider homogeneous spaces of other Lie groups. If G is a connected
reductive Lie group endowed with an invariant metric induced from an inner product
which is invariant under the adjoint action of a maximal compact subgroup K , then the
same results hold for G=H etc.

If G is a nilpotent Lie group, then for any Riemannian homogeneous space G=H of
G, its bottom of the spectrum l1ðG=HÞ ¼ 0, and hence for any discrete subgroup GHG,
the equality

l1ðGnG=HÞ ¼ l1ðG=HÞ

is automatically satisfied.
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For more general (linear) Lie groups, it seems natural to try to use the Levi decom-
position to reduce them to semisimple and solvable Lie groups, and further reduce the lat-
ter ones to nilpotent Lie groups.

§5. Examples of l1(GnX )F l1(X )

After having proved theorems of the end structures of locally symmetric spaces GnX

with l1ðGnX Þ ¼ l1ðXÞ and related spaces in the previous section, it is natural to construct
examples satisfying this extremal condition.

One idea is to use the Patterson-Sullivan type theorem on relations between the bot-
tom of the spectrum and the Hausdor¤ dimension and the critical exponents. See the paper
[Le] and the references contained there.

By the results of Elstrodt-Patterson-Sullivan-Corlette for rank one symmetric spaces
and of Leuzinger for higher rank spaces (see [Le], p. 920), one way to find examples of GnX

with l1ðGnXÞ ¼ l1ðXÞ is to construct examples of discrete groups G with critical exponents
dðGÞ less than or equal to rm, where rm is a positive number defined as follows. Let a be a
maximal abelian subalgebra of pH g, and aþ a positive chamber. Let r be the half sum of
the positive roots of g with respect to aþ. Then rm ¼ sup rðHÞ, where H A aþ, kHk ¼ 1.
When the rank of G is equal to one, then rm ¼ krk. In the above discussion, the Riemann-
ian metric of X is induced from the Killing form. Then l1ðXÞ ¼ krk2.

If the rank of X (or G) is equal to r, then there exist torsion-free abelian subgroups G
of A with rank less than or equal to r, where G ¼ NAK is the Iwasawa decomposition of G.
As pointed out in [Le], §2.3.1, such groups satisfy dðGÞ ¼ 0 and hence l1ðGnX Þ ¼ l1ðXÞ, by
the result of Elstrodt-Patterson-Sullivan-Corlette.

Another type of example can be obtained as follows. Let P be a parabolic subgroup
of G and let P ¼ NPAPMP be the Langlands decomposition of P. Then MP is a reductive
Lie group and the quotient XP ¼ MP=K XMP is a symmetric space of noncompact type.
The symmetric space X admits a horospherical decomposition

X ¼ NP � AP � XP:

For every point n A NP, the product AP � XP is isometrically embedded into X as
fng � AP � XP.

For any discrete subgroup GN HNP, it is known that dðGÞ > 0 by [Le], p. 922. But it
is not obvious that dðGÞe rm. On the other hand, it follows from the observation that the
bottom of the spectrum of X is achieved by NP-invariant functions and the horospherical
decomposition of the Laplace operator, it can be shown that l1ðGNnX Þ ¼ l1ðXÞ. (Or we
can note that GN is nilpotent, hence amenable, and use Theorem 5.1 below.)

For any discrete subgroup GM of MP with l1ðGMnXPÞ ¼ l1ðXPÞ, for example, GM

can be taken as a nilpotent or abelian subgroup. Suppose that GN is a discrete subgroup
of NP normalized by GM . (Such subgroups do exist, for example, induced from arithmetic
subgroups of G when P is a parabolic subgroup defined over rational numbers.) Then
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GNGM is also a discrete subgroup of G. Using similar arguments and the fact that the
product AP � XP is isometrically embedded into X , it can also be shown as above that
l1ðGNGMnXÞ ¼ l1ðXÞ.

On the other hand, given a discrete subgroup GN of NP, there is in general no discrete
subgroup of AP which normalizes GN . So in general we can not combine discrete subgroups
of NP and AP to get discrete subgroups of G.

Let GM be a discrete subgroup of MP with l1ðGMnXPÞ ¼ l1ðXPÞ, and let GA be a dis-
crete subgroup of AP. Then GAGM is a discrete subgroup of G. By similar arguments as
above, it can be proved that l1ðGAGMnX Þ ¼ l1ðXÞ.

These examples above are all amenable, but some are not elementary in the sense
that they fix one common point in the sphere at infinity of X , if the rank of X is greater
than 1. The next theorem established the fact that if G is amenable, then l1ðXÞ ¼ l1ðGnX Þ
for a rather general class of complete manifolds X that are not necessarily a symmetric
space.

Theorem 5.1. Let X be a complete Riemannian manifold whose Ricci curvature is

bounded from below by some nonpositive constant. Assume that the volume of geodesic balls

of radius 1 satisfies the subexponential decay estimate

Vxð1ÞfC exp
�
�erðxÞ

�
for any e > 0, where p A X is a fixed point and rðxÞ ¼ rðp; xÞ is the distance from p to x. If

G is amenable, then l1ðGnXÞ ¼ l1ðX Þ.

Proof. Note that when l1ðX Þ ¼ 0, then obviously l1ðGnXÞ ¼ 0 by monotonicity
property.

Assuming that l1ðXÞ > 0, for e > 0 su‰ciently small, there exists a minimal positive
Green’s function Gðx; yÞ to the operator Dþ

�
l1ðXÞ � e

�
on X . Moreover, by the estimate

in [LW4] (see Corollary 2.2), we have

Ð
BpðRþ1ÞnBpðR�1Þ

G2ðp; yÞ dyeCe�2
ffiffi
e

p
Rð5:1Þ

for all R > 0. Now let fðxÞf 0 be a smooth function with compact support on X and
fðpÞ ¼ 1. Let us define the function

uðxÞ ¼
Ð
X

Gðx; yÞfðyÞ dy:

Obviously, uðxÞf 0 and

�
Dþ

�
l1ðXÞ � e

��
uðxÞ ¼ �fðxÞe 0;

hence

DuðxÞe�
�
l1ðX Þ � e

�
uðxÞ:ð5:2Þ
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On the other hand, the decay estimate (5.1) implies that for any point x A X with
rðp; xÞ ¼ R, we have

Ð
Bxð1Þ

u2ðyÞ dyeC1

Ð
BpðRþ1ÞnBpðR�1Þ

G2ðp; yÞ dyð5:3Þ

eC2e�2
ffiffi
e

p
R:

Since

�
Dþ

�
l1ðXÞ � e

��
uðxÞ ¼ 0

away from the support of f, the standard mean value inequality [LT1] implies

u2ðxÞeC4V�1
x ð1Þ

Ð
Bxð1Þ

u2ðyÞ dy:

Combining with (5.3), we conclude that

uðxÞeC5V�1
x ð1Þ expð�

ffiffi
e

p
RÞ:

In particular, the assumption on the volume decay on X implies that u must be
bounded.

The assumption that G is amenable implies there exists an invariant mean m on the
space LyðGÞ. Moreover, according to [G], Theorem 3.6.1, m can be obtained as

mð f Þ ¼ lim
j!y

1

jUjj
P

g AUj

f ðgÞ

for a net of finite subsets fUjg in G. We use this invariant mean m and the function u on X

to define a function v on GnX by

vðzÞ ¼ m
�

fzðgÞ
�
;

where we view GnX as a fundamental domain in X and fzðgÞ ¼ u
�
gðzÞ

�
for g A G. Since u is

bounded, fz A LyðGÞ. By the fact that m is G invariant, v is well-defined on GnX and vf 0.
Also, using the explicit form of the invariant mean m and (5.2), it is straightforward to
check that the function v satisfies

DvðzÞe�
�
l1ðX Þ � e

�
vðzÞ:ð5:4Þ

By [LW4], Proposition 1.1, we conclude that

l1ðGnXÞf l1ðXÞ � e:

Since e > 0 is arbitrary, this implies that

l1ðGnXÞf l1ðXÞ
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and

l1ðGnX Þ ¼ l1ðXÞ

as the reverse inequality always holds. r

Corollary 5.2. Let X be a symmetric space of noncompact type, and GnX a noncom-

pact quotient by a discrete, amenable, group of isometries of X. Then l1ðX Þ ¼ l1ðGnXÞ. In

particular, GnX either has one end, which is necessarily of infinite volume, or it must have two

ends, one of infinite volume and another of finite volume, and is di¤eomorphic to a product

R� N, where N is compact.

We would like to remark that Theorem 5.1 is related to the results of R. Brooks [Br2],
where he also considers the same question with the assumption that GnX is topologically
finite. His proof used the isoperimetric inequality, while ours is mostly analytical. More im-
portantly, the assumption on Brooks result is on the base space GnX , compare to the rather
mild assumption of Theorem 5.1 is on the covering X itself. In particular, even for the case
of X ¼ H3, where the assumption of Theorem 5.1 is automatic, but the assumption that
GnX is topologically finite is a nontrivial one. Brooks also pointed out that the converse
statement to Theorem 5.1 does not hold in general.

Remark 5.3. In [BeK], quotients by amenable discrete isometric groups of simply
connected Riemannian manifolds with negatively pinched sectional curvature are studied.
It follows from their result that such a quotient has either one end, or is di¤eomorphic to a
product R� N, where N is a compact nilmanifold. Theorem 5.1 is a generalization of this
result to an important class of nonpositively curved manifolds.
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