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Preface

Symmetric spaces and locally symmetric spaces occur naturally in many
branches of mathematics as moduli spaces and special manifolds, and are
often noncompact. Motivated by different applications, compactifications of
symmetric spaces and locally symmetric spaces have been studied intensively
by various methods. For example, a typical method to compactify a sym-
metric space is to embed it into a compact space and take the closure, while
a typical method to compactify a locally symmetric space is to attach ideal
boundary points or boundary components. In this book, we give uniform
constructions of most known compactifications of both symmetric and locally
symmetric spaces together with some new compactifications. We also explain
how different types of compactifications arise and are used, in particular, why
there are so many different kinds of compactifications of one space, and how
they are related to each other. We hope to present a comprehensive survey of
compactifications of both symmetric and locally symmetric spaces. It should
be pointed out that this book emphasizes the geometric and topological as-
pects of the compactifications; on the other hand, we have tried to provide
adequate references to omitted topics.

The book is divided into three parts corresponding to different classes of
compactifications. In Part I, we study compactifications of Riemannian sym-
metric spaces in the usual sense that the symmetric spaces are open and dense
subsets. In Part II, we study compact smooth manifolds in which the disjoint
union of more than one but finitely many symmetric spaces is contained as
an open, dense subset, and the closure of each copy of the symmetric spaces
is a manifold with corners. In Part III, we study compactifications of locally
symmetric spaces, and their relations to the metric and spectral properties of
the locally symmetric spaces.

Though these parts treat different types of compactifications, they are
closely related in various ways. In fact, there are several basic, unifying themes
in this book:

1. Siegel sets of rational parabolic subgroups and the reduction theory of
arithmetic groups have played an important role in the study of com-
pactifications of locally symmetric spaces. We show that compactifica-
tions of a symmetric space X can also be studied through a general-
ization for real parabolic subgroups of Siegel sets of rational parabolic
subgroups and the reduction theory of arithmetic groups. Therefore,
compactifications of symmetric and locally symmetric spaces can be
studied in parallel using similar methods.

2. Compactifications of a locally symmetric space Γ\X can be studied and
understood better through compactifications of the homogeneous space
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Γ\G, which is a principal fiber bundle over Γ\X whose fibers are maxi-
mal compact subgroups of G.

3. Certain compactifications of symmetric spaces in Part II can be realized
by gluing other compactifications from Part I in a manner analogous
to the method of obtaining a closed manifold by doubling a manifold
with boundary, which is called self-gluing in this book. In Part II, we
describe a new and simpler technique for constructing analytic struc-
tures on compactifications by complexifying the symmetric spaces into
complex symmetric varieties and using compactifications of the complex
symmetric varieties as projective varieties.

4. Although compactifications of locally symmetric spaces are traditionally
constructed using compactifications of symmetric spaces, we construct
in Part III these compactifications independently of compactifications
of symmetric spaces, and hence use only the Q-structure of the spaces.

5. In Part III, we consider metric properties of compactifications of locally
symmetric spaces. This gives a new perspective on sizes of compactifica-
tions and deepens our understanding of their properties. It also simpli-
fies applications to extension properties of holomorphic maps from the
punctured disc to Hermitian locally symmetric spaces. Furthermore, it
clarifies relations to the continuous spectrum of the locally symmetric
spaces.

The basic plan of the book was worked out and agreed upon by the two
authors around December 2002. Part II was mostly written by the first au-
thor before his unexpected death in August 11, 2003.1 The task of finishing
this book fell to the second author, who regrets that his style may fail to
meet the high standards of the first author, but who must nevertheless take
responsibility for any error or inaccuracy in the text.

This book is partially based on the joint papers [BJ1] [BJ2] [BJ3] [BJ4].
The book project was proposed by N.Wallach, an editor of this series, to
the authors near the end of the European summer school on Lie theory in
Marseille-Luminy, France, 2001, where the authors gave a joint series of lec-
tures on compactifications of symmetric spaces and locally symmetric spaces.

The second author would like to thank N.Wallach for the book proposal
and comments on an earlier version of this book, and J.P.Anker and P.Torasso
for inviting the authors to give the lectures at the European summer school
on Lie theory in 2001. He would also like to thank N.Mok for arranging
and inviting him to participate in the multi-year program on Lie theory or-
ganized by the first author at the University of Hong Kong where some of

1Besides the introductions to Part II and the chapters there, several comments, and
minor changes of notations for consistency, Part II was the version the first author finished
and in the form he liked in June 2003
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the joint work was carried out, and his teacher M.Goresky for providing the
carefully taken notes [Mac] which motivated Chapter 12 in Part III and for
many helpful and encouraging conversations on various topics, comments and
suggestions. He thanks G.Prasad for helpful conversations and comments,
and S.Zucker and A.Korányi for very helpful correspondences, conversations,
specific and general suggestions and detailed comments on an earlier version
of the book. The second author would also like to thank his teacher S.T.Yau
for inviting both authors to run a multi-year summer school on Lie groups
and Automorphic forms at the Center of Mathematical Sciences at Zhejiang
University, which further encouraged us to work on this book project. It is
sad that the first author could not attend any of the activities he planned at
the center in Hangzhou. 2

The second author would also like to thank R.Lazarsfeld for suggestions
about the index and the layout of the book, E.Gustafsson, the first author’s
secretary, for typing up Part II, and A.Kostant for help and many suggestions
during the preparation of this book. A seminar talk by W.Fulton on how to
write mathematics lead to some improvements of the writing and style of this
book. The work of this book has been partially supported by NSF grants and
an A.P.Sloan research fellowship.

Finally, the second author would like to thank his wife, Lan Wang, and
his three daughters, Lena, Emily and Karen, for their support, understanding
and patience during the intense writing and revising periods of this book.

2The second author co-organized an international conference titled Algebraic groups,
arithmetic groups, representation theory and automorphic forms in memory of the first
author at the Center of Mathematical Sciences at Zhejiang University, Hangzhou, July 26-
30, 2004. The second author would like to thank the director of the center, S.T.Yau, and
its staff members for their efforts and hard work to make the conference a success.
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Chapter 0. Introduction

Symmetric spaces form an important class of Riemannian manifolds and are
divided into three types: flat type, compact type and noncompact type. Flat
symmetric spaces are given by the Euclidean spaces Rn and their quotients.
A typical symmetric space of compact type is the unit sphere Sn−1 in Rn,
and a typical symmetric space of noncompact type is given by a real hyper-
bolic space, i.e., a simply connected Riemannian manifold of constant negative
curvature −1. The hyperbolic plane H can be identified with the symmet-
ric space SL(2,R)/SO(2). An important and natural generalization of H is
SL(n,R)/SO(n), the space of positive definite n × n-symmetric matrices of
determinant 1, which is a symmetric space of noncompact type.

The Euclidean space Rn is diffeomorphic, by retracting along rays from
the origin, to the open unit ball with center at the origin, and hence it can be
compactified by add the unit sphere Sn−1. Alternatively, it can be obtained
by adding the sphere Sn−1 at infinity, which is the set of equivalence classes
of asymptotic geodesics. This compactification of Rn−1 is called the geodesic
compactification and is useful in the Fourier analysis on Rn (see [Me1]). Even
for Rn, there are other compactifications. Briefly, given additional struc-
tures on Rn such as polyhedral cone decompositions, Rn admits polyhedral
compactifications (see §I.18 below), which are very different from the above-
mentioned compactification but are responsible for several compactifications
of higher rank symmetric spaces and locally symmetric spaces.

In this book, we are mainly concerned with symmetric spaces of noncom-
pact type and their quotients by arithmetic subgroups, which are referred to
here as locally symmetric spaces. Quotients of symmetric spaces of noncom-
pact type are abundant. For example, every Riemann surface of genus greater
than or equal to 2 is a quotient of the upper half plane, which becomes the
hyperbolic plane when endowed with the Poincaré metric.

Locally symmetric spaces of noncompact type often occur naturally as
moduli spaces in algebraic geometry and number theory and are usually non-
compact, for example, the moduli space of elliptic curves and more general
polarized abelian varieties [Mum2], the moduli space of abelian varieties with
certain endomorphism groups [Hu], the moduli space of polarized K-3 surfaces

11



12 Introduction

and the related Enriques surfaces [Lo1] [Lo2], and some configuration spaces
of points [Yo1] [Yo2].

Symmetric spaces of noncompact type are diffeomorphic to Euclidean
spaces and hence noncompact. Clearly this diffeomorphism gives a compact-
ification of the symmetric space via the geodesic compactification of the Eu-
clidean spaces. But other structures of symmetric spaces can produce different
compactifications which are important for some applications.

It will be seen below that compactifications of symmetric spaces and locally
symmetric spaces are closely related. Even understanding some properties of
compact locally symmetric spaces is related to compactifications of symmetric
spaces. For example, in the proof of the Mostow strong rigidity [Mos], the
maximal Satake compactification of the symmetric spaces and their maximal
Furstenberg boundaries are used crucially.

As explained below, the problem to compactify symmetric and locally
symmetric spaces arises from many branches of mathematics motivated by
various applications. In fact, different applications impose different conditions
on the sizes of the ideal boundary.

The purposes of this book are the following:

1. To motivate how compactifications were constructed, why they have
the given properties and structures of the boundary, and to explain
connections between different types of compactifications.

2. To give uniform constructions of the most known compactifications and
new compactifications.

3. To examine geometrical, topological properties of compactifications in
terms of group structures and from the perspective of applications they
lead to.

In the first part of this introduction, we recall briefly the history of com-
pactifications of both symmetric and locally symmetric spaces. In the second
part, we summarize new points of view on compactifications presented in this
book. Then we give an outline of the contents of the book. Finally, we men-
tion some important topics not covered in this book and relation between this
book and the earlier one [GJT].

Although they are important and have rich structures, symmetric and
locally symmetric spaces of flat and compact types with the exception of the
Euclidean spaces Rn are not studied in this book. For example, the study of
compact quotients of Rn is closely related to the geometry of lattices and the
geometry of numbers, and understanding them is also very important for many
applications (see [Cass1] [CoS] [Gru] [GruL] [Si3]). The classification of such
compact quotients of Rn or equivalently crytallographic groups is nontrivial
(see [Wo2] for these and other related results on spherical space forms).
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.1 History of compactifications

We will mention only some of the (major) compactifications in the introduc-
tion here and leave others to the various chapters below.

.1.1 The simplest symmetric space of noncompact type is the hyperbolic
plane. One model is given by the Poincaré upper half plane

H = H1 = {x+ iy | x ∈ R, y > 0} = SL(2,R)/SO(2),

with the Poincaré metric ds2 = dx2+dy2

y2 . The group SL(2,R) acts isometri-
cally on H by fractional linear transformations. Another model is given by
the open unit disc D with the Poincaré metric, often called the Poincaré disc,

D = {z ∈ C | |z| < 1} = SU(1, 1)/U(1), ds2 =
|dz|2

(1− |z|2)2
,

where SU(1, 1) acts isometrically on D also by fractional linear transforma-
tions. In fact, the identification between H and D is given by the Cayley
transformation

H→ D, z 7→ z − i
z + i

. (.1.1)

The disc D can be compactified by adding the unit circle S1 and the
SU(1, 1)-action on D extends continuously to the boundary. In terms of H,
this compactification H is homeomorphic to H∪R∪{∞}, which is considered
as a subset of C ∪ {∞}.

This model of the hyperbolic plane in terms of the disc D was given by
Beltrami in 1868, but the compactification D ∪ S1 was used by and must
have been known to Poisson in the early 1800s in the famous Poisson integral
formula for harmonic functions u on D with continuous boundary values:

u(z) =
∫
S1

1− |z|2

|z − ξ|2
u(ξ)dξ,

where dξ is the Harr measure on S1 of total measure equal to 1. This could
be the first example of a compactification of a symmetric spaces of noncom-
pact type. (See [Ji7] for discussions of many different constructions of this
compactification of D).

.1.2 A very important but simple example of locally symmetric spaces is
the modular curve

SL(2,Z)\H = SL(2,Z)\SL(2,R)/SO(2),

where H is the Poincaré upper half plane. More general locally symmetric
spaces related to H are given by quotient spaces Γ\H, for subgroups Γ ⊂
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SL(2,Z) of finite index, for example the principal congruence subgroups

Γ(N) = {γ ∈ SL(2,Z) | γ ≡
(

1 0
0 1

)
mod N}, N ≥ 1.

It is well-known that these quotient spaces are noncompact. In fact, the space
SL(2,Z)\H is the moduli space of elliptic curves. It can be mapped bijectively
to C under the j-invariant of elliptic curves (see [Sil, p. 46]), and hence can
be compactified to the complex projective space CP 1 = C ∪ {∞} by adding
a single cusp point {∞}. In fact, C has only one end, which is isomorphic to
a neighborhood of the origin of C with the origin removed, i.e., a punctured
neighborhood; and the compactification is obtained by filling in the puncture,
or the cusp point. Similarly, other quotients Γ\H can also be compactified
to projective curves over C by adding finitely many cusp points, one cusp
point for each end. These results were known at least by the end of the 19th
century (see [Leh1, Chap. 1]) and have played an important role in the theory
of modular forms of one variable (see [Sh]).

Briefly, starting in 1880, Poincaré realized the connection between the
theory of modular (or automorphic) forms and the hyperbolic plane H. He
introduced the notions of Fuchsian group of the first kind and cusp point,
and, he understood the importance of cusp points in controlling behaviors
at infinity of modular forms. Though the compactification of Γ\H by adding
cusp points was not explicitly mentioned in Poincaré’s early papers (see [Leh1,
Chap. I] [Po] [Ha] [Ma]), it was certainly well understood by him. Related
ideas were also developed by Klein in their strong competition around that
period (see [Leh1, Chap. I] [Ya, pp. 130-133] [Ja]).

There is a close relation between the compactifications of H and Γ\H.
Specifically, instead of the full boundary R∪{∞} of the compactification H of
H, we pick out only the rational boundary points, Q∪{∞}. Modify the subset
topology of H∪Q∪{∞} so that horodiscs (i.e., the interior of horocycles) near
the boundary rational points form a basis of neighborhoods of these boundary
points. This topology of the partial compactification H ∪ Q ∪ {∞} is often
called the Satake topology. Then the Γ-action on H extends to a continuous
action on H∪Q∪{∞} and the quotient Γ\H∪Q∪{∞} is the compactification
of Γ\H discussed earlier.

The compactifications of H and Γ\H and their applications provide the
basic framework or paradigm for the general case.

.1.3 The theory of automorphic forms in several variables was initiated by
Siegel in [Si5]. A direct and important generalization of the upper half plane
H is the Siegel upper half space Hn of degree n, n ≥ 1,

Hn = {X + iY | X,Y ∈Mn(R), tX = X, tY = Y, Y > 0} = Sp(n,R)/U(n),
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where Sp(n,R) is the group

Sp(n,R) = {γ ∈M2n(R) | tγ
(

0 In
−In 0

)
γ =

(
0 In
−In 0

)
}.

The group Sp(n,R) acts on Hn by(
A B
C D

)
· (X + iY ) = (A(X + iY ) +B)(C(X + iY ) +D)−1,

where A,B,C,D are n× n-matrices.
Since the geometry, topology and compactifications of the modular curve

Γ\H have played a fundamental and foundational role in studying the the-
ory of modular forms in one variable, it is a natural problem to understand
geometry and compactifications of noncompact quotients of Hn, which will
similarly give geometric foundations to the theory of automorphic forms in
several variables.

In [Si2] [Si4], Siegel constructed a compactification of a fundamental do-
main in the Siegel upper half space Hn of the Siegel modular group Sp(n,Z),
where

Sp(n,Z) = {γ ∈M2n(Z) | tγ
(

0 In
−In 0

)
γ =

(
0 In
−In 0

)
},

where In is the identity matrix of size n. This compactification of the funda-
mental domain defines a compactification of the quotient

Vn = Sp(n,Z)\Hn.

The space Vn is the moduli space of principally polarized abelian varieties
[Mum2, Theorem 4.7] and is hence called the Siegel modular variety. This
Siegel compactification was used by Christian in [Chr2] [Chr3] to study mod-
ular forms but does not seem to be used much by other people. Its relation
with other later compactifications is not clear, though it seems to be related
to both the Borel-Serre compactification in [BS2] and the toroidal compactifi-
cations in [AMRT] in certain ways (see the review of [Si4] in [Leh]). (See also
Remark III.3.17 below for comments on differences between compactifications
of a fundamental domain of Γ in a symmetric space X and compactifications
of the locally symmetric space Γ\X.)

In order to relate Siegel modular functions, i.e., modular functions with re-
spect to Sp(n,Z), to meromorphic functions on Sp(n,Z)\Hn, Satake proposed
in [Sat6] a procedure to compactify Sp(n,Z)\Hn into a complex analytic V-
manifold (or orbifold) and constructed such a compactification when n = 2.
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In [Sat3], Satake defined a compactification V ∗n of Vn by adding the lower
dimensional spaces Vk = Sp(k,Z)\Hk, 0 ≤ k < n,

V ∗n = Vn ∪ Vn−1 ∪ · · · ∪ V1 ∪ {∞}

where the point {∞} corresponds to the space for k = 0, i.e., the unique cusp
point of Sp(1,Z)\H1 = SL(2,Z)\H. He also showed that the compactifica-
tion V ∗n is a complex analytic space and conjectured that with this analytic
structure, it is a projective variety.

In [Ba1], Baily proved that this Satake compactification V ∗n is a normal
projective variety and obtained as a corollary that for n ≥ 2, every meromor-
phic function on Sp(n,Z)\Hn is a quotient of two modular forms of the same
weight. Later he showed in [Ba2] that any Hilbert-Siegel modular space also
admits a compactification which is a normal projective variety.

We observe that there are three steps in the construction of the compact-
ification (Vn)∗ mentioned in the previous paragraphs:

1. A topological compactification is obtained by adding spaces Vk, k < n,
of the same type but of lower dimension.

2. A sheaf of analytic functions is constructed on the topological compact-
ification to make it into a compact normal complex analytic space.

3. Embedding the compact normal complex space into a complex projective
space as a normal projective subvariety.

To carry out the second and third steps, the fact that Vn = Sp(n,Z)\Hn

is a Hermitian locally symmetric space, i.e., Hn has a Sp(n,R)-invariant com-
plex structure, is necessary.

On the other hand, there are important non-Hermitian locally symmetric
spaces. For example, one such space is

SL(n,Z)\SL(n,R)/SO(n), n ≥ 3,

which is the moduli space of equivalence classes of positive definite quadratic
forms of determinant 1. Compactifications of such spaces are useful for some
applications.

.1.4 In [Sat1] and [Sat2], Satake started the modern theory of compact-
ifications of general symmetric spaces and locally symmetric spaces, which
corresponds to the first step in the construction of V ∗n above.

More specifically, let X = G/K be a Riemannian symmetric space of
noncompact type, for example, the Siegel upper space

Hn = Sp(n,R)/U(n),
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or the space of positive definite Hermitian quadratic forms of determinant 1

X = SL(n,C)/SU(n).

Let Γ be an arithmetic subgroup of G and Γ\X the associated locally sym-
metric space, which is assumed to be noncompact in this book. Unlike the
case of the Siegel modular variety Vn discussed earlier, there are no obvious
choices of lower dimensional locally symmetric spaces which can be attached
at infinity to obtain a topological compactification of Γ\X as in Step 1 in
§.1.3.

Satake solved this problem in two steps which correspond to [Sat1] and
[Sat2]. To obtain the desired boundary spaces and the topology of how they
are attached at infinity of X and Γ\X, Satake started in [Sat1] by construct-
ing a finite family of Satake compactifications X

S
of X and decomposing the

boundary of the Satake compactifications X
S

into lower dimensional symmet-
ric spaces, called boundary components. In fact, there are finitely many types
of boundary components, and the boundary components of each type form a
G-orbit. When X = SL(n,C)/SU(n), the standard Satake compactification
is obtained by adding semi-positive Hermitian matrices, and the boundary
components are of the form SL(k,C)/SU(k) for k ≤ n− 1 as expected.

As explained in the example of the compactification of Γ\H in §.1.2, we
only need a certain rational part of the boundary of the compactification of
H. Instead of rational points, we need some notion of rational boundary com-
ponents of compactifications of X. To pick out certain boundary components
of the Satake compactifications of X and use their quotients to compactify
locally symmetric spaces Γ\X, Satake used in [Sat2] the closure of a suitable
fundamental set of Γ in the Satake compactifications of X. It is reasonable to
expect that only those boundary components which meet the closure of the
fundamental set of Γ in X, which are called Γ-rational boundary components
in [Sat2] and Siegel rational boundary components in this book, are needed
to compactify the fundamental set and hence Γ\X. It should be pointed out
that compactifications of a fundamental domain (or set) of Γ in X are differ-
ent from compactifications of Γ\X, and there are difficulties in passing from
one to other (see Remark III.3.17 below). Under some assumptions on the
fundamental set and the Γ-rational boundary components, he compactified
Γ\X in two steps:

1. Construct a partial compactification of X by adding these Γ-rational
boundary components, and endow the partial compactification with a
so-called Satake topology.

2. Show that Γ acts continuously on the partial compactification with a
compact Hausdorff quotient, which defines a Satake compactification of
Γ\X, denoted by Γ\X

S
.



18 Introduction

Clearly, this compactification of Γ\X depends on the Satake compactification
X
S

. Since there are finitely many non-isomorphic Satake compactifications of
X, there are at most finitely many different Satake compactifications of Γ\X.

Basically, the assumptions above guarantee that Γ induces a discrete group
action on each Γ-rational boundary component of X

S
, and gives a Hausdorff

quotient of the Γ-rational boundary component, called a boundary locally sym-
metric space. These boundary symmetric spaces can be attached to the in-
finity of Γ\X and define a compactification of Γ\X. These assumptions in
[Sat2] depend on the action of Γ on the Satake compactifications X

S
of X

and reflect some rational property of the Satake compactifications X
S

; hence,
the Satake compactifications of X which satisfy these assumptions are called
geometrically rational in [Cas2], also called rational in this book.

.1.5 In a different direction, in order to generalize the classical integral
Poisson formula in Equation (.1.1) for harmonic functions on the unit disc
with continuous boundary values to symmetric spaces of noncompact type,
Furstenberg introduced the notion of Furstenberg boundaries in [Fu1]. Then
he embedded the symmetric space into the space of probability measures on the
maximal Furstenberg boundary and hence obtained the maximal Furstenberg
compactification as the closure of this embedding [Fu1, Chap. II]. In [Mo1],
Moore clarified the structures of all the Furstenberg boundaries, generalized
the construction in [Fu1] by defining a Furstenberg compactification for each
faithful Furstenberg boundary, and showed these finitely many Furstenberg
compactifications X

F
are isomorphic to the finitely many Satake compactifi-

cations X
S

in [Sat1]. Because of this, the Satake compactifications are often
called the Satake-Furstenberg compactifications and denoted by X

SF
, for ex-

ample in [GJT]. On the other hand, we will not follow this convention in view
of applications of Satake compactifications of X to compactifications of locally
symmetric spaces Γ\X.

Using this identification between the Satake and Furstenberg compactifi-
cations of symmetric spaces, Moore showed in [Mo2] that the closure of the
Harish-Chandra canonical realization of a Hermitian symmetric space of non-
compact type as a bounded symmetric domain is isomorphic to a minimal
Satake compactification, which was verified earlier for classical domains by
Satake in [Sat1]. Around the same time, Hermann carried out related inves-
tigations on compactifications of symmetric spaces and potential theory in
these spaces [Her1] – [Her4]. In [Ko1], the problem of intrinsically construct-
ing X

S
was raised, and an approach using admissible domains and filters was

sketched. See also [Ko2-6] for many related results on admissible domains and
boundary values of harmonic functions on symmetric spaces.

The closure of a bounded symmetric domain (or Hermitian symmetric
space) X is often refereed to as the Baily-Borel compactification X

BB
in
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view of its application to the Baily-Borel compactification of Hermitian locally
symmetric spaces Γ\X. In fact, in [BB1], Baily and Borel constructed the
compactification X

BB
in three steps:

1. Apply the general procedure in [Sat2] to construct a topological com-
pactification of Γ\X.

2. Define a sheaf of analytic functions on the topological compactification
to make it into a compact normal complex analytic space.

3. Embed the compactification in Step (2) into a complex projective space
as a normal projective variety by using automorphic forms.

In other words, they generalized the construction and properties of the com-
pactification V ∗n of the Siegel modular variety Vn in [Sat3] [Ba1] outlined in
§.1.1 above to all Hermitian locally symmetric spaces Γ\X.

Except for some low dimensional cases, the boundary Γ\X
BB
− Γ\X of

the Baily-Borel compactification Γ\X
BB

is a subvariety of complex codimen-
sion at least 2. By the Riemann extension theorem, this immediately implies
that the transcendental degree of the field of meromorphic functions on Γ\X
is equal to dimC Γ\X, which was a problem posed by Siegel, and every such
meromorphic function is a quotient of two modular forms of the same weight.
In this application, the smallness of the boundary or rather its high codimen-
sion is important. It will be seen below that for other applications, we need
larger compactifications or rather boundaries.

When X is a classical domain, a similar compactification of Γ\X was also
obtained by Piateski-Shapiro in [PS] using realizations of X as Siegel domains
of the third kind (or more special Siegel domains of the first and second kinds)
with respect to boundary components in the closure. In fact, such realizations
were used to define a topology near the boundary points, called the cylindrical
topology. Since this approach is different from the general procedure in [Sat2],
the cylindrical topology might be different from the Satake topology of the
partial compactification of X. On the other hand, it was shown by Kiernan
in [Ki] that they define the same topology on the compactication of Γ\X

In [Ig3], Igusa showed that the Baily-Borel compactification Γ\X
BB

is
singular for most Γ\X (see also [Chr1]). This is reasonable since in most
cases, as pointed out earlier, the boundary of the Baily-Borel compactification
Γ\X

BB
is a subvariety of complex codimension greater than or equal to 2,

rather than a divisor, and the transversal links of the boundary components
are not spheres. For example, when Γ\X is a Hilbert modular surface, the

compactification Γ\X
BB

is obtained by adding one point to each end. It can

be shown easily that the link of each such added point in Γ\X
BB

is equal to
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a (S1)2-bundle over the circle S1, and hence not homeomorphic to the sphere

S3, which implies that Γ\X
BB

is singular.

By the Hironaka resolution theorem [Hi1] [Hi2], the singularities of Γ\X
BB

can be resolved, i.e., there are smooth varieties Y and proper morphisms
Y → Γ\X

BB
which are isomorphisms over Γ\X (when Γ is torsion free so

that Γ\X is smooth). But such resolutions are not canonical, and the method
is general and works for all varieties over C. The group structures of X or Γ\X
are not used either in the construction or to pick out some special resolutions
by resort to this general theorem.

Certainly, it is desirable to obtain natural, explicit resolutions of the sin-
gularities of Γ\X

BB
. In [Ig1] [Ig2], Igusa studied a partial desingularization of

the Baily-Borel compactification of the Siegel modular variety V ∗n by blowing
up the singular locus. In [Hi], Hirzebruch resolved the singularities of the
Baily-Borel compactification of the Hilbert modular surfaces by blowing up
each ideal point into a finite cycle of rational curves. When X is a tube do-
main, Satake considered some resolutions of the Baily-Borel compactification
Γ\X

BB
in [Sat5]. Motivated by these results, Mumford and his collaborators

constructed in [AMRT] a family of toroidal compactifications Γ\X
tor

Σ of Γ\X
which dominate the Baily-Borel compactification. In general, there are in-
finitely many such compactifications Γ\X

tor

Σ which depend on some auxiliary
combinatorial data Σ, and many of them are smooth projective varieties and
hence resolve the singularities of Γ\X

BB
.

The theory of torus embeddings (or toric varieties) developed in [KKMS]
plays an essential role in these compactifications, and Σ is a Γ-admissible
family of polyhedral cones which are needed to construct torus embeddings
used in the toroidal compactifications.

Besides resolving the singularities, the toroidal compactifications are also
important for other applications, for example [Mum3] [FC] [Ale] [Nam1-4]
[Lo6].

.1.6 Around the same time, another compactification Γ\X
BS

of Γ\X was
introduced by Borel and Serre in [BS2] in order to obtain a finite K(Γ, 1)-
space (see below for definition) and use it to study the cohomology groups of
Γ. It turns out to give a resolution in the sense of differential topology of the
singularities of the Baily-Borel compactification Γ\X

BB
, or more generally

the Satake compactifications Γ\X
S

.
When Γ is torsion free, Γ\X is a K(Γ, 1)-space, i.e., π1(Γ\X) = Γ and

πi(Γ\X) = 0 for i ≥ 2.
If Γ\X is compact, then Γ\X has a finite triangulation and hence is a

finite CW-complex, which shows that Γ\X is a so-called finite K(Γ, 1)-space.
This allows one to study the cohomology groups and other finiteness prop-
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erties of Γ. For example, it implies that Γ is finitely presented.
When Γ\X is noncompact, one way to obtain a finite K(Γ, 1)-space is to

construct a compactification Γ\X of Γ\X which has a finite triangulation such
that the inclusion Γ\X → Γ\X is a homotopy equivalence. The Borel-Serre

compactification Γ\X
BS

constructed in [BS2] is a differential manifold with
corners whose interior is equal to Γ\X and hence is a compactification of the
desired type.

On the other hand, the Satake compactifications Γ\X
S

do not satisfy this
homotopy equivalence condition. For example, when Γ\X is a Riemann sur-
face Γ\H, there is a unique Satake compactification which is obtained by
adding a cusp point to each end. Clearly the nontrivial loops in Γ\X in the

cusp neighborhoods are homotopic to the cusp points in Γ\X
S

. Hence the

inclusion Γ\X → Γ\X
S

is not a homotopy equivalence. In this sense, the Sa-
take compactifications are too small for this purpose. In this example, there
is a unique toroidal compactification which is isomorphic to the Satake com-
pactification and hence does not satisfy this homotopy equivalence condition
either. It is worthwhile to point out that the toroidal compactifications of
Γ\X are often smooth and closed, as in this example, and hence their inte-
rior strictly contains Γ\X, which prevents the inclusion of Γ\X → Γ\X from
being a homotopy equivalence.

Together with the application of the Baily-Borel compactification to the
problem of Siegel, the above discussions explain the importance of compacti-
fications with different sizes and properties.

In studying the L2-cohomology of Γ\X, a quotient of the Borel-Serre com-

pactification Γ\X
BS

, called the reductive Borel-Serre compactification and

denoted by Γ\X
RBS

, was introduced by Zucker in [Zu1, p.190]. The basic

reason is that Γ\X
BS

is too large to support partition of unity, which is
a basic tool in De Rham cohomology theory. It was later used crucially in
[GHM] to define and study the weighted cohomology groups and to compute
the Lefschetz number of Hecke correspondences (see [GM1] [GM2] and [Go]
for a survey of such applications). Roughly, the reductive Borel-Serre com-
pactification is suitable for these applications because it is not too small so
that its singularities are not too complicated. As pointed out earlier, it is not
too big either and supports partition of unity.

In order to understand better the local neighborhoods of the Baily-Borel
compactification Γ\X

BB
at infinity and hence to relate the L2-cohomology

groups of Γ\X to other topological invariants such as the intersection cohomol-

ogy groups of Γ\X
BB

, Zucker showed in [Zu2] that all the Satake compactifi-

cations Γ\X
S

, in particular, the Baily-Borel compactification Γ\X
BB

, can be

realized as quotients of the reductive Borel-Serre compactification Γ\X
RBS
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and hence also the Borel-Serre compactification Γ\X
BS

. Since the Borel-

Serre compactification Γ\X
BS

is a manifold with corners, the dominating

map Γ\X
BS
→ Γ\X

BB
can be considered as a resolution of the singularities

in a topological or differential geometric sense as mentioned earlier.

As discussed earlier, the toroidal compactifications Γ\X
tor

Σ were constructed

in [AMRT] to explicitly resolve the singularities of Γ\X
BB

. A natural prob-

lem is to compare them with the Borel-Serre compactification Γ\X
BS

and to
understand the differences between these two kinds of resolutions.

The methods to construct the Borel-Serre compactification and the toroidal
compactifications are very different, and they seem to be unrelated except
that they both dominate the Baily-Borel compactification. It was conjec-
tured in [HZ] that the compactifications Γ\X

BS
and Γ\X

tor

Σ are incompati-

ble except for having the Baily-Borel compactification Γ\X
BB

as a common

quotient. The incompatibility between these compactifications Γ\X
BS

and
Γ\X

tor

Σ could be used to study the cohomology groups of Γ [Zu5]. It turns

out [Ji3] that the greatest common quotient (GCQ) of Γ\X
RBS

and Γ\X
tor

Σ

is equal to Γ\X
BB

, and that the GCQ of Γ\X
tor

Σ and Γ\X
BS

is a new com-
pactification which is sometimes strictly greater than, i.e., strictly dominates
Γ\X

BB
. For example, when Γ\X is the Picard modular surface, there is a

unique toroidal compactification Γ\X
tor

Σ , and Γ\X
BS

dominates Γ\X
tor

Σ , i.e.,

the GCQ is equal to Γ\X
tor

Σ . See [Ji3] for precise conditions when the GCQ

is equal to Γ\X
BB

.
Understanding the GCQ is one way to compare two compactifications.

Another is to understand the least common refinement or modification (LCR
or LCM) of them, which is equal to the closure of Γ\X under the diago-
nal embedding into the product of the two compactifications. In [GT1], the

least common modification (LCM) of Γ\X
tor

Σ and Γ\X
RBS

is shown to be

homotopy equivalent to Γ\X
tor

Σ when the polyhedral cone decomposition Σ is
sufficiently fine with respect to Γ. This implies that for any compact subset
C of Γ\X, there is a map Γ\X

tor

Σ → Γ\X
RBS

which restricts to the identity
map on C. Such maps are important in studying characteristic classes of ho-
mogeneous vector bundles over Γ\X (see also [Zu3], which was motivated by
[GT1]).

.1.7 In the meantime, compactifications of symmetric spaces X have been
studied from different points of view. As a noncompact complete Riemannian
manifold, X admits a family of Martin compactifications X ∪ ∂λX, where
λ ∈ (−∞, λ0) and λ0 is the bottom of the spectrum of X. The Martin



Introduction 23

compactification X ∪ ∂λX is determined by the asymptotic behavior of the
Green function of the operator ∆− λ at infinity, where ∆ ≥ 0 is the Laplace
operator of X. Briefly, each point in the Martin boundary ∂λX corresponds
to a positive eigenfunction on X with eigenvalue λ, called a Martin kernel
function, and they span the cone of positive eigenfunctions on X of eigenvalue
λ. To remove redundancy (or linear dependence) between these Martin kernel
functions, we need to restrict to the minimal Martin boundary ∂λ,minX, which
give rise to the minimal Martin kernel functions.

A natural problem is to understand these functional theoretical compact-
ifications and their boundaries geometrically and identify them with other
compactifications. When X = SL(n,C)/SU(n), the Green function can be
computed explicitly in terms of elementary functions, and the explicit formula
was used by Dynkin in [Dy2] to determine all the Martin kernel functions, the
minimal Martin kernels, and their parameter spaces, i.e., the Martin bound-
aries as sets. On the other hand, relation of the Martin compactifications to
other compactifications was not clarified or studied. For example, the Martin
boundaries were not realized as subsets of boundaries of some more geometri-
cally defined compactifications. If G is not a complex group, there is no such
explicit formula for the Green function, and the problem is more difficult.

Motivated by this problem, Karpelevič studied the geometry of geodesics in
X in great detail in [Ka] and defined the geodesic compactification X∪X(∞),
where X(∞) is the set of equivalence classes of geodesics in X and homeo-
morphic to a sphere, often called the sphere at infinity of X. He also defined
a more refined Karpelevič compactification X

K
whose boundary points corre-

spond to more refined equivalence classes of geodesics. Then he used a suitable
subset of the boundary of X

K
to parametrize the minimal Martin functions,

i.e., embedded the minimal Martin boundary ∂λ,minX into the boundary of
X
K

.

The geodesic compactification X∪X(∞) can also be defined for any simply
connected nonpositively curved complete Riemannian manifold in the same
way [EO], and has played an important role in the study of geometry of man-
ifolds of nonpositive curvature (see [BGS] [Eb]). It was proved in [And] [Sul]
that the Dirichlet problem at infinity on any simply connected Riemannian
manifold with negatively pinched sectional curvature is solvable, i.e., given any
continuous function f on X(∞), there is a harmonic function u on X whose
boundary value on X(∞) is given by f . This implies that the vector space of
nonconstant bounded harmonic functions on such a manifold is of infinite di-
mension. (Among symmetric spaces of noncompact type, only those of rank
1 have negatively pinched sectional curvature.) Later in [AS] [Anc], under
the same condition on the manifold, the geodesic compactification X ∪X(∞)
was identified with the Martin compactification. Furthermore, it was shown
that every boundary point in the Martin compactification is minimal. Since
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bounded harmonic functions become positive after a sufficiently large positive
constant is added, the identification of the Martin boundary for λ = 0 is a
stronger result than the solvability of the Dirichlet problem at infinity.

On the other hand, when the curvature is only nonpositively curved but
not negatively pinched, the Martin compactification has not been identified
with other more geometric compactifications in general. In fact, there is no
conjecture in general on the precise relation between the Martin compactifica-
tion and the geodesic compactification for this class of manifolds. Symmetric
spaces of noncompact type of rank greater than or equal to 2 are impor-
tant examples of such Riemannian manifolds. Motivated by this problem,
the Martin compactifications of symmetric spaces of noncompact type were
completely determined in [GJT]. It turns out that both the geodesic compact-
ification and the maximal Satake compactification are needed to determine
the Martin compactifications. In fact, for λ < λ0, the Martin compactifica-
tion X ∪ ∂λX is equal to the least common refinement (or modification) of
the geodesic compactification X ∪X(∞) and the maximal Satake compacti-
fication X

S

max; and for λ = λ0, X ∪ ∂λX is isomorphic to the maximal Satake
compactification X

S

max of X. In [GJT], a geometric construction of the max-
imal Satake compactification, the dual cell compactification X ∪∆∗(X), was
given and used in determining this result. This compactification is related to
polyhedral compactifications of Euclidean spaces mentioned at the beginning
of the introduction.

.1.8 In the study of harmonic analysis on symmetric spaces X = G/K, in
particular, the Helgason conjecture on joint eigenfunctions of invariant differ-
ential operators on X (see [Hel4] [Hel5]), Oshima constructed in [Os1] a closed
real analytic G-manifold X

O
, the Oshima compactification.

It contains the disjoint union of finitely many copies of X as an open dense
subset. It consists of finitely many G-orbits, and there is a unique compact
(or closed) G-orbit, which is equal to the maximal Furstenberg boundary of
X (or G). Then the invariant differential operators have regular singularities
along this closed G-orbit, so the theory of differential equations with regular
singularities can be applied to study the joint eigenfunctions on X and to
prove the Helgason conjecture in [KaK]. (See [Sch] for detailed discussions of
the results here).

To generalize the Helgason conjecture to a class of non-Riemannian sym-
metric spaces, Oshima and Sekiguchi introduced in [OsS1] a closed real an-
alytic manifold X

OS
, the Oshima-Sekiguchi compactification, which contains

a finite disjoint union of both Riemannian and non-Riemannian symmetric
spaces as an open dense subset.

.1.9 Around the same time, motivated by problems in enumerative algebraic
geometry, a different kind of compactifications was constructed in [DP1], the
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wonderful compactification of a symmetric variety.
In fact, let G be a semisimple linear algebraic group, and H the fixed point

set of an involution on G. Then X = G/H is a complex symmetric space (or
a symmetric variety). One example of symmetric varieties is obtained from
the complexification X = XC of a symmetric space X = G/K, where G,K are
linear, by taking G be the complexification GC of G, H the complexification
KC of K and XC = GC/KC. A particular example is the variety of non-
degenerate quadrics in CPn, which is equal to SL(n,C)/SO(n,C).

The variety of complete quadrics is a smooth compactification of the sym-
metric variety SL(n,C)/SO(n,C) and plays an important role in enumerative
algebraic geometry (see [DGMP]). For a general symmetric variety X, the
wonderful compactification of X

W
in [DP1] is a generalization of the variety

of complete quadrics and has various important applications as well.

.2 New points of view in this book

.2.1 There are basically three types of compactifications, and every of the
compactifications mentioned above belong to one of them:

1. Compact spaces which contain a symmetric space X as an open dense
subset.

2. Compact smooth analytic manifolds which contain a disjoint union of
more than one but finitely many symmetric spaces as an open dense
subset.

3. Compact spaces which contain a locally symmetric space Γ\X as an
open dense subset.

Spaces of type (1) are compactifications of X in the usual sense and in-
clude the following: the Satake compactifications X

S
, the Furstenberg com-

pactifications X
F

, the geodesic compactification X ∪ X(∞), the Karpelevič
compactification X

K
, the Martin compactification X ∪ ∂λX.

Spaces of type (3) are compactifications of Γ\X also in the usual sense and

include the following: the Satake compactifications Γ\X
S

, the Baily-Borel

compactification Γ\X
BB

, the Borel-Serre compactification Γ\X
BS

, the re-

ductive Borel-Serre compactification Γ\X
RBS

, the toroidal compactifications
Γ\X

tor

Σ .
Spaces of type (2) include the Oshima compactification X

O
, the Oshima-

Sekiguchi compactification X
OS

, and the wonderful compactification of com-
plex symmetric spaces X

W
. Though the complex symmetric space X is open
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and dense in the wonderful compactification X
W

, it will turn out to be better
to classify it as a space in type (2), since its real locus is such a space.

An analogue of the Oshima compactification for locally symmetric spaces
is the Borel-Serre-Oshima compactification of Γ\X. It does not belong to any
of the above three types. Since there is only one such compactification of
Γ\X, we consider it together with compactifications of type (3) for simplicity.

.2.2 From the brief descriptions of the compactifications in §.1, compactifi-
cations of types (1), (2), and (3) are constructed by very different methods.
Specifically, the Satake and the Furstenberg compactifications of the sym-
metric spaces are obtained by embedding X = G/K into compact G-spaces,
though an alternative, intrinsic construction of the Satake compactifications
was proposed and sketched by Koranyi in [Ko1] using admissible domains and
filters converging to ideal boundary points; while the Satake, the Baily-Borel,
and the Borel-Serre, and the reductive Borel-Serre compactifications of the
locally symmetric spaces Γ\X are constructed by attaching ideal boundary
components which are parametrized by rational parabolic subgroups.

The two basic points of this book are the following:

1. Compactifications of types (1) and (3) can be constructed by a uni-
form method depending on the reduction theories over R and Q respec-
tively, i.e., the finiteness and separation properties of Siegel sets of real
parabolic subgroups and rational parabolic subgroups. The construc-
tions of compactifications of symmetric spaces X and locally symmetric
spaces Γ\X are parallel and use similar methods.

2. The Oshima compactification X
O

of type (2) can be obtained by glu-
ing up several copies of the maximal Satake compactification X

S

max, a
compactification of type (1), and its real analytic structure can be easily
obtained from the real locus XW

C
(R) of the wonderful compactification

XW
C

of the complexification XC of the symmetric space X. The real
locus of XW

C
is also related to the Oshima-Sekiguchi compactification

X
OS

by a finite-to-one map.

.2.3 There are five unifying themes in this book.
The first theme of this book is that all the compactifications of X in type

(1) can be constructed by attaching boundary components of real parabolic
subgroups, which is a typical method to construct compactifications of lo-
cally symmetric spaces. Hence compactifications of symmetric and locally
symmetric spaces can be studied together in a uniform way.

The second theme is that in order to study compactifications of Γ\X, it
is more natural in some sense to study compactifications of the homogeneous
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space Γ\G and then take K-quotients (see §III.13.1), and compactifications of
Γ\G can also be obtained by embedding it into the compact G-space consist-
ing of closed subgroups of G using lattices in G. Consequently, the reductive
Borel-Serre compactification of Γ\X can also be obtained by embedding Γ\X
into a compact space and taking the closure. As mentioned earlier, embed-
ding into compact spaces has been an important way to compactify symmetric
spaces. Closely related to this approach is the problem of how to use lattices
in Euclidean spaces and other related closed subgroups to study compactifi-
cations of locally symmetric spaces when X = SL(n,R)/SO(n).

The Oshima compactification of X has two important properties: it is a
closed manifold and it has a real analytic structure. The first part of the
third theme of this book is to treat these two properties separately so that it
is easier to understand its structure and relation to other compactifications;
the second part of the third theme of this book is that for certain questions
one can simplify problems by complexifying the symmetric spaces to obtain
symmetric varieties and then taking the real locus of compactifications of the
symmetric varieties. In fact, the first property corresponds to the self-gluing
of the maximal Satake compactification of X, and the existence of the real
analytic structure follows easily from the embedding of X into the real locus
of the wonderful compactification X

W
= XW

C
of the complexification X = XC

and the structure of this real locus. The Oshima-Sekiguchi compactification
X
OS

contains symmetric spaces of different types (i.e., some are Rieman-
nian symmetric and others are non-Riemannian symmetric) as open subsets,
and can be regarded as the glue-up of compactifications of these symmetric
spaces. Unlike the case of self-gluing in the Oshima compactification X

O
, it

is not obvious why these compactifications of spaces of different types can
be glued together along their boundaries. The description of the real locus
of the wonderful compactification X

W
explains naturally this gluing or the

compatibility of their boundary components of these spaces of different types.
The real locus X

W
(R) of the wonderful compactification also occurs naturally

in Poisson geometry (see [EL]).
In many papers, for example, [Sat1] [Sat2] [BB1], the construction of com-

pactifications of locally symmetric spaces Γ\X depends crucially on compact-
ifications of symmetric spaces X. The uniform approach in this book allows
one to construct compactifications of Γ\X completely independently of com-
pactifications of symmetric spaces. This is the fourth theme of this book.

Compactifications of locally symmetric spaces have not been systemati-
cally studied from the point of view of metric spaces in the literature recalled
earlier. It is intuitively clear that compactifications are some ways to study
structure of spaces at infinity. It is natural to relate compactifications to other
properties which are connected to the geometry at infinity. The fifth theme
of this book is to understand relations between metrics and compactifications
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such as the hyperbolic compactifications, and the geodesic compactification
Γ\X ∪ Γ\X(∞) of Γ\X, and consider sizes of compactifications according to
the metric. A closely related topic concerns relations between the geometry
at infinity, for example, geodesics in Γ\X that go to infinity or boundaries of
compactifications of Γ\X, and the continuous spectrum of Γ\X.

.3 Organization and outline of the book

The rest of this book is organized according to the three types of compactifi-
cations mentioned above in §.2.

In Part I, we study compactifications which contain a symmetric space X
as an open and dense subset. In Part II, we study smooth compactifications
which contain a symmetric space X as an open but not dense subset. In
Part III, we study compactifications which contain a locally symmetric space
Γ\X or the associated homogeneous space Γ\G as an open, dense subset,
together with the Borel-Serre-Oshima compactification and global geometry
and spectral theory of Γ\X. The introductions to the parts and chapters
below give more detailed summaries of the contents. We will only give a brief
outline here.

In Part I, we first recall the original construction and motivation of each of
the classical compactifications of symmetric spaces: the geodesic, the Karpelevič,
the Satake, the Furstenberg and the Martin compactifications. Then we for-
mulate a uniform approach, develop the reduction theory for Siegel sets of
real parabolic subgroups and apply the method to give uniform constructions
of all these compactifications and compare and relate them. We also give four
more constructions of the maximal Satake compactification X

S

max: the sub-
group compactification X

sb
, the subalgebra compactification X

sba
, the dual-cell

compactification X ∪∆∗(X), and a modification X̃S
max of the dual-cell com-

pactification suggested by the construction of the Oshima compactification
[Os1]. Among these four compactifications, the construction of the last two
depend on the structure of closure of flats in the Satake compactifications.

The construction of X̃S
max, a variant of the dual-cell compactification,

shows that the maximal Satake compactification is a real analytic manifold
with corners, and the subalgebra construction X

sba
is similar to one construc-

tion of the wonderful compactification X
W

by embedding X into a Grassma-
nian variety. The subgroup compactification of symmetric spaces also moti-
vates the subgroup compactifications of locally symmetric spaces in Part III,
Chapter 12.

In Part II, we first recall a general method of self-gluing a manifold with
corners into a closed manifold and apply it to reconstruct the Oshima com-
pactification from the maximal Satake compactification. After studying basic
facts on semisimple symmetric spaces, we identify the real locus of symmetric



Introduction 29

varieties (or complex symmetric spaces) through the Galois cohomology, and
use these results to determine the real locus of the wonderful compactifica-
tion of a complex symmetric space. From this we deduce immediately that
the maximal Satake compactification is a real analytic manifold with corners.
Finally, we relate the Oshima-Sekiguchi compactification to the real locus of
the wonderful compactification by a finite-to-one map.

In Part III, after recalling several versions of the reduction theory of arith-
metic groups, we recall the original constructions and motivations of the classi-
cal compactifications of locally symmetric spaces: the Satake, the Baily-Borel,
the Borel-Serre, the reductive Borel-Serre, and the toroidal compactifications.
Then we modify the method in [BS2] to formulate a uniform method and
apply it to reconstruct the Borel-Serre, the reductive Borel-Serre, and the
maximal Satake compactifications. New compactifications of homogeneous
spaces Γ\G are also constructed. In [Sat2], a general method of passing from
a compactification of the symmetric space X to a compactification of Γ\X
is formulated, and it depends on the rationality of the compactification X.
On the other hand, in this uniform approach, this subtle question about the
rationality of the compactification of X is avoided. We also show that the
Borel-Serre compactification Γ\X

BS
is a real analytic manifold with corners

and can be self-glued into a closed real analytic manifold, the Borel-Serre-
Oshima compactification Γ\X

BSO
.

Then we study metric properties of compactifications, in particular, a sim-
ple proof of an extension theorem of Borel [Bo6], and a proof of a conjecture of
Siegel on comparison of two metrics restricted to Siegel sets. Finally, we dis-
cuss parametrization of the generalized eigenspaces in terms of the boundaries
of Γ\X

RBS
and the geodesic compactification Γ\X ∪ Γ\X(∞), and relations

between the geodesics that go to infinity and the continuous spectrum.

.4 Topics related to the book but not covered
and classification of references

It should be pointed out that in this book we emphasize the geometric as-
pects of compactifications, and do not study their more refined properties,
for example, the Baily-Borel compactification Γ\X

BB
as a normal projective

variety defined over a number field (see [Mi1] [Mi2]) or even over the integers
(see [Ch1-4] [FC] [Fa] [Lar]). We do not discuss in detail the toroidal compact-
ifications either (see [AMRT] [Nam1] [HKW] for comprehensive treatments).

The following is the list of topics which are closely related to this book but
not discussed in detail or omitted completely. We hope that the references
provided here are adequate.

1. Geometry of numbers, lattices in Rn and applications. [Cass1-2] [Con]
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[CoS] [Gru] [GruL] [MM1-2] [MR] [Ma] [PR] [So1] [Si3] [Wo2].

2. Cohomology of arithmetic groups and S-arithmetic groups. [As1-4]
[AsB] [AM] [AR] [Bo7] [BS1-3] [BW] [BFG] [Br2] [BuMo] [BuW] [CKS1-
3] [GHM] [GHMN] [Go] [GM1-2] [GT1-3] [Har1-6] [HZ1-3] [HW1-3]
[KuM] [Kug] [LeS1-2] [LeW1-4] [Leu7] [Li] [LiM] [LiS1-3] [MaM1-2]
[Mil1-2] [MiR] [MS] [Ra2-3] [Rol1-3] [RSc] [RSg] [RSp1-4] [Sap3] [SaS]
[SaZ] [Shw1-5] [Ser2-4] [So2] [Ve1-4] [Wes1-2] [Zu1-12].

3. Topology of compactifications: singular cohomology of Satake compact-
ifications, and the intersection cohomology of the Baily-Borel compacti-
fication. [Bes] [BG] [CL] [DP3] [Grs1-3] [Ha] [HaT] [Hat1-5] [Lo3] [LoR]
[MM1-2] [Mc1-2] [San3] [SaS] [SaZ] [Tc1-2] [Vd] [Zu1-12].

4. Euclidean Buildings, p-adic symmetric spaces and their compactifica-
tions. [BS3] [Br1] [Dr] [Ger1-2] [Kz] [Laf1-3] [Lan1-2] [Mor] [Ni] [Pi1]
[RSg] [Sch] [ScT] [Te] [Ti2] [VT1-2] [Wer1-3].

5. The wonderful compactification: topology and other compactifications.
[BDP] [DGMP] [DP1-3] [DS] [Kaus] [Kn1-2] [KL] [LP] [Lu1-3] [LV] [MP]
[Pro] [Ri1-2] [Sen] [Sp2-3] [Str1-3] [Tc1-2] [Th] [Tim] [Vu1-2].

6. Rigidity of locally symmetric spaces and discrete subgroups. [Ba1-3]
[BBE] [BBS] [Ben1-2] [BGS] [Ben1-2] [BCG] [BuMo] [BuS1-2] [CoG1-2]
[Eb] [EO] [Mag] [Mok1-2] [MZ] [Mos] [NR]. See also [Ji9] for more refer-
ences about rigidity of locally symmetric spaces and complex manifolds.

7. Harmonic analysis and potential theory of symmetric spaces. [Anc]
[And] [AS] [AJ] [BFS1-2] [Bet] [BO] [Dy1-2] [FL] [Fu1-7] [GW] [HeS]
[Hel1-5] [Her1-6] [HOW] [Is] [KaS] [Ko1-10] [Me2] [OO] [Os3-4] [Roo]
[Ros] [Sch] [Schm1] [ScT] [Sul] [Uz1-2] [Va] [Wa1-2] [Wa9] [War] [Wo1]
[Wo4].

8. Large scale geometry of symmetric spaces and arithmetic groups.
[BMP] [BMW] [BuM1-5] [Gol] [Gro1] [Lot] [LMR]. See also [Ji9] for
more references.

9. Modular forms and spectral theory of automorphic forms. [Ar1-3] [By]
[BMP] [BMW] [BuM1-5] [Chr1-3] [Deg] [DW] [Dei1-2] [DH1-2] [Dim]
[Fr] [FrH] [Ga] [HC] [Has1] [HaT] [Ji2] [Ji5] [KuM] [Kug] [La] [Leh1]
[Li] [LiM] [LiS1-3] [LoM] [Lot] [MW1-3] [MoW] [Mor] [MS] [Mu1-4] [Ni]
[Ol1-2] [OW1-2] [Pe1-4] [Pi2-3] [Sal2] [Sar] [Shi] [St] [Sun] [VD] [VT1-2]
[Wa3-9] [Wi] [Zu4] [Zu6-11].

10. Interpretation of compactifications as moduli spaces. [Ale] [AlB1-2] [Hu]
[HKW] [HS1-3] [Ig1-3] [Kaus] [Mu3] [Nam1-4] [NR] [San1-2] [Sha] [VT1-
2] [Wan1-3].
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11. Variation of Hodge structures and period domains. [BN] [BuW] [Cat1-
3] [CK] [CKS1-3] [Schm2] [Gri] [GS] [KaU] [Kug] [Le] [Schm2] [Sha]
[Ste1-2] [Uz1-3] [Zu8].

12. Toric varieties. [At] [Ful] [Jur] [KKMS] [Od] [Ta2].

13. Other compactifications of homogeneous spaces, groups and configura-
tion spaces. [Bet] [Bo] [Bre] [Bri1-3] [BLV] [FM] [HT] [He1-2] [IP1-
2] [Jun] [Kan1-4] [KaS] [Kaus] [Kn1-2] [KL] [Kom1-2] [Kus1-4] [La1-3]
[LMP] [LL] [LM] [Lo1-2] [Lo4-7] [Lu] [LV] [Mas] [MZ] [Nad] [NT] [Ne1-3]
[Roo] [Sin] [SiY] [Str1-3] [Tc1-2] [Th] [Tim] [Tsu] [Ul] [Xu] [Ye1-2].

14. Monodromy groups of some differential equations [Ho1-2] [Yo1-2].

To complement the above list of references for omitted topics and to make
it more convenient to use the long bibliography at the end of this book, we
classify some of the references for the main topics discussed in this book.

a. General results about symmetric spaces and Lie groups. [Bu2] [Eb] [EO]
[FH] [Hel1-3] [Ji7] [KW] [Ri1] [Ros] [Sat8] [Sp1] [Ter1-2] [Thor1-2] [Va]
[Wal1-2] [War] [Wo2-3] [WK] [Zi]

b. Compactifications of symmetric spaces. [BJ1-2] [Cas2] [DGMP] [DP1-2]
[DS] [De] [Dim] [Dy1-2] [EL] [Fu1-7] [GW] [GJT] [GT] [Has2] [He1-2]
[Her1-6] [Ho] [Ji1] [JL] [Ka] [KaK] [Kom1-2] [Ko1-10] [KW] [Ku1-4] [LL]
[Mar] [Mo1-2] [Ne1-3] [Os1-4] [OsS1] [Sap2] [Sat1] [Sat9-16] [Ta3] [Uz1-3]
[WK] [Zu2].

c. Algebraic groups, arithmetic groups, reduction theories and locally sym-
metric spaces. [Al1-2] [As1] [As3-4] [Bon1-4] [Bo1-7] [Bo9] [Bo12-14]
[BHC] [Con] [Do1-3] [EGM] [GaR] [Gra1-2] [HC] [Ho1-2] [Hu] [Ji6] [Kat]
[KM] [LR] [Leh1] [MM1-2] [MR] [Ma] [MT] [OW2] [PR] [Po] [Ra1] [Sap1]
[Sap3] [Sel1-3] [Ser2-3] [Si4] [So1] [Sp4] [Vd] [Zi] [Zu3] [Zu5] [Zu8].

d. Compactifications of locally symmetric spaces. [AMRT] [Ba1-7] [BB1-
2] [BJ1-4] [BS1] [Cas2] [Ch1-4] [Fa] [FC] [HZ1-3] [Hi1-3] [HKW] [Ig1-3]
[IP1-2] [Ji3-5] [KaU] [Ki] [Lar] [LMP] [Lo1-2] [Lo7] [Mac] [Mi1-2] [Mum1]
[Mum3] [Nad] [NT] [Nam1-4] [Ni] [NR] [Sat2-7] [Sat9] [Sat11-12] [SiY]
[Ts] [Wan1-3] [Wi]

e. Metric properties of locally symmetric spaces and their compactifications.
[Ab] [AbM] [Din] [Gu] [Htt1-2] [Ji4] [JM] [JZ1-2] [KK1-2] [KO] [Leu1-5]
[Sal2] [Sar] [Si2] [Sun]

Finally, we should mention that this book is complementary to the book
[GJT]. For example, [GJT] concentrates on the identification of the Martin
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compactification, and the structure and applications of the maximal Satake
compactification used in this identification, but does not discuss compacti-
fications of locally symmetric spaces or the Oshima compactification. Fur-
thermore, Part I of this book was motivated by a question in [GJT] on how
to prove directly that the G-action on X extends to a continuous action on
the dual-cell compactification X∪∆∗(X) without using its identification with
a compactification which admits a continuous G-action, such as the Martin
compactification X ∪ ∂λ0X at the bottom of the spectrum λ0 of X or the
maximal Satake compactification X

S

max.

Conventions and notations

Basic notations.

Riemannian symmetric spaces are always denoted by X and assumed to be
nonpositively curved, i.e., not containing symmetric space of compact type as
a factor, or equivalently equal to products of symmetric spaces of noncompact
type and Euclidean spaces. A symmetric pair which gives rise to such a
symmetric space X is denoted by (G,K), where G is a noncompact reductive
Lie group, and K is a maximal compact subgroup of G, and hence X = G/K.
For contrast, a non-Riemannian symmetric space is denoted by G/H.

A complex symmetric space (or a symmetric variety) is denoted by X = G/H.
Hence the complexification XC of X = G/K is X = G/H, where G is the
complexification GC of G, and H is the complexification KC of K when G,K
are linear.

Arithmetic subgroups or more generally discrete subgroups of G are de-
noted by Γ, and locally symmetric spaces are denoted by Γ\X = Γ\G/K,
which are always assumed to be noncompact unless indicated otherwise.

A compactification of a symmetric space X is denoted by X with a super-
script consisting of the first letters of the names of the people associated with
the compactification together with additional information in the subscript.
For example, a Satake compactification of X is denoted by X

S

τ , where τ is
a faithful projective representation of G used in defining the compactifica-
tion. Exceptions to this pattern are the geodesic compactification which is
denoted by X ∪X(∞), and the Martin compactifications which are denoted
by X ∪ ∂λX as well.

A compactification of a locally symmetric space Γ\X is denoted either by
Γ\X with a superscript consisting of the first letters of the names of the people
associated with the compactification, for example, the Borel-Serre compacti-
fication Γ\X

BS
; or with a superscript consisting of an abbreviation of certain

properties of the compactification together with a suitable subscript, for ex-
ample, the toroidal compactification Γ\X

tor

Σ , where Σ is a certain polyhedral
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cone decomposition. A compactification of Γ\X is also denoted by Γ\X with
a suitable superscript or subscript, which suggests that it is the quotient by Γ
of a partial compactification X of X. Compactifications of the homogeneous
space Γ\G are denoted similarly.

By a G-compactification of X, we mean a compact Hausdorff space which
contains X as an open subset such that the G-action on X extends to a
continuous action on the compactification. The compactification may not
necessarily contain X as a dense subset.

The Lie algebras of G, K are denoted by g, k, and the Cartan decomposi-
tion of g by g = k⊕p. A maximal abelian subalgebra of p is denoted by a, and
its corresponding subgroup by A. The set of roots of a acting on g is denoted
by Φ(g, a) or Φ(G,A), the set of positive roots by Φ+(g, a) or Φ+(G,A), and
the set of simple roots by ∆(g, a) or ∆(G,A).

For any two elements g, h ∈ G, define

gh = ghg−1, hg = g−1hg.

The same notations apply when h is replaced by a subset of G.

Real vs. rational.

Since both symmetric and locally symmetric spaces are studied in this
book, we need different notations for linear algebraic groups and real Lie
groups. In the following, linear algebraic groups are denoted by bold face
capital Roman letters, and the corresponding Lie groups by capital Roman
letters. For example, G denotes a reductive linear algebraic group defined
over Q, and G denotes its real locus G(R); a rational parabolic subgroup is
often denoted by P or Q, while a real parabolic subgroup is denoted by P or
Q. In this book, parabolic subgroups are always assumed to be proper unless
indicated otherwise.

For a rational parabolic subgroup P, its real locus P = P(R) has two
Langlands decompositions: the real and the rational decompositions,

P = NPAPMP , P = NPAPMP,

where AP is the real split component, and AP is the rational split component,
AP ⊆ AP with equality if and only if the Q-rank of P is equal to the R-rank
of P. They induce two boundary symmetric spaces

XP = MP /K ∩MP , XP = MP/K ∩MP.

The notation e(P) stands for the boundary component associated with the
rational parabolic subgroup P and depends on the section where it appears
and the partial compactification of X under discussion. Similarly, e(P ) is
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the boundary component associated with the real parabolic subgroup P and
changes from section to section and depends on the compactification of X
under discussion.

The Tits building of a reductive Lie group G is denoted by ∆(G), and
the Tits building of a reductive linear algebraic group G defined over Q by
∆Q(G).

Topological spaces are always assumed to be Hausdorff, and topologies are
often described in terms of convergent sequences.

Numbering.

The sections in each part are numbered consecutively and independently
of the chapters they belong to and start from 1 in each part. The section
number is proceeded by the part number. For example, the first section in
Part III is denoted by §III.1. The chapters are also numbered consecutively
and independent of the parts. So the chapter numbering does not affect the
section numbering.

The numbering of equation in each section starts from 1, and each equation
number includes the section number where it appears. The equation numbers
appear in bracket, while the numbers for theorems, propositions etc are not
so enclosed in order to distinguish these two sets of numbers.



Part I. Compactifications
of Riemannian symmetric
spaces

In this part, we study compactifications of Riemannian symmetric spaces
where the symmetric spaces are open and dense. There are two purposes
in this part: to review most of the known compactifications and to give a
uniform construction of these compactifications. This uniform method in §I.8
is similar to compactifications of locally symmetric spaces in §III.8 in Part
III.

Symmetric spaces of noncompact type occur naturally in different con-
texts, for example as special Riemannian manifolds in differential geometry
and special homogeneous spaces in Lie group theory. There are many com-
pactifications of symmetric spaces of higher rank which are of different sizes
and have different properties. They are useful for different applications: the
Satake compactifications for applications in harmonic analysis, rigidity of dis-
crete subgroups and global geometry; the Furstenberg compactifications for
applications in potential theory and ergodic theory; the geodesic compact-
ification for applications in analysis and differential geometry; the Martin
compactification and the Karpelevič compactification for applications in po-
tential theory and the Brownian motion; the Oshima compactification for
applications in representation theory.

In Chapter 1, we explain the motivations of these compactifications and
the original constructions. In Chapter 2, we first propose a uniform, intrinsic
construction, where a key concept is the notion of generalized Siegel sets,
then we apply this method to reconstruct all the compactifications recalled
earlier together with the real Borel-Serre partial compactification which is
important to some global properties of arithmetic subgroups. In Chapter 3, we
study relations between these different compactifications and properties of the
compactifications as topological spaces and other more refined structures on
them. These studies lead to several new constructions of the maximal Satake

35
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compactification. They can also be used to prove that X
S

max is a real analytic
manifold with corners. This property will be used to reconstruct the Oshima
compactification from the self-gluing of the maximal Satake compactification
X
S

max.



Chapter 1

Review of classical
compactifications of
symmetric spaces

Compactifications of symmetric spaces are closely related to the geometry at
infinity of symmetric spaces, and are useful in studying behavior at infinity
of functions on symmetric spaces.

Since the geometry at infinity of symmetric spaces can be described in
terms of real parabolic subgroups, we recall the notion of (standard) parabolic
subgroups, the real Langlands decomposition of parabolic subgroups, and the
induced horospherical decomposition of the symmetric spaces in §I.1. In §I.2,
we define an equivalence relation on geodesics and the induced geodesic com-
pactification X∪X(∞). Then we relate the structure of geodesics to parabolic
subgroups and hence obtain a geometric realization of the spherical Tits build-
ing ∆(G), and introduce the topological Tits building. In §I.3, we explain
how a refined classification of geodesics leads to boundary symmetric spaces,
and the dimension count of geodesics motivates the Karpelevič compactifi-
cation X

K
, which is a blow-up of the geodesic compactification. These two

compactifications are directly motivated by the geometry, or the structure of
geodesics. In §I.4, we recall the Satake compactifications X

S
. Though the

original motivation was to produce suitable boundary points and to use them
to compactify locally symmetric spaces, the Satake compactifications have
also played an important role in understanding the global geometry of and
harmonic analysis on symmetric spaces. We emphasize the standard Satake
compactification Pn

S
of the symmetric space Pn of positive definite Hermi-

tian matrices of determinant 1 obtained by attaching semi-positive definite
matrices. In §I.5, we recall basics of Hermitian symmetric spaces and the

37



38 Part I. Compactifications of Riemannian symmetric spaces

Baily-Borel compactification X
BB

of Hermitian symmetric spaces and show
that it is isomorphic to a minimal Satake compactification. In §I.6, we ex-
plain how the Poisson integral formula for harmonic functions on the unit disc
leads to the Furstenberg compactifications X

F
. The structure of the cone of

positive eigenfunctions, in particular positive harmonic functions, leads to the
Martin compactifications X ∪ ∂λX in potential theory in §I.7.

I.1 Real parabolic subgroups

Our main object of interest in Part I is a symmetric space of noncompact
type, hence real linear connected semisimple groups play an important role
here. However, the construction of parabolic subgroups leads one to a slightly
broader class of groups. To avoid repetitions, and prepare for Parts II and
III, we shall already add some remarks on them, referring to a later part of
the book for more details. For thorough discussions of parabolic subgroups,
see [Wal] [War] [Va].

This section is organized as follows. After recalling basic definitions about
root systems, parabolic subalgebras and parabolic subgroups, we introduce
the Langlands decomposition of parabolic subgroups (Equation I.1.10) and the
induced horospherical decomposition of symmetric spaces (Equation I.1.14),
which plays a basic role in relating the geometry of symmetric spaces to
parabolic subgroups. Then we discuss the relative Langlands and horospher-
ical decompositions for a pair of parabolic subgroups when one is contained
in the other (Equations I.1.21 and I.1.23). Such relative decompositions are
important for the purpose of understanding the topology of the boundary
components of compactifications of symmetric spaces, for example, relations
between the boundary components of a pair of parabolic subgroups P,Q sat-
isfying P ⊂ Q.

I.1.1 To motivate parabolic subgroups and the induced horospherical de-
compositions, we consider the example of G = SL(2,R). Fix the maximal
compact subgroup K = SO(2). Let X = SL(2,R)/SO(2) be the associated
symmetric space. Then X has two important models: the upper half plane H
and the Poincaré disc D.

As explained in the introduction (§.1.1), the disc model is convenient for
understanding the compactification of X and its boundary. On the other
hand, the model H is convenient for understanding the structure of neighbor-
hoods of cusps and the compactification of quotients Γ\H.

An effective and group theoretical way to explain this upper half plane
model H is to use the Langlands decomposition of parabolic subgroups.

In fact, as explained in §.1.2, the SL(2,R)-action on H extends continu-
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ously to H ∪ R ∪ {∞}. The stabilizer of the point {∞} is the subgroup

P = {
(
a b
0 a−1

)
| a 6= 0, b ∈ R}.

It is a parabolic subgroup of SL(2,R).
The group P contains three subgroups: the unipotent radical

NP = {
(

1 b
0 1

)
| b ∈ R},

the split component

AP = {
(
a 0
0 a−1

)
| a > 0},

and

MP = {±
(

1 0
0 1

)
}.

They give rise to the Langlands decomposition of P :

P = NPAPMP ,

where the map NP ×AP ×MP → NPAPMP = P is a diffeomorphism.
It can be shown easily that P acts transitively on H, and the Langlands

decomposition of P gives the horospherical decomposition of H:

H = P/P ∩K = P/MP
∼= NP ×AP ,

where the NP -factor corresponds to the x-coordinate and the AP -factor to
the y-coordinate. In fact, for any a > 0, b ∈ R,(

1 b
0 1

)
·
(
a 0
0 a−1

)
· i = a2i+ b.

This example shows the importance of parabolic subgroups in understand-
ing the structure at infinity of X. After defining parabolic subgroups and
discussing their structures for general reductive groups G, we illustrate them
through the example of G = SL(n,R).

I.1.2 We first recall that if G is a real Lie group with finitely many connected
components, its maximal compact subgroups (which exist) are conjugate un-
der the identity component Go and meet every connected component of G. If
K is one of them, then X = G/K is a manifold diffeomorphic to euclidean
space. Assume now

(∗) G is reductive, linear, with finitely many connected components and
the center CGo of Go is compact.
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Then g = Dg⊕ c, where c is the Lie algebra of CGo, and Dg = [g, g]. The
group G admits a unique Cartan involution θ with fixed point set K. Since
the center CGo is compact, c ⊆ k.

Let p be the (−1)-eigenspace of θ in g. It is the orthogonal complement
to k∩Dg in Dg with respect to the Killing form B( , ). We have the familiar
Cartan decomposition

g = k⊕ p with [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k. (I.1.1)

The restriction of B to k ∩ Dg (resp. p) is negative (resp. positive) definite.
The subspace p may be identified to the tangent space Tx0(X) to X at the
basepoint x0 = K ∈ G/K = X. The restriction of the Killing form to p
defines a G-invariant metric on G/K with respect to which it is a simply
connected complete Riemannian symmetric space of non-compact type, i.e.
of non-positive sectional curvature. (In the de Rham decomposition, it is a
direct product of irreducible such spaces, without flat component.)

We shall use repeatedly, without further reference, the fact that if L is a
closed subgroup of G, with finitely many connected components, stable under
θ, then it is reductive and the restriction of θ to L is a Cartan involution.

I.1.3 The structure theory of G can be viewed from two points of view, a
differential geometric one which has its origin in E. Cartan’s theory of sym-
metric spaces and restricted roots, and a more algebraic one in the framework
of the theory of linear algebraic groups. Both will be used in this book. How-
ever, in Part I, it is the former which is predominant and we shall adopt it.
We assume familiarity with it (see e.g. [Bo11], [Hel3]) and review it mainly
to fix notation. The relations with the algebraic one will be discussed later.

The maximal subalgebras of p are abelian and conjugate under K. Let
a be one. A linear form λ ∈ a∗ on a is a root (or a restricted root) if it is
nonzero and the root space

gλ = {V ∈ g | [H,V ] = λ(H)V, (H ∈ a)} 6= 0. (I.1.2)

The set of roots is a root system in a∗, to be denoted Φ(g, a) or simply Φ. Its
Weyl group W = W (g, a) may be identified to NK(a)/ZK(a), where Nk(a) is
the normalizer of a in K and acts via the adjoint representation, and ZK(a)
is the centralizer of a.

Each root α ∈ Φ determines the root hyperplane Hα on which it is zero.
The connected components of the complement in a of the union of the Hα are
called the Weyl chambers and are permuted in a simply transitive manner by
W . Fix one, to be called the positive Weyl chamber and denoted by a+. Its
closure is a fundamental domain for the action of W . The choice of a+ defines
an ordering on Φ(g, a) and we define

Φ+(g, a) = {α ∈ Φ | α > 0 on a+},
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the set of positive roots. The set of simple roots in Φ+ is denoted ∆(g, a) or
∆. Let

n =
∑
α>0

gα n− =
∑
α<0

gα.

These are nilpotent subalgebras exchanged by θ, normalized by a, and

g = n− ⊕ z(a)⊕ n, (I.1.3)

where z(a) is the centralizer of a in g. Moreover

z(a) = m⊕ a, wherem = k ∩ z(a). (I.1.4)

Let A = exp a. The exponential is an isomorphism of a onto A. Identify
A with its orbit Ax0 in X = G/K through the basepoint x0 = K. Then the
conjugates of A under K are the maximal flat totally geodesic subspaces of X
passing through the basepoint corresponding to K. Any maximal flat totally
geodesic subspace of X is a translate of Ax0 under some element of G.

We shall also view the roots as homomorphisms of A into the multiplicative
group of strictly positive numbers R∗>0 by the rule aα = expα(log a). Strictly
speaking this means that our original α is the differential at the origin of the
map just defined, but we shall use α for both, unless it leads to confusion.
From that global point of view Φ = Φ(g, a) is also the root system Φ(G,A)
of G with respect to A, and gα may be defined as

gα = {V ∈ g | Ad a(V ) = aαV, (a ∈ A)}.

I.1.4 Parabolic subalgebras. We first define the standard parabolic sub-
algebras with respect to the ordering of Φ determined by the positive chamber
a+. For I ⊂ ∆ let

aI =
⋂
α∈I

kerα. (I.1.5)

We let ΦI be the set of roots which are linear combinations of elements in
I and aI the orthogonal complement of aI in a. Then

a = aI ⊕ aI , aI ⊥ aI . (I.1.6)

The standard parabolic subalgebra pI is generated by the centralizer z(aI)
and n. It can be written as

pI = nI ⊕ aI ⊕mI

where
nI =

∑
α∈Φ+−ΦI

gα, mI = m⊕ aI ⊕
∑
α∈ΦI

gα.
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Note that in the two extreme cases, I = ∆, ∅,

p∆ = g, p∅ = n⊕ a⊕m,

so that if we conform to the above notation, we have

m = m∅, a = a∅, n = n∅.

We note that mI is not necessarily semisimple. It is reductive, and the
center is contained in m ∩ mI . It is stable under θ, and aI plays for DmI =
[mI ,mI ] the same role as a for g. The root system Φ(DmI , a

I) is ΦI .
It follows from standard commutation relations that z(aI) normalizes nI

and n−I , and that the centralizer of aI in either is reduced to zero. Since
g = n−I ⊕ pI , it follows that pI is self-normalizing.

A subalgebra p of g is parabolic if it is conjugate to a standard one. If so,
it is conjugate to only one, say pI , and I is called the type of p. Since the
various a are conjugate, this class of subalgebras is independent of the choice
of a.

Definition I.1.5 A subgroup P of G is parabolic if it is the normalizer of a
parabolic subalgebra p in g.

The normalizer of pI is the standard parabolic subgroup PI . In this book,
parabolic subgroups are assumed to be proper unless indicated otherwise.
Equivalently, for the standard parabolic subgroups PI , I is assumed to be a
proper subset of ∆ = ∆(g, a).

When I = ∅, P∅ is a minimal parabolic subgroup, and any minimal parabolic
subgroup of G is conjugate to P∅. When ∆−I consists of one element, PI is a
standard maximal parabolic subgroup, and every maximal parabolic subgroup
of G is conjugate to one of these standard maximal parabolic subgroups. Let
r be the number of elements in ∆. Then there are r-conjugacy classes of maxi-
mal parabolic subgroups. It is known that any parabolic subgroup containing
P∅ is standard, i.e., of the form PI , and for any two distinct subsets I, I ′,
PI , PI′ are not conjugate under G. Clearly, for any given minimal parabolic
subgroup P , the structure of parabolic subgroups containing P is similar.

The subgroup PI is equal to its normalizer, as follows from its definition
and the fact that pI is self-normalizing, hence so are all parabolic subgroups.
Let NI , AI be the exponentials of nI and aI , i.e., the Lie subgroups in G
corresponding to the Lie subalgebras nI and aI . The group PI is the semi-
direct product of its unipotent radical NI and of Z(AI), the centralizer of
AI in G. The latter is a “Levi subgroup” of PI , i.e., a maximal reductive
subgroup (they are all conjugate under NI .) Moreover

Z(AI) = MI ×AI . (I.1.7)
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Here MI has Lie algebra mI , but it is not connected in general. It is stable
under θ, hence K ∩MI = ZK(AI) meets all connected components of MI and
MI is generated by Mo

I , the identity component, and ZK(AI). It satisfies the
assumption (∗) of §I.1.1. We have

PI = NIAIMI
∼= NI ×AI ×MI . (I.1.8)

More precisely, the map

(n, a,m) 7→ nam (n ∈ NI , a ∈ AI , m ∈MI)

is an analytic isomorphism of analytic manifolds. It yields a decomposition of
PI in which MI and AI are θ-stable, called a Langlands decomposition of PI .
To emphasize the dependence on the basepoint x0 = K or equivalently the
associated Cartan involution θ, it is also called the Langlands decomposition
with respect to the basepoint x0.

Since MI is θ-stable, KI = MI ∩K is maximal compact in MI . It is also
maximal compact in PI . The quotient

XI = MI/KI = PI/KIAINI (I.1.9)

is a symmetric space of non-compact type for MI , called the boundary sym-
metric space associated to PI . We remark that XI can be also identified with
a subspace of X as the MI -orbit of x0 = K ∈ X, but we emphasize that the it
is often attached at the infinity of X and hence call it a boundary symmetric
space.

Since G = PIK (as a consequence of the Iwasawa decomposition, G =
NAK, where N = exp n, and NA ⊆ PI), PI acts transitively on X, and the
Langlands decomposition in Equation (I.1.8) induces a decomposition of X
associated to PI , called horospherical decomposition

X ∼= NI ×AI ×XI

i.e., the map

µ0 : NI ×AI ×XI → X, (n, a,mKI) 7→ namK

is an analytic diffeomorphism of manifolds.

I.1.6 The parabolic subalgebras of mI are the direct sums of its center
with the parabolic subalgebras of DmI . Their normalizers are, by definition,
the parabolic subgroups of MI . They are also the intersections of MI with
the parabolic subgroups of G contained in PI . The standard ones can be
described as above, starting from AI = exp aI ,ΦI , identified to Φ(MI , A

I),
and the subsets of I. Any other is conjugate to one and only one standard
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one. One can also define similarly parabolic subalgebras and subgroups of a
group satisfying the assumption §I.1.1(∗).

I.1.7 Example.
We illustrate the above concepts by the example of G = SL(n,R), n ≥ 2.

Fix the maximal compact subgroup K = SO(n). Then a maximal abelian
subalgebra a in p is given by

a = {diag(t1, · · · , tn) | t1 + · · ·+ tn = 0}.

Its Lie group

A = {diag(a1, · · · , an) | a1, · · · , an > 0, a1 · · · an = 1}.

Choose the positive chamber

a+ = {diag(t1, · · · , tn) ∈ a | t1 > t2 > · · · > tn}.

Then the nilpotent subalgebra n consists of strictly upper triangular matrices
(i.e., with 0s on the diagonal), and its Lie group N consists of upper triangular
matrices with 1s on the diagonal). Then the standard minimal parabolic
subgroup P∅ is the subgroup of upper triangular matrices. For each k < n,
there is a standard maximal parabolic subgroup Pk given by block upper
triangular matrices

Pk = {
(
A B
0 D

)
∈ SL(n,R) | A ∈Mk×k, B ∈Mk×n−k, D ∈Mn−k×n−k}.

hence there are n − 1 conjugacy classes of maximal parabolic subgroups of
SL(n,R).

Note that each k determines an ordered partition {1, · · · , n} = {1, · · · , k}∪
{k + 1, · · · , n}. For more general ordered partitions

Σ : {1, · · · , n} = {1, · · · , i1} ∪ {i1 + 1, · · · , i2} ∪ · · · ∪ {is + 1, · · · , n},

there are standard parabolic subgroups PΣ given by upper triangluar matrices
whose blocks are determined by the partitions Σ.

The Langlands decomposition of the standard minimal parabolic subgroup
P∅ given by

P∅ = NAM,

where M = {diag(±1, · · · ,±1)}. The Langlands decomposition of the stan-
dard parabolic subgroups PΣ is similar if we use the block matrices.

The boundary symmetric space of a maximal standard parabolic subgroup
Pk is equal to SL(k,R)/SO(k,R)×SL(n−k,R)/SO(n−k,R). The boundary
symmetric space of a general standard parabolic subgroup PΣ is equal to
SL(i1,R)/SO(i1,R)× · · · × SL(n− is,R)/SO(n− is,R).
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Remark I.1.8 Parabolic subgroups have been defined here within the con-
text of real Lie groups, to limit the prerequisites for Part I. It is however more
natural to look at them from the point of view of algebraic groups, which
allows one to give a more intrinsic definition.

An algebraic subgroup P of a connected linear algebraic group G defined
over an algebraically closed ground field is called a parabolic subgroup if and
only if the homogeneous space G/P is a projective variety.

Our group G is assumed to be linear, hence embedded in some SLn(R).
Let GC be its complexification, i.e., its closure of G in SLn(C) with respect to
the Zariski topology, equivalently, the smallest algebraic subgroup of SLn(C)
containing it. Then our parabolic subgroups are the intersections with G of
the parabolic subgroups of GC which are defined over R. A similar remark is
valid for the parabolic subgroups of MI .

I.1.9 The group G acts on the set of parabolic subgroups by conjugation,
and every parabolic subgroup P is conjugate to a unique standard parabolic
subgroup PI under G and also under K. Choose k ∈ K such that P = kPI .
Define

NP = kNI , AP = kAI , MP = kMI .

Though the choice of k is not unique, the subgroups NP , AP , MP are well-
defined. In fact, NP is the nilpotent radical of P , and APMP is the unique
Levi subgroup in P stable under the Cartan involution θ associated with
K. The subgroup AP is called the split component of P with respect to the
basepoint x0 = K.

The decomposition of PI in Equation (I.1.8) is transported to give the
Langlands decomposition of P :

P = NPAPMP
∼= NP ×AP ×MP , (I.1.10)

and the map
NP ×AP ×MP → P, (n, a,m) 7→ nam,

is an analytic isomorphism of manifolds. This decomposition is equivariant
with respect to the following P -action on NP ×AP ×XP :

n0a0m0(n, a, z) = (n0
a0m0n, a0a,m0z), (I.1.11)

where n0 ∈ NP , a0 ∈ AP ,m0 ∈MP .
Similarly, the boundary symmetric space of a parabolic subgroup can be

defined as in the case of standard parabolic subgroups. Specifically, let KP =
MP ∩K. Then KP is a maximal compact subgroup of MP , and

XP = MP /KP (I.1.12)
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is a symmetric space of noncompact type of lower dimension, called the bound-
ary symmetric space associated with P . Since MP commutes with AP and
normalizes NP , XP can be written as a homogeneous space

XP = P/NPAPKP , mKP 7→ NPAPmKP = mNPAPKP . (I.1.13)

Under this action of P on XP , AP and NP act trivially.
The Langlands decomposition of P induces the horospherical decomposi-

tion of X associated with P ,

X ∼= NP ×AP ×XP .

The map

ν0 : NP ×AP ×XP → X, (n, a,mKP ) 7→ namK, (I.1.14)

is an analytic diffeomorphism. It is clear from the above discussions that this
horospherical decomposition depends on the basepoint x0 = K. In fact, the
subgroups AP , MP and the Langlands decomposition of P all depend on the
basepoint x0 = K. In the following, we will identify NP ×AP ×XP with X,
and for a point (n, a, z) ∈ NP × AP ×XP , the image ν0(n, a, z) ∈ X will be
denoted by either (n, a, z) or naz for simplicity, unless a different basepoint
is used.

The K-conjugation on parabolic subgroups transports the Langlands de-
composition, and the K-action on X preserves the horospherical decomposi-
tion. Specifically, for any z = mKP ∈ XP , k ∈ K, define

k · z = km kKP ∈ XkP . (I.1.15)

Note that kKP = KkP . Then for (n, a, z) ∈ NP × AP × XP = X, k ∈ K,
the point k ·ν0(n, a, z) = k(n, a, z) has the following horospherical coordinates
with respect to kP :

k · (n, a, z) = (kn, ka, kz) ∈ NkP ×AkP ×XkP . (I.1.16)

On the other hand, for g ∈ G − K, the conjugation by g transports the
components of the Langlands decomposition with respect to the basepoint
x0 to those in the Langlands decomposition of gP with respect to the new
basepoint gx0 (see the comments before Proposition I.19.25).

I.1.10 For any proper, not necessarily minimal, parabolic subgroup P of
G, all the parabolic subgroups containing it can also be described explicitly
as above in the case of standard parabolic subgroups containing the minimal
parabolic subgroup P∅.

Let Φ(P,AP ) be the set of roots of the adjoint action of aP on the Lie
algebra nP . We remark that Φ(P,AP ) is not a root system. For example,
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when P is minimal, Φ(P,AP ) is the set of positive roots with respect to a
suitable ordering on Φ(g, aP ) rather than a root system.

As in §I.1.2, we also view them as characters of AP defined by aα =
expα(log a). Then there are linearly independent roots α1, · · · , αr, r =
dimAP , such that any root is a linear combination of them. These roots
are called simple roots in Φ(P,AP ), and the set {α1, · · · , αr} is denoted by
∆(P,AP ). In fact, let P0 ⊆ P be a minimal parabolic subgroup. With respect
to a suitable ordering, Φ(P0, AP0) is the set of positive roots in Φ(g, aP0) =
Φ(P0, AP0), and ∆(P0, AP0) is the set of simple roots. When P 6= P0,
Φ(P,AP ) consists of nontrivial restrictions to AP of elements in Φ(P0, AP0),
and ∆(P,AP ) those in ∆(P0, AP0).

For any subset I ⊂ ∆(P,AP ), there is a unique parabolic subgroup PI
containing P such that

API = {a ∈ AP | aα = 1, α ∈ I}

is the split component of PI with respect to the basepoint x0, and ∆(PI , API )
is the set of restrictions to API of elements in ∆(P,AP )−I. Conversely, every
parabolic subgroup Q containing P is of this form PI for a unique subset I of
∆(P,AP ).

For each such PI , define aIP to be the orthogonal complement of aPI in
aP , and AIP = exp(aIP ) the corresponding subgroup. Then

aP = aPI ⊕ aIP , AP = APIA
I
P
∼= API ×AIP . (I.1.17)

There is also a related, but different decomposition of AP which is im-
portant for the purpose to study the corner structures of the maximal Satake
compactification later. Let

aP,PI = {eH | H ∈ aP , α(H) = 0, α ∈ ∆(P,AP )},

AP,PI = exp aP,PI .

Then

aP = aP,I ⊕ aP,PI , AP = APIAP,PI = API ×AP,PI . (I.1.18)

The difference between these two decompositions is that aP,PI is not perpen-
dicular to aPI is general.

Let α1, · · · , αr be the simple roots in ∆(P,AP ). Then the map

AP → R
r, a 7→ (a−α1 , · · · , a−αr ) (I.1.19)

is a diffeomorphism onto the open quadrant Rr>0, and the closure of AP in Rr

is the corner Rr≥0, and is denoted by AP .
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Under the identification in Equation (I.1.19), the decomposition of AP in
Equation (I.1.18) is the decomposition according to the standard coordinates
of Rr.

I.1.11 Each parabolic subgroup P has the Langlands decomposition given
in Equation (I.1.10). As mentioned earlier, it leads to the horospherical de-
composition of X in Equation (I.1.14). It also leads to a decomposition of G.
In fact, G = PK, which is equivalent to that P acts transitively on X = G/K.
It can be shown that K ∩ P = K ∩MP , which implies that

G = NPAPMPK ∼= NP ×AP ×MPK. (I.1.20)

For applications to understanding relations between boundary components
of different parabolic subgroups, we need the relative Langlands decomposition
for pairs of parabolic subgroups.

Specifically, for every pair of parabolic subgroups P,Q, P ⊂ Q, there is a
unique parabolic subgroup P ′ of MQ such that

NP = NQNP ′ , MP ′ = MP , AP = AQAP ′ , (I.1.21)

which implies that

XQ = NP ′ ×AP ′ ×XP , (I.1.22)

called the relative horospherical decomposition for the pair P ⊂ Q.
Since KQ = K ∩MQ is a maximal compact subgroup and hence MQ =

P ′(K∩MQ), the Langlands decomposition of P ′ implies the relative Langlands
decomposition of Q with respect to P :

Q = NPAPMPKQ
∼= NP ×AP ×MPKQ. (I.1.23)

In fact, it follows from Equation (I.1.21), Equation (I.1.20) and

Q = NQAQMQ = NQAQ(P ′KQ) = NQAQ(NP ′AP ′(MP ′KQ)

= NQNP ′AQAP ′MPKQ.

The existence of the parabolic subgroup P ′ in Equation (I.1.21) can be ex-
plained as follows. Assume Q = PI in the notation of the previous subsection.
Let Φ(g, aP ) be the roots of aP acting on g,

g = g0 +
∑

α∈Φ(g,aP )

gα,

where g0 = a ⊕ mP . Let ΦI(g, aP ) be the roots in Φ(g, aP ) that are linear
combinations of roots in I. Then

mQ = aIP +
∑

α∈ΦI(g,aP )

gα + mP .
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Let Φ+
I (P,AP ) be the set of roots in Φ(P,AP ) that do not vanish on aPI ,

and ΦI,+(g, aP ) = ΦI(g, aP ) ∩ Φ(P,AP ). Clearly, Φ(P,AP ) = Φ+
I (P,AP ) ∪

ΦI,+(g, aP ). Then

nQ =
∑

α∈Φ+
I (P,AP )

gα.

Define

p′ = aIP + mP +
∑

α∈ΦI,+(g,aP )

gα.

Then p′ is a parabolic subalgebra of mQ. Let P ′ be the normalizer of p′ in
MQ. Then P ′ is a parabolic subgroup of MQ and satisfies the conditions:

AP ′ = AIP , MP ′ = MP , NP ′ = exp
∑

α∈ΦI,+(P,AP )

gα. (I.1.24)

Therefore P ′ satisfies the conditions in Equation (I.1.21). It can be shown
that P ′ = MQ ∩ P . Briefly, it follows from (1) MQ = NP ′AP ′MP ′(K ∩MQ),
P = NPAPMP ; and (2) NP ′ ⊂ NP , AP ′ ⊂ AP , and MP = MP ′ .

I.1.12 Summary and Comments.
In this section, we have defined parabolic subgroups by first introducing

the standard ones associated with a choice of a positive chamber a+ of a
maximal abelian subalgebra a. Two important concepts are the Langlands
decomposition of parabolic subgroups and the induced horospherical decom-
position of X. To understand these results, it is helpful to keep the example
of G = SL(n,R) in mind.

As mentioned earlier, the horospherical decomposition is basically an ana-
logue of the upper half plane model of the symmetric space SL(2,R)/SO(2).
Results in this section will be used repeatedly in later sections.

In this book, the space XP = MP /K ∩MP is called the boundary sym-
metric space. The reason is that it often appears in the boundary of compact-
ifications of X. This terminology fits well with the philosophy of this book
that parabolic subgroups are related to the geometry at infinity of symmetric
spaces. Another point of view is to consider XP as a submanifold of X. In
fact, let x0 = K ∈ G/K be a basepoint. Then XP can be identified with
the MP -orbit through x0. When we push the basepoint x0 to the infinity
in the positive direction determined by P (i.e., through the positive cham-
ber ea+

P · x0), XP is pushed to the infinity (or the boundary) of X. This
point of view is convenient for the purpose of studying behaviors at infinity
of harmonic functions on symmetric spaces (see [Ko1-7]).
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I.2 Geodesic compactification and Tits build-
ing

In this section, we discuss the geodesic compactification X ∪X(∞), which is
defined in terms of equivalence classes of geodesics. Classification of geodesics
leads to the (spherical) Tits building ∆(G) and its geometric realization, and
establishes a close connection between the Tits building and the boundary of
compactifications. The discussions in this section further explain the role of
parabolic subgroups in understanding the geometry of symmetric spaces.

In this book, all geodesics are directed and have unit speed. For more
details about geometry of simply connected non-positively curved spaces and
geodesics, see [BGS] [Eb] [Ka].

This section is organized as follows. We discuss the geodesic compactifi-
cation through the examples of Rn and the Poincaré disc. Then we define an
equivalence relation on the set of geodesics in I.2.2, and the related sphere
at infinity X(∞) (I.2.3) and the geodesic compactification X ∪X(∞) (I.2.4).
The continuous extension of G to X ∪X(∞) is given in I.2.5. Then we show
that parabolic subgroups arise naturally as stabilizers of points in the sphere
at infinity (I.2.6), and that the Langlands decomposition can be expressed in
terms of more refined equivalence relations on geodesics (I.2.15, I.2.29, I.2.31).
After recalling briefly the (spherical) Tits building ∆(G) (I.2.18), we give a
geometric realization of the Tits building (I.2.19) and use it to describe the
topological Tits building (I.2.21, I.2.22). Then we refine the equivalence re-
lation on geodesics to the N -relation (I.2.26) and use it to explain how the
boundary symmetric spacesXP arise in the parameter spaces ofN -equivalence
classes (I.2.29), which motivates the definition of the Karpelevič compactifi-
cation X

K
in the next section.

I.2.1 The geodesic compactification X ∪X(∞) can be defined in the same
way for any simply connected nonpositively curved Riemannian manifold. To
motivate this construction, we consider two special examples.

First, consider the Euclidean space Rn. Two parallel geodesics γ1, γ2 in Rn

satisfy the condition that d(γ1(t), γ2(t)) is a constant function, in particular

lim sup
t→+∞

d(γ1(t), γ2(t) < +∞.

Let Sn−1 be the unit sphere in Rn. Then every geodesic in Rn is parallel
to a unique geodesic of the form tV , V ∈ Sn−1, and hence the set of parallel
classes of geodesics of Rn can be identified with Sn−1.

Let π : [0,+∞)→ [0, 1) be a diffeomorphism whose derivative at r = 0 is
equal to 1. Then π defines a diffeomorphism

π : Rn → Bn, rV 7→ π(r)V,
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where Bn is the open unit ball in Rn, r ≥ 0, and V ∈ Sn−1. Hence Rn can
be compactified by adding Sn−1 to π(Rn) = Bn. (See [Me1, p. 13] for a more
intrinsic description of this compactification and its applications.)

In this compactification, for any sequence tj → +∞ and a geodesic γ
parallel to tV , γ(tj) converges to V . This motivates the direct construction of
this compactification of Rn in terms of geodesics to be discussed in the next
subsection.

In the case of the Poincaré disc, for any two distinct geodesics γ1, γ2,
d(γ1(t), γ2(t)) is never constant. But either lim supt→+∞ d(γ1(t), γ2(t)) <
+∞ or limt→+∞ d(γ1(t), γ2(t)) = +∞. In the former case, with a suitable
reparametrization on the geodesics, limt→+∞ d(γ1(t), γ2(t)) = 0. So in gen-
eral, we could not consider parallel equivalence classes of geodesics.

I.2.2 Recall from §1 that X = G/K is a symmetric space of noncompact
type. Let g = k + p be the Cartan decomposition associated with K. Then
the tangent space Tx0X at the basepoint x0 = K can be canonically identified
with p. The Killing form B(·, ·) of g restricts to a positive definite quadratic
form 〈·, ·〉 and hence defines a G-invariant Riemannian metric on X = G/K.
In this metric, X is a simply connected, non-positively curved Riemannian
manifold. In the following, we will fix this Riemannian metric on X. The
induced norm on p is denoted by || ||.

Two geodesics γ1, γ2 in X are defined to be equivalent, denoted by γ1 ∼ γ2,
if

lim sup
t→+∞

d(γ1(t), γ2(t)) < +∞.

It is clearly an equivalence relation. Denote the set of equivalence classes of
geodesics by X(∞),

X(∞) = {all geodesics in X}/ ∼ .

For any geodesic γ, its equivalence class is denoted by [γ].

Proposition I.2.3 The set X(∞) can be canonically identified with the unit
sphere in the tangent space TxX at any basepoint x, in particular, the unit
sphere in p = Tx0X.

Proof. Clearly, the set of geodesics passing through the basepoint x is
parametrized by the unit sphere in TxX. Since X is simply connected and
nonpositively curved, comparison with the Euclidean space implies that any
two such different geodesics are not equivalent; and it remains to show that
every equivalence class contains a geodesic passing through x.

Let γ be any geodesic. Consider the sequence of points γ(n), n ≥ 1. Since
X is simply connected and nonpositively curved, there is a unique geodesic
γn passing through x and γ(n). Assume that γn(0) = x. The compactness
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argument shows that there is a subsequence γn′ such that γn′(t) converges
uniformly for t in compact subsets to a geodesic γ∞(t). Clearly, γ∞ passes
through x. Comparison with the Euclidean space again implies that γ∞ is
equivalent to γ.

Because of the identification in the above proposition and the fact X(∞)
forms the boundary of a compactification, the set X(∞) is called the sphere at
infinity, or the visibility sphere. The geodesic compactification can be defined
for every simply connected, nonpositively curved Riemannian manifold, and
Proposition I.2.3 also holds.

I.2.4 The sphere X(∞) can be attached at the infinity of X to define the
geodesic compactification X∪X(∞). For convenience, we describe its topology
by convergent sequences (see [JM, §6] and §I.8 below for details on how to
define a topology in terms of convergent sequences).

For any [γ] ∈ X(∞), an unbounded sequence yj in X converges to [γ] if the
geodesic from a basepoint x to yj converges to a geodesic in [γ]. Comparison
with the Euclidean space shows that this topology is independent of the choice
of the basepoint x. For convenience, we will use the basepoint x0 = K. For
a geodesic γ passing through x0, the intersection with X of a fundamental
system of neighborhoods of [γ] in X ∪X(∞) is given by a family of truncated
cones C(γ, εj , tj) based on the geodesic γ(t) and truncated at tj , where tj →
+∞, εj → 0. Specifically, for any ε > 0, the cone C(γ, ε) consists of points x
such that the angle between γ and the geodesic from x0 to x is less than ε,
and the truncated cone is defined by

C(γ, ε, tj) = C(γ, ε)−B(γ(0), tj),

where B(γ(0), tj) is the ball of radius tj with center γ(0). Because of this,
the topology on X ∪ X(∞) was called the conic topology in [AS], and the
compactification X ∪ X(∞) was hence called the conic compactification in
[GJT]. It can be checked easily that the induced topology on X(∞) coincides
with the subset topology on the unit sphere in TxX in the above proposition.

Since the name of conic compactification is technical and does not empha-
size the role of geodesics, the compactification X ∪ X(∞) will be called the
geodesic compactification in this book. In some papers, it is also called the
visibility (sphere) compactification.

Proposition I.2.5 The isometric action of G on X extends to a continuous
action on the compactification X ∪X(∞).

Proof. Since the equivalence relation between geodesics and convergent
sequences are preserved under isometries, the action of G on X extends to
the compactification X ∪X(∞), and the extended action is continuous.
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One application of this extended action is the following characterization
of parabolic subgroups as stabilizers of points in X(∞).

Proposition I.2.6 For any point in X(∞), its stabilizer in G is a parabolic
subgroup. Conversely, every proper parabolic subgroup of G is the stabilizer of
some point in X(∞).

The proof will be given below after several lemmas. It should be pointed
out that for a given parabolic subgroup, its fixed points are in general not
unique. A more precise version of this proposition will be given in Corollary
I.2.17 below after explicit relations between geodesics and parabolic subgroups
have been established.

Lemma I.2.7 If two geodesics γ, δ are equivalent, then there is a continuous
family of geodesics γs, s ∈ [0, 1], connecting them, γ0 = γ, γ1 = δ, such that
for every s, γs is equivalent to γ and δ.

Proof. Let p = γ(0), q = δ(0). Let c : [0, 1] → X be a continuous curve
connecting p, q, c(0) = p, c(1) = q. The proof of Proposition I.2.3 shows that
there exists a unique geodesic γs in the equivalence class [γ] = [δ] such that
γs(0) = c(s). Comparison with the Euclidean space shows that γs depends
continuously on s and hence forms a continuous family of geodesics connecting
γ and δ.

Corollary I.2.8 All the geodesics in each equivalence class of geodesics in X
form a continuous family.

One problem is to identify a parameter space for these continuous families.
For this purpose, we need to relate parabolic subgroups to geodesics explicitly.

Let P be a proper parabolic subgroup of G, AP = exp aP its split compo-
nent. The root hyperplanes of the roots in Φ(P,AP ) divide aP into chambers.
Let a+

P be the unique chamber such that the roots in Φ(P,AP ) are positive
on a+

P . Define
a+
P (∞) = {H ∈ a+

P | ||H|| = 1}, (I.2.1)

which can be identified with the set of equivalence classes of geodesics in
aP that have representatives γ such that γ(t) ∈ ea+

P x0 for t � 0. Note that
a+
P (∞) is an open simplex, and its closure a+

P (∞) in aP is a closed simplex.

Lemma I.2.9 For each H ∈ a+
P (∞), a ∈ AP , n ∈ NP and z ∈ XP ,

γn,a,z(t) = (n, a exp tH, z) ∈ NP ×AP ×XP = X (I.2.2)

is a geodesic in X.
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Proof. Since APx0 is a totally geodesic flat submanifold of X, etHx0 is a
geodesic in X. Write z = mKP , where m ∈MP . Then γn,a,z(t) = nam·etHx0

is the image of a geodesic under an isometry of X and is hence a geodesic in
X.

Lemma I.2.10 When H is fixed, for different choices of n, a, z, the geodesics
γn,a,z are equivalent.

Proof. It suffices to prove that γn,a,z is equivalent to γe,e,x0 = exp tHx0. By
the G-invariance of the metric,

d(γn,a,z(t), γe,e,x0(t)) = d(naetHz, etHx0)

= d(e−tHnetHaz, x0)→ d(az, x0),

as t→ +∞, since e−tHnetH → e.

Lemma I.2.11 If H1,H2 ∈ a+
P (∞), H1 6= H2, then for any n1, n2 ∈ NP ,

a1, a2 ∈ AP , z1, z2 ∈ XP , the geodesics γ1(t) = (n1, a1e
tH1 , z1), γ2(t) =

(n2, a2e
tH2 , z2) are not equivalent.

Proof. Since H1 6= H2, the geodesics etH1x0, etH2x0 are not equivalent, by
Proposition I.2.3. Then the lemma follows from the previous lemma.

Lemma I.2.12 If P1, P2 are different parabolic subgroups, H1 ∈ a+
P1

(∞),
H2 ∈ a+

P2
(∞), then the geodesics γ1(t) = etH1x0, γ2(t) = etH2x0 are not

equivalent.

Proof. By Proposition I.2.3, it suffices to prove H1 6= H2. If H1 = H2, then
aP1 = aP2 and hence a+

P1
= a+

P2
, since H1 (H2) belongs to the interior of the

chamber a+
P1

(a+
P2

respectively), and aP1 , aP2 could only intersect along cham-
ber faces if they are not identical. Now there are only finitely many parabolic
subgroups that have aP1 as the split component, and each corresponds to a
unique chamber. This implies that P1 = P2. This contradicts the assumption
and hence implies that H1 6= H2.

I.2.13 Proof of Proposition I.2.6.
For any point [γ] ∈ X(∞), let H ∈ p = Tx0X be the unique vector such

that γ(t) = exp tH ∈ [γ]. Let P0 be a minimal parabolic subgroup. Then the
Cartan decomposition

p = ∪k∈KAd(k)a+
P0

(I.2.3)
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and Lemma I.2.12 show that there exists a unique parabolic subgroup P =
kP0,I such that H ∈ a+

P (∞). For any p ∈ P , by the Langlands decomposition
of P , write p = nam, where n ∈ NP , a ∈ AP , m ∈MP . Then

p · γ(t) = (n, a exp tH,mx0). (I.2.4)

By Lemma I.2.10, [p · γ] = [γ] and hence P stabilizes [γ].
On the other hand, for g ∈ G \ P , gP 6= P . Write g = kp, where k ∈ K,

p ∈ P . Then by Equation (I.2.4) and Equation (I.1.16),

g · γ(t) = k · (n, a exp tH,mx0)

= (kn, ka exp tAd(k)(H), kmx0) ∈ NkP ×AkP ×XkP .

Since kP 6= P , Lemmas I.2.10 and I.2.12 imply that g · γ and γ are not
equivalent. This shows that P is the stabilizer of [γ].

Conversely, for any proper parabolic subgroup P and any vector H ∈
a+
P (∞), define a geodesic γ(t) = exp tH ·x0 in X. The above arguments show

that P is the stabilizer of [γ]. This completes the proof of Proposition I.2.6.

Remark I.2.14 For a different proof of Proposition I.2.6, see [GJT, Propo-
sition 3.8].

The parametrization of each geodesic γ(t) is unique up to a shift in the
parameter t. For each H ∈ a+

P (∞), let < H >⊥ be the orthogonal complement
to the linear subspace < H > spanned by H. Then after reparametrization,
the component a in the geodesics γn,a,z in Equation (I.2.2) can be chosen to
lie in exp < H >⊥ .

Proposition I.2.15 For every parabolic subgroup P and H ∈ a+
P (∞), let

γH(t) = etHx0, called the canonical geodesic associated with H. Then the
family of geodesics in the equivalence class [γH ] is parametrized by NP ×
e<H>

⊥ ×XP .

Proof. The previous three lemmas show that two geodesics γi(t) = (ni, aietHi , zi)
associated with two parabolic subgroups Pi, i = 1, 2, as above are equivalent
if and only if P1 = P2, and H1 = H2. Then the identification of the parameter
space follows from the comments above.

Proposition I.2.16 For every parabolic subgroup P , a+
P (∞) can be canoni-

cally identified with a subset of X(∞) by the map H 7→ [γH ], where γH(t) =
exp tHx0. The sphere at infinity X(∞) admits a disjoint decomposition

X(∞) =
∐
P

a+
P (∞), (I.2.5)

where P runs over all (proper) parabolic subgroups.
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Proof. By the Cartan decomposition of X, for the minimal parabolic sub-
group P0,

X = K exp a+
P0
x0.

Let a+
P0

(∞) be the closure of a+
P0

(∞) in aP0 . Then

X(∞) = K · a+
P0

(∞).

Since the faces of the simplicial cone a+
P0

are a+
P0,I

, the faces of the simplex

a+
P0

(∞) are a+
P0,I

(∞). Combined with the fact that every parabolic subgroup
P is conjugate under K to a standard parabolic subgroup P0,I , it follows that

X(∞) = ∪P a+
P (∞).

By Lemma I.2.12, for two different parabolic subgroups P1, P2, a+
P1

(∞), a+
P2

(∞)
are disjoint. Hence, the decomposition in the above equation is disjoint.

The disjoint decomposition of X(∞) into a+
P (∞) in the above proposition

can be recovered through the G-action on X(∞).

Corollary I.2.17 For every parabolic subgroup P , the set of points in X(∞)
whose stabilizer is equal to P is exactly equal to a+

P (∞), and the set of points
in X(∞) which are fixed by P is equal to the closure of a+

P (∞) in X(∞),
which can be identified with the closure a+

P (∞) of a+
P (∞) in aP .

Proof. The proof of Proposition I.2.6 gives the first statement. For the
second statement, we note that a parabolic subgroup Q contains P if and
only if a+

Q is a face of the polyhedral cone a+
P , which is in turn equivalent to

that a+
Q(∞) is a face of a+

P (∞). Since

a+
P (∞) =

∐
Q⊇P

a+
Q(∞),

the first statement implies the second.

I.2.18 Now we recall several basic facts on Tits buildings and explain how
the decomposition in Equation (I.2.5) gives a geometric realization of the Tits
building of G. For more details about the Tits buildings and proofs of the
statements below, see [Ti1] [Ti2] [Br1] (see also [Ji9] for many applications of
Tits buildings to geometry and topology).

The Tits building ∆(G) of the group G is an infinite simplicial complex
such that there is an one-to-one correspondence between the set of simplexes
and the set of proper parabolic subgroups in G satisfying the following com-
patibility conditions:
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1. For each parabolic subgroup P , denote the corresponding simplex by
∆P . When P is maximal, ∆P is a vertex, i.e., a simplex of dimension
0.

2. For every pair of parabolic subgroups P,Q, ∆P contains ∆Q as a face
if and only if P ⊂ Q.

The group G acts on the set of parabolic subgroups by conjugation, and
hence also acts on ∆(G) simplicially. Since each parabolic subgroup is equal
to its normalizer, the stabilizer of each simplex ∆P is equal to P .

An important feature of the Tits building ∆(G) is the rich structure of
apartments. For any Cartan subalgebra a of the symmetric pair (g, k), i.e., a
maximal abelian subalgebra in p, the orthogonal complement of k in g, there
are only finitely many parabolic subgroups P whose split component AP with
respect to the basepoint x0 is contained in A = exp a, and they correspond to
the chambers and chamber faces in a; their corresponding simplexes ∆P form
a finite subcomplex Σ(a), called an apartment of ∆(G). This subcomplex
Σ(a) is a triangulation of the unit sphere a(∞) in a induced by the chamber
decomposition. More generally, for any g ∈ G, the subalgebra Ad(g)a for the
symmetric pair (g, Ad(g)k) also determines an apartment Σ(Ad(g)a) by using
the split component with respect to the basepoint gx0. They exhaust all the
apartments in ∆(G).

The apartments in ∆(G) satisfy the following conditions:

1. For any two simplexes ∆1,∆2, there exists an apartment Σ containing
∆1,∆2;

2. if Σ′ is another apartment containing ∆1,∆2, then there is an isomor-
phism between Σ and Σ′ that fixes ∆1 and ∆2 pointwise.

Proposition I.2.19 For each parabolic subgroup P , the simplex ∆P in ∆(G)
can be identified with the subset a+

P (∞) ⊂ X(∞), the set of points fixed by P
(Corollary I.2.17); the underlying space of the building ∆(G) can be identified
with X(∞).

Proof. When P is a maximal parabolic subgroup, dim aP = 1, and hence
a+(∞) consists of one point. For a pair of parabolic subgroups P,Q, the
inclusion P ⊂ Q holds if and only if a+

Q is a face of a+
P , which is equivalent to

that a+
Q(∞) is a face of a+

P (∞). This proves the first statement. The second
statement follows from the decomposition in Equation (I.2.5).

The G-action on ∆(G) canonically extends to an action on the underlying
space of ∆(G), which will also be denoted by ∆(G).
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Lemma I.2.20 The space ∆(G) admits a G-invariant metric whose restric-
tion to each apartment gives a sphere. This metric is called the Tits metric.

Proof. For each parabolic subgroup P , the simplex ∆P inherits a metric
from the norm || || on aP as the subset a+

P (∞). For every pair of parabolic
subgroups P,Q, the inclusion ∆Q ⊂ ∆P is isometric. Therefore, these metrics
are compatible and define a metric on ∆(G). Clearly, for any g ∈ G, the map
g : ∆P → ∆gP is isometric, and hence the metric on ∆(G) is G-invariant.

In the Tits metric, for any H ∈ ∆P and g ∈ G − P , gH ∈ ∆gP , and the
distance d(H, gH) is independent of g. On the other hand, it is reasonable to
expect that if g is closer to the identity element, then ∆gP should be closer to
∆P . This is important for applications to compactifications of the symmetric
space X. Briefly, it will be seen that the boundary of compactifications of X
is often a cell complex related to or parametrized by the Tits building ∆(G),
and a topology is needed to measure the closeness of these boundary cells (or
boundary components). For this purpose, we use the topological Tits building
from [BuS1, Definition 1.1].

Recall that maximal totally geodesic flat submanifolds of X have the same
dimension, called the rank of X and denoted by rk(X), which is also equal
to the dimension of the split component AP of minimal parabolic subgroups
P and hence is also equal to the rank of G, denoted by rk(G). In fact, any
maximal flat through x0 is of the form APx0 for some minimal parabolic
subgroup P . Let r = rk(X). The top dimensional simplexes in ∆(G) have r
vertices. For each k ≤ r, let ∆k be the set of simplexes with k vertices, i.e., of
dimension k − 1. The group G acts on ∆1, the set of vertices, with r-orbits.
Fix an order on the set of these orbits. Then for every k ≤ r, there is an
injective map ∆k → (∆1)k, by mapping each simplex to its ordered vertices.

Definition I.2.21 A topological Tits building of G is the Tits building ∆(G)
with a Hausdorff topology on the set ∆1 such that for all k ≤ r, ∆k is a closed
subset of (∆1)k.

For each k ≤ r, ∆r is given the subset topology of (∆1)k. As mentioned
earlier, the topologies of ∆k for all k ≤ r allow one to measure the closeness
of the simplexes in ∆(G), and the condition of the image of ∆k being closed
in the definition imposes a compatibility condition.

Using the above geometric realization of ∆(G) by subsets of X(∞), we
can realize the topologies as follows.

Let S(X(∞)) be the space of closed subsets of X(∞). The identification
of X(∞) with the unit sphere in Tx0X in Proposition I.2.3 defines a metric
on X(∞). The Hausdorff distance defines a metric on S(X(∞)): For A,B ∈
S(X(∞)), the Hausdorff distance

dH(A,B) = inf{ε | d(x,B) < ε, d(A, y) < ε for all x ∈ A, y ∈ B}.
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Proposition I.2.22 The geometric realization of ∆(G) in Proposition I.2.19
induces an injective map

∆k → S(X(∞)), ∆P 7→ a+
P (∞)

for every k = 1, · · · , r, and the induced subset topology gives the structure of
topological Tits building on ∆(G).

Proof. The image of each ∆k in S(X(∞)) is a compact subset. Since the
vertices of a+

P (∞) depend continuously on a+
P (∞), the injective map ∆k →

(∆1)k is continuous and its image is also compact, and hence closed.

Remark I.2.23 As explained in [Ji9], in many applications to geometry, for
example, the Mostow strong rigidity [Mos], the rank rigidity of nonpositively
curved manifolds [Bal1] [Bal2] [BuS2] and the classification of isoparametric
submanifolds of codimension at least 3 [Te1] [Tho1] [Tho2], it is the topological
Tits building rather than the usual Tits building which is used. One basic
reason is that the topology on the topological Tits building gives a non-discrete
topology on the automorphism group of the building [BuS1].

I.2.24 In the geodesic compactification X∪X(∞), we attach one ideal point
at infinity to each equivalence class. To motivate more refined compactifica-
tions in later sections, it is natural to use internal structure in each equivalence
class and attach boundary points accordingly. If the rank of G is greater than
or equal to 2, then there are non-conjugate parabolic subgroups, and hence
there are different types of geodesics. This is made precise in the following
result.

Proposition I.2.25 Let P0 be a minimal parabolic subgroup of G. Then the
simplex a+

P0
(∞) is a set of representatives of the G-orbits in X(∞), and hence

G acts transitively on X(∞) if and only if rk(X) is equal to 1.

Proof. Since X(∞) =
∐
P a+

P (∞), where P runs over all proper parabolic
subgroups, and every parabolic subgroup is conjugate to a standard one P0,I ,
it follows that every G-orbit contains a point in a+

P0
(∞). On the other hand,

for everyH ∈ a+
P0

(∞), let P0,I be the unique standard parabolic subgroup such
that H ∈ a+

P0,I
(∞). Then for every g ∈ G, either g ∈ P0,I and hence gH = H;

or g 6∈ P0,I , gP0,I 6= P0,I , gH ∈ a+
gP0,I

(∞), and hence gH 6∈ a+
P0,I

(∞). This

implies that no two points in a+
P0

(∞) lie in the same orbit of G, and proves
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the first statement. The fact that a+
P0

(∞) consists of one point if and only if
the rank of X is equal to 1 implies the second statement.

I.2.26 To study the internal structure of each equivalence class of geodesics
[γ] ∈ X(∞), we define a more refined relation on geodesics.

Two geodesics γ1, γ2 in X are called N -related if

lim
t→+∞

d(γ1(t), γ2) = 0,

where d(γ1(t), γ2) = infs∈R d(γ1(t), γ2(s)).
It should be pointed out that there are pairs of N -related geodesics γ1, γ2

such that d(γ1(t), γ2(t)) 6→ 0. For example, take γ2(t) = γ1(t + δ), for a
positive constant δ. Then d(γ1(t), γ2) = 0, and γ1, γ2 are clearly N -related
but d(γ1(t), γ2(t)) = δ 6= 0. Therefore, to avoid the problem of differ-
ent parametrization of geodesics and to get a simple geometric condition to
define the N -equivalence relation, we need to use d(γ1(t), γ2) rather than
d(γ1(t), γ2(t)) as in the earlier equivalence relation.

Remark I.2.27 In [Ka], an equivalence class [γ] of geodesics is called a finite
bundle (or F-bundle), and a N -equivalence class is called a null bundle (or
N-bundle). Detailed studies of these bundles play a crucial role in [Ka]. In
fact, parabolic subgroups and Langlands decomposition were defined there in
terms of them.

Lemma I.2.28 If two geodesics γ1, γ2 are N -related, then γ1 ∼ γ2, i.e.,
[γ1] = [γ2] ∈ X(∞).

Proof. If γ1 is N -related to γ2, then there exists a sequence tn such that
εn = d(γ1(n), γ2(tn)) → 0 as n → +∞. We claim that |tn − n| is bounded,
and hence d(γ1(n), γ2(n)) is bounded, which implies that γ1 ∼ γ2. In fact, by
the triangle inequality,

tn = d(γ2(tn), γ2(0)) ≤ d(γ2(tn), γ1(n)) + d(γ1(n), γ1(0)) + d(γ1(0), γ2(0))

= εn + n+ d(γ1(0), γ2(0)) = n+ εn + d(γ1(0), γ2(0)).

Similarly,

tn ≥ d(γ1(n), γ1(0))− d(γ2(tn), γ1(n))− d(γ1(0), γ2(0))

= n− εn − d(γ1(0), γ2(0)).

These two inequalities imply the claim .

This lemma shows that the N -relation defines an equivalence relation on
each equivalence class [γ] ∈ X(∞).
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Proposition I.2.29 For every parabolic subgroup P , H ∈ a+
P (∞) and its

associated geodesic γH(t) = etHx0, the set of N -equivalence classes in [γH ]
can be parametrized by < H >⊥ ×XP . In particular, for any n ∈ NP , n · γH
is N -related to γH .

Proof. By Proposition I.2.15, every geodesic in [γH ] can be written uniquely,
up to a shift in the parameter, in the form

γn,a,m(t) = (n, aetH ,mx0) ∈ NP ×AP ×XP ,

where n ∈ NP , a ∈< H >⊥,m ∈ MP . By the G-invariance of the metric, we
have

d(γn1,a1,m1(t), γn2,a2,m2(t)) = d(n1a1e
tHm1x0, n2a2e

tHm2x0)

= d((a2e
tHm2)−1(n−1

2 n1)(a2e
tHm2)a−1

2 a1m
−1
2 m1x0, x0)

→ d(a−1
2 a1m

−1
2 m1x0, x0).

This implies that when a,m are fixed, but n changes, the geodesics γn,a,m
are N -related. The converse is also true, i.e., if (a1,m1x0) 6= (a2,m2x0), the
geodesics γn1,a1,m1 , γn2,a2,m2 are not N -related. In fact, since MP commutes
with AP , it can be shown that the map

aP ×XP
∼= AP ×XP → X, (V, z) 7→ eV z,

is an isometric embedding. This implies that d(a−1
2 a1m

−1
2 m1x0, x0) = 0 if

and only if m2x0 = m1x0 and a2 = a1. When n = e, d(γe,a1,m1(t), γe,a2,m2) =
d(γe,a1,m1(t), γe,a2,m2(t)). Consequently, γe,a1,m1 isN -related to γe,a2,m2 if and
only if a1 = a2, m1x0 = m2x0. Together with the earlier result, this implies
that γn1,a1,m1 , γn2,a2,m2 are N -related if and only if a1 = a2,m1x0 = m2x0,
and hence proves the proposition.

Corollary I.2.30 If the rank of X is equal to 1, then every pair of equivalent
geodesics are N -related.

Proof. If the rank is equal to 1, then for every parabolic subgroup P ,
dim aP = 1, XP consists of one point, and the parameter space < H >⊥ ×XP

in Proposition I.2.29 consists of one point.

I.2.31 Proposition I.2.29 and Corollary I.2.30 give a geometric interpreta-
tion of the Langlands decomposition of parabolic subgroups. Basically, for a
geodesic γH(t) as in Proposition I.2.29, its image under the action of NP gives
the N -related geodesics, and the further action of APMP sweeps out all the
geodesic in the equivalence class of γH(t).
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I.2.32 Summary and Comments.
In this section, we realized parabolic subgroups as the stabilizers of bound-

ary points of the geodesic compactification X ∪X(∞) and gave a geometric
realization of the Tits building ∆(G) in terms of simplexes a+

P (∞), which can
be used to give an explicit description of the topological building. We also
gave a geometric interpretation of the Langlands decomposition of parabolic
subgroups and the induced horospherical decomposition by using the refined
N -equivalence relation on geodesics. All these results show that parabolic
subgroups are related to the geometry at infinity of X, which is a basic point
of this book.

The study of geodesics in negatively curved and simply connected surfaces
(or manifolds) was started by Hadamard and Cartan. The geodesic compact-
ification became well-known and popular after [EO], though it was defined for
symmetric spaces in [Ka].

The Tits buildings were motivated by the problem of giving a uniform ge-
ometric interpretation of the exceptional Lie groups. They have turned out to
have many applications in geometry and other subjects. In these applications,
the enhanced topological spherical Tits building is important. See the survey
[Ji9] for details and references.

I.3 Karpelevič compactification

In this section, we describe the Karpelevič compactification X
K

as a blow-up
of the geodesic compactification X ∪ X(∞) by making use of the internal
structures of each equivalence class of geodesics, or rather points in X(∞),
obtained in the previous section.

This section is organized as follows. We first use the dimension count to
motivate how to blow up the points in X(∞), or equivalently what kinds of
boundary components can be attached at infinity (I.3.3-I.3.5). Then we recall
the original inductive definition of the Karpelevič compactification as a set in
I.3.7, following [Ka]. The compactification is explained through the example
X = H ×H in I.3.8. The convergence of interior points to the boundary is
described in I.3.9, and the convergence of boundary points is given in I.3.12.
Several properties of X

K
are stated in I.3.15.

I.3.1 When the rank of X is equal to 1, most nontrivial compactifications of
X are isomorphic to the geodesic compactification X ∪X(∞). On the other
hand, in the higher rank case, there are different compactifications. One basic
reason is that there are differences between the equivalence relation and the
N -equivalence relation between geodesics, and there are different kinds of
geodesics (Proposition I.2.25).

The Karpelevič compactification discussed in this section is a good ex-
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ample to illustrate this. For this purpose, a simple but useful example is
X = H ×H, i.e., G = SL(2,R) × SL(2,R). The geometry is simple but the
difference between the (usual) equivalence relation and the N -relation is clear.
See §I.3.7 below for details.

I.3.2 The Karpelevič compactification X
K

in [Ka] was motivated by the
problem of studying positive eigenfunctions and asymptotic behaviors of bounded
harmonic functions on X. To study the behaviors at infinity of bounded har-
monic functions, we need boundary spaces at infinity. The problem of positive
eigenfunctions will be discussed in more detail in §1.7 below on the Martin
compactification. Briefly, two problems that Karpelevič solved are: (1) to
find a family of linearly independent positive eigenfunctions such that other
eigenfunctions can be expressed as unique linear combinations of them, or
more precisely, superpositions of them, and (2) to parametrize this family by
a subset in the boundary of the compactification X

K
.

To solve these problems, detailed structures of geodesics in X were used to
refine the geodesic compactification X∪X(∞) and define the compactification
X
K

and to understand the geometry at infinity. Some of the results in [Ka]
have been recalled in §I.2.

I.3.3 The Karpelevič compactification X
K

is a blow-up of X ∪ X(∞) ob-
tained by using the N -equivalence classes in each equivalence class [γ] of
geodesics.

The choice of the blow-up in [Ka] was motivated by the dimension count.
A different explanation was given in [GJT] and will be recalled later in §I.14.

A natural way of blowing up the geodesic boundary X(∞) is to attach
one ideal point to each geodesic instead of collapsing the whole equivalence
class to one point. Since it is reasonable to expect that the dimension of
the boundary be of one dimension less than X, the dimension count below
will show that the boundary that contains one point for each geodesic will be
too large, and we need to collapse the N -equivalence classes of geodesics at
infinity.

Lemma I.3.4 Let P0 be a minimal parabolic subgroup. For each H ∈ a+
P0

(∞),
let γH(t) = etHx0. The set {[kγH ] | k ∈ K,H ∈ a+

P0
(∞)} of equivalence

classes of geodesics is of dimension dimX − 1.

Proof. Let KP0 = K ∩P0. Then KP0 = K ∩MP0 and is the centralizer in K
of each element H ∈ a+

P0
(∞). The Cartan decomposition shows that K/KP0×

exp a+
P0

is diffeomorphic to an open subset in X and hence of dimension dimX.
This implies that the dimension of K/KP0 × a+

P0
(∞) is equal to dimX − 1.

The Cartan decomposition also implies that for two different cosets k1, k2 ∈
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K/KP0 , and two different H1,H2 ∈ a+
P0

(∞),

Ad(k1)H1 6= Ad(k2)H2,

and hence by Proposition I.2.3, [k1γH1 ] 6= [k2γH2 ]. These two results prove
the proposition.

Since each equivalence class [γH ] contains a positive dimensional family of
geodesics netHx0, n ∈ NP , this lemma shows that if we assign one ideal point
to each geodesic, then the ideal boundary will have dimension greater than
dimX.

For any non-minimal parabolic subgroup P andH ∈ a+
P (∞), N -equivalence

classes of geodesics in [γH ] need to be identified further. In fact, by Proposi-
tion I.2.15, the set of N -equivalence classes of geodesics in [γH ] is parametrized
by < H >⊥ ×XP . The dimension count in the next lemma shows that the
factor < H >⊥ needs to be collapsed also.

For each geodesic γ, let [γ]N be the N -equivalence class containing γ.
Then we have the following result.

Lemma I.3.5 For any nonminimal parabolic subgroup P , K/(K∩P )×a+
P (∞)×

XP is of dimension dimX − 1, and the set

{[kγm,H ]N | k ∈ K,H ∈ a+
P (∞),mx0 ∈ XP }

is of dimension dimX − 1, where γm,H(t) = etHmx0.

Proof. Let P0 be a minimal parabolic subgroup contained in P , and write
P = P0,I . Then AP0 = APA

I
P0

(see Equation (I.1.17) in §1). Since AP0x0 ⊂
APXP and kAPXP = AkPXkP , the Cartan decomposition X = KAP0x0

implies that

X = KAP0x0 = K(AP ·XP ) ∼= K/KP ×AP ×XP ,

and hence that K/(K ∩P )× a+
P (∞)×XP is of dimension dimX − 1. Lemma

I.2.12 shows that for different cosets k1, k2 ∈ K/(K ∩ P ) and any points
H1,H2 ∈ a+

P (∞), m1x0,m2x0 ∈ XP , the geodesic classes k1γm1,H1 , k2γm2,H2

are not equivalent. Together with Proposition I.2.29, it implies that the N -
equivalence classes [kγm,H ]N are parametrized by K/(K ∩P )× a+

P (∞)×XP .

I.3.6 The above lemma and the comments before it suggest that a natural
blow-up is to replace each point [γH ] ∈ X(∞) by XP , where H ∈ a+

P (∞),
γH(t) = etHx0. Since the inverse image of a point should be closed, we need
a compactification of XP . This will be done inductively.
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I.3.7 The Karpelevič compactification X
K

is defined inductively on rk(X)
in [Ka, §13].

First we define the Karpelevič compactification X
K

as a set. For each
point ξ ∈ X(∞), denote its stabilizer inG by Pξ, which is a parabolic subgroup
by Proposition I.2.17. Denote the Langlands decomposition of Pξ by Pξ =
NξAξMξ, and the boundary symmetric space by Xξ.

Let r = rk(X). When r = 1, X
K

is defined to be the geodesic compacti-
fication X ∪X(∞).

Assume that for every symmetric space Y of noncompact type of rank less
than r, the compactification Y

K
has been defined. For every point ξ ∈ X(∞),

the boundary symmetric space Xξ has rank less than r, and hence Xξ
K

is
defined. Then the Karpelevič compactification X

K
is defined by

X
K

= X ∪
∐

ξ∈X(∞)

Xξ
K
.

Clearly, there is a surjective map X
K → X ∪ X(∞) which restricts to the

identity map on X. This is exactly the blow-up described in the previous
paragraph.

I.3.8 Example. We illustrate the construction X
K

using the example of
X = H×H, i.e., G = SL(2,R)× SL(2,R). There are two types of geodesics
in X: (1) generic ones, γ(t) = (γ1(at), γ2(bt)), a2 + b2 = 1, a, b > 0, γ1, γ2

are geodesics in H, (2) non-generic geodesics, γ(t) = (z1, γ2(t)) or γ(t) =
(γ1(t), z2), where z1, z2 ∈ H.

If γ is generic, its boundary symmetric space X[γ] consists of one point.
On the other hand, if γ is non-generic, then X[γ] = H. By definition,

(X[γ])
K

= H ∪H(∞) = H ∪ R ∪ {∞}.

Hence the fibers of the map X
K → X ∪ X(∞) on the boundary are either

points or H ∪H(∞).
One can also work out the case of X = H×H×H. In this space, there are

different types of non-generic geodesics γ, and the spaces X[γ] are either H or
H×H, and hence the fibers over them are H∪H(∞) or the compactification
H×H

K
described above.

I.3.9 The topology of X
K

is also defined inductively on the rank r = rk(X).

When r = 1, the topology of X
K

is equal to the topology of the geodesic
compactification X ∪ X(∞) defined in —S I.2. Assume that for symmetric
spaces Y of rank less than r, the topology of Y

K
has been defined already.
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We first describe convergence of interior sequences to boundary points.
For any ξ ∈ X(∞), the rank of Xξ is less than r, and hence the topology of
Xξ

K
has been defined.

Identify Aξ×Xξ with the submanifold {e}×Aξ×Xξ ⊂ Nξ×Aξ×Xξ
∼= X.

Then a sequence yj ∈ X converges to a point z∞ ∈ Xξ
K

if yj can be written
as yj = gj(aj , zj), where gj ∈ G, (aj , zj) ∈ Aξ × Xξ satisfy the following
conditions: as j → +∞,

1. gj → e,

2. (aj , zj)→ ξ in X ∪X(∞),

3. zj → z∞ in Xξ
K
.

Remark I.3.10 Since ξ ∈ a+
P (∞), the second condition implies that

d(ajx0, x0)→ +∞, d(zj , x0)/d(ajx0, x0)→ 0,

but zj may be unbounded, which is the case when z∞ belongs to the boundary
of Xξ

K
.

Since Aξ ×Xξ is a lower dimensional submanifold, the factor gj is needed
to define general interior sequences converging to a boundary point. Fur-
thermore, the factor gj allows one to show the G-action on X extends to a
continuous action on X

K
.

To discuss convergence of sequences on the boundary, we need the following
results.

Lemma I.3.11 For every pair of points ξ, η ∈ X(∞), if the corresponding
parabolic subgroups P = Pξ, Q = Pη satisfy P ⊂ Q, then P determines a
parabolic subgroup P ′ of MQ as in Equation (I.1.21), and ξ determines a
unique point ξ′ ∈ a+

P ′(∞), and hence XP and its compactification XP
K

can
be canonically embedded into XQ

K
as the boundary space Xξ′

K
. Denote this

map Xξ
K → Xξ′

K ⊂ XQ
K

by πξ,η.

Proof. By Equation (I.1.21), XP = XP ′ . It remains to find the point ξ′.
Since Q ⊃ P , we can write Q = PI . Then aP = aQ ⊕ aIP . By assumption,
P = Pξ, and hence ξ ∈ a+

P (∞). Write ξ = ξ1 + ξ2, where ξ1 ∈ aQ and ξ2 ∈ aIP .
Note that aP ′ = aIP , and hence ξ2 ∈ a+

P ′ . Choose a positive constant c such
that ξ′ = cξ2 ∈ a+

P ′(∞). Then XP = Xξ′ . By definition, XQ
K

contains the
compactification XP ′

K
.
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I.3.12 Now we are ready to define convergent sequences on the boundary
of X

K
. For any ξ ∈ X(∞) and a point z ∈ Xξ

K
, a sequence yj ∈ ∂X

K

converges to z if and only if the following conditions hold:

1. Let ξj ∈ X(∞) be the point such that yj ∈ Xξj

K
. Then ξj converges

to ξ∞ in X(∞), and hence there exists a sequence gj ∈ G converging to
the identity e such that Pgjξj is either equal to or contained in Pξ when
j � 1.

2. The identification Xξj
∼= Xgjξj extends to an isomorphism Xξj

K ∼=
Xgjξj

K
. Composed with the map πgjξj ,ξ : Xgjξj

K → Xξ
K

in Lemma

I.3.11, it gives a map πj : Xξj

K → Xξ
K

. Then the image πj(yj) in Xξ
K

converges to z.

Remark I.3.13 In condition (1), the factor gj is crucial in order to define
the map πj and measures the closeness of the boundary symmetric spaces Xξj

and Xgjξj , otherwise there is not necessarily any inclusion relation between
Pξj and Pξ. As explained in §I.2, this is the basic point of the topological Tits
building.

Remarks I.3.14 In [Ka], the topology of X
K

was defined completely in
terms of geodesics. A slightly different formulation of the topology of X

K

was given in [GJT], where a maximal abelian subalgebra a (or equivalently a
minimal parabolic subgroup) was fixed throughout. In the above formulation,
parabolic subgroups and the relations in Equation (I.1.21) between parabolic
subgroups play a crucial role.

Since X
K

is defined inductively, every boundary point of X
K

can be repre-
sented in the form (X1, X2, · · · , Xk; z), where Xi+1 is a boundary symmetric
space of Xi, i.e., there exists a point ξ ∈ Xi(∞) such that Xi+1 = (Xi)ξ,
and z ∈ Xk. It would be desirable to give a non-inductive description of
X
K

and hence to explain this tower of boundary symmetric spaces Xi. In
[GJT, Chap. V], such a non-inductive description was given. Basically, for
a sequence Hj ∈ a+

P0
going to infinity, the limit of eHjx0 in X ∪X(∞) does

not depend on the root values α(Hj) such that α(Hj)/||Hj || → 0, but only on
those values α(Hj) which are comparable to ||Hj ||. On the other hand, the
limit of eHjx0 in X

K
depends on all root values α(Hj), and their different

rates of going to infinity correspond to the successive boundary symmetric
spaces in (X1, X2, · · · , Xk; z).

The basic properties of X
K

in [Ka] are summarized in the proposition.

Proposition I.3.15 1. The space X
K

is a compact, metrizable Hausdorff
space containing X as a dense open subset.
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2. The isometric G-action on X extends to a continuous action on X
K

.

3. For any ξ ∈ X(∞), the closure of the boundary symmetric space Xξ in
X
K

is the Karpelevič compactification Xξ
K

.

The proofs of these results were given in [Ka, §13] and are quite long. We
will give an alternative construction of X

K
and prove these properties later

in §I.14.

I.3.16 Summary and Comments. In this section, we used the dimension
count to determine the extent of the blow-up of boundary points in X(∞).
The example of X = H ×H illustrates how the blow up of boundary points
[γ] in X(∞) depending on whether the geodesic γ is generic.

The construction in [Ka] is very complicated due to the inductive nature
of the definition. Both the compactification and its construction are interest-
ing and beautiful. Unfortunately it has not been well-understood and much
appreciated. The compactification X

K
is briefly discussed in [Eb]. For the

case of G = SL(n,R), it was also described in a different and more direct
way in [Ne1]. The first non-inductive construction of X

K
was given in [GJT].

Another one will be given in §I.14 below.

I.4 Satake compactifications

In this section, we recall the Satake compactifications X
S

of X in [Sat1],
which are obtained by embedding X into some compact ambient spaces. As
mentioned earlier, [Sat1] started the modern study of compactifications of
symmetric and locally symmetric spaces and was motivated to define com-
pactifications of locally symmetric spaces in [Sat2]. Some results in [Sat1] are
slightly reformulated and given different proofs in this section.

For simplicity, we assume in this section that G is an adjoint semisimple
Lie group, and X = G/K as above. There are two steps in constructing the
Satake compactifications X

S
:

1. Compactify the special symmetric space Pn = PSL(n,C)/PSU(n) of
positive definite Hermitian matrices of determinant 1 by using semi-
positive Hermitian matrices to get Pn

S
, called the standard Satake com-

pactification.

2. Embed X into Pn for some n as a totally geodesic submanifold and take
the closure ofX in Pn

S
to get the Satake compactificationX

S
associated

with the embedding X ↪→ Pn.
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As it will be shown below, Step (2) is equivalent to faithful projective
representations of G. The standard compactification Pn

S
is only one of the

many Satake compactifications of Pn and corresponds to the identity (stan-
dard) representation PSL(n,C)→ PSL(n,C). Certainly, PSL(n,C) admits
other faithful projective representations PSL(n,C)→ PSL(m,C), which lead
to different totally geodesic embeddings Pn ↪→ Pm. The closures of Pn in Pm

S

are often different from Pn
S

. The major problems in the Satake compactifica-
tions of X = G/K are (1) to understand how the compactifications depend on
the representations of G or the embeddings of X into Pn, and (2) to determine
the G-orbits and boundary components in the compactifications.

This section is organized as follows. First, we discuss the example of P2
S

by identifying P2 with the real hyperbolic space H3 (I.4.2). Then we study
the compactification Pn

S
directly using the spectral theorem of Hermitian

matrices and determine its boundary points and boundary orbits explicitly
(Propositions I.4.4 and I.4.9), where a crucial part is to determine the limit
points of unbounded sequences of diagonal matrices; then we determine the
normalizer and centralizer of the boundary components (Propositions I.4.5,
I.4.6 and I.4.7), hence completing Step (1). Then we show the equivalence
between totally geodesic embeddings of X into Pn and faithful projective
representations τ : G → PSL(n,C) (Proposition I.4.12). To determine the
structure of the boundary of the Satake compactifications X

S
by using ar-

guments similar to those in the above special case, we introduce the crucial
notion of µτ -connected sets of simple roots (Definition I.4.16), where µτ is the
highest weight of τ . After identifying the closure of the positive Weyl chamber
(Proposition I.4.23), we determine the boundary components of the compact-
ification and their stabilizers in terms of these µτ -connected sets (Proposition
I.4.29), which show that there are only finitely many non-isomorphic Satake
compactifications (Proposition I.4.35, see also Corollary I.4.32 and Proposi-
tion I.4.38). The structure of boundary components and the closure of the
positive chamber naturally lead to the axiomatic characterization of the Sa-
take compactifications in Proposition I.4.33. The relation between the finitely
many Satake compactifications is given in Proposition I.4.35. The G-orbits in
the boundary of the Satake compactifications are given in Proposition I.4.40
and Corollary I.4.41. The general results on Satake compactifications are
illustrated through two examples: the maximal Satake compactification in
I.4.42, and the standard Satake compactification of Pn in I.4.43.

I.4.1 The symmetric space Pn = PSL(n,C)/PSU(n) can be identified with
the space of positive definite Hermitian matrices of determinant 1 through the
map

gPSU(n) 7→ gg∗.
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When positive definite matrices degenerate, they become positive semi-
definite matrices. Therefore, it is natural to use these matrices to compactify
Pn.

Let Hn be the real vector space of Hermitian n× n matrices, and P (Hn)
the associated real projective space. For each nonzero matrix A in Hn, let [A]
denote the image of A in P (Hn), i.e., the line RA spanned by A. The group
PSL(n,C) acts on Hn by

g ·A = gAg∗, g ∈ PSL(n,C), A ∈ Hn.

Clearly the action descends to an action on P (Hn),

g · [A] = [gAg∗].

Since the matrices in Pn have determinant 1, the map

i : Pn → P (Hn), A 7→ [A], (I.4.1)

is a PSL(n,C)-equivariant embedding.
The closure of i(Pn) in the compact space P (Hn) is a PSL(n,C)-equivariant

compactification of Pn, called the standard Satake compactification of Pn and
denoted by Pn

S
.

I.4.2 Before studying the general case Pn
S

, we identify the Satake com-
pactification P2

S
. In this example, we can see explicitly how positive definite

matrices degenerate to semi-positive ones.
Let H3 be the hyperbolic space of dimension 3, i.e., the three dimensional

simply connected Riemannian manifold of constant curvature −1. An impor-
tant model of H3 is given by the upper half space

H3 = {(z, r) | z ∈ C, r ∈ (0,+∞)}

with the metric ds2 = dx2+dy2+dr2

r2 , where z = x + iy. Let H be the algebra
of quaternions with the standard basis 1, i, j, k:

i2 = −1, j2 = −1, k2 = −1, k = ij.

Then H3 can be identified with a subset of H by the map

H3 → H, (x+ iy, r) 7→ x+ iy + jr + 0k.

Under this identification, SL(2,C) acts on H3 by(
a b
c d

)
· w = (aw + b)(cw + d)−1,
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where w ∈ H3 and
(
a b
c d

)
∈ SL(2,C). It can be shown that SL(2,C)

acts transitively on H3 and the stabilizer of the point (0, 1) = j is equal to
SU(2) (see [EGM, §I.1] for more details). Clearly, the center of SU(2,C) acts
trivially on H3, and hence PSL(2,C) also acts on H3. Therefore,

H3 = SL(2,C)/SU(2) = PSL(2,C)/PSU(2). (I.4.2)

Composed with the identification PSL(2,C)/PSU(2) = P2, this implies that

H3 ∼= P2.

Let H3 ∪H3(∞) be the geodesic compactification. We claim that P2
S

is
isomorphic to H3 ∪H3(∞) under this identification.

To prove this, we need an explicit formula for this identification in Equa-
tion (I.4.2). Let

P = {
(
a b
0 a−1

)
| b ∈ C, a > 0},

a parabolic subgroup of SL(2,C). Then P acts transitively on H3. In fact,
for any b ∈ C, a > 0, (

1 b
0 1

)(
a 0
0 a−1

)
· j = b+ a2j.

The corresponding Hermitian matrix in P2 is equal to(
1 b
0 1

)(
a 0
0 a−1

)(
a 0
0 a−1

)(
1 0
b̄ 1

)
=
(
a2 + |b|2a−2 ba−2

b̄a−2 a−2

)
. (I.4.3)

Note that H3(∞) can be identified with C∪{∞}. This implies that when
a sequence wn ∈ H3 converges to a boundary point b ∈ C in H3 ∪H3(∞),
the corresponding matrix in P2 converges in the Satake compactification P2

S

to the line in P (H2) passing through the semi-positive matrix(
|b|2 b
b̄ 1

)
.

Similarly, if a sequence wn ∈ H3 converges to the boundary point {∞} in
H3 ∪H3(∞), then it will converges to the line in P (H2) passing through the
semi-positive matrix (

1 0
0 0

)
.

This proves that P2
S

is isomorphic to the geodesic compactification H3 ∪
H3(∞).
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I.4.3 In the general case, to understand the standard Satake compactifica-
tion Pn

S
, we need to identify the boundary points and the PSL(n,C)-orbits

on the boundary.
Since the subset of semi-positive Hermitian matrices is closed, it is clear

that the boundary points of Pn
S

are of the form [A], where A is semi-positive
Hermitian matrix; by adding a small multiple of a positive definite matrix, it
is also clear that every such point [A] appears in the boundary of Pn

S
.

Even though we have determined the whole boundary, its structures such
as the G-orbits and lower dimensional symmetric spaces inside the boundary
are not clear. Furthermore, an intrinsic description of the convergence of
interior points to the boundary is not clear either.

In the following, we often denote elements in PGL(n,C) by their lifts
in GL(n,C), i.e., by matrices. We note that by the spectral theorem, any
Hermitian matrix A can be written as

A = B diag(d1, · · · , dn)B∗, (I.4.4)

where B ∈ PSU(n), and d1, · · · , dn ∈ R, d1 ≥ d2 ≥ · · · ≥ dn. Since PSU(n)
is compact, we first concentrate on the limit points of the diagonal matrices.

Let yj = diag(d1,j , · · · , dn,j) be an unbounded sequence in Pn. Then
d1,j · · · dn,j = 1. Assume that d1,j ≥ · · · ≥ dn,j . Since yj is not bounded, it
follows that

d1,j → +∞, dn,j → 0.

By passing to a subsequence if necessary, we can assume that for all i ∈
{1, · · · , n}, limj→+∞ di,j/d1,j exists, and denote the limit by ai. Let i0 be the
largest integer such that

a1, · · · , ai0 > 0, ai0+1 = · · · = an = 0.

Since a1 = 1 and an = 0, such i0 exists. Then the limit of yj in Pn
S

is given
by

i(yj) = [Yj ] = [diag(a1,j/a1,j , a2,j/a1,j , · · · , an,j/a1,j)]
→ [diag(a1, a2, · · · , ai0 , 0, · · · , 0)].

Using the decomposition in Equation (I.4.4), we obtain that if an unbounded
sequence yj in Pn converges in Pn, its limit point is of the form

[B diag(a1, a2, · · · , ai0 , 0, · · · , 0)B∗],

where a1 ≥ a2 ≥ · · · ≥ ai0 > 0, B ∈ PSU(n). Let

π : PSU(i0)→ PSU(n), C 7→
(
C 0
0 In−i0

)
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be the natural embedding. Then for any g ∈ PSU(i0),

π(g) · [diag(a1, a2, · · · , ai0 , 0, · · · , 0)] = [
(
g diag(a1, a2, · · · , ai0)g∗ 0

0 0

)
].

Let b = a1 · · · ai0 . Then diag(a1/b, · · · , ai0/b) ∈ Pi0 . This implies that when
a1, · · · , ai0 take all the values satisfying the condition a1 ≥ a2 ≥ · · · ≥ ai0 ,
and g ranges over PSU(i0), the set {π(g) · [diag(a1, · · · , ai0 , 0, · · · , 0)]} can
be identified with Pi0 = PSL(i0,C)/PSU(i0), a lower dimensional symmetric
space of the same type as Pn. Embed Pi0 into Pn

S
through this identification,

Pi0 → Pn
S
, A 7→ [

(
A 0
0 0

)
] (I.4.5)

Then the above discussions show that

Pn
S

= Pn ∪KPn−1 ∪ · · · ∪KP1, (I.4.6)

where K = PSU(n,C).
Since matrices in Pk have rank k, the above decomposition is disjoint.

This decomposition describes the K-action on the compactification Pn
S

. In
fact, it also describes the G-orbits structure.

Proposition I.4.4 Each summand in Equation (I.4.6) is a G-orbit, and Pn
admits a disjoint decomposition

Pn
S

= Pn
∐

GPn−1

∐
· · ·
∐

GP1. (I.4.7)

Proof. To prove this proposition, we need to relate the boundary symmetric
space Pi to parabolic subgroups. Let

P = Pi = {
(
A B
0 cIn−i

)
∈ PSL(n,C) | A ∈ GL(i,C), B ∈Mi×n−i(C), c ∈ C×},

(I.4.8)
a parabolic subgroup in PSL(n,C). Then the associated boundary symmetric
space

XP = PSL(i,C)/PSU(i) = Pi.
It can be checked easily that for any p ∈ P , pPi = Pi, where Pi is embedded

in Pn
S

as in Equation (I.4.5). Since G = KP , for any k ∈ K and g ∈ G, we
can write gk = k′p′, where k′ ∈ K, p′ ∈ P . Then

g(kPi) = k′(p′Pi) = k′Pi ⊂ KPi.

Hence KPi is G-invariant. Since P acts transitively on Pi, G acts transitively
on KPi. This implies that the decomposition in Equation (I.4.7) is the disjoint
decomposition into G-orbits.



74 Part I. Compactifications of Riemannian symmetric spaces

To determine structures of these G-orbits, we need to identify the stabilizer
(or normalizer) N (Pi) and the centralizer Z(Pi) of the lower dimensional
symmetric spaces Pi in the boundary, where

N (Pi) = {g ∈ PSL(n,C) | gPi = Pi}, (I.4.9)

Z(Pi) = {g ∈ N (Pi) | g|Pi = Id}. (I.4.10)

Define a parabolic subgroup Qi of PSL(n,C) by

Qi = {
(
α β
0 δ

)
∈ PSL(n,C) | α ∈ GL(i,C), β ∈Mi×n−i(C), δ ∈ GL(n−i,C)}.

(I.4.11)

Proposition I.4.5 For the boundary symmetric space Pi in Pn
S

, the nor-
malizer N (Pi) = Qi.

Proof. Since(
α β
γ δ

)(
A 0
0 0

)(
αt γt

βt δt

)
=
(
αAαt αAγt

γAαt γAγt

)
, (I.4.12)

it is clear that Qi stabilizes Pi, and Qi ⊆ N (Pi). On the other hand, when
γ 6= 0,

γAγt 6= 0

since A is positive definite, and hence
(
α β
γ δ

)
· [
(
A 0
0 0

)
] 6∈ Pi. This implies

that N (Pi) = Qi.

The computation in Equation (I.4.12) also gives the following two results.

Proposition I.4.6 For the boundary symmetric space Pi in Pn
S

, the cen-
tralizer Z(Pi) is equal to the subgroup

{
(
α β
0 δ

)
∈ Qi | α = cIi, c ∈ C}.

Proposition I.4.7 For the basepoint z0 = [diag(1, · · · , 1, 0, · · · , 0)] ∈ Pi in
the boundary space, its stabilizer in PSL(n,C) is given by

{
(
α β
0 γ

)
∈ Qi | α ∈ U(n)}.
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These results completely describe the structure of the Satake compactifi-
cation Pn

S
. In the above notation, for g ∈ PSL(n,C) and i ∈ {1, · · · , n− 1},

the spaces g · Pi are called the boundary components. It can be seen easily
that the closure of Pi in Pn

S
is isomorphic to the standard compactification

of Pi. Hence this compactification is inductive in a certain sense, which also
holds for general Satake compactifications.

I.4.8 Though the boundary component Pi is equal to the boundary sym-
metric space XPi of the parabolic subgroup Pi in Equation (I.4.8), the space
Pi does not uniquely determine the group Pi, rather it determines Qi in Equa-
tion (I.4.11) as its stabilizer. Clearly, Qi is a maximal parabolic subgroup, and
every maximal parabolic subgroup arises this way. We call Pi the boundary
component associated with Qi and denoted by e(Qi):

e(Qi) = Pi.

Similarly, there is a boundary component e(Q) for every maximal parabolic
subgroup Q which is defined as follows. Since every maximal parabolic sub-
group Q is conjugate to Qi in Equation (I.4.11) for some i, write Q = gQi.
Then the decomposition

XQi = Pi × Pn−i = e(Qi)× Pn−i (I.4.13)

is transported to a decomposition of XQ,

XQ = g · Pi × g · Pn−i = e(Q)× g · Pn−i. (I.4.14)

Though the element g in Q = gQi is not unique, the decomposition in Equa-
tion (I.4.14) is unique, and hence

e(Q) = g · Pi (I.4.15)

is well-defined.

Proposition I.4.9 The standard Satake compactification Pn
S

is decomposed
into the disjoint union of Pn and the boundary components:

Pn
S

= Pn ∪
∐
Q

e(Q), (I.4.16)

where Q ranges over proper maximal parabolic subgroups of PSL(n,C), and
e(Q) is given in Equation (I.4.15).

In the compactification Pn
S

, all boundary components isomorphic to Pi
belong to one G-orbit. In this sense, it is a minimal Satake compactifica-
tion. In fact, as shown below, there are finitely many partially ordered non-
isomorphic Satake compactifications of any symmetric space X, and Pn

S
is
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a minimal element in this partial ordering of the Satake compactifications of
Pn.

I.4.10 The second step of the Satake compactifications of X is to embed
X into Pn as totally geodesic submanifolds. Such embeddings correspond to
faithful projective representations of G.

For any irreducible faithful projective representation τ of G:

τ : G→ PSL(n,C)

satisfying the condition
τ(θ(g)) = (τ(g)∗)−1, (I.4.17)

where θ is the Cartan involution on G associated with K, and g 7→ (g∗)−1 is
the Cartan involution on PSL(n,C) associated with PSU(n). Then the map

iτ : X = G/K → Pn = PSL(n,C)/PSU(n), gK 7→ τ(g)τ(g)∗,

is well-defined. In fact, the condition in Equation (I.4.17) implies that τ(K) ⊂
PSU(n), and hence for any k ∈ K, τ(k)τ(k)∗ = Id.

Lemma I.4.11 The map iτ : X → Pn = PSL(n,C)/PSU(n) is an embed-
ding.

Proof. Let g = k⊕p be the Cartan decomposition of the Lie algebra g. Then

p ∼= exp p ∼= X, H 7→ expH 7→ eHx0.

Denote the derivative of τ by dτ . Clearly, dτ : g → sl(n,C) is injective. For
any x = expH ∈ exp p,

iτ (x) = exp 2dτ(H) ∈ Pn. (I.4.18)

It implies that iτ is an embedding.

Recall that a submanifold M of Pn is called totally geodesic if for any two
points p, q ∈ M , the unique geodesic in Pn passing through p, q belongs to
M . (Recall that Pn is simply connected and non-positively curved, and hence
any two points can be connected by a unique geodesic).

Proposition I.4.12 The image iτ (X) under the embedding iτ is a totally
geodesic submanifold of Pn, and any irreducible, totally geodesic embedding
i(X) of X in Pn is of this form, where the irreducibility of i(X) means that
the set of n × n-matrices (or linear transformations on Cn) i(x), x ∈ X, is
irreducible.
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Proof. Let x0 = K ∈ X = G/K be the distinguished basepoint. It suffices to
consider the case p = iτ (x0) = Id ∈ Pn. Write q = i(expHx0), where H ∈ p.
By Equation (I.4.17), dτ(H) is a Hermitian matrix, and hence etdτ (H)Id,
t ∈ R, is a geodesic in Pn and passes through p and q. Since

etdτ (H)Id = iτ (e
1
2 tHx0),

this geodesic belongs to iτ (X).
Conversely, if i(X) is totally geodesic, then for any point p ∈ i(X), the

geodesic symmetry of Pn based at p preserves i(X) and restricts to the
geodesic symmetry of i(X) at p, and hence any isometry in G = Is0(X)
of i(X) extends to an isometry of Pn. Therefore, for any g ∈ G, there exists
a matrix T ∈ SL(n,C) such that the extended isometry of g on Pn is given
by the action

T : Pn → Pn, A 7→ TAT ∗ (A ∈ Pn).

Since i(X) is a set of irreducible matrices, the Schur lemma implies that T is
uniquely determined by g up to a scalar multiple. Denote the image of T in
PSL(n,C) by τ(g). It can be checked τ is a faithful, irreducible projective
representation of G (see [Sat1, p. 85] for details).

I.4.13 Note that for any irreducible faithful projective representation τ of
G into PSL(n,C), there exists a suitable norm on Cn such that the condition
in Equation (I.4.17) is satisfied. Since irreducible faithful projective repre-
sentations of G into PSL(n,C) correspond bijectively to irreducible, faithful
representations of g into sl(n,C) and are classified by the theory of highest
weights, there exist infinitely many irreducible faithful projective representa-
tions τ : G→ PSL(n,C) (see [GJT, Chap. IV]).

Definition I.4.14 For any such totally geodesic embedding iτ : X → Pn,
the closure of iτ (X) in Pn

S
is called the Satake compactification associated

with the representation τ : G→ PSL(n,C), and denoted by X
S

τ .

It should be pointed out that for G = PSL(n,C), we need to consider
representations besides the identity representation in order to obtain other
Satake compactifications of Pn.

Since G acts on Pn via the representation τ :

g ·A = τ(g)Aτ(g)∗, g ∈ G,A ∈ Pn,

the embedding iτ : X → Pn is G-equivariant, and hence the Satake com-
pactification X

S

τ is a G-compactification, i.e., the G-action on X extends to a
continuous action on X

S

τ . Since there are infinitely many irreducible faithful
projective representations τ , there are infinitely many corresponding Satake
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compactifications. It will be shown below that there are only finitely many
non-isomorphic Satake compactifications as G-topological spaces.

I.4.15 To understand the structures of X
S

τ such as G-orbits and bound-
ary components, and the dependence on the representation τ , we follow the
methods used above in describing the standard Satake compactification Pn

S
.

Let g = k ⊕ p be the Cartan decomposition. Let a ⊂ P be a maximal
abelian subalgebra in p. Choose a suitable basis of Cn such that for H ∈ a,
τ(eH) is a diagonal matrix

τ(eH) = diag(eµ1(H), · · · , eµn(H)), (I.4.19)

where µ1, · · · , µn are the weights of τ listed with multiplicity. Choose a posi-
tive chamber a+ in a. Then the Cartan decomposition gives

X = K exp a+x0.

Since K is compact, we first consider limits of sequences of the form iτ (eHjx0)
in Pn

S
, where Hj ∈ a+ is unbounded. By Equation (I.4.19), we get

iτ (eHjx0) = [diag(e2µ1(Hj), · · · , e2µn(Hj))]. (I.4.20)

There are different ways for the sequence Hj to go to infinity. For example,
it can go to infinity within a bounded distance of a Weyl chamber face aI of
a+, or strictly inside the Weyl chamber a+ and the distance to all the faces
of a+ goes to infinity. To understand the effect of these differences on the
limits of iτ (eHjx0), we need to introduce some concepts for the weights of
representations.

Let ∆ = ∆(g, a) be the set of simple roots in Φ(g, a) determined by the
positive chamber a+. Let µτ be the highest weight of τ with respect to the
partial ordering determined ∆. Then other weights µi of τ are of the form

µi = µτ −
∑
α∈∆

cα,i α, (I.4.21)

where cα,i are nonnegative integers.

Definition I.4.16 For each weight µi, define its support Supp(µi) = {α ∈
∆ | cα,i > 0}.

Definition I.4.17 A subset I of ∆ is called µτ -connected if I ∪ {µτ} is con-
nected, i.e., not the union of two subsets orthogonal with respect to the Killing
form.
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When the Dynkin diagram is joined with {µτ} by edges to all the vertices
of the simple roots not perpendicular to µτ , then I∪{µτ} is a connected subset
if and only if I is µτ -connected. This is the reason for the above definition.
These two concepts are related by the following result [Sat1, Lemma 5 in §2.3].

Proposition I.4.18 For any weight µi, its support Supp(µi) is a µτ -connected
subset of ∆. Conversely, any µτ -connected subset I of ∆ is equal to Supp(µi)
for some weight µi.

Let I be a µτ -connected (proper) subset of ∆. Suppose the sequence
Hj ∈ a+ satisfies the conditions:

1. for α ∈ ∆− I, α(µj)→ +∞,

2. for α ∈ I, limj→+∞ α(Hj) exists and is finite.

Recall from §I.1.3 that aI is the orthogonal complement of aI in a. Define

aI,+ = {H ∈ aI | α(H) > 0, α ∈ I},

a positive chamber in aI . Let H∞ ∈ aI,+ be the unique vector such that
α(H∞) = limj→+∞ α(Hj) for α ∈ I.

By reordering the weights if necessary, we can assume that µ1 = µτ , µ2, · · · , µk
are all the weights with support contained in I, and µk+1, · · · , µn the other
weights. Since Hj is not bounded, iτ (eHjx0) is not bounded, and hence
k ≤ n− 1. By Equation (I.4.20) and Equation (I.4.21),

iτ (eHjx0) = [e2µτ (Hj) diag(1, e−2
∑
α∈∆ cα,2α(Hj), · · · , e−2

∑
α∈∆ cα,nα(Hj))]

= [diag(1, e−2
∑
α∈∆ cα,2α(Hj), · · · , e−2

∑
α∈∆ cα,nα(Hj))].

For each ` ≥ k + 1, there exists α 6∈ I such that cα,` > 0, and hence

e−2
∑
α∈∆ cα,`α(Hj) → 0.

This implies that

iτ (eHjx0)→ [diag(1, e−2
∑
α∈I c2,αα(H∞) · · · , e−2

∑
α∈I ck,αα(H∞), 0, · · · , 0)].

I.4.19 In general, for any sequence Hj ∈ a+ going to infinity, by passing to
a subsequence if necessary, we can assume that there exists a proper subset
J ⊂ ∆ such that

1. for all α ∈ ∆ \ J , α(Hj)→ +∞,

2. for all α ∈ J , α(Hj) is bounded and limj→+∞ α(Hj) exists.
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Let I ⊂ J be the largest µτ -connected subset contained in J . Since the
union of two connected µτ -subsets is µτ -connected, and the empty set is µτ -
connected, such I exists and is unique.

Let H∞ ∈ aI,+ be the unique vector such that α(H∞) = limj→∞ α(Hj) for
α ∈ I. Note that the vector H∞ does not depend on the limits limj→+∞ α(Hj)
for α ∈ J \ I. Using Proposition I.4.18 and the fact that I is the largest µτ -
connected subset in J , we can show as above that for any ` ≥ k + 1,

e−2
∑
α∈∆ cα,`α(Hj) → 0,

and hence

iτ (eHjx0)→ [diag(1, e−2
∑
α∈I c2,αα(H∞) · · · , e−2

∑
α∈I ck,αα(H∞), 0, · · · , 0)].

(I.4.22)

I.4.20 On the other hand, for any H∞ ∈ aI,+, there exists an unbounded
sequence Hj ∈ a+ such that (1) for α ∈ I, α(Hj)→ α(H∞), (2) for α ∈ ∆\ I,
α(Hj)→ +∞. This implies that there exists a map

iI : ea+,I → X
S

τ , (I.4.23)

H∞ 7→ [diag(1, e−2
∑
α∈I c2,αα(H∞) · · · , e−2

∑
α∈I ck,αα(H∞), 0, · · · , 0)].

(I.4.24)

We can show that the map iI is an embedding. For each weight µi of the
representation τ : G→ PSL(n,C), let Vµi be the corresponding weight space.
Let I be a µτ -connected subset and µ1, · · · , µk be the weights with support
contained in I. Define

VI = Vµ1 ⊕ · · · ⊕ Vµk . (I.4.25)

Let P0 be the minimal parabolic subgroup whose split component is equal to
a and the its associated chamber a+

P0
is equal to a+. Let P0,I be the standard

parabolic subgroup associated with I.

Lemma I.4.21 The subspace VI is invariant under τ(g), g ∈ MP0,I , and
the induced representation of MP0,I on VI , denoted by τI , is a multiple of an
irreducible faithful one.

See [Sat1, §2.4, Lemma 8] for proof. Let HI be the space of Hermitian ma-
trices on VI , and P (HI) the associated real projective space. As in Equation
(I.4.18), we can show that the map

iτI : XP0,I = MP0,I/K ∩MP0,I → P (HI), gK ∩MP0,I 7→ τI(g)τI(g)∗,
(I.4.26)
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is an embedding. Extending by zero on the orthogonal complement of VI in
C
n, we can embed HI into Hn, and hence P (HI) into P (Hn). Therefore, we

have an embedding
iτ : XP0,I → P (Hn). (I.4.27)

Note that eaI ·K ∩MP0,I ⊂ XP0,I . Then

iτ (eH∞ ·K ∩MP0,I ) = iI(eH∞).

This implies that the map iI in Equation (I.4.23) is an embedding.

Lemma I.4.22 Let I, I ′ be two different µτ -connected subsets of ∆. Then
iI(aI,+), iI′(aI

′,+) are disjoint subsets of X
S

τ .

Proof. Since I 6= I ′, VI 6= VI′ . Since for any H ∈ aI,+, iτI (H) is a
line spanned by a positive definite matrix on VI , it implies that P (HI) and
P (HI′) as subsets in P (Hn) are disjoint, and hence proves the lemma.

Proposition I.4.23 Let Hj ∈ a+ be an unbounded sequence. Then eHjx0

converges in X
S

τ if and only if there exists a µτ -connected subset I of ∆ such
that

1. for all α ∈ I, limj→+∞ α(Hj) exists and is finite,

2. for any µτ -connected subset I ′ properly containing I, there exists α ∈
I ′ \ I such that α(Hj)→ +∞.

Let H∞ be the unique vector in aI,+ such that α(H∞) = limj→+∞ α(Hj) for
all α ∈ I. Then

iτ (eHjx0)→ iI(eH∞)

= [diag(1, e−2
∑
α∈I c2,αα(H∞), · · · , e−2

∑
α∈I ck,αα(H∞), 0, · · · , 0)].

Therefore, the closure of the positive chamber ea+
x0 in X

S

τ is given by

iτ (ea+x0) = iτ (ea+
x0) ∪

∐
µ−connected I⊂∆

iI(eaI,+)

∼= a+ ∪
∐

µ−connected I⊂∆

aI,+.

Proof. Suppose the sequence Hj satisfies the condition in the proposition. For
any subsequence Hj′ , by passing to further subsequence if necessary, we can
assume that there exists J ⊂ ∆ such that (1) for any α ∈ J , limj→+∞ α(Hj′)
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exists and is finite, and (2) for α ∈ ∆\J , α(Hj′)→ +∞. Then I is the largest
µτ -connected subset of J , and α(H∞) = limj→+∞ α(Hj′) for α ∈ I. By
Equation (I.4.22), this implies that iτ (eHj′x0) converges to the limit iI(eH∞).
Since Hj′ is an arbitrary subsequence, this implies that iτ (eHjx0) converges
to iI(eH∞).

By Lemma I.4.22, different choices of I and H∞ give different limit points,
and hence any sequence iτ (eHjx0) converging to iI(eH∞) must satisfy the
properties in the proposition.

The last statement on the closure of the positive chamber follows from the
discussions above Lemma I.4.22.

The above proposition completely describes the closure of the positive
chamber ea+

x0 in X
S

τ . In Pn
S

, the boundary is decomposed into boundary
components of the form g · Pk, k ≤ n− 1. Similar results hold for X

S

τ and are
given in the next proposition.

Proposition I.4.24 For any µτ -connected subset I ⊂ ∆, the image iτ (XP0,I )

of XP0,I under the embedding in Equation (I.4.27) is contained in X
S

τ , and

X
S

τ = iτ (X) ∪
⋃

µτ−connected I⊂∆

K · iτ (XP0,I ).

Proof. We note that the embedding of XP0,I in Equation (I.4.27) is K∩MP0,I -
equivariant and XP0,I = (K ∩MP0,I ) exp aI,+x0, where x0 = (K ∩MP0,I ) is
the basepoint in XP0,I . Then the proposition follows from Proposition I.4.23.

We will show that the decomposition in the proposition is the disjoint
decomposition into G-orbits. The group G acts on X

S

τ through the represen-
tation τ : for g ∈ G, x = [A] ∈ XS

τ ,

g · x = τ(g) · x, where τ(g) · x = [τ(g)Aτ(g)∗].

For convenience, τ is sometimes dropped from the action.

Lemma I.4.25 For any g ∈ P0,I , τ(g) · iτ (XP0,I ) = iτ (XP0,I ).

Proof. Since P0,I = NP0,IAP0,IMP0,I , it suffices to check that each factor
stabilizes iτ (XP0,I ). By Equations (I.4.26) and (I.4.27), MP0,I clearly stabi-
lizes it. To show NP0,I stabilizes iτ (XP0,I ), recall that iτ (XP0,I ) ⊂ P (Hn) is
a set of lines spanned by positive definite matrices on VI in Equation (I.4.25).
Since VI is the sum of all weight spaces µi with supp(µi) ⊂ I, if g ∈ NP0,I ,
τ(g) stabilizes VI and acts trivially on it, and hence it also acts trivially on
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iτ (XP0,I ) ⊂ P (HI) and τ(g) · iτ (XP0,I ) = iτ (XP0,I ). Since all the roots in I
vanish on aP0,I , AP0,I acts trivially on the projective space of VI , and hence
trivially on P (HI). This implies that AP0,I stabilizes iτ (XP0,I ).

Remark I.4.26 Another proof might explain more directly why P0,I stabi-
lizes iτ (XP0,I ), and NP0,I , AP0,I act trivially on it. Given any point z =
keH∞x0 ∈ XP0,I , where k ∈ K ∩MP0,I , H∞ ∈ aI,+, pick a sequence Hj ∈ aI
such that α(Hj) → +∞ for α ∈ ∆ \ I. Then iτ (keHj+H∞x0) converges to
iτ (z). For any g ∈ P0,I , gk ∈ P0,I . Write gk = nam, where n ∈ NP0,I , a ∈
AP0,I , m ∈MP0,I . Then

gkeHj+H∞x0 = nameHj+H∞x0 = eHj (e−HjneHj )a(meH∞)x0.

Since e−HjneHj → e, it can be checked easily that

iτ (gkeHj+H∞x0)→ [τ(meH∞)τ(meH∞)∗] ∈ iτ (XP0,I ).

Therefore, τ(g) · z ∈ iτ (XP0,I ).

Proposition I.4.27 For each µτ -connected subset I of ∆, K · iτ (XP0,I ) is

stable under G, and hence the G-orbits in X
S

τ are given by

X
S

τ = iτ (X) ∪
⋃

µ−connected I⊂∆

G iτ (XP0,I ).

Proof. Since G = KP0,I , for any g ∈ G, k ∈ K, write gk = k′p′, where
k′ ∈ K, p′ ∈ P0,I . By Lemma I.4.25, p′iτ (XP0,I ) = iτ (XP0,I ), and hence

gkiτ (XP0,I ) = k′τ(XP0,I ) ⊂ Kiτ (XP0,I ).

To show that the G-orbits in X
S

τ in the above proposition are disjoint, we
need to determine the normalizer

N (XP0,I ) = {g ∈ G | gXP0,I = XP0,I},

and the centralizer

Z(XP0,I ) = {g ∈ N (XP0,I ) | g|XP0,I
= Id}.

Definition I.4.28 For any subset I ⊂ ∆, let I ′ be the union of roots in ∆
which are orthogonal to I ∪ {µτ}, and J = I ∪ I ′. Then J is called the µτ -
saturation of I, and the parabolic subgroup P0,J is called the µτ -saturation
of P0,I .
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Proposition I.4.29 For a µτ -connected subset I, let J be µτ -saturation of I
as in the above definition, I ′ = J−I. Then the normalizer N (XP0,I ) of XP0,I

is equal to P0,J , and the centralizer Z(XP0,I ) is equal to NP0,JAJMP0,I′ . For
any g ∈ G \ P0,J ,

g · iτ (XP0,I ) ∩ iτ (XP0,I ) = ∅.

Therefore, for any g ∈ G, either

g · iτ (XP0,I ) = iτ (XP0,I ),

or
g · iτ (XP0,I ) ∩ iτ (XP0,I ) = ∅.

Proof. The stabilizer of VI in G is a parabolic subgroup Q. As explained
in Lemma I.4.25, P0,I stabilizes VI , and hence Q ⊇ P0,I . This implies that
Q = P0,J ′ , where J ′ ⊇ I. If I is not the largest µτ -connected subset in J ′,
then τ(P0,J ′)VI contains weight spaces Vµi such that Supp(µi) 6⊆ I, and hence
Q does not stabilize VI . This contradiction implies that Q ⊆ P0,J .

Since I is perpendicular to I ′, MP0,J = MP0,IMP0,I′ . Then the Langlands
decomposition of P0,J can be written as

P0,J = NP0,JAP0,JMP0,I′MP0,I .

As in the proof of Lemma I.4.25, it can be shown that the first three factors act
trivially on VI , and the last factor stabilizes VI . Hence, P0,J ⊆ Q. Combined
with the previous paragraph, it implies that Q = P0,J , i.e., the stabilizer of
VI is equal to P0,J .

It follows that for any g ∈ G \ P0,J ,

τgVI 6= VI . (I.4.28)

Since NP0,J , AP0,J and MP0,I′ act trivially on VI and hence on iτ (XP0,I ),
and MP0,I clearly stabilizes and MP0,I/(MP0,I ∩ MP0,I′ ) acts effectively on
iτ (XP0,I ), we obtain thatN (XP0,I ) = P0,J , and Z(XP0,I ) = NP0,JAP0,IMP0,I′ .
Since any point z in iτ (XP0,I ) is represented by a line spanned by a positive
definite matrix on VI , g · z is represented by a line spanned by a positive
definite matrix on τ(g)VI . Together with Equation (I.4.28), this implies that

g · z 6∈ iτ (XP0,I ),

and hence
g · iτ (XP0,I ) ∩ iτ (XP0,I ) = ∅.
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Proposition I.4.30 For any two µτ -connected subsets I1, I2 and g ∈ G, ei-
ther g · iτ (XP0,I1

) ∩ iτ (XP0,I2
) = ∅ or g · iτ (XP0,I1

) = iτ (XP0,I2
).

Proof. By Proposition I.4.29, it suffices to prove that if I1 6= I2, then for any
g ∈ G,

g · iτ (XP0,I1
) ∩ iτ (XP0,I2

) = ∅.

This is equivalent to showing that

τ(g)VI1 6= VI2 . (I.4.29)

Let J1 be the µτ -saturation of I1, and J2 the µτ -saturation of I2. Then
J1 6= J2. Note that the stabilizer of VI1 is P0,J1 and the stabilizer of VI2
is equal to P0,J2 . Since J1 6= J2, P0,J1 is not conjugate to P0,J2 , and hence
Equation (I.4.29) holds.

Definition I.4.31 For any g ∈ G and any µτ -connected subset I, the subset
g · iτ (XP0,I ) is called a boundary component of the Satake compactification

X
S

τ .

The above proposition and its proof gives the following result.

Corollary I.4.32 Any two different boundary components of X
S

τ are disjoint,
and the G-orbit decomposition of X

S

τ is given by

X
S

τ = iτ (X) ∪
∐

µ-connected I⊂∆

G iτ (XP0,I ).

The Satake compactification X
S

τ can be characterized in the next propo-
sition.

Proposition I.4.33 As a topological space, X
S

τ is the unique compactifica-
tion of X satisfying the following conditions:

1. The symmetric space X is a dense open subset of X
S

τ , and the G-action
on X extends to a continuous action on X

S

µ .

2. For any µτ -connected subset I ⊂ ∆, the boundary symmetric space XP0,I

is embedded in X
S

τ . The boundary components g · XP0,I , g ∈ G, are

disjoint, and the disjoint decomposition of X
S

τ into G-orbits is given by

X
S

τ = X ∪
∐

µ-connected I⊂∆

GXP0,I .
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3. For each µτ -connected I, let J be the µτ -saturation of I. Then the
normalizer (i.e., stabilizer or isotropy subgroup) of XP0,I is equal to the
µτ -saturation P0,J of P0,I .

4. The closure of the positive chamber ea+
x0 in X

S

τ is given by

ea+x0 = ea+
x0 ∪

∐
µ-connected I⊂∆

aI,+

with the topology: for any unbounded sequence Hj ∈ a+, eHjx0 converges
to a point H∞ ∈ aI,+ if and only if (a) for all α ∈ I, α(Hj)→ α(H∞),
(b) for any µτ -connected subset I1 properly containing I, there exists a
root α ∈ I1 \ I such that α(Hj)→ +∞.

Proof. From the above discussions (I.4.23-I.4.32), it is clear that X
S

τ satisfies
the conditions in the proposition. We need to show that X

S

τ is uniquely
determined by these conditions. (2) determines X

S

τ completely as a G-set.
Let a+x0 be the closure of a+x0 in X

S

τ . By Proposition I.4.23, it is clearly
compact. Since X = K exp a+x0 and the K-action is continuous, the map
from the compact space K × exp a+x0 → X

S

τ is continuous and surjective.
Hence there exists an equivalence relation ∼ on K × exp a+x0 such that the
quotient is isomorphic to X

S

τ . But the equivalence relation is determined by
(2). Therefore, X

S

τ is completely determined by the conditions (1), (2), (3).

I.4.34 The above proposition shows that as G-topological space, the Satake
compactification X

S

τ only depends on the set of µτ -connected subsets of ∆ =
∆(g, a), the set of simple roots. Let a∗ be the dual of a, and a∗,+ the positive
chamber dual to a+ under the Killing form. Then µτ ∈ a∗,+, and there is a
unique chamber face C of a∗,+ such that C contains µτ as an interior point.
Clearly, C determines the set of µτ -connected subsets I of ∆ and vice versa;
and hence X

S

τ only depends on the chamber face C.
It is known that for a faithful irreducible representation τ of G, the highest

weight µτ is connected to some root in every connected component of ∆(g, a).
Conversely, for any nonzero integral weight µ in a∗,+ which is connected to
every connected component of ∆(g, a), a suitable multiple of µ is the highest
weight of a finite dimensional irreducible faithful representation τ . If X is
irreducible, or equivalently G is simple, then a suitable multiple of any nonzero
integral weight in a∗,+ is the highest weight of some τ .

Proposition I.4.35 (Relations between Satake compactifications) The
isomorphism class of the Satake compactifications X

S

τ only depends on the
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Weyl chamber face of a∗,+ containing µτ , and hence there are only finitely
many non-isomorphic Satake compactifications X

S

τ of X.
When X is irreducible, they correspond bijectively to the set of all faces

of a∗,+ of positive dimension. These compactifications are partially ordered.
Specifically, let X

S

τ1 , X
S

τ2 be two Satake compactifications and C1, C2 be the
corresponding chamber faces. If µτ1 is more regular than µτ2 , i.e., C1 is a face
of C2, then X

S

τ1 dominates X
S

τ2 , i.e., the identity map on X extends to a con-

tinuous, surjective map X
S

τ1 → X
S

τ2 . In particular, when µτ is generic, i.e.,

belongs to a∗,+, X
S

τ is maximal, i.e., it dominates all other Satake compacti-
fications, and hence denoted by X

S

max. On the other hand, if τµ is contained
in an edge of a∗,+, X

S

τ is a minimal compactification.
When X is reducible, X = X1×· · ·×Xn, where Xi, · · · , Xn are irreducible.

Then
X
S

τ = X1
S

τ1 × · · ·Xn
S

τn .

In this case, the isomorphism classes of the Satake compactifications X
S

can
also be parametrized by some chamber faces. Specifically, a∗,+ = a∗,+1 × · · · ×
a∗,+n , corresponding to the above decomposition of X; and any chamber face
of a∗,+ has a similar decomposition. The set of chamber faces which have
no trivial factor from any a∗,+i parametrizes the isomorphism classes of the
Satake compactifications of X.

This proposition was first proved by Zucker in [Zu2]. We will describe the
map X

S

τ1 → X
S

τ2 here and give a different proof later in Remark I.11.19 using
the uniform constructions of the Satake compactifications in §§I.10, 1.11. For
this purpose, we decompose the Satake compactifications X

S

τ into disjoint
unions of boundary components.

I.4.36 To illustrate the Satake compactifications of reducible symmetric
spaces, consider the case X = H×H. Then a∗ = R×R, and a∗,+ = R>0×R>0.
The chamber a∗,+ is the only chamber face which has no trivial factor from
either of the two R>0. Hence there is a unique Satake compactification of X
given by

X
S

= H×H = (H ∪H(∞))× (H ∪H(∞)).

I.4.37 Let I ⊂ ∆ be a µτ -connected subset, and J = I∪I ′ the µτ -saturation
of I. Then any parabolic subgroup P which is conjugate to P0,I , P = gP0,I

for some g ∈ G, is called a µτ -connected parabolic subgroup, and Q = gP0,J

the µτ -saturation of P . Any parabolic subgroup Q of the form gP0,J is called
a µτ -saturated parabolic subgroup. For each µτ -saturated parabolic subgroup
Q, the boundary symmetric space XQ admits an isometric splitting

XQ = XP ×XP ′ , (I.4.30)
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where Q = gP0,J , P = gP0,I , P ′ = gP0,I′ . It should be pointed out that
though P, P ′ depend on the choice of g, the splitting ofXQ in Equation (I.4.30)
is canonical. (Compare with Equation (I.4.15) and the comments before it).
The subspace XP is a boundary component of X

S

τ , and its normalizer is equal
to Q. Denote XP by e(Q) and call it the boundary component of Q.

Proposition I.4.38 The Satake compactification X
S

τ admits a disjoint de-
composition into boundary components:

X
S

τ = X ∪
∐

µ-saturated Q

e(Q).

Proof. It follows from Proposition I.4.33 that the boundary components of
X
S

τ are disjoint and that the normalizer of each boundary component is a
µτ -saturated parabolic subgroup.

I.4.39 The map from X
S

τ1 to X
S

τ2 in Proposition I.4.35 is obtained as follows.
Since µτ1 is more regular than µτ2 , every µτ2-connected parabolic subgroup
is also µτ1-connected, but the converse is not true.

For any µτ1-connected subset I, let I1 be the largest µτ2-connected subset
in I. Let I ′ = I \ I1. Then

XP0,I = XP0,I1
×XP0,I′ .

Denote the projection XP0,I → XP0,I1
by π. Let J be the µτ1-saturation of I,

and J1 the µτ2-saturation of I1. Clearly, J ⊆ J1 and hence P0,J ⊆ P0,J1 . The
boundary component e(P0,J) in X

S

τ1 is XP0,I , and the boundary component

e(P0,J1) in X
S

τ2 is XP0,I1
, and hence there is a canonical map

π : e(P0,J)→ e(P0,J1).

In general, for any µτ2-saturated parabolic subgroup subgroup Q, there is a
unique µτ1-saturated parabolic subgroup Q1 containing Q such that there is
a canonical projection π from the boundary component e(Q) in X

S

τ1 to the

boundary component e(Q1) in X
S

τ2 . Combined with the identity map on X,
this defines the map

π : X
S

τ1 → X
S

τ2

in Proposition I.4.35. To prove it, it suffices to check the continuity of π,
which will be given in Remark I.11.19.

To determine the structure of the G-orbits in X
S

τ as G-homogeneous
spaces, we need to determine the stabilizers of points in the boundary com-
ponents.
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Proposition I.4.40 Let I be a µτ -connected subset of ∆, and J is µτ -saturation.
Let x0 be the basepoint x0 = K ∩MP0,I in XP0,I . Then the stabilizer of x0 is
NP0,JAP0,JMP0,J\I (K ∩MP0,I ), and hence the G-orbit through x0 is given by

Gx0 = GXP0,I
∼= G/NP0,JAP0,JMP0,J\I (K ∩MP0,I ).

Proof. Since the normalizer of XP0,I is equal to P0,J and NP0,JAP0,JMP0,J\I

fixes x0, the proposition follows from the Langlands decomposition of P0,J

and the fact that K ∩MP0,I is the stabilizer of x0 in MP0,I .

Corollary I.4.41 The G-orbit GXP0,I in X
S

τ is a fiber bundle over G/P0,J

with fibers equal to the boundary symmetric space XP0,I .

Proof. Since P0,J/NP0,JAP0,JMP0,J\I (K ∩MP0,I ) ∼= XP0,I , it follows from
the above proposition.

The quotient space G/P0,J is compact and called a (real) flag space (va-
riety). It is also a Furstenberg boundary to be defined in §I.6.

I.4.42 We illustrate the above general structures of the Satake compacti-
fications X

S

τ using two examples. The first example is the maximal Satake
compactification X

S

max.
When τ is a generic representation, i.e., the highest weight µτ is generic

(or belonging to the interior of the positive chamber a∗,+), every parabolic
subgroup P is µτ -connected, and is hence µτ -saturated. The boundary compo-
nent e(P ) = XP , and the Satake compactification X

S

τ is the maximal Satake
compactification X

S

max and can be decomposed into a disjoint union

X
S

max = X ∪
∐
P

XP , (I.4.31)

where P ranges over all parabolic subgroups of G. The G-orbits in X
S

max are
given by

X
S

max = X ∪
∐
I⊂∆

GXP0,I ,

where P0 is the minimal parabolic subgroup corresponding to the simple roots
∆ = ∆(g, a).

I.4.43 The second example concerns the standard Satake compactification
Pn

S
. It is the Satake compactification associated with the identity represen-

tation
τ = Id : G = PSL(n,C)→ PSL(n,C).
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Let the maximal abelian subspace

a = {diag(t1, · · · , tn) | ti ∈ R, t1 + · · ·+ tn = 0},

and the positive chamber

a+ = {diag(t1, · · · , tn) ∈ a | t1 > t2 > · · · > tn}.

Then the set of simple roots

∆ = ∆(g, a) = {α1 = t1 − t2, · · · , αn−1 = tn−1 − tn}.

The highest weight µτ = t1, and the only simple root connected to µτ is α1.
Then µτ -connected (proper) subsets of ∆ are of the form I = {α1, · · · , αk−1},
where k ≤ n−1. The µτ -saturation I is J = {α1, · · · , αk−1}∪{αk+1, · · · , αn−1}.
The minimal parabolic subgroup P0 corresponding to the positive chamber a+

is the subgroup of upper triangular matrices, and the subgroup Q = P0,J is
the µτ -saturation of P0,I consisting of upper triangular matrices correspond-
ing to the partition {1, · · · , k − 1} ∪ {k, · · · , n}. The boundary symmetric
spaces

XP = Pk, XQ = Pk × Pn−k.

The boundary component e(Q) of Q is equal to Pk. Since µτ = t1 belongs to
the edge of a∗,+ defined {λ ∈ a∗,+ |< λ,α2 >= · · · =< λ,αn−1 >= 0}, the
Satake compactification Pn

S
is a minimal one in the partially ordered set of

Satake compactifications of Pn, as mentioned earlier.
The Satake compactification Pn

S
is special in the sense that its boundary

components are of the same form Pk, k ≤ n − 1, as Pn. The Baily-Borel
compactification discussed in the next section has the same property.

Remarks I.4.44 If X is irreducible, i.e., the Dynkin diagram is connected,
there is an one-to-one correspondence between the minimal Satake compactifi-
cations X

S

τ and the set of simple roots (or the vertices of the Dynkin diagram).
In general, the normalizer of a boundary component of such a Satake com-

pactification is not necessarily a maximal parabolic subgroup. For example,
when n ≥ 5, µτ a suitable of α3, then I = {α3} is µτ connected and its µτ -
saturation is J = {α1, α3, α5, · · · , αn−1}, and hence the saturated parabolic
subgroup P0,J is not a maximal parabolic subgroup.

I.4.45 We conclude this section by mentioning several applications of the
Satake compactifications of X. In [Sat2], the Satake compactifications of sym-
metric spaces were used to construct compactifications of locally symmetric
spaces (see §III.3 below). For applications to geometry and harmonic anal-
ysis, the maximal Satake compactification is the most useful one among the



§I.5. Baily-Borel compactification 91

family of all Satake compactifications. For example, it is used in the proof
of the Mostow strong rigidity in [Mos], and the determination of the Martin
compactification of X in [GJT] (see §I.7 below), and its boundaries are used
in the harmonic analysis on X (see [KaK] [Ko1-2]).

I.4.46 Summary and Comments.
In this section, we motivated the Satake compactifications by the example

of the space Pn of positive definite Hermitian matrices of determinant one.
The importance of this example is that it explains naturally why Pn is non-
compact and how it can be compactified by adding semi-positive matrices.
This is the original approach in [Sat1]. A slightly different procedure using
spherical representations was given by Casselman in [Cass2]. The axioms in
Proposition I.4.33 explain clearly the nature of the Satake compactifications
as G-spaces and hence can be used to determine if other compactifications are
isomorphic to the Satake compactifications. See [Mo1], [Ko1] and Corollary
I.5.29 for example.

I.5 Baily-Borel compactification

In this section, we recall basic properties of Hermitian symmetric spaces and
the Baily-Borel compactification. Most results are recalled without proofs,
which can be found in the references [Wo3], [Mok1], [Hel3], [BB1] and [Sat8].
In view of applications to the Baily-Borel compactification of locally symmet-
ric spaces, we will follow the notations in [BB1].

In this section, we will assume that X is a Hermitian symmetric space
unless indicated otherwise. The Baily-Borel compactification is one of the
minimal Satake compactifications as a topological compactification, and has
the additional property that every boundary component is also a Hermitian
symmetric space. In fact, among all the Satake compactifications of Hermitian
symmetric spaces, it is the only one having this property.

This section is organized as follows. First we recall bounded symmetric
domains (I.5.1) and the Bergman metric of bounded domains (I.5.4). Then we
discuss Hermitian symmetric spaces X of non-compact type and their char-
acterization in terms of the center of a maximal compact subgroup (Propo-
sition I.5.9), and their realization as bounded symmetric domains via the
Harish-Chandra embedding, whose closure gives the Baily-Borel compactifi-
cation X

BB
(Definition I.5.13). In I.5.20, we introduce the notion of ana-

lytic boundary components of domains in Cn. After describing the analytic
boundary components of X or rather X

BB
(Proposition I.5.27) and their

normalizer (Proposition I.5.28), we give a proof that the Baily-Borel com-
pactification X

BB
is isomorphic to a minimal Satake compactification X

S

µ

(Corollary I.5.29), which avoids using identification through the Furstenberg
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compactifications and is hence different from the original proof in [Mo2].

Definition I.5.1 A bounded domain Ω ⊂ Cn is called symmetric if for any
z ∈ Ω, there exists an involutive holomorphic automorphism with z as an
isolated fixed point.

At first sight, it is not obvious that such an involution, if exists, is unique.
As shown below, every bounded domain Ω has a canonically associated Her-
mitian metric, the Bergman metric, with respect to which any holomorphic
automorphism is an isometry. This implies that the involutive automorphism,
if exists, is unique and is the geodesic symmetry in the Bergman metric.

Definition I.5.2 A connected complex manifold M with a Hermitian struc-
ture is called a Hermitian symmetric space if every point z ∈M is an isolated
fixed point of an involutive holomorphic isometry sz.

It will be seen below that the relation between these symmetric domains
and Hermitian symmetric spaces is that any bounded symmetric domain with
the Bergman metric is a Hermitian symmetric space of noncompact type,
and any Hermitian symmetric space of noncompact type can be canonically
realized as a bounded symmetric domain.

I.5.3 We briefly recall the definition of the Bergman metric of a bounded
domain Ω in Cn. Let

H(Ω) = {f | f is a holomorphic function on Ω,
∫

Ω

|f |2 < +∞}.

It can be shown that H(Ω) is a closed subspace of L2(Ω) and is hence a
Hilbert space with the inner product given by

(f, g) =
∫

Ω

f(z)g(z)dz, f, g ∈ H2(Ω).

Let ϕ1, · · · , ϕj , · · · be any orthonormal basis of H(Ω). Then

K(z, ζ̄) =
∞∑
j=1

ϕj(z)ϕj(ζ)

converges uniformly for z and w in compact subsets of Ω and satisfies the
reproducing property: for any f ∈ H(Ω),

f(z) =
∫

Ω

K(z, ζ̄)f(ζ)dζ.

This reproducing property shows that K(z, ζ̄) is independent of the choice of
the orthonormal basis and called the Bergman kernel of the domain Ω.
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Proposition I.5.4 The Bergman kernel K(z, ζ̄) defines a Kahler metric on
Ω by the following formula

gij(z) =
∂2

∂zi∂zj
logK(z, z̄),

where the norm of a holomorphic vector X =
∑
j ξj

∂
∂zj

is given by

g(X,X) =
∑
i,j

gijξiξ̄j .

The Hermitian metric in the above proposition is called the Bergman met-
ric and has the following important invariance property.

Proposition I.5.5 Let Ω, Ω′ be two bounded domains in Cn, and φ : Ω→ Ω′

a holomorphic diffeomorphism. Then φ is an isometry with respect to the
Bergman metric.

Corollary I.5.6 Any bounded symmetric domain Ω in Cn endowed with the
Bergman metric is a Hermitian symmetric space.

Since bounded holomorphic functions separate points on Ω, it follows that
a bounded symmetric domain Ω is a Hermitian symmetric space of noncom-
pact type. In fact, there is no nontrivial bounded holomorphic function on
the flat Hermitian symmetric spaces (Cn) or compact Hermitian symmetric
spaces.

I.5.7 Consider the example of the unit ball in Cn:

Bn = {z ∈ Cn | ||z|| < 1}.

Its Bergman kernel KBn(z, ζ̄) is

KBn(z, ζ̄) =
n!
πn

1
(1− z · ζ̄)

,

and the Bergman metric is

gij(z) =
n+ 1

(1− |z|2)2
((1− |z|2)δij + z̄izj).

When n = 1, it is equal to the Poincaré metric

g11(z) =
2

(1− |z|2)2
.

See [Kr, Proposition 1.4.23] for details.
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I.5.8 Besides the unit ball Bn, there are other classical domain, which are
obtained basically by replacing vectors by matrices. There are 4 types of
domains. Let M(p, q,C) be the space of complex p× q-matrices.

The type I domain DI
p,q is defined by

DI
p,q = {z ∈M(p, q,C) | tz̄ · z − Iq < 0} ∼= SU(p, q)/S(U(p)× U(q)). (I.5.1)

When q = 1, DI
p,1 is the unit ball Bp in Cp. For any p, q, DI

p,q is biholomorphic
to DI

q,p. It may not be obvious to check directly. For example, D+
1,p is a subset

of M(1, p,C) = C
p defined by more than one inequalities, while DI

p,1 is the
unit ball defined by only one equation. To see this biholomorphism, we note
that SU(p, q) is isomorphic to SU(q, p), and S(U(p) × U(q)) corresponds to
S(U(q)×U(p)) under the isomorphism. Hence DI

p,q is biholomorphic to DI
q,p.

The type II and III domains are cut out of the type I domain as follows.
The type II domain DII

n is defined by

DII
n = {z ∈ DI

n,n | tz = −z} ∼= SO∗(2n)/U(n), (I.5.2)

where SO∗(2n) is the subgroup of SO(2n,C) consisting of elements which
preserve the skew Hermitian form

−z1z̄n+1 + zn+1z̄1 − · · · − znz̄2n + z2nz̄n,

and is the noncompact Lie group dual to SO(2n) = SO(2n,R) with respect
to the maximal compact subgroup K = SO(2n)∩Sp(n) ∼= U(n) (this explains
the superscript ∗ for the duality), and the compact subgroup U(n) is embedded
into SO∗(2n) by

A+ iB 7→
(
A B
−B A

)
, (I.5.3)

where A+ iB ∈ U(n), A,B are real.
The type III domain DIII

n is defined by

DIII
n = {z ∈ DI

n,n | tz = z} ∼= Sp(n,R)/U(n), (I.5.4)

where U(n) is embedded into Sp(n,R) by Equation (I.5.3).
The type IV domain DIV

n is defined by

DIV
n = {z ∈ Cn | ||z||2 < 2, ||z||2 < 1 +

1
2
|z2

1 + · · ·+ z2
n|}

∼= SO(n, 2)/SO(n)× SO(2).

The domain DIV
n is the only one of the double-indexed family of Rie-

mannian symmetric spaces SO(n,m)/SO(n) × SO(m) which is Hermitian
symmetric. The reason is that only when either n or m is equal to 2, the
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center of SO(n)×SO(m) has positive dimension, and hence other symmetric
spaces are not Hermitian (see Proposition I.5.9) below.

Besides these classical domains, there are two exceptional bounded sym-
metric domains, one in (complex) dimension 16, and another in dimension
27. These exhaust all the irreducible bounded symmetric domains. A general
bounded symmetric domain is the product of such irreducible ones.

Proposition I.5.9 (Characterization of Hermitian symmetric spaces)
An irreducible symmetric space X = G/K is Hermitian if and only if the cen-
ter of K has positive dimension, which is equal to 1; and any Hermitian
symmetric space of noncompact type can be canonically realized as a bounded
symmetric domain in the holomorphic tangent space at x0 = K in X.

This embedding of X is called the Harish-Chandra embedding and can be
described as follows. See [Hel3] for a complete proof of this proposition.

Let k be the Lie algebra of K, and g = k⊕ p be the Cartan decomposition,
and kC = k ⊗ C, pC = p ⊗ C. Let h be a maximal abelian subalgebra of k.
Then h is also a maximal abelian subalgebra of g, and hC = h⊗C is a Cartan
subalgebra of gC = g ⊗ C. Let Φ(gC, hC) be the associated root system, and
denote the root spaces by gCα. Since

[hC, kC] ⊂ kC, [hC, pC] ⊂ pC,

for each α ∈ Φ(gC, hC), either gCα ⊂ kC or gCα ⊂ pC. In the former case, the
root α is called a compact root; and in the latter case, the root α is called a
noncompact root. Hence,

kC =
∑

compact α

gCα, pC =
∑

noncompact α

gCα.

Note that p can be identified with the tangent space of X at the basepoint
x0 = K, and pC can be identified with the complexification of the tangent
space.

All the roots in Φ(gC, hC) take real values on the vector space ih. Choose an
ordering on Φ(gC, hC) such that every positive noncompact root is larger than
every compact root. For example, this can be arranged as follows. Choose
a basis v1, · · · , vn of ih such that iv1 belongs to the center of k. Then the
associated lexigraphic order has the desired property. The reason is that
compact roots vanish on v1, but noncompact roots do not. The set of positive
roots is denoted by Φ+ = Φ+(gC, hC)

As mentioned in §I.1, G is a linear Lie group. Let GC be the linear group
with Lie algebra gC = g⊗ C, i.e., the complexification of G. Define

p+ =
∑

noncompact α∈Φ+

gCα, p− =
∑

noncompact α∈−Φ+

gCα. (I.5.5)
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Then p+, p− are abelian subalgebras of gC. Let P+, P− be the corresponding
subgroups of GC. The exponential maps

exp : p+ → P+, exp : p− → P−

are diffeomorphisms. Let KC be the subgroup of GC corresponding to kC.
There are two possible choices of orderings on Φ(gC, hC) satisfying the

above property. Choose the one such that p+ becomes the holomorphic tan-
gent space at the basepoint x0.

Proposition I.5.10 In the above notation, the multiplication

P+ ×KC × P− → GC

is injective, holomorphic and regular with an open image in GC. The subset
GKCP

− ⊂ GC is open, and there exists a bounded domain Ω ⊂ p+ containing
the zero element such that

GKCP
− = exp(Ω)KCP−.

Let

π+ : P+KCP
− = P+ ×KC × P− → p+, (p+, k, p−) 7→ log p+, (I.5.6)

be the projection map to the first factor composed with log : P+ → p+.
Define an action of G on Ω by

g ·H = π+(g expH), H ∈ p+.

Since exp(Ω)KCP− = GKCP
− is invariant under G on the left, g ·H ∈ Ω for

any g ∈ G, H ∈ Ω.

Proposition I.5.11 The action of G on Ω is holomorphic and the stabilizer
in G of the zero element in Ω is equal to K, and hence the map g 7→ π+(g)
in Equation (I.5.6) defines a biholomorphism

π+ : X = G/K → Ω.

See [Wo3, p. 281] for proofs of the above two Propositions.

Lemma I.5.12 The bounded domain Ω in the above proposition is a bounded
symmetric domain in p+, which can be identified with the holomorphic tangent
bundle at x0 of X when considered as a complex manifold.

Proof. Since X is Hermitian symmetric, every point of X is an isolated fixed
point of an involutive holomorphic map. Hence every point of Ω is also an
isolated fixed point of an involutive holomorphic map.
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Definition I.5.13 The embedding π+ : X = G/K → Ω in the above proposi-
tion is called the Harish-Chandra embedding. The closure of π+(X) in p+ is
called the Baily-Borel compactification of X, denoted by X

BB
.

To show that X
BB

is topologically one of the minimal Satake compact-
ifications and to understand the structure of the boundary components, we
need to study the root system Φ(gC, hC) in more detail.

Two roots µ, ν in Φ(gC, hC) are called strongly orthogonal if µ± ν are not
roots, which implies that µ, µ are orthogonal in the usual sense. Then there
exists a maximal collection Ψ = {µ1, · · · , µr} of strongly orthogonal roots in
Φ+. For example, let µ1 be a lowest positive root, and µ2 a lowest root among
all the roots strongly orthogonal to µ1, and so on ([BB1, §1] [Wo3, p.279]).

Proposition I.5.14 Given a maximal collection of strongly orthogonal roots
Ψ = {µ1, · · · , µr}, we can choose root vectors Eµ ∈ gCµ such that

(Eµ + E−µ) ∈ p, Eµ − E−µ ∈ ip, B(Eµ, E−µ) =
2

< µ, µ >
, (I.5.7)

where B is the Killing form of gC, and the subalgebra

a =
r∑
j=1

R(Eµj + E−µj )

is a maximal abelian subalgebra in p.

For each µ ∈ Ψ, let
Hµ = [Eµ, E−µ] ∈ hC.

Define
gC[µ] = CHµ + gCµ + gC−µ,

and a real form
g[µ] = gC[µ] ∩ g.

Let G[µ] be the subgroup of G corresponding to the subalgebra g[µ]. More
generally, for any subset I ⊆ Ψ, we get a subalgebra

gC[I] =
∑
µ∈I

gC[µ], g[I] =
∑
µ∈I

g[µ].

Let G[I] be the subgroup of G with Lie algebra g[I]. See [Wo3, p.280] for the
proof of the next result.
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Proposition I.5.15 Let x0 = K be the basepoint in X. For each µ ∈ Ψ, the
orbit G[µ]x0 in X is a totally geodesic submanifold biholomorphic to the unit
disc D = {z ∈ C | |z| < 1} in C. In fact, the image π+(G[µ]x0) under the
Harish-Chandra embedding is a disc in CEµ ⊂ p+. For any subset I ⊂ Ψ, the
orbit G[I]x0 in X of the subgroup G[I] is a totally geodesic submanifold, and
the image π+(G[I]x0) in p+ is the polydisc

∏
µ∈I π

+(G[µ]x0) in
∏
µ∈I CEµ.

When I = Ψ, G[Ψ]x0 is product of r discs, where r is equal to the rank of X,
and

X = KG[Ψ]x0, (I.5.8)

i.e., the compact subgroup K sweeps out the polydisc G[Ψ] ∼= Dr to obtain the
whole symmetric space X.

Note that the polydisc G[Ψ]x0 contains the maximal flat eax0 in X, and
hence the Cartan decomposition gives that

Keax0 = X.

This implies that there is some overlap (or redundancy) in the decomposition
in Equation (I.5.8). One obvious reason is that the polydisc is a Hermitian
symmetric space and has both the radial and angular parts, while the flat
eax0 has no complex structure at all and consists only of the radial part of
the polydisc. (Note that the angular part is contained in K.)

Corollary I.5.16 Identify the maximal flat eax0
∼= a of the polydisc with

(−1, 1)r under the map

t1(Eµ1 + E−µ1) + · · ·+ tr(Eµr + E−µr ) 7→ (tanh t1, · · · , tanh tr).

Then the closure eax0 of eax0 in X
BB

is equal to [−1, 1]r.

Proof. By Proposition I.5.15, the closure of the polydisc π+(G[Ψ]x0) in p+

is
∏
µ∈I π

+(G[µ]x0), where π+(G[µ]x0) is the closed disc. This implies that
the closure eax0 is a cube. The explicit form of the map follows from the
Harish-Chandra embedding in Equation (I.5.6) and the following equality:

exp t(Eµ + Eµ) = exp(tanh t Eµ) exp(log(cosh t)Hµ) exp(tanh t E−µ),

where exp(tanh t Eµ) ∈ P+, exp(tanh t Eµ) ∈ KC, and exp(log(cosh t)Hµ) ∈
P−.

I.5.17 To study the real roots in Φ(g, a) using the complex roots in Φ(gC, hC),
we need a transform from the Cartan subalgebra hC of gC to another Cartan
subalgebra of gC containing the Cartan subalgebra a of the symmetric pair
(g, k). This is given by the Cayley transform ([BB1, 1.6] [Wo3, p. 281]).



§I.5. Baily-Borel compactification 99

Define
h− =

∑
µ∈Ψ

iRHµ,

and h+ the orthogonal complement in h and is equal to {X ∈ h | [X, a] = 0}.
For any subset I ⊂ Ψ, define

h−Ψ−I =
∑

µ∈Ψ−I
iRHµ,

aI =
∑
µ∈I

R(Eµ + E−µ).

Define a partial Cayley transform

CI =
∏
µ∈I

Cµ, Cµ = exp
π

4
(E−µ − Eµ) ∈ GC.

Let hI = g ∩Ad(CI)hC. Then

hI = h+ + h−Ψ−I + aI . (I.5.9)

Therefore, the Cayley transform CI maps the subspace h−I ⊂ h− into a sub-
space aI ⊂ a. In particular, when I = Ψ, CΨ is the full Cayley transform,
and we get

Ad(CΨ) : h− = h−Ψ → a.

Let γ1, · · · , γr be the roots in Φ(g, a) corresponding to the restriction of
µ1, · · · , µr to h−.

Proposition I.5.18 Suppose that G is simple, i.e., the Hermitian symmetric
space X is irreducible. Then Φ = Φ(g, a) belongs to one of the following 2
types: (1) Type Cr,

Φ = {±γs + γt
2

, 1 ≤ s, t ≤ r;±γs − γt
2

, 1 ≤ s 6= t ≤ r}.

If we order the roots such that γ1 > · · · > γr, then

∆ = {α1 =
1
2

(γ1 − γ2), · · · , αr−1 =
1
2

(γr−1 − γr), αr = γr}

is the set of simple roots.
(2) Type BCr,

Φ = {±γs + γt
2

, 1 ≤ s, t ≤ r;±γs − γt
2

, 1 ≤ s 6= t ≤ r;±γs
2
, 1 ≤ s ≤ r}.
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If we order the roots such that γ1 > · · · > γr, then

∆ = {α1 =
1
2

(γ1 − γ2), · · · , αr−1 =
1
2

(γr−1 − γr), αr =
γr
2
}

is the set of simple roots. In both cases, the Weyl group consists of all the
signed permutations of {γ1, · · · , γr}.

In Type Cr, the simple root αr is longer than other simple roots; while
in Type BCr, αr is shorter than other simple roots. In either case, we call it
the distinguished root. See [BB1, 1.2] [Wo3, p. 284-285] for more discussions
about the root systems.

I.5.19 Before discussing the boundary components of X
BB

, we illustrate
the above discussions using the simplest example X = SU(1, 1)/U(1), the
unit disc D in C. The groups

SU(1, 1) = {
(
a b̄
b ā

)
| |a|2 − |b|2 = 1}, K = {

(
eit 0
0 e−it

)
| t ∈ R}.

The Lie algebras

h = k = {
(
it 0
0 −it

)
| t ∈ R},

a = {
(

0 −it
it 0

)
| t ∈ R},

and the corresponding subgroup

A = {
(

cosh t −i sinh t
i sinh t cosh t

)
| t ∈ R}.

The rank of SU(1, 1) is equal to 1. Let µ be the only positive root in Φ(g, a).
Then we can take

Eµ =
(

0 −i
0 0

)
, E−µ =

(
0 0
i 0

)
.

It can be checked easily that

a = R(Eµ + E−µ) = iR

(
0 −1
1 0

)
,

and the Cayley transform is given by

C = exp
π

4
(E−µ − Eµ) =

(
cos π4 i sin π

4
i sin π

4 cos π4

)
=

1√
2

(
1 i
i 1

)
.
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Since h is of dimension 1,
h− = h.

To show that
Ad(C)(ih) = a,

we note that

C−1 =
1√
2

(
1 −i
−i 1

)
, C

(
1 0
0 −1

)
C−1 = i

(
0 −1
1 0

)
.

The group SL(2,C) and the Cayley transform C ∈ SL(2,C) act on CP 1 =
C ∪ {∞}. The effect of this transform is given in the next result and can be
checked easily.

Proposition I.5.20 The Cayley transform C maps 0 ∈ D to i, a point on
the boundary of the unit disc D, and maps the unit D onto the upper half
plane {x+ iy | x ∈ R, y > 0}.

I.5.21 To show that X
BB

is a Satake compactification, we need to study
the boundary components of the boundary ∂X

BB ∼= π+(X) ⊂ p+ as a subset
of the complex vector space and determine the normalizer of the boundary
components.

In general, let V be a complex manifold, in particular a complex vector
space, and S ⊂ V an open subset. A holomorphic arc in S is a holomorphic
map

f : D = {z ∈ C | |z| < 1} → V

with image contained in S. By a chain of holomorphic arcs in S, we mean
a finite sequence of holomorphic arcs f1, · · · , fk such that the image of fj
meets the image of fj+1. This defines an equivalence relation on S as follows.
Two points p, q ∈ S are defined to be equivalent if there exists a chain of
holomorphic arcs f1, · · · , fk in S such that p belongs to the image of f1, and
q belongs to the image of fk. An equivalence class is called an analytic arc
in S. If S is an open subset in V with the (topological) boundary ∂S, then
each connected component of S is an analytic arc component, the analytic
arc components in ∂S are called the analytic boundary components. From the
definition, it is clear that the boundary ∂S is decomposed into a disjoint union
of analytic boundary components; and it is also clear that if ϕ : V → W is a
biholomorphism, then the analytic boundary components of S are mapped to
those of ϕ(S).

In the rest of this section, we determine the boundary components of a
Hermitian symmetric space X under the Harish-Chandra embedding in p+

and their normalizers in G, and then use the characterization of the Satake
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compactifications in Proposition I.4.33 to show that X
BB

is a Satake com-
pactification.

I.5.22 An illuminating example for the structure of analytic components is
the case of the bidisc D × D. For any points p, q ∈ ∂D, {p} × D,D × {q},
{p} × {q} are analytic boundary components of D × D, and any analytic
boundary component of D ×D is of such a form.

In fact, if p = i, the boundary component {i} × D can be obtained as
follows. The second factor D determines a complex submanifold {0} × D
of CP 1 × D, which is an analytic boundary component of H × D by the
maximal principle for holomorphic functions. Under the Cayley transform C
on the first factor, {0} ×D gives the analytic boundary component {i} ×D.
The action under elements of K = U(1) × U(1) gives the general boundary
components {p} ×D. The same method works for the boundary component
D × {q}.

To get the boundary component {i} × {i}, we start with the submani-
fold consisting only of the origin (0, 0) in CP 1 × CP 1 which is a boundary
component of H×H by the maximal principle, and apply the Cayley trans-
form (C,C) to (0, 0). The K-action gives other boundary components (p, q)
of dimension 0.

Clearly, the analytic boundary components of polydiscsDr = D×· · ·×D ⊂
C
r have similar structures.

I.5.23 To obtain the boundary components of general X, we use the result
in Proposition I.5.15 that

X = KG[Ψ] · x0
∼= K ·Dr

and apply the (partial) Cayley transform to suitable Hermitian submanifolds
in X containing the origin as in the previous paragraph, or equivalently, apply
appropriate subgroups of K to sweep out the boundary components of the
polydisc Dr.

Briefly, for any I ⊂ Ψ, G[I]x0 is a sub-polydisc DI in DΨ = Dr. There is
a unique totally geodesic Hermitian symmetric submanifold XI in X which
contains G[I]x0 as a maximal polydisc. Let CI be the (partial) Cayley trans-
form associated with I. Then CI · G[I] · x0 is a boundary component of DΨ

under the Harish-Chandra embedding. One obvious difference with the case
of polydiscs is that we need to enlarge the polydisc G[I]x0 to a Hermitian sym-
metric space XI so that CI ·XI is defined and gives a boundary component
of X.

But there is one problem with the above approach. The Cayley transform
CI ∈ GC, and X ⊂ p+, but GC does not act on X or p+. In the case of X = D,
p+ = C, and we embedded both of them into CP 1, on which GC = SL(2,C)
acts. The analogue of this embedding for general X is given by the Borel
embedding.
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Since kC is the centralizer of hC in gC, p− + kC is a subalgebra. The
corresponding subgroup of GC is P−KC. Let

gu = k + ip

be the compact dual of g = k + p, and the Gu the compact subgroup of GC
dual to G. Let Xu = Gu/K the compact symmetric space dual to X = G/K.

Proposition I.5.24 (1) The compact group Gu acts transitively on GC/KCP−

with the stabilizer of the coset KCP− equal to K, and hence the map

Xu
∼= GC/KCP

−, gK 7→ gKCP
−,

is a Gu-equivariant holomorphic surjective diffeomorphism. Therefore, GC
acts holomorphically on Xu; and GC/KCP

− is compact and KCP
− is a

parabolic subgroup of GC, and p+ is embedded in GC/KCP
− under the map

p+ → GC/KCP
− = Xu, H 7→ expH KCP

−.

(2) The symmetric space X is embedded into Xu under the map

X = G/K → Xu = GC/KCP
−, gK → gKCP−,

and every isometry on X extends to a holomorphic map on Xu. The image
of X in Xu is included in the subset p+ defined in part (1), and the inclusion
X ↪→ p+ is the Harish-Chandra embedding.

The embedding ofX into its compact dualXu is called the Borel embedding
(see [Wo3, p. 278]). The basic example is the embedding of the disc X = D
into the complex projective space Xu = CP 1, where p+ is identified with the
subset C.

Now we resume the discussion about the boundary components of X
BB

.
For any subset I ⊂ Ψ = {µ1, · · · , µr}, let < Ψ− I >⊥ be the subset of roots
in Φ(gC, hC) which are perpendicular to Ψ − I. Let gCI be the derived Lie
subalgebra of hC +

∑
µ∈<Ψ−I>⊥ gCµ. The complex Lie subalgebra gCI has two

dual real forms,
gI = gCI ∩ g, gI,u = gCI ∩ gu.

Let GCI , GI , GI,u be the corresponding subgroups in GC. Let x0 = K be the
basepoint in Xu, and denote the orbits through x0 of GI and GI,u by

XI,u = GI,ux0 = GCI x0 ⊂ Xu,

XI = GIx0 ⊂ X.
They are Hermitian symmetric spaces of rank |I|. See [Wo3, p. 287-289] for

proof of the following result.
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Proposition I.5.25 (1) The inclusions XI,u ↪→ Xu, XI ↪→ X are totally
geodesic.
(2) The submanifold XI is contained in XI,u, and the inclusion XI ↪→ XI,u

is the Borel embedding of the Hermitian symmetric space XI of noncompact
type.
(3) Let p+

I = p+ ∩ gCI . Then under the Harish-Chandra embedding π+ : X →
p+, the image π+(XI) is contained in p+

I , and the embedding XI ⊂ p+
I is the

Harish-Chandra embedding of XI .
(4) The boundary components of X

BB
in p+ are the subsets of the form

kCΨ−IXI ,

where k ∈ K, and CΨ−I is the (partial) Cayley transform associated with the
subset Ψ− I, and p+ is identified with a subset of Xu.

I.5.26 To relate these analytic (arc connected) boundary components XI

to the boundary components in the Satake compactifications of X, we need
to express XI in terms of the boundary symmetric spaces XP of parabolic
subgroups P .

For the rest of this section, we assume that X is irreducible, and hence the
root system Φ(g, a) is irreducible. Since the Weyl group of G consists of the
signed permutations of the roots in Ψ = {µ1, · · · , µr}, we can assume that
I = {µ`, µ`+1, · · · , µr} for some `. Let P0 be the minimal parabolic subgroup
of G containing exp a such that ∆ = {α1, · · · , αr}, defined in Proposition
I.5.18, is the set of simple roots in Φ(P0, AP0). Let I ′ = {α`, · · · , αr} be the
subset of ∆ corresponding to I ⊂ Ψ. Let P0,I′ be the standard parabolic
subgroup associated with I.

Proposition I.5.27 The analytic boundary component XI can be identified
with the boundary symmetric space of the parabolic subgroup P0,I′ ,

XI = XP0,I′ . (I.5.10)

Proof. Let eax0 be the flat in X contained in the polydisc G[Ψ] · x0 ⊂ X.
Then the flat exp aI

′ ·K∩P0,I′ of the boundary symmetric space XP0,I′ can be
identified with a sub-flat exp aI

′ ·x0 of ea ·x0 and is included in the sub-polydisc
G[I] · x0,

exp aI
′
· x0 ⊂ G[I] · x0.

Since I is a maximal collection of strongly orthogonal roots for G[I], the poly-
disc theorem (I.5.15) for XI and the Cartan decomposition of XP0,I′ implies
the equation (I.5.10).

Therefore, every boundary component of X
BB

is of the form kXP0,I′ ,
where I ′ is a connected subset of ∆ containing the last longest (or shortest)
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root αr, i.e., the distinguished root. Note that the boundary components
XI which meet the closure of exp a+x0 in X

BB
satisfies the property that

I = {µ`, µ`+1, · · · , µr} for some `.

Proposition I.5.28 The normalizer N (XP0,I′ ) of the boundary component

XI = XP0,I′ in X
BB

is equal to the maximal parabolic subgroup P0,∆−{α`−1}.

See [BB1, 1.3, 1.5] [Wo3, p.295] for more details and proof of this propo-
sition.

Corollary I.5.29 As a G-topological space, X
BB

is isomorphic to the mini-
mal Satake compactification X

S

τ when the highest weight µτ is only connected
to the distinguished root αr.

Proof. Let µτ be the highest weight of a representation τ such that it is only
connected to αr. Then the Satake compactification X

S

τ is minimal. It suffices
to check that the conditions in Proposition I.4.33 are satisfied by X

BB
. By

Proposition I.5.25 and Equation (I.5.10), every boundary component of X
BB

is of the form XP for a µτ -connected parabolic subgroup P ; and for every
such P , XP is contained in X

BB
as a boundary component. By Proposition

I.5.28, the normalizer of XP ⊂ X
BB

for a µ-connected parabolic subgroup P
is the µ-saturation of P . By Corollary I.5.16, the conditions on the closure
of the positive chamber exp a+x0 is also satisfied. This implies that X

BB
is

isomorphic to the minimal Satake compactification X
S

τ .

Remark I.5.30 The above corollary was first proved by Moore in [Mo2] us-
ing the Furstenberg compactifications, which will be described in the next
section. In fact, using the boundary values of bounded holomorphic functions
on the bounded symmetric domain π+(X) ⊂ p+, Furstenberg proved in [Fu1,
p. 370] that the maximal Furstenberg compactification X

F

max is mapped sur-
jectively and continuously onto X

BB
. Moore proved in [Mo2, p. 365-369] that

this map factors through a minimal Furstenberg compactification of X, and
X
BB

is isomorphic to this minimal Furstenberg compactification of X. In
[Mo1, Theorem 8], he proved that the Furstenberg compactifications satisfy
the properties of the Satake compactifications in Proposition I.4.33 and hence
are isomorphic to the Satake compactifications. Combining these two results,
he concluded that X

BB
is isomorphic to the minimal Satake compactification

of X in the above proposition. In certain sense, the proof here is more direct
since it avoids the Furstenberg compactifications.
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I.5.31 Summary and Comments.
From many different points of view, Hermitian symmetric spaces are the

most interesting symmetric spaces, and the Baily-Borel compactification of a
bounded symmetric domain is one of the most interesting Satake compactifi-
cations. We have summarized the boundary components and their normaliz-
ers of bounded symmetric domains, and the identification of the Baily-Borel
compactification with a minimal Satake compactification.

For detailed results on the structures of bounded symmetric domains, see
[Wo3] [WK] [KW] [Sat8]. For applications to representation theory, see [Wo1]
[Wo4] and the references there.

I.6 Furstenberg compactifications

In this section, we recall the Furstenberg compactifications X
F

and their rela-
tions to the Satake compactifications X

S
. The basic references are [Fu1] [Fu2]

[Ko1-3] and [Mo1]. A natural generalization of the problem here motivates
the Martin compactification in the next section.

This section is organized as follows. First we recall the Poisson integral
formula for harmonic functions on the unit disc D and use the represent-
ing measure on the unit circle to define the Furstenberg compactification
of D (Lemma I.6.3). Then we recall the notion of boundary spaces of Lie
groups (Definitions I.6.6 and I.6.8) and define the Furstenberg compactifica-
tions of symmetric spaces by replacing the unit circle with the so-called faithful
Furstenberg boundaries (Definition I.6.17 and Definition I.6.19). Finally we
identify the Furstenberg compactifications X

F
with the Satake compactifica-

tions X
S

(Proposition I.6.21).

I.6.1 We first consider the example of X = D, the Poincaré disc in C. Let
∆ be the Laplace operator. The Dirichlet problem{

∆u = 0 in D

u = f on ∂D, f ∈ C0(S1)
(I.6.1)

is solved by

u(z) =
∫
S1

1− |z|2

|z − ξ|2
f(ξ)dξ, (I.6.2)

where the Haar measure dξ on S1 is normalized so that its total measure is
equal to 1. Each point z ∈ D determines a measure

µz(ξ) =
1− |z|2

|z − ξ|2
dξ
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on S1. By taking f = 1 in Equation (I.6.2), we conclude that µz is a prob-
ability measure on S1. Let M1(S1) be the space of probability measures on
S1. Then we get a map

i : D →M1(S1), z 7→ µz. (I.6.3)

The space M1(S1) is given the weak-? topology: a sequence of measures
µj in M1(S1) converges to a limit µ∞ if and only if for any f ∈ C0(S1),∫

S1
fdµj →

∫
S1
fdµ∞.

Since S1 is compact, the space M1(S1) is compact.

Lemma I.6.2 The map i : D →M1(S1) is an embedding.

Proof. First we show that i is injective. For any two points z1, z2 ∈ D, if
µz1 = µz2 , then for any harmonic function u on D with continuous boundary
values on S1,

u(z1) = u(z2). (I.6.4)

Let x, y be the real and imaginary parts of z. Since x, y are clearly harmonic
functions on D and have continuous boundary values, Equation (I.6.4) implies
that z1 = z2. To show that i is an embedding, we need to show that µzj
converges to µz∞ if and only if zj → z∞. It is clear from the explicit form of
µz and the fact that S1 is compact that zj → z∞ implies that µzj converges
to µz∞ . By taking f = x, y again, we conclude that zj → z∞ if µzj converges
to µz∞ .

The closure of i(D) in M1(S1) is called the Furstenberg compactification
of D, denoted by D

F
.

Lemma I.6.3 The compactification D
F

is isomorphic to the closed unit disc
D ∪ S1.

Proof. If a sequence zj in D converges to a boundary point ξ ∈ S1, then µzj
converges to the delta measure δξ supported at ξ. This implies that there is a
well-defined continuous map from D∪S1 to D

F
. Clearly this map is bijective,

and is hence a homeomorphism.

I.6.4 To generalize the construction to symmetric spaces X, we need to find
an analogue of the boundary S1. In the case of X = D, the boundary S1 is
obtained as the natural boundary in the embedding of D in C. But such an



108 Part I. Compactifications of Riemannian symmetric spaces

embedding is not obvious in general. For this purpose, we need to characterize
S1 intrinsically in terms of G.

In fact, D = SU(1, 1)/U(1), where SU(1, 1) acts on D by fractional linear
transformations. The action extends continuously to the boundary S1, and
SU(1, 1) acts transitively on S1. The stabilizer of any point ξ ∈ S1 is a
parabolic subgroup of SU(1, 1).

This can be seen easily in the model of upper half plane

H = {z ∈ C | Im(z) > 0} = SL(2,R)/SO(2).

The boundary S1 of D corresponds to R ∪ {i∞}. The stabilizer of i∞ in
SL(2,R) is the parabolic subgroup P consisting of upper triangular matrices,
and hence the stabilizers of other points are conjugates of P .

I.6.5 Let G be a connected semisimple Lie group, and X = G/K the asso-
ciated symmetric space. Now we recall the notion of Furstenberg boundaries
of G and X, and relations to harmonic functions on X.

Definition I.6.6 A compact homogeneous space Y of G is called a boundary
of G, or a G-boundary if for every probability measure µ on Y , there exists a
sequence gj ∈ G such that gj · µ converges to the delta measure δx at some
point x ∈ Y . A G-boundary is also called a boundary of X.

Remark I.6.7 There is a more general notion of boundaries for any locally
compact, σ-compact topological group H. Specifically, a compact H-space
Y is called a H-boundary if (1) for every probability measure µ on Y , there
exists a sequence gj ∈ H such that gj ·µ converges to the delta measure δx at
some point x ∈ Y , and (2) Y is a minimal H-space, i.e., Y does not contain
any proper H-invariant closed subset. (Clearly, a homogeneous space of H is
minimal.)

It is known that if H is amenable, for example, solvable, then the only
boundary of H consists of one point. The existence of nontrivial H-boundaries
and their sizes measure the extent that the group H fails to be amenable.

Definition I.6.8 A homogeneous space M is called a universal (or maximal)
G-boundary if it is a G-boundary and every other boundary of G is a G-
equivariant image of M .

It is known that an equivariant image of a G-boundary is also a G-
boundary, and the universal G-boundaries are isomorphic and hence unique
up to isomorphism, to be denoted by F = F(G) and called the maximal
Furstenberg boundary of G.

Proposition I.6.9 Let P0 be a minimal parabolic subgroup of G. Then G/P0

is the maximal Furstenberg boundary F(G). Other boundaries of G are of the
form G/P0,I , where P0,I are standard parabolic subgroups containing P0.
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See [Mo2], [Ko3, §2] and [GJT, Lemma 4.48] for complete proofs. We
illustrate the idea through the example of G = SL(2,R).

Proposition I.6.10 When G = SL(2,R), and P0 = {
(
a b
0 a−1

)
| a ∈

R
×, b ∈ R}, G/P0 is a boundary of G.

Proof. Identify G/P0 with R ∪ {∞} = H(∞). Let µ ∈M1(R ∪ {∞}). Then
there exists k ∈ SO(2) such that the measure kµ satisfies

lim
t→+∞

k · µ({x ∈ R ∪ {∞} | x > t or x < −t) = 0, (I.6.5)

in particular, k · µ({∞}) = 0. Let gt =
(
t−1 0
0 t

)
∈ SL(2,R). Then for any

subset E ⊂ R ∪ {∞},
gtk · µ(E) = kµ(t2E).

This, together with Equation (I.6.5), implies that as t→ +∞,

gtk · µ→ δ0.

Remark I.6.11 (1) If µ is a smooth measure, then the condition in Equa-
tion (I.6.5) is satisfied without the action of a suitable element k ∈ SO(2). By
convolving with a smooth probability measure ν on G with compact support,
we get a smooth probability measure µ ∗ ν. For any sequence gj such that
gjµ∗ν → δ0, we can get a sequence g′j such that g′jµ→ δ0. This gives another
proof of Proposition I.6.10. See [Ko3, p. 385] for details.
(2) The decomposition SL(2,R)/P0 = R∪{∞} is given by the Bruhat decom-
position of SL(2,R) with respect to P0, and the scaling E → t2E corresponds
to the adjoint action of AP0 on N−P0

, which is the unipotent radical of the
parabolic subgroup opposite to P0. The proof of Proposition I.6.9 follows a
similar line as above.

I.6.12 Since G = KP0, K acts transitively on F(G). Hence F(G) admits a
unique K-invariant probability measure µ0.

The notion of Furstenberg boundaries is related to harmonic functions
by a generalization of the Poisson integral formula in Equation (I.6.2). Since
X = G/K, a function on X can be identified with a right K-invariant function
on G.
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Proposition I.6.13 For every bounded harmonic function u on X, there ex-
ists an element f ∈ L∞(F) such that

u(g) =
∫
F
f(gξ)dµ0(ξ) =

∫
F
f(ξ)P (x, ξ)dµ0(ξ),

where

P (x, ξ) =
dµ0(g−1ξ)
dµ0(ξ)

=
dg · µ0(ξ)
dµ0(ξ)

is the Poisson kernel associated with the boundary point ξ.

See [Fu1] [Fu2] for proofs and applications of this proposition.

I.6.14 The boundedness assumption in Proposition I.6.13 is crucial, and
the conclusion is false otherwise. In fact, the boundedness of u implies that
u is strongly harmonic, i.e., a joint eigenfunction of all invariant differential
operators on X.

A closely related notion is that of µ-harmonic functions [Fu4, §§12-13],
where µ is a probability measure on G. There are similar integral formu-
las for bounded µ-harmonic functions using the so-called µ-boundaries [Fu4,
Theorem 12.2]. (See [Fu1-7] for many related results).

The theory of µ-boundaries is very important to superrigidity of lattices.
In fact, it can be used to obtain some equivariant maps from the boundaries
to certain projective spaces, which are used in the proof of the superrigidity
of lattices [Mag, Chap. VI, Theorem 4.3; Chap VII] (see also [Fur2] [Fur3]).

Remark I.6.15 By definition, the Furstenberg boundaries are also called
boundaries of X. But none of them is equal to the whole boundary of a
compactification of X if the rank of X is strictly greater than 1. For example,
when G = SL(2,R) × SL(2,R) and X ∼= D × D, the maximal Furstenberg
boundary is S1 × S1, the distinguished part, i.e., the corner of the boundary
(D × S1) ∪ (S1 ×D) of the compactification D ×D, where D = D ∪ S1.

For any proper subset I ⊂ ∆ = ∆(P0, AP0), denote the boundary G/P0,I

by FI . Then K also acts transitively on FI .
Let M1(FI) be the space of probability measures on FI . Denote the

unique K-invariant probability measure on FI by µI . Then the map

iI : X = G/K →M1(FI), gK 7→ gµI ,

is well-defined and G-equivariant.

Proposition I.6.16 The map iI is an embedding if and only if ∆− I meets
every connected component of ∆, or the associated Dynkin diagram, which is
equivalent to that P0,I does not contain any simple factor of G.
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See [Mo2], [Ko3] and [GJT, Proposition 4.49] for proofs of this proposition.

Definition I.6.17 A Furstenberg boundary FI such that the map iI is an
embedding is called a faithful boundary.

Note that the conditions on ∆ − I in Proposition I.6.16 is equivalent to
the fact there exists a faithful projective representation τ of G such that the
set of simple roots connected to the highest weight µτ is equal to ∆ − I. In
particular, the maximal Furstenberg boundary G/P0 is always faithful.

I.6.18 If G is simple or equivalently ∆ is connected, then X is irreducible,
and every Furstenberg boundary is faithful.

If X is reducible, the situation is more complicated. For example, when
G = SL(2,R)×SL(2,R), we can take P0 = P ×P , and the maximal Fursten-
berg boundary is equal to S1 × S1, the distinguished (or corner) part of the
boundary of X ∼= D × D, where P is the parabolic subgroup of SL(2,R)
consisting of upper triangular matrices. The minimal parabolic subgroup P0

is contained in two proper maximal parabolic subgroups P × SL(2,R) and
SL(2,R)×P , and their corresponding Furstenberg boundaries S1× q, p×S1,
where p, q ∈ S1, are not faithful.

In general, if X is reducible, X = X1× · · · ×Xn, each of Xi is irreducible.
Then a boundary F is also a product F = F1×· · · Fn, where Fi is a boundary
of Xi; and F is faithful if and only if for every i = 1, · · · , n, Fi 6= Xi.

As in the case of M1(S1), M1(FI) is compact with the weak-? topology.

Definition I.6.19 When FI is faithful, the closure of iI(X) in M1(S1) is a
G-compactification of X, called the Furstenberg compactification associated
with the boundary FI and denoted by X

F

I .

The space M1(FI) is a compact convex subset of the dual of the Banach
space of continuous functions on FI . An interesting feature of this embedding
iI : X →M1(FI) is the following property.

Proposition I.6.20 The restriction to X = iI(X) of a continuous affine
function of M1(FI) is a bounded harmonic function on X.

The converse is also true under some assumption (see [Fu2, §4] for details).
In this sense, the embeddings iI : X → M1(FI) are harmonic, and hence
geometric and special.

The Furstenberg compactifications X
F

I have another interesting feature
that the Furstenberg boundary FI appears explicitly in the boundary of X

F

I

as the set of delta measures. In fact, FI is the only closed G-orbit in X
F

I . This
distinguished boundary is important for problems about boundary behavior
of harmonic functions on X and the Poisson transform. These problems have
been extensively studied. See [Ko1] [Ko2] [Sch] for details. It is also important
in the Mostow strong rigidity of locally symmetric spaces [Mos].
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Proposition I.6.21 (1) The Furstenberg compactifications X
F

I are partially
ordered: if I ⊆ J , then X

F

I dominates X
F

J , i.e., the identity map on X extends
to a continuous surjective map. When I = ∅, XF

∅ is the maximal Furstenberg
compactification, which is also denoted by X

F

max.
(2) The Furstenberg compactification X

F

I is isomorphic to the Satake com-
pactification X

S

τ such that the subset of simple roots in ∆ which are connected
to the highest weight µτ is equal to ∆− I.

When I ⊂ J , P0,I ⊂ P0,J , and hence there is a surjective G-equivariant
map G/P0,I → G/P0,J , under which the K-invariant measure µI is pushed
down to µJ . The second part is proved by checking that X

F

I satisfies the con-
ditions in Proposition I.4.33 that characterize the Satake compactifications.
See [Mo2] for details.

Due to the identification in Proposition I.6.21, the Furstenberg compacti-
fications are often called Satake-Furstenberg compactifications.

I.6.22 Summary and Comments.
In this section, we recall the boundary of the Poincaré disc D and the

Poisson integral formula to motivate general boundaries of a semisimple Lie
group G, or the associated symmetric space X. When the symmetric space
X is not irreducible, there is the important notion of faithful Furstenberg
boundaries. This can be illustrated by the example of D×D. Closely related
to the original application to bounded harmonic functions are the notions of
µ-harmonic functions and µ-boundaries.

For other notions of boundary and applications to geometric topology, see
[Bes] [BG].

I.7 Martin compactifications

In this section, we discuss the Martin compactifications of the symmetric space
X. The Martin compactifications are defined for any complete Riemannian
manifold, and the basic problem is to understand the structure of the cone
of positive eigenfunctions on the Riemannian manifold. For a detailed, self-
contained exposition about the Martin compactifications of domains in Rn

and general Riemannian manifolds, see [Ta1], and for the proofs of the results
for symmetric spaces stated below, see [GJT].

This section is organized as follows. First, we recall conditions on the
eigenvalue λ under which the cone Cλ(X) is non-empty (I.7.1). Generalizing
the Poisson integral formula for the unit disc, we give a complete description
of such cones for the Poincaré disc (I.7.2). Then we recall the general con-
struction of the Martin compactification of a complete Riemannian manifold
and show that an analogue of the Poisson integral formula over the Martin
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boundaries holds for eigenfunctions (Proposition I.7.6). To get a unique inte-
gral representation, we introduce the minimal Martin boundary (Proposition
I.7.9). In the case of bounded harmonic functions, we introduce the Poisson
boundary (Definition I.7.11). Then bounded harmonic functions can be rep-
resented in terms of bounded measurable functions on the Poisson boundary
(Proposition I.7.12). Finally we recall results in [GJT] on identification of the
Martin compactifications of a symmetric space X in terms of the maximal
Satake compactification X

S

max and the geodesic compactification X ∪X(∞)
(Proposition I.7.15). We also describe explicitly the minimal Martin boundary
(I.7.15-I.7.16) and the Poisson boundary (I.7.17).

I.7.1 As mentioned earlier, the theory of Martin compactifications holds for
any complete Riemannian manifold. For simplicity, we also use X to denote
such a Riemannian manifold in this section.

Let ∆ be the Laplace-Beltrami operator of X. Normalize ∆ such that
∆ ≥ 0. For each λ ∈ R, consider the space

Cλ(X) = {u ∈ C∞(X) | ∆u = λu, u > 0}.

For simplicity, functions in Cλ(X) are called eigenfunctions of eigenvalue λ,
and Cλ(X) the eigenspace of eigenvalue λ. When λ = 0, they are harmonic
functions.

Let λ0 = λ0(X) be the bottom of the spectrum of ∆:

λ0(X) = inf
ϕ∈C∞0 (X),ϕ 6=0

∫
X
| 5 ϕ|2∫
X
|ϕ|2

.

Then a result of Cheng and Yau [CY] says that Cλ(X) is nonempty if and
only if λ ≤ λ0(X).

If nonempty, Cλ(X) is clearly a convex cone. A basic problem in potential
theory is to identify the set of extremal elements (or edges) of Cλ(X) and
express other functions as linear combinations (or superpositions) of them.
This problem is solved by determining the Martin compactifications of X. In
fact, for each λ ≤ λ0(X), there is a Martin compactification X ∪ ∂λX. It
will turn out that in many cases, all the compactifications for λ < λ0 are
isomorphic to each other but not necessarily to X ∪ ∂λ0X.

I.7.2 To motivate the Martin compactifications of X, we recall the Poisson
integral formula for the unit disc D stated earlier.

Let D = {z ∈ C | |z| < 1}. Then its natural compactification D = D∪S1.
For each ξ ∈ S1, define the Poisson kernel

K(z, ξ) =
1− |z|2

|ξ − z|2
.
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Then each K(z, ξ) is harmonic in z, i.e., ∆K(·, ξ) = 0. For any positive
harmonic function u on D, there exists a unique non-negative measure µ on
S1 such that

u(z) =
∫
S1
K(z, ξ)dµ(ξ).

Since positive constants are harmonic functions, any bounded harmonic func-
tion can be written as the difference of two positive harmonic functions, and
hence admits a similar integral representation by a signed measure.

With respect to the Poincaré metric ds2 = |dz|2
(1−|z|2)2 on D, λ0(D) = 1

4 . For
each s ≤ 1

2 , λ = s(1− s) ≤ 1
4 . Define

Kλ(z, ξ) = K(z, ξ)s.

Let ∆ be the Laplace-Beltrami operator of D with respect to the Poincaré
metric. Then Kλ(z, ξ), ξ ∈ S1, are all the extremal elements of Cλ(D), and
any function u in Cλ(D) can be represented uniquely in the form

u(z) =
∫
S1
Kλ(z, ξ)dµ(ξ), (I.7.1)

where µ is a non-negative measure on S1. It should be pointed out that if
λ 6= 0, there are in general no bounded nonzero functions in Cλ(D).

I.7.3 The example of the Poincaré disc suggests the following problem. For
each λ ≤ λ0(X), construct a compactification X ∪ ∂λX such that

1. for each ξ ∈ ∂λX, there is a function Kλ(·, ξ) ∈ Cλ(X);

2. for each u ∈ Cλ(X), there is a non-negative measure dµ on ∂λX such
that an integral formula similar to that in Equation (I.7.1) holds.

It will be seen below that in general the representing measure µ on the
whole boundary ∂λX of the compactification is not unique, i.e., not all func-
tions Kλ(·, ξ), ξ ∈ ∂λX, are extremal, i.e., some Kλ(·, ξ) can be expressed as
superpositions of other Kλ(·, ξ) and hence redundant.

If one compactification X
1

of X satisfies the above conditions, then any
other compactification X

2
which dominates X

1
also satisfies the conditions.

Clearly it is desirable to find as small as possible a compactification X ∪ ∂λX
satisfying the above conditions.

If dimCλ(X) = 1, we can use the one point compactification X ∪ {∞},
with a generator corresponding to {∞}. Otherwise, we need a bigger compact-
ification. One such compactification is given by the Martin compactification.

I.7.4 For each λ ≤ λ0(X), let Gλ(x, y) be a positive Green function of
∆ − λ that vanishes at infinity, which is unique if exists. It always exists if
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λ < λ0(X). For λ = λ0(X), if Gλ(x, y) does not exists, then dimCλ(X) = 1
and define the Martin compactification X ∪ ∂λX to be the one point com-
pactification as mentioned above.

Assume that Gλ(x, y) exists. Let x0 be a basepoint in X. For any y 6= x0,
define the normalized Green function

Kλ(x, y) = Gλ(x, y)/Gλ(x0, y).

Then Kλ(x, y) is smooth on X − {y}, and

∆Kλ(x, y) = λKλ(x, y), Kλ(x0, y) = 1.

An unbounded sequence yj in X is called a fundamental sequence in the
Martin compactification for λ if the sequence of functions Kλ(x, yj) con-
verges uniformly for x in compact subsets to a function Kλ(x). Clearly,
Kλ(x) ∈ Cλ(X). Two fundamental sequences yj and y′j are called equivalent
if Kλ(x, yj) and Kλ(x, y′j) converge to the same limit function.

Denote the set of equivalence classes of fundamental sequences by ∂λX.
For each ξ ∈ ∂λX, denote the common limit function by Kλ(·, ξ).

Then the Martin compactification of X for λ is the set X ∪ ∂λX with the
following topology. An unbounded sequence yj in X converges to a boundary
point ξ ∈ ∂λX if and only if the function Kλ(x, yj) converges uniformly
over compact subsets to Kλ(x, ξ); a sequence of boundary points ξj ∈ ∂λX
converges to ξ∞ ∈ ∂1X if and only if the function Kλ(x, ξj) converges to
Kλ(x, ξ∞) uniformly over compact subsets.

Proposition I.7.5 The topological space X ∪ ∂λX is a metrizable compacti-
fication of X, and any isometry of X extends to the compactification.

Proof. The Harnack inequality for positive solutions of ∆u = λu shows that
every sequence in X∪∂λX has a convergent subsequence, and hence X∪∂λX
is compact. The Harnack inequality also implies that the function

d(y1, y2) =
∫
B(x0;1)

|Kλ(x, y1)−Kλ(x, y2)|
1 + |Kλ(x, y1)−Kλ(x, y2)|

defines a distance function on X ∪ ∂λX that induces the topology defined
earlier.

Proposition I.7.6 For any u ∈ Cλ(X), there exists a non-negative measure
µ on the Martin boundary ∂λX such that

u(x) =
∫
∂λX

Kλ(x, ξ)dµ(ξ).
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Proof. The basic idea of the proof is to use Riesz’s representation theorem for
positive superharmonic functions. Let L = ∆−λ. Then functions u satisfying
Lu = 0 are called L-harmonic, in particular, elements in Cλ(X) are all L-
harmonic. In terms of L-harmonic functions, we can define L-superharmonic,
L-subharmonic functions.

Let Gλ(x, y) be the Green function of L as above. Then Riesz’s represen-
tation theorem states that every positive superharmonic function w is a sum
of the form

w(x) =
∫
X

Gλ(x, y)dµ(y) + u(x),

where u is a nonnegative harmonic function, and µ is a nonnegative measure.
A positive superharmonic function v is called a potential if every harmonic
function u bounded from above by v, i.e., u ≤ v, must be nonpositive. Then
Riesz’s representation theorem implies that the potential v can be written as

v(x) =
∫
X

Gλ(x, y)dµ(y),

for some nonnegative measure dµ onX. Hence, Riesz’s representation theorem
decomposes a positive superharmonic function into a sum of a potential and
a harmonic function.

To prove the proposition, take an exhausting family Ωn of relatively com-
pact domains with smooth boundary of X, X = ∪nΩn. For any u ∈ Cλ(X),
let Hnu be the solution to the exterior Dirichlet problem on X \ Ωn. Define
a function un by un = u on Ωn, and un = Hnu on X \Ωn. Then un is super-
harmonic and does not bound any nonzero nonnegative harmonic function.
Then Riesz’s representation theorem gives

un(x) =
∫
X

Gλ(x, y)dνn(y).

Extending the measure dνn trivially outside of X to define a measure on the
compactification X ∪ ∂λX, we obtain

un(x) =
∫
X∪∂λX

Kλ(x, y)dµn(y), (I.7.2)

where dµn = Gλ(x0, y)dνn. Since u(x0) > 0, assume u(x0) = 1 for simplicity.
Then the normalizationK(x0, y) = 1 implies that dµn is a probability measure
on X ∪ ∂λX. Since X ∪ ∂λX is compact, there is a subsequence dµn′ that
weakly converges to a probability measure dµ. Since the support of dµn is
contained in the complement of Ωn, the measure dµ is supported on ∂λX.
Since the function Kλ(x, y) is continuous in the y variable on X ∪ ∂λX and
un → u, Equation (I.7.2) implies that

u(x) =
∫
∂λX

Kλ(x, ξ)dµ(ξ).
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Remarks I.7.7 1. If X ∪ ∂X is any compactification where the functions
Kλ(x, y) extend continuously in the y-variable, then the above proof
works and gives a representation

u(x) =
∫
∂X

Kλ(x, ξ)dµ(ξ).

If X∪ ∂̃X is a compactification which dominates X∪∂X, then Kλ(x, y)
also extends continuously onto X ∪ ∂̃X. It is clearly desirable to get as
small as possible a compactification satisfying this condition.

2. The smallest compactification satisfying the above condition is char-
acterized by the second condition that the extended functions Kλ(x, ξ)
separate the points in the boundary ∂λX. The Harnack inequality shows
that such a compactification exists and is exactly the Martin compacti-
fication X∪∂λX. This is the reason that in some works, for example, in
[GJT], the Martin compactification is defined to be a compactification of
X satisfying the two conditions: (a) The functions Kλ(x, y) extend con-
tinuously to the boundary in the y-variable, (b) the extended functions
separate the boundary points.

I.7.8 Suggested by the similarity to the Poisson integral formula for the
Poincaré disc D recalled earlier, the functions Kλ(x, ξ) are called the Martin
kernel functions , and the integral representation in Proposition I.7.6 is called
the Martin integral representation.

In general, the measure dµ in the above proposition is not unique. To get
a unique measure, we need to restrict the support of the measure.

A function u ∈ Cλ(X) is called minimal or extremal if every function v ∈
Cλ(X) satisfying v ≤ u is a multiple of u, or equivalently, the ray {cu | c > 0}
is an edge of the cone Cλ(X), or an extremal ray of the cone.

Define the minimal Martin boundary

∂λ,minX = {ξ ∈ ∂λX | Kλ(·, ξ) is minimal}.

In general, ∂λ,minX is a proper subset of ∂λX. For example, it will be seen
later that ∂λ,minX is a proper subset of ∂λX when X is a symmetric space
of rank greater than or equal to 2; on the other hand, if X is of rank 1,
∂λ,minX = ∂λX.

By restricting the support of the measures to the minimal Martin bound-
ary, we have the following uniqueness result.
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Proposition I.7.9 For any u ∈ Cλ(X), there exists a unique measure dν on
the minimal Martin boundary ∂λ,minX such that

u(x) =
∫
∂λ,minX

Kλ(x, ξ)dν(ξ).

The unique measure dν in this proposition is called the representing mea-
sure of u. One consequence of this uniqueness of the representing measure is
the following domination result.

Proposition I.7.10 For any two functions u, v ∈ Cλ(X), let dνu, dνv be
their representing measures. If v ≤ u, then dνu dominates dνv, i.e., dνv is
absolutely continuous with respect to dνu and hence dνv(ξ) = f(ξ)dνu for some
measurable function f on ∂λ,minX with |f | ≤ 1 a.e..

When λ = 0, Cλ(X) consists of harmonic functions, and the constant
function u = 1 belongs to Cλ(X). The support of the representing measure
dν1 of u = 1 is called the Poisson boundary of X and denoted by Π.

Definition I.7.11 The measure space (Π, dν1) is also called the Poisson
boundary.

It should be pointed out that the Poisson boundary is not the boundary of
a compactification, rather it is a distinguished subset of the Martin boundary
∂0X. The structure of (Π, dν1) as a measure space rather than a topological
space is emphasized. Any measure space satisfying the conditions in the
proposition below is also called a Poisson boundary.

Proposition I.7.12 The space of bounded harmonic functions on X is iso-
morphic to the space L∞(Π, dν1) under the map

f ∈ L∞(Π, dν1)→ u(x) =
∫

Π

Kλ(x, ξ)f(ξ)dν1(ξ).

Proof. Since any bounded harmonic function can be written as the difference
of two positive bounded harmonic functions, the isomorphism follows from the
previous proposition.

I.7.13 One application of the Poisson boundary (or rather the inclusion in
the Martin compactification) is that almost surely the Brownian paths in X
converge in the Martin compactification X ∪ ∂0X to points in the Poisson
boundary Π (see [GJT, Remarks 8.31]. In this application, both the topol-
ogy of the Martin compactification and the embedding of of Π in ∂λ0X are
important.
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I.7.14 By definition, the Martin compactification is determined by the be-
havior at infinity of the Green function and is a purely function theoretical
compactification. An important problem is to understand and identify it with
other geometric and more explicit compactifications.

In [AS], Anderson and Schoen proved that if X is a simply connected
Riemannian manifold with the curvature pinched by two negative numbers,
then the Martin compactification X ∪ ∂λX when λ = 0 is isomorphic to the
geodesic compactification X ∪X(∞). Ancona showed in [Anc] that the same
result holds for all λ < λ0(X). (Note that under the above assumption on X,
λ0(X) > 0.)

These results motivated a lot of work on the Martin compactifications of
simply connected manifolds with non-positive curvature. Symmetric spaces of
noncompact type of rank greater than or equal to 2 form an important class of
simple connected Riemannian manifolds whose curvature is nonpositive but
not pinched by negative constants.

After partial results by various people, the Martin compactifications of
symmetric spaces of noncompact type were completely determined by Guiv-
arch, Ji and Taylor in [GJT].

Proposition I.7.15 Let X be a symmetric space of noncompact type. Then
λ0(X) > 0. When λ = λ0(X), the Martin compactification X ∪ ∂λX is
isomorphic to the maximal Satake compactification X

S

max.
When λ < λ0(X), the Martin compactification X ∪ ∂λX is the least com-

pactification dominating both the geodesic compactification X ∪X(∞) and the
maximal Satake compactification X

S

max, i.e., it is equal to the closure of X
under the diagonal embedding X → (X ∪X(∞))×XS

max.

Furthermore, the Karpelevič compactification X
K

dominates the Martin
compactification X ∪ ∂λX and is isomorphic to the latter if and only if the
rank of X is less than or equal to 2.

I.7.16 For λ < λ0(X), each parabolic subgroup P of G determines a subset
a+
P (∞)×XP in the Martin boundary, which is the inverse image ofXP ⊂ X

S

max

under the dominating map X ∪ ∂λX → X
S

max, and

∂λX =
∐
P

a+
P (∞)×XP , (I.7.3)

where P runs over all proper parabolic subgroups. For each point ξ = (H, z) ∈
a+
P (∞)×XP , the Martin kernel function Kλ(x, ξ) is independent of the NP -

factor in the horospherical decomposition X = NP ×AP ×XP and is product
of an exponential function on AP and a spherical function on XP . When P
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is minimal, XP consists of one point. The minimal Martin boundary ∂λ,minX
is given by

∂λ,minX =
∐

minimal P

a+
P (∞), (I.7.4)

a disjoint union over all minimal parabolic subgroups P .
It is important to note that the decomposition of the sphere at infinity

X(∞) in terms of the closed simplexes a+
P (∞):

X(∞) = ∪minimal P a+
P (∞)

is not disjoint. In fact, for any two minimal parabolic subgroups P1, P2 con-
tained in a proper parabolic subgroup Q, a+

P1
(∞)∩a+

P2
(∞) ⊇ a+

Q(∞). Because
of this, the geodesic sphere is too small to parametrize the minimal functions
of Cλ(X). In [Ka], Karpelevič determined the set of minimal functions in
Cλ(X) and used a part of the boundary of the Karpelevič compactification
X
K

to parametrize them, which was his motivation to define the compacti-
fication X

K
. On the other hand, the above proposition also shows that the

Karpelevič compactification is larger than the Martin compactification if the
rank is greater than 3.

I.7.17 For λ = λ0, the Martin boundary ∂λX =
∐
P XP , where P runs over

all proper parabolic subgroups, and the minimal Martin boundary

∂λ0,minX =
∐

minimal P

XP
∼= G/P0,

where P runs over all minimal parabolic subgroups. In fact, for each minimal
P , XP consists of one point, and hence the union can be identified with G/P0,
where P0 is any fixed minimal parabolic subgroup.

I.7.18 When λ = 0, the Poisson boundary Π can be described as follows.
For each minimal parabolic subgroup P , recall that Φ(P,AP ) is the set of
roots of the adjoint action of aP on nP . Let ρP be the half sum of roots
in Φ(P,AP ) with multiplicity equal to the dimension of the root spaces, and
scale ρP to a unique vector HP ∈ a+

P (∞). Then the Poisson boundary is given
by

Π =
∐

minimal P

HP ⊂ ∂0,minX =
∐

minimal P

a+
P (∞). (I.7.5)

It can be shown as above that for any fixed minimal parabolic subgroup P0,

Π ∼= G/P0.

For the constant function 1, its representing measure is the unique K-
invariant measure µ0 onG/P0. Hence the Poisson boundary ofX is (G/P0, µ0).
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I.7.19 As mentioned earlier, the Brownian paths almost surely converge to
points in the Poisson boundary Π. Let a be a Cartan subalgebra in p, a+

a positive chamber, and ρ the half sum of positive roots. Then the Cartan
decomposition of G gives the polar decomposition of X:

X = K exp a+x0, x = keHx0,

where H is uniquely determined by x. In the polar coordinates, the H-
component of the Brownian paths almost surely goes to infinity in the di-
rection of ρ. This is basically the center of the open simplex a+(∞). For
details of the above statements, see [GJT].

I.7.20 Summary and comments.
Here we defined the Martin compactifications in terms of the asymptotic

behaviors of the Green function. Then we introduce the related notions such
as the minimal Martin boundary and the Poisson boundary. We conclude
with the identification of the Martin compactification of symmetric spaces.

An important property of the Martin compactifications is the Martin in-
tegral formula for positive eigenfunctions. Since bounded harmonic functions
become positive when a sufficiently large positive constant is added, the deter-
mination of the Martin compactification is a strengthening of identification
of the Poisson boundary. The Furstenberg boundary is essentially a mea-
sure space, but the Martin compactification has a topology. This topology is
important for the application to long time behaviors of the Brownian paths.

The Martin compactification of general Riemannian manifolds has not
been identified geometrically, not even for nonpositively curved simply con-
nected Riemannian manifolds. For graphs and more generally simplicial com-
plexes, we can also define analogue of Laplace operators and hence harmonic
functions. The Euclidean buildings are analogue of symmetric spaces for p-
adic semisimple Lie groups, but their Martin compactifications have not been
identified with other more geometric compactifications, for example, analogues
of the geodesic compactification and the maximal Satake compactification.
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Chapter 2

Uniform construction of
compactifications of
symmetric spaces

Among the compactifications discussed in Chapter 1, the Satake compactifi-
cations and the Furstenberg compactifications are obtained by embedding the
symmetric spaces into some compact ambient spaces and taking the closure.
In this chapter, we propose an uniform, intrinsic approach to compactifica-
tions of X. It is called intrinsic since no embedding into compact ambient
spaces is used, and both the ideal boundary points and the topology on the
compactifications are defined in terms of points of the symmetric spaces. This
method was suggested by a modification in §III.8 of the method in [BS2] which
was used to compactify locally symmetric spaces. Then we will construct all
the compactifications recalled in Chapter 1 using this method.

Since compactifications arise from different situations and are constructed
by different methods, this uniform construction allows one to understand re-
lations between them easily. It also relates directly to compactifications of
locally symmetric spaces, and hence shows similarities of compactifications of
these two classes of spaces.

In §I.8, we formulate the general intrinsic approach and recall from [JM]
how to describe a topology in terms of convergent sequences, which is more
intuitive and convenient for defining topologies of many compactifications in
later sections.

A key notion in the uniform, intrinsic approach is that of generalized
Siegel sets, which is used to show the continuity of the group action on the
compactifications. The Hausdorff property of the compactifications follows
from the strong separation of the generalized Siegel sets. These results are
given in §I.9. In §I.10, we apply this intrinsic uniform approach to construct
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the maximal Satake compactification X
S

max. Since this is the first case to
which this method is applied and is also the simplest case, the construction is
described in detail to illustrate the steps in the general method. In §I.11, we
construct the non-maximal Satake compactifications and describe explicitly
the neighborhoods of the boundary points. In §I.12, we apply this method
to construct the geodesic compactification X ∪ X(∞). In the process, the
geometric realization of the Tits building ∆(G) comes in naturally. In §I.13,
we combine the construction of the maximal Satake compactification and the
geodesic compactification to construct the Martin compactification. In §I.14,
we apply the method to construct the Karpelevič compactification X

K
. In

§I.15, we use the uniform method to construct the real Borel-Serre partial
compactification in [BS2], which is useful for some applications in topology of
arithmetic groups.

I.8 Formulation of the uniform construction

Recall from §I.4 that the Satake compactifications X
S

are defined by embed-
ding X equivariantly into the compact space P (Hn). On the other hand, the
geodesic compactification X ∪X(∞) is obtained by defining ideals points and
the convergence of points of X to them completely in terms of the points in X.
These two example represents two different approaches to compactifications
of X. The former is called the embedding method and the second is called the
intrinsic method.

The purpose of Chapter 2 is to give an uniform and intrinsic method to
construct most of the compactifications ofX discussed earlier in Chapter 1. As
explained in §I.2, the stabilizers of the boundary points of the geodesic com-
pactification X∪X(∞) are parabolic subgroups, and additional structures on
X(∞) can also be understood in terms of parabolic subgroups. The boundary
components of the Satake compactifications and their stabilizers in §I.4 are
also given by parabolic subgroups. Therefore, parabolic subgroups are natu-
rally associated with the geometry at infinity of symmetric spaces. Certainly,
it is desirable to use parabolic subgroups directly to construct compactifica-
tions of symmetric spaces X intrinsically, i.e., defining the ideal boundary
points and sequences converging to them without embedding X into some
compact spaces.

I.8.1 Suggested by the construction of the Borel-Serre compactification of
locally symmetric spaces in [BS2] and a modification in §III.8 below, we pro-
pose a uniform and intrinsic construction of compactifications of X. The
uniform, general method consists of the following steps:

1. Choose a suitable collection of parabolic subgroups of G which is invari-
ant under conjugation by elements of G.
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2. For every parabolic subgroup P in the collection, define a boundary
component e(P ) by making use of the Langlands decomposition of P
and its refinements, or the induced horospherical decomposition of X.

3. For every parabolic subgroup in the collection, attach the boundary
component e(P ) to X via the horospherical decomposition of X to ob-
tain X ∪

∐
P e(P ), and show that the induced topology on X ∪

∐
P e(P )

is compact and Hausdorff, and the G-action on X extends continuously
to the compactification, i.e., the compactification is a G-space.

All the known compactifications can be constructed this way by varying
the choices of the collection of parabolic subgroups and their boundary com-
ponents. In fact, the maximal Satake compactification X

S

max, the geodesic
(or conic) compactification X ∪X(∞), the Martin compactification X ∪∂λX,
and the Karpelevič compactification X

K
will be obtained by choosing the full

collection of parabolic subgroups. On the other hand, for the non-maximal Sa-
take compactifications, in particular, the Baily-Borel compactification X

BB
,

we can specify a sub-collection of parabolic subgroups according to a dominant
weight vector.

I.8.2 The boundary components e(P ) often satisfy some compatibility con-
ditions. For simplicity, we choose the collection of all parabolic subgroups.
There are two obvious types of compatibility conditions:

1. for any pair of parabolic subgroups P,Q, P ⊆ Q if and only if e(P ) ⊆
e(Q);

2. or for any pair of parabolic subgroups P,Q, P ⊆ Q if and only if e(Q) ⊆
e(P ).

Usually, each boundary component e(P ) is a cell. If the condition in Type
(1) is satisfied, the boundary

∐
P e(P ) is a cell complex parametrized by the

set of parabolic subgroups, and the incidence relation between its cells is dual
to the incidence relation for the simplexes of the Tits building. The topology
of the topological building puts a topology on the set of boundary components.
In this case, we also require that for any parabolic subgroup Q, the closure of
e(Q) is given by

e(Q) = e(Q) ∪
∐
P⊂Q

e(Q).

As will be seen below §I.10, the boundary components of the maximal Satake
compactification satisfy this type of compatibility condition.

If the condition in Type (2) is satisfied, the boundary
∐
P e(P ) is a cell

complex over the set of parabolic subgroups whose incidence relation is the
same as the incidence relation of the Tits building, and is hence a cell complex
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homotopic to the Tits building. As in case (1), we need the the topology of the
topological Tits building to put a topology on the set of boundary components
and hence make it into the topological boundary of some compactification.
For any parabolic subgroup P , the closure of the boundary component e(P )
is given by

e(P ) = e(P ) ∪
∐
Q⊃P

e(Q).

Since there are only finitely manyQ containing any given P , the closure e(P ) is
a finite cell-complex. As will be seen below §I.12, the boundary components of
the geodesic compactification X∪X(∞) satisfies this compatibility condition.

But there are also other types of mixed compatibility conditions. For ex-
ample, take a compactification X

1
whose boundary components satisfy Type

(1) compatibility condition, and a compactification X
2

whose boundary com-
ponents satisfy Type (2) compatibility condition. Let X be the closure of X
in X

1×X2
under the diagonal embedding, i.e., X is the least common refine-

ment of X
1

and X
2
. For such a compactification, the boundary components

will not satisfy either Type (1) or (2) compatibility condition. For any pair of
parabolic subgroups P,Q, e(P ) ∩ e(Q) 6= ∅ if and only if there is an inclusion
relation between them, i.e., either P ⊆ Q or P ⊇ Q. It should be pointed out
that in general, e(P ) ∩ e(Q) 6= ∅ does not imply inclusion relation between
them. In this case, for any parabolic subgroup P ,

e(P ) = e(P ) ∪ ∪Q(e(P ) ∩ e(Q)),

where Q ranges over parabolic subgroups Q which either contain P or are
contained in P .

By the results in §I.7, the Martin compactification X ∪ ∂λX for λ < λ0,
is the least common refinement of X ∪ X(∞) and X

S

max. As seen below,
its boundary components satisfy this type of mixed compatibility condition.
Though the Karpelevič compactification X

K
is not the least common refine-

ment of some other compactifications whose boundary components satisfy
either Type (1) or (2) compatibility conditions, its boundary components also
satisfy the mixed up compatibility condition. In both the Martin and the
Karpelevič compactifications, the boundary ∪P e(P ) is a cell complex whose
incidence relation is not directly related to the incidence relation on the Tits
building.

I.8.3 There are several general features of this approach which will become
clearer later.

1. It gives an explicit description of neighborhoods of boundary points in
the compactifications of X and sequences of interior points converging
to them, which clarifies the structure of the compactifications and is also
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useful for applications (see [Zu2] [GHMN]). In [Sat1] and other works
[GJT], the G-orbits in the Satake compactifications X

S

τ and convergent
sequences in a maximal totally geodesic flat submanifolds in X through
the basepoint x0 are fully described, but there does not seem to be
explicit descriptions of neighborhoods of the boundary points in X

S

τ .

2. It relates compactifications of symmetric spaces X directly to compacti-
fications of locally symmetric spaces Γ\X; in fact, for locally symmetric
spaces, the method of [BS2] modified in §III.8 below consists of similar
steps by considering only boundary components associated with rational
parabolic subgroups instead of real parabolic subgroups for symmetric
spaces, and both constructions depend on the reduction theory, in par-
ticular, separation property of Siegel sets in Propositions I.9.8, I.9.11
and III.2.19.

3. By decomposing the boundary into boundary components associated
with parabolic subgroups, its relation to the spherical Tits building
∆(G) of G becomes transparent, and the combinatorial structure of
the boundary components is described in terms of the Tits building
∆(G). It can be seen below that for many known compactifications, the
boundary components are cells, and hence the whole boundary of the
compactifications is a cell complex parametrized by the Tits building, a
fact emphasized in [GJT].

4. Since all the compactifications of X are constructed uniformly, relations
between them can easily be determined by comparing their boundary
components.

5. Due to the gluing procedure using the horospherical decomposition and
generalized Siegel sets, the continuous extension of the G-action to the
compactifications can be obtained easily. In [GJT], the continuity of the
extension of the G-action to the dual-cell compactification X∪∆∗(X) is
obtained through identification with the Martin compactification where
the continuity of the extended action is clear, rather than directly. This
fact is one of the motivations of this uniform construction.

6. Due to the definition of the topology at infinity, one difficulty is to show
the Hausdorff property of the topology. This will follow from the strong
separation property of the generalized Siegel sets in Proposition I.9.8
and Proposition I.9.11.

I.8.4 As mentioned earlier, the construction of the Satake compactifications
and the Furstenberg compactifications uses embeddings into compact ambient
spaces P (Hn) andM1(G/P ) respectively, where Hn is the real vector space of
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Hermitian matrices and P (Hn) the associated real projective space, and G/P
is a faithful Furstenberg boundary and M1(G/P ) the space of probability
measures on G/P . In general, given a compact G-space Z, and G-equivariant
embedding i : X → Z, the closure i(X) is a G-compactification of X.

This embedding method is direct and the extension of the G-action to
the compactification is immediate. On the other hand, it is not always easy
to find the compact G-spaces Z and equivariant embeddings X → Z. For
example, there is no obvious choice of Z for the Karpelevič compactification,
though we can construct the geodesic compactification X ∪X(∞) using the
embedding method through the Gromov compactification §I.17. By combining
with the maximal Satake compactification, we can similarly obtain the Martin
compactification X ∪ ∂λX using the embedding method.

The main difficulty with the embedding method is that it is often not
easy to understand the structure of the boundary, for example, G-orbits and
boundary components, and neighborhoods of boundary points or equivalently
characterization of unbounded sequences in X converging to boundary points.
As seen in §I.4, these questions form the major part of the Satake compacti-
fications in [Sat1].

I.8.5 The question of intrinsically constructing the Satake compactifications
was first raised in [Ko1, pp. 25-26], and a possible construction was outlined
there by using admissible regions. An expansion of this construction will be
given in [Ko7].

The admissible regions are similar to generalized Siegel sets introduced
in the next section (see Remark I.9.13 for more details). They are basically
the same when the rank of X is equal to 1. But the Siegel sets or admissible
regions (or nontangential regions) are not large enough to form neighborhoods
(or rather intersection with X of neighborhoods) of the boundary points.
Therefore, the strong separation property of generalized Siegel sets in §I.9 plays
an important role in showing the Hausdorff property of the compactifications.

Admissible regions are related to bounded neighborhoods of geodesics and
hence are important to understanding the limit behaviors along geodesics of
harmonic functions on X. Admissible regions were motivated by the problem
of generalizing convergence of harmonic functions on symmetric spaces of
Fatou’s type. They were first introduced in [Ko10]. When X is equal to the
Poincaré disc, they are basically the non-tangential regions. For other rank-1
symmetric spaces, they are different from nontangential regions but slightly
larger. An important property of admissible regions is the invariance under
the isometry group of the symmetric space [Ko10, Theorem 6], which is not
enjoyed by the collection of nontangential regions. For higher rank symmetric
spaces, there are several types of admissible regions, for example, the restricted
admissible regions, and unrestricted admissible regions. The regions in [Ko1]
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are unrestricted. For detailed applications of admissible regions and various
equivalent definitions, see [Ko1-6] [Ko8-10].

The intrinsic approach outlined in [Ko1, p. 25-26] is as follows (some
details will be provided in the forthcoming paper [Ko7]):

1. Define ideal boundary points to be suitable equivalence classes of certain
filters defined by admissible regions.

2. Define the topology of the closure of the Weyl chamber ea+ · x0 by the
axioms of the Satake compactifications.

3. Use the G-action to define a topology on the union of X and the ideal
boundary points and show that it is a G-compactification of X.

Step (1) is natural since by [Ko1, Lemma 2.2], certain filters defined by
admissible regions converge to boundary points of Satake compactifications.

As will be seen below, there is some difference between this intrinsic ap-
proach and the approach in this book. In fact, in this book, the topology on
the Satake compactifications is defined directly on the whole space in terms
of the horospherical decomposition, rather than starting from the closure of
the Weyl chamber ea+ · x0 and then pass to the whole space. The boundary
points are explicitly given rather than in terms of filters of subsets of X.

I.8.6 On the other hand, Siegel sets are fundamental to the reduction the-
ory of arithmetic groups (see [B03] [B04] and §III.1 below). This surprising
connection, pointed out by A.Koranyi, makes their applications to compacti-
fications more interesting.

It should be pointed out that the generalized Siegel sets are used to show
that the G-action on X extends continuously to compactifications. It sems
that admissible regions can be used for the same purpose, and it might be
possible to simplify some of the arguments in this chapter (see [Ko7]). Since
Siegel sets will be used again for locally symmetric spaces, we will emphasize
generalized Siegel sets rather than admissible regions, which have been crucial
in [Ko1-6] [K08-10].

I.8.7 Another approach to an intrinsic construction of the maximal Satake
compactification X

S

max was given in [GJT, Chap. III]. In fact, the dual-cell
compactification X ∪ ∆∗(X) was based on the Cartan decomposition of X:
X = Keax0 and the polyhedral compactification of the flat eax0, which is
determined by the Weyl chamber decomposition of a. Unfortunately, this
construction does not allow one to show easily that the G-action on X extends
continuously to X ∪ ∆∗(X). As mentioned earlier, this problem was the
starting point of the uniform approach proposed above.

I.8.8 It seems that the first nontrivial intrinsic compactification of X is the
geodesic compactification X ∪X(∞) and was probably studied by Hadamard
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in the context of simply connected, nonpositively curved Riemannian mani-
folds, though it was first formally constructed for symmetric spaces in [Ka] and
for more general simply connected and nonpositively curved spaces in [EO].
Such a compactification has been generalized to certain nonsimply connected
manifolds in [JM].

I.8.9 In constructing compactifications of X using the intrinsic method,
it it often more convenient and intuitive to describe a topology in terms of
convergent sequences.

We recall some conditions that need to be satisfied by convergent sequences
from [JM, §6].

A topology on a space can be defined using a closure operator [Ku].

Definition I.8.10 A closure operator for a space X is a function that assigns
to every subset A of X a subset A satisfying the following properties:

1. For the empty set ∅, ∅ = ∅.

2. For any two subsets A,B ⊂ X, A ∪B = A ∪B.

3. For any subset A ⊂ X, A ⊂ A.

4. For any subset A ⊂ X, A = A.

Once a closure operator is given, then a subset A of X is defined to be
closed if and only if A = A, and a subset B of X is open if and only if its
complement is closed. Using the four properties listed above, we can check
easily that the open subsets define a topology on X.

A closure operator on a space can be defined using class of convergent
sequences. Let X be a space, and C be a class of pairs ({yn}∞1 , y∞) of a
sequence {yn} and a point y∞ in X. If a pair ({yn}∞1 , y∞) ∈ C, we say that

yn C-converges to y∞ and denote it by yn
C→ y∞; otherwise, yn

C
6→ y∞.

Motivated by the convergence class of nets in [Ke2, Chap. 4], we introduce
the following.

Definition I.8.11 A class C of pairs ({yn}∞1 , y∞) is called a convergence
class of sequences if the following conditions are satisfied:

1. If {yn} is a constant sequence, i.e., there exists a point y ∈ X such that
yn = y for n ≥ 1, then yn

C→ y.

2. If yn
C→ y∞, then so does every subsequence of yn.

3. If yn
C
6→ y∞, then there is a subsequence {yni} of {yn} such that for any

further subsequence {y′ni} of {yni}, y′ni
C
6→ y∞
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4. Let {ym,n}∞m,n=1 be a double sequence. Suppose that for each fixed m,

ym,n
C→ ym,∞; and the sequence ym,∞

C→ y∞,∞. Then there exists a
function n : N → N such that limm→∞ n(m) = ∞ and the sequence
ym,n(m)

C→ y∞,∞.

Lemma I.8.12 Suppose C is a convergence class of sequences in a space X.
For any subset A of X, define

A = {y ∈ X | there exists a sequence {yn} in A such that yn
C→ y}.

Then the operator A→ A is a closure operator.

Proof. The properties (1), (2) and (3) in Definition I.8.10 follow directly from
the definition. For property (4), we need to show that for any point y∞ ∈ A,
there exists a sequence ym in A such that ym

C→ y. By definition, there exists
a sequence ym,∞ in A such that ym,∞

C→ y∞. Since ym,∞ ∈ A, there exists

a sequence {ym,n}∞n=1 in A such that ym,n
C→ ym,∞. Then Definition I.8.11.4

shows that there exists a sequence ym,n(m) in A such that ym,n(m)
C→ y∞, and

hence y∞ ∈ A.

Proposition I.8.13 A convergence class of sequences C in X defines a unique
topology on X such that a sequence {yn}∞1 in X converges to a point y ∈ X
with respect to this topology if and only if ({yn}∞1 , y) ∈ C. The topological
space X is Hausdorff if and only if every convergent sequence has a unique
limit, and X is compact if and only if every sequence in X has a convergent
subsequence.

Proof. The statement that the convergence class C defines a unique topology
follows from Lemma I.8.12 and the discussion after Lemma I.8.10. For the
rest, see [Ke2, Chap. 2].

I.8.14 Summary and Comments.
In this section, we outline the general steps in the uniform and intrinsic

construction of compactifications of symmetric spaces. To simplify definitions
and discussions of topologies of compactifications in this chapter, we introduce
the notion of convergence sequences.

I.9 Siegel sets and generalizations

In this section, we discuss Siegel sets and generalized Siegel sets, in particular,
strong separation properties of generalized Siegel sets in Propositions I.9.8
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and I.9.11 which play a crucial role in applying the uniform method in §I.8 to
construct compactifications of symmetric spaces.

In the reduction theory of arithmetic groups, two basic results are the
finiteness property of Siegel sets and separation of sufficiently small Siegel sets
of rational parabolic subgroups (see §III.2, Proposition III.2.19). Some results
for Siegel sets of real parabolic subgroups were developed in [Bo4, §12]. But
we need the larger generalized Siegel sets for applications to compactifications
of X in this chapter. In this sense, results in this section can be considered
as a reduction theory over R.

The Siegel sets for real parabolic subgroups are direct generalizations of the
Siegel sets of Q-parabolic subgroups and are defined in Equation (I.9.1). They
satisfy a separation property similar to Siegel sets associated with Q-parabolic
subgroups (Proposition I.9.2). Since we need to put a non-discrete topology of
the set of boundary components, this separation is not strong enough. Instead,
we need Proposition I.9.3. To prove the continuous extension of the G-action
on X to compactifications, we need generalized Siegel sets (Equation I.9.2),
which contain the usual Siegel sets (Lemma I.9.4). The strong separation of
Siegel sets are given in Propositions I.9.8 and I.9.11.

I.9.1 Now we define Siegel sets associated with proper parabolic subgroups
of G. For any t > 0, define

AP,t = {a ∈ AP | aα > t, α ∈ ∆(P,AP )},

where ∆(P,AP ) is the set of simple roots defined in §I.1.10.
When t = 1,

AP,t = A+
P = exp a+

P ,

the positive chamber in AP . Hence, AP,t is the shift of the positive chamber
A+
P . For bounded sets U ⊂ NP and V ⊂ XP , the set

SP,U,t,V = U ×AP,t × V ⊂ NP ×AP ×XP (I.9.1)

is identified with the subset ν0(U × AP,t × V ) of X by the horospherical
decomposition of X in Equation (I.1.14) and called a Siegel set in X associated
with the parabolic subgroup P .

An important property of Siegel sets is the following separation property.

Proposition I.9.2 (Separation of Siegel sets) Let P1, P2 be two parabolic
subgroups of G and Si = Ui × AP,ti × Vi be a Siegel set for Pi (i = 1, 2). If
P1 6= P2 and ti � 0, then

S1 ∩ S2 = ∅.
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Proof. This is a special case of [Bo4, Proposition 12.6]. In fact, let P be
a fixed minimal parabolic subgroup. Then P1, P2 are conjugate to standard
parabolic subgroups PI1 , PI2 containing P ,

P1 = k1PI1 , P2 = k2PI2 ,

for some k1, k2 ∈ K. If for all ti > 0,

U1 ×AP1,t1 × V1 ∩ U2 ×AP2,t2 × V2 6= ∅,

then [Bo4, Proposition 12.6] implies that I1 = I2 and k−1
2 k1 ∈ PI1 . This

implies that P1 = P2.

A special case of this proposition concerns rational parabolic subgroups
and their Siegel sets. This separation property for rational parabolic sub-
groups plays an important role in reduction theory for arithmetic subgroups
and compactifications of locally symmetric spaces (see §III.2). For compacti-
fications of symmetric spaces, we need stronger separation properties.

Proposition I.9.3 (Strong separation of Siegel sets) Let P1, P2,S1,S2 be
as in the previous proposition and let C be a compact neighborhood of the iden-
tity element in K. Assume that P k1 6= P2 for every k ∈ C. Then there exists
t0 > 0 such that kS1 ∩ S2 = ∅ for all k ∈ C if t1, t2 ≥ t0.

This proposition follows from the even stronger separation property of
Proposition I.9.8 below, which is needed in applying the uniform construction
in §I.8 to construct compactifications of X.

Let B(·, ·) be the Killing form on g as above, θ the Cartan involution on
g associated with K. Then

< X,Y >= −B(X, θY ), X, Y ∈ g,

defines an inner product on g and hence a left-invariant Riemannian metric
on G and the subgroup NP . Let BNP (ε) be the ball in NP of radius ε with
center the identity element.

For a bounded set V in XP and ε > 0, t > 0, define

SP,ε,t,V = {(n, a, z) ∈ NP ×AP ×XP = X | z ∈ V, a ∈ AP,t, na ∈ BNP (ε)}.
(I.9.2)

We shall call SP,ε,t,V a generalized Siegel set associated with P , and P will
be omitted and SP,ε,t,V denoted by Sε,t,V when the reference to P is clear.

Lemma I.9.4 For any bounded set U ⊂ NP and ε > 0, when t� 0,

U ×AP,t × V ⊂ Sε,t,V .
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Proof. Since the action of A−1
P,t by conjugation on NP shrinks NP towards

the identity element as t→ +∞, it is clear that for any bounded set U ⊂ NP
and ε > 0, when t� 0, a ∈ AP,t,

Ua ⊂ BNP (ε),

and the lemma follows.

I.9.5 On the other hand, when dimAP ≥ 2, Sε,t,V is not contained in the
union of countably infinitely many Siegel sets defined above. In fact, for
any strictly increasing sequence tj → +∞ and a sequence of bounded sets
Uj ⊂ NP with ∪∞j=1Uj = NP , we claim that

Sε,t,V 6⊂ ∪nj=1Uj ×AP,tj × V.

First, we note that

Sε,t,V = ∪a∈AP,taBNP (ε)× {a} × V.

For every j such that tj+1 > tj , AP,tj \AP,tj+1 is not bounded, and hence there
is a unbounded sequence ak ∈ AP,tj \ AP,tj+1 . Fix such a j and a sequence
ak. Then akBNP (ε) is not bounded, and hence when k � 1,

akBNP (ε)× {ak} × V 6⊂ ∪jl=1Ul ×AP,tl × V.

On the other hand, since ak 6∈ AP,tl for all l ≥ j + 1,

akBNP (ε)× {ak} × V 6⊂ Ul ×AP,tl × V,

and the claim follows.

I.9.6 To cover Sε,t,V , we need to define Siegel sets slightly differently. For
any T ∈ AP , define

AP,T = {a ∈ AP | aα > Tα, α ∈ ∆(P,AP )}, (I.9.3)

and

SP,ε,T,V = {(n, a, z) ∈ NP ×AP ×XP = X | z ∈ V, a ∈ AP,T , na ∈ BNP (ε)},
(I.9.4)

which is also be denoted by Sε,T,V .
Siegel sets of the form U ×AP,T × V are needed for the precise reduction

theory of arithmetic subgroups (see [OW] [Sap1] and §III.2 below for more
details) and will also be used in §I.11 below to describe the topology of non-
maximal Satake compactifications. An analogue of Lemma I.9.4 holds for the
Siegel sets SP,ε,T,V , and the converse inclusion is given in the next lemma.
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Proposition I.9.7 There exist sequences Tj ∈ AP,t and bounded sets Uj ⊂
NP such that

Sε,t,V ⊂ ∪∞j=1Uj ×AP,Tj × V.

Proof. In fact, Tj could be any sequence in AP,t such that every point of
AP,t belongs to a δ-neighborhood of some Tj , where δ is independent of j,
and Uj = U is a sufficiently large subset.

Proposition I.9.8 (Strong separation of generalized Siegel sets) For any
two different parabolic subgroups P, P ′ and generalized Siegel sets Sε,t,V , Sε,t,V ′
associated with them, and a compact neighborhood C of the identity element
in K such that for every k ∈ C, kP 6= P ′, if t� 0 and ε is sufficiently small,
then for all k ∈ C,

kSε,t,V ∩ Sε,t,V ′ = ∅.

Proof. Let τ : G → PSL(n,C) be a faithful irreducible projective repre-
sentation whose highest weight is generic. Since G is semisimple of adjoint
type, such a representation exists. Choose an inner product on Cn such that
τ(θ(g)) = (τ(g)∗)−1, where θ is the Cartan involution on G associated with
K, and A → (A∗)−1 is the Cartan involution on PSL(n,C) associated with
PSU(n). Then τ(K) ⊂ PSU(n).

Let Mn×n be the vector space of complex n× n matrices, and PC(Mn×n)
the associated complex projective space. Composed with the map PSL(n,C)→
PC(Mn×n), τ induces an embedding

iτ : G→ PC(Mn×n).

For each Siegel set Sε,t,V in X associated with P , its inverse image in G under
the map G → X = G/K, g 7→ gx0, is {(n, a,m) ∈ NP × AP ×MPK = G |
m ∈ V K, a ∈ AP,t, na ∈ BNP (ε)} and denoted by Sε,t,VK.

We claim that the images iτ (kSε,t,VK) and iτ (Sε,t,V ′K) are disjoint for
all k ∈ C under the above assumptions.

Let P0 be a minimal parabolic subgroup contained in P . Then P = P0,I

for a subset I ⊂ ∆(P0, AP0). Let

C
n = Vµ1 ⊕ · · · ⊕ Vµk

be the weight space decomposition under the action of AP0 . Let µτ be the
highest weight of τ with respect to the positive chamber a+

P0
. Then each

weight µi is of the form
µi = µτ −

∑
α∈∆

cαα,
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where cα ≥ 0. The subset {α ∈ ∆ | cα 6= 0} is called the support of µi,
and denoted by Supp(µi). For P = P0,I , let VP be the sum of all weight
spaces Vµi whose support Supp(µi) is contained in I. Since τ is generic, VP
is nontrivial. In fact, P0,I leaves VP invariant and is equal to the stabilizer of
VP in G, and the representation of MP on VP is a multiple of an irreducible,
faithful one, and hence τ induces an embedding

τP : MP → PSL(VP ). (I.9.5)

The group PSL(VP ) can be canonically embedded into PC(Mn×n) by ex-
tending each matrix in PSL(VP ) to act as the zero linear transformation
on the orthogonal complement of VP . Under this identification, for every
A ∈ PSL(VP ),

A(Cn) = VP .

Denote the composed embedding MP → PSL(VP ) ↪→ PC(Mn×n) also by τP ,

τP : MP → PC(Mn×n).

Similarly, for P ′, we get a subspace VP ′ invariant under P ′ and hence under
MP ′ , a subset PSL(VP ′) in PC(Mn×n), and an embedding

τP ′ : MP ′ → PSL(VP ′) ⊂ PC(Mn×n).

For any k ∈ C, kP 6= P ′, and hence

VkP 6= VP ′ .

Since for any m ∈MP , m′ ∈MP ′ , and any g ∈ G,

τP (m)τ(g)(Cn) = τP (m)(Cn) = VP ,

τP ′(m′)τ(g)(Cn) = τP ′(m′)(Cn) = VP ′ ,

it follows that for any g, g′ ∈ G, m ∈MP ,m
′ ∈MP ′ , and k ∈ C,

τ(k)τP (m)τ(g) 6= τP ′(m′)τ(g′). (I.9.6)

If the claim is false, then there exists a sequence gj in G such that

gj ∈ kjSεj ,tj ,VK ∩ Sεj ,tj ,V ′K,

where kj ∈ C, εj → 0, tj → +∞. Since gj ∈ kjSεj ,tj ,VK, gj can be written
as

gj = kjnjajmjcj ,

where nj ∈ NP , aj ∈ AP,tj , mj ∈ MP , and cj ∈ K satisfy (1) for all α ∈
∆(P,AP ), aαj → +∞, (2) najj → e, (3) mj ∈ V . By passing to a subsequence,
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we can assume that kj → k∞ ∈ C, mj converges to some m∞ ∈ MP , and cj
converges to some c∞ in K.

By choosing suitable coordinates, we can assume that for a ∈ AP0 , τ(a) is
a diagonal matrix,

τ(a) = diag(aµ1 , · · · , aµn),

where the weights µi with support contained in I are µ1, · · · , µl for some
l ≥ 1, and µ1 is the highest weight µτ . Since τ is faithful and I is proper,
l < n. Recall that P = P0,I , and

AP = {a ∈ AP0 | aα = 1, α ∈ I}.

Then
τ(aj) = diag(aµ1

j , · · · , a
µl
j , a

µl+1
j , · · · , aµnj )

= diag(aµτj , · · · , aµτj , a
µτ−

∑
α cl+1,αα

j , · · · , aµτ−
∑
α cn,αα

j ),

where for each j ∈ {l + 1, · · · , n}, there exists at least one α ∈ ∆ − I such
that cj,α > 0. Then as j → +∞, the image of τ(aj) in PC(Mn×n)

iτ (aj) = [diag(1, · · · , 1, a−
∑
α cl+1,αα

j , · · · , a−
∑
α cn,αα

j )],

→ [diag(1, · · · , 1, 0, · · · , 0)],

where the image of an element A ∈ Mn×n \ {0} in PC(Mn×n) is denoted by
[A]. This implies that

iτ (gj) = τ(kj)iτ (aj)τ(najj )τ(mj)τ(cj)

→ τ(k∞)[diag(1, · · · , 1, 0, · · · , 0)]τ(m∞)τ(c∞) = τ(k∞)τP (m∞)τ(c∞),

since kj → k∞, najj → e, mj → m∞, cj → c∞, and the image of Cn under
diag(1, · · · , 1, 0, · · · , 0) is equal to VP . Using gj ∈ Sεj ,tj ,V ′K, we can similarly
prove that

iτ (gj)→ τP ′(m′∞)τ(c′∞)

for some m′∞ ∈MP ′ and c′∞ ∈ K. This contradicts Equation (I.9.6), and the
claim and hence the proposition is proved.

Remark I.9.9 It seems that the proof of [Bo4, Proposition 12.6] does not
apply here. Assume that P, P ′ are both minimal. Then there exists an element
g ∈ G, g 6∈ P such that P ′ = gP . In the proof of [Bo4, Proposition 12.6], g
is written in the Bruhat decomposition uwzv, where w ∈ W (g, aP ), w 6= Id,
u, v ∈ NP , z ∈ AP . For each fixed g, the components u, v, z are bounded.
This is an important step in the proof. If w is equal to the element w0 of
longest length, then for a sufficiently small neighborhood C of g in G (or
K), every g′ ∈ C is of the form u′w0z

′v′ with the same Weyl group element
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W0 and the components u′, v′, z′ are uniformly bounded, and the same proof
works. On the other hand, if w is not equal to w0, then any neighborhood C
of g contains elements g′ of the form u′w0z

′v′ whose components u′, z′, v′ are
not uniformly bounded, and the method in [Bo4, Proposition 12.6] does not
apply directly. The reason for the unboundedness of the components is that
NPw0 is mapped to an open dense subset of G/P .

Remark I.9.10 The above proof of Proposition I.9.8 was suggested by the
Hausdorff property of the maximal Satake compactification X

S

max. In fact,
Proposition I.9.8 follows from the Hausdorff property of X

S

max, by computa-
tions similar to those in the proof of Proposition I.10.10. But the point here
is to prove this separation property without using any compactification, so
that it can be used to construct other compactifications.

Proposition I.9.8 gives the separation property for different parabolic sub-
groups. For any parabolic subgroup P , separation of Siegel sets for disjoint
neighborhoods in XP is proved in the next proposition.

Proposition I.9.11 (Strong separation of generalized Siegel sets) For
any given parabolic subgroup P and two different boundary points z, z′ ∈ XP ,
let V, V ′ be compact neighborhoods of z, z′ with V ∩V ′ = ∅. If ε is sufficiently
small, t is sufficiently large and C is a sufficiently small compact neighborhood
of e in K, then for all k, k′ ∈ C, the generalized Siegel sets kSε,t,V , k′Sε,t,V ′
are disjoint.

Proof. We prove this proposition by contradiction. If not, then for all
ε > 0, t > 0 and any neighborhood C of e in K,

kSε,t,V ∩ k′Sε,t,V ′ 6= ∅,

for some k, k′ ∈ C. Therefore, there exist sequences kj , k′j ∈ K, nj , n′j ∈ NP ,
aj , a

′
j ∈ AP , mj ∈ V KP ,m

′
j ∈ V ′KP such that

1. kj , k′j → e,

2. najj → e, n′j
a′j → e,

3. For all α ∈ ∆(P,AP ), aαj , a′αj → +∞,

4. kjnjajmjK = k′jn
′
ja
′
jm
′
jK.

Since V KP , V
′KP are compact, after passing to a subsequence, we can as-

sume that both mj and m′j converge. Denote their limits by m∞,m
′
∞. By

assumption, V KP ∩ V ′KP = ∅, and hence

m∞KP 6= m′∞KP .
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We claim that the conditions (1), (2) and (3) together with m∞KP 6=
m′∞KP contradict the condition (4).

As in the proof of Proposition I.9.8, let τ : G → PSL(n,C) be a faithful
representation whose highest weight is generic and τ(θ(g)) = (τ(g)∗)−1, where
θ is the Cartan involution associated with K. Let Hn be the real vector space
of n × n Hermitian matrices and P (Hn) the associated projective space. As
in §I.4, τ defines an embedding

iτ : G/K → P(Hn), gK 7→ [τ(g)τ∗(g)],

where [τ(g)τ∗(g)] denotes the line determined by τ(g)τ∗(g). We will prove
the claim by determining the limits of iτ (kjnjajmj) and iτ (k′jn

′
ja
′
jm
′
j).

Let P0 be a minimal parabolic subgroup contained in P . Then P = P0,I

for a unique subset I ⊂ ∆(P0, AP0). As in the proof of Proposition I.9.8, we
can assume that for a ∈ AP0 , τ(a) is diagonal,

τ(a) = diag(aµ1 , · · · , aµn),

and the weights µ1, · · · , µl are the weights whose supports are contained in I.
Then

iτ (kjnjajmj) = [τ(kj)τ(aj)τ(najj )τ(mj)τ(mj)∗τ(najj )∗τ(aj)∗τ(kj)∗]

→ [diag(1, · · · , 1, 0, · · · , 0)τ(m∞)τ(m∞)∗diag(1, · · · , 1, 0 · · · , 0)∗] =

[τP (m∞)τP (m∞)∗], (I.9.7)

where

τP : MP → PSL(VP ) ↪→ PC(Mn×n), m 7→ [diag(1, · · · , 1, 0, · · · , 0)τ(m)],

is the map in Equation (I.9.5) in the proof of Proposition I.9.8. Since τP is a
faithful representation,

τP τ
∗
P : XP → P (Hn), mKP 7→ [τP (m)τP (m)∗]

is an embedding.
Similarly, we get

iτ (k′jn
′
ja
′
jm
′
j)→ [τP (m′∞)τP (m′∞)∗]. (I.9.8)

Since m∞,m′∞ ∈MP and m∞KP 6= m′∞KP , we get

[τP (m∞)τP (m∞)∗] 6= [τP (m′∞)τP (m′∞)∗].

Then the condition (4) implies that Equation (I.9.8) contradicts Equation
(I.9.7) and the claim is proved.
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Remark I.9.12 As mentioned earlier, the separation property and the finite-
ness property of Siegel sets for rational parabolic subgroups is a crucial result
in the reduction theory of arithmetic subgroups of algebraic groups (see [Bo4]
and §III.2 below) and plays an important role in compactifications of locally
symmetric spaces Γ\X. One of the main points of Part I is that the above
(stronger) separation properties of the generalized Siegel sets for real parabolic
subgroups in Propositions I.9.8 and I.9.11 will play a similar role in compact-
ifications of X.

Remark I.9.13 For a parabolic subgroup P , let P− be the opposite parabolic
subgroup, i.e., P, P− share a common split component AP , and the roots in
Φ(P−, AP ) are equal to the negative of the roots in Φ(P,AP ). Denote the
Langlands decomposition of P− by

P− = N−P APMP .

Since N−P is a normal subgroup, this can also be written in the form

P− = AP ×N−P ×MP
∼= AP ×N−P ×MP ,

which induces the following decomposition of X:

AP ×N−P ×XP → X, (a, n, z)→ anz. (I.9.9)

This decomposition is different from the horospherical decomposition X =
N−P × AP × XP associated with P−. Let V ⊂ XP be a bounded subset as
above, and U ′ a compact neighborhood of the identity element in N−P . Then
the subet AP,t×U ′×V is X is an admissible region in [Ko1]. It can be checked
easily that such a subset is not contained in any Siegel set U ×AP,t × V , and
hence the decomposition in Equation (I.9.9) is different from the horospherical
decomposition.

For any element p ∈ P , in particular for g ∈ NP , gSP,ε,t,V is contained in
another Siegel set. This invariance under P of the collection of generalized
Siegel sets associated with P is important for applications to compactifications
of X. The reason is that we expect P to stabilize the boundary component
of P and NP to act trivially on it. If we want to describe the neighborhoods
of boundary points in terms of certain sets, it is certainly desirable that the
collection of these sets is invariant under P . Furthermore, it is needed to
prove the continuity of the extended action. The admissible regions in [Ko1]
have similar properties [Ko1, Lemma 2.1].

I.9.14 Summary and comments.
Siegel sets associated with Q-parabolic subgroupsare basic to the reduction

theory of arithmetic subgroups, which in turn is important for understanding
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the geometry of locally symmetric spaces. There are several aspects of the
reduction theory, but a crucial one concerns separation of Siegel sets.

In this section, we introduced Siegel sets of real parabolic subgroups and
larger sets, called the generalized Siegel sets. Then we developed several
versions of separation property of the generalized Siegel sets. The strong
separation property will play a fundamental role in the intrinsic construction
of compactifications in this chapter.

The reduction theory in [Bo4] [Bo3] deal mainly with arithmetic sub-
groups, but some parts deal with real parabolic subgroups and their Siegel
sets. Parts of [BS2] also deal with parabolic subgroups defined over a field
lying between Q and R. The generalized Siegel sets are strictly larger than
Siegel sets and are important for applications below.

I.10 Uniform construction of the maximal Sa-
take compactification

In this section, we apply the uniform method in §I.8 to construct the maxi-
mal Satake compactification X

S

max, which, in a certain sense, is the simplest
compactification to which this method applies, and all the general steps in
§I.8 can be explained easily.

First we define the boundary component of parabolic subgroups (§I.1.10.1)
and describe the convergence of interior points to them in terms of the horo-
spherical decomposition. The generalized Siegel sets are used here in or-
der to show that the G-action extends continuously to the compactification
(Proposition I.10.8). To prove the Hausdorff property of the compactification
(Proposition I.10.6), we use the strong separation property of the generalized
Siegel sets. The compactness of the constructed space is given in Proposition
I.10.7. Finally, we show (Proposition I.10.11) that this construction gives the
maximal Satake compactification X

S

max defined in §I.4.

I.10.1 The first step is to choose a G-invariant collection of parabolic sub-
groups. In this case, we use the collection of all proper parabolic subgroups.

For every (proper) parabolic subgroup P , define its maximal Satake bound-
ary component by

e(P ) = XP ,

the boundary symmetric space defined in Equation (I.1.12) in §I.1. As pointed
out in Equation in (I.1.13), XP is also a homogeneous space of P , which will
be needed below to define the G-action on the compactification. Define

Xmax = X ∪
∐
P

XP . (I.10.1)
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To put a topology on Xmax, we need a topology on the collection of bound-
ary components. This can be given in terms of the topology of the topological
spherical Tits building recalled in Definition I.2.21 and Proposition I.2.22, or
described more directly using the K-action on the parabolic subgroups and
the related decompositions.

Specifically, by the K-action on the horospherical decomposition in Equa-
tion (I.1.16) in §I.1, K acts on Xmax as follows: for k ∈ K, z = mKP ∈ XP ,

k · z = km ∈ XkP . (I.10.2)

If we realize XP as a submanifold MP · x0 = MP ·K ⊂ X = G/K, then this
action is exactly the restriction of the action of K on X.

The G-action on Xmax will be defined later.

I.10.2 The topology of Xmax is defined as follows. First we note that X
and XP have a topology defined by the invariant metric. We need to de-
fine convergence of sequences of interior points in X to boundary points and
convergence of sequences of boundary points:

1. For a boundary component XP and a point z∞ ∈ XP , a unbounded
sequence yj in X converges to z∞ if and only if yj can be written in
the form yj = kjnjajzj , where kj ∈ K,nj ∈ NP , aj ∈ AP , zj ∈ XP such
that

(a) kj → e, where e is the identity element.

(b) For all α ∈ Φ(P,AP ), aαj → +∞.

(c) n
aj
j → e.

(d) zj → z∞.

2. Let Q be a parabolic subgroup containing P . For a sequence kj ∈ K
with kj → e, and a sequence yj ∈ XQ, the sequence kjyj ∈ XkjQ, which
is defined in Equation (I.10.2), converges to z∞ ∈ XP if the following
conditions are satisfied. Let P ′ be the unique parabolic subgroup in MQ

corresponds to P as in Equation (I.1.21) in §I.1, and write XQ = NP ′ ×
AP ′ × XP ′ . The sequence yj can be written as yj = k′jn

′
ja
′
jz
′
j , where

k′j ∈ KQ, n
′
j ∈ NP ′ , a′j ∈ AP ′ , z′j ∈ XP ′ = XP satisfy the same condition

as part (1) above when K,NP , AP , XP are replaced by KQ, NP ′ , AP ′ ,
XP ′ . Note that if Q = P , then P ′ = MQ, and NP ′ , AP ′ are trivial.

These are special convergent sequences, and combinations of them give
general convergent sequences. By a combination of these special sequences,
we mean a sequence {yj}, j ∈ N, and a splitting N = A1

∐
· · ·
∐
As such that

for each infinite Ai, the corresponding subsequence yj , j ∈ Ai, is a sequence of
type either (1) or (2). It can be shown easily that these convergent sequences
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satisfy the conditions in Definition I.8.11. In fact, the main condition to check
is the double sequence condition and this condition is satisfied by double
sequences of either type (1) or type (2) above, and hence by general double
sequences. Therefore these convergent sequences form a convergence class of
sequences, and define a unique topology on Xmax.

I.10.3 It is easy to see that for every P , XP is in the closure of X. More
generally, for a pair of parabolic subgroups P,Q, P ⊆ Q if and only if XP is
contained in the closure of XQ. Clearly, each boundary component XP is a
cell; and therefore, the boundary components satisfy the type (1) compatibil-
ity condition in §I.8.2, and the boundary ∪PXP is a cell complex dual to the
Tits building ∆(G).

I.10.4 The description of the topology in terms of convergent sequences is
convenient and intuitive for many purposes. On the other hand, neighborhood
systems of the boundary points of X

max
can be given explicitly.

For every parabolic subgroup P , let PI , I ⊂ ∆(P,AP ), be all the parabolic
subgroups containing P . For every PI , XPI contains XP as a boundary com-
ponent. For any point z ∈ XP , let V be a neighborhood of z in XP . For
ε > 0, t > 0, let Sε,t,V be the generalized Siegel set in X defined in Equation
(I.9.2) in §I.9, and let SIε,t,V be the generalized Siegel set of XPI associated
to the parabolic subgroup P ′ in MPI , which is associated to P as in Equation
(I.1.21) in §I.1. Let C be a (compact) neighborhood of e in K. Then the
union

C(Sε,t,V ∪
∐
I⊂∆

SIε,t,V ) (I.10.3)

is a neighborhood of z in Xmax. For sequences of εi → 0, ti → +∞, a basis
Vi of neighborhoods of z in XP and a basis of compact neighborhoods Cj of
e in K, the above union in Equation I.10.3 forms a countable basis of the
neighborhoods of z in Xmax.

It can be checked easily that these neighborhoods define a topology on
X

max
whose convergent sequences are exactly those given above.

I.10.5 When a point yj ∈ X is written in the form kjnjajzj with kj ∈
K,nj ∈ NP , aj ∈ AP , zj ∈ XP , none of these factors is unique, since X =
NP ×AP ×XP and the extra K-factor causes non-uniqueness. Then a natural
question is the uniqueness of the limit of a convergent sequence yj in Xmax, or
equivalently, whether the topology on Xmax is Hausdorff. Since the K-factor
is required to converge to e, it is reasonable to expect that the Hausdorff
property still holds.

Proposition I.10.6 The topology on Xmax is Hausdorff.
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Proof. We need to show that every pair of different points x1, x2 ∈ Xmax

admit disjoint neighborhoods. This is clearly the case when at least one of
x1, x2 belongs to X. Assume that both belong to the boundary and let P1, P2

be the parabolic subgroups such that x1 ∈ XP1 , x2 ∈ XP2 . There are two
cases to consider: P1 = P2 or not.

For the second case, let C be a sufficiently small compact neighborhood
of e in K such that for k1, k2 ∈ C,

k1P1 6= k2P2.

By definition, C(Sε,t,Vi ∪
∐
I S

I
ε,t,Vi

) is a neighborhood of xi, i = 1, 2.
Proposition I.9.8 implies that

CSε,t,V1 ∩ CSε,t,V2 = ∅.

For all pairs of I1, I2, k1, k2 ∈ C, either

k1P1,I1 6= k2P2,I2 ,

and hence
k1S

I1
ε,t,V1

∩ k2S
I2
ε,t,V2

= ∅,

or
k1P1,I1 = k2P2,I2 .

In the latter case, P1, (k2P2)k1 are contained in P1,I1 and correspond to two
parabolic subgroups of MP1,I1

by Equation (I.1.21). As in the case above for
general Siegel sets in X, we get

k1S
I1
ε,t,V1

∩ k2S
I2
ε,t,V2

= ∅.

This implies that the neighborhoods of x1 and x2 are disjoint.
In the first case, P1 = P2. Since x1 6= x2, we can choose compact neighbor-

hoods V1, V2 in XP1 such that V1 ∩ V2 = ∅. Then Proposition I.9.11 together
with similar arguments as above imply x1, x2 admit disjoint neighborhoods.
This completes the proof of this proposition.

Proposition I.10.7 The topological space Xmax is compact and contains X
as a dense open subset.

Proof. Let P0 be a minimal parabolic subgroup, and P0,I , I ⊂ ∆ =
∆(P0, AP0), be all the standard parabolic subgroups. Since every parabolic
subgroup is conjugate to standard parabolic subgroup P0,I under K, we have

Xmax = X ∪
∐
I⊂∆

KXP0,I .
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Since K is compact, it suffices to show that every sequence in X and XP0,I

has a convergent subsequence. First, we consider a sequence in X. If yj is
bounded, it clearly has a convergent subsequence in X. Otherwise, writing
yj = kjajx0, kj ∈ K, aj ∈ A+

P0
, we can assume, by passing to a subsequence,

that the components of yj satisfy the conditions:

1. kj → k∞ for some k∞ ∈ K,

2. there exists a subset I ⊂ ∆(P0, AP0) such that for α ∈ ∆−I, α(log aj)→
+∞, while for α ∈ I, α(log aj) converges to a finite number.

Decompose
log aj = HI,j +HI

j , HI,j ∈ aP0,I ,H
I
j ∈ aIP0

.

Since ∆(P0, AP0)− I restricts to ∆(P0,I , AP0,I ), it follows from the definition
that k−1

j yj = ajx0 converges to eH
I
∞x0 ∈ XP0,I inXmax, where x0 also denotes

the basepoint KP0,I in XP0,I , and HI
∞ is the unique vector in aIP0

such that
for all α ∈ I, α(HI

∞) = limj→+∞ α(log aj). Together with the action of K on
parabolic subgroups and the Langlands decomposition in Equation (I.1.16),
this implies that yj = (kjk−1

∞ ) k∞ajx0 converges to a point in X(k∞P0,I) in
Xmax.

For a sequence in XP0,I , we can similarly use the Cartan decomposition

XP0,I = KP0,I exp aI,+P0
x0 to extract a convergent subsequence in Xmax.

Proposition I.10.8 The action of G on X extends to a continuous action
on Xmax.

Proof. First we define a G-action on the boundary ∂Xmax =
∐
P XP , then

show that this gives a continuous G-action on Xmax.
For g ∈ G and a boundary point z ∈ XP , write

g = kman,

where k ∈ K,m ∈MK , a ∈ AP , n ∈ NP . Define

g · z = k · (mz) ∈ XkP ,

where k · (mz) is defined in Equation (I.1.15) in §I.1. We note that k,m are
determined up to a factor in KP , but km is uniquely determined by g, and
hence this action is well-defined. Clearly, this action extends the K-action
defined in Equation (I.10.2), in particular, k ·XP = XkP .

To prove the continuity of this G-action, we first show that if gj → g∞ in
G and a sequence yj ∈ X converging to z∞ ∈ XP , then gjyj → g∞z∞.
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By definition, yj can be written in the form yj = kjnjajzj such that (1)
kj ∈ K, kj → e, (2) aj ∈ AP , and for all α ∈ Φ(P,AP ), α(log aj)→ +∞, (3)
nj ∈ NP , najj → e, and (4) zj ∈ XP , zj → z∞. Write

gjkj = k′jm
′
ja
′
jn
′
j ,

where k′j ∈ K,m′j ∈ MP , a′j ∈ AP , n′j ∈ NP . Then a′j , n
′
j are uniquely de-

termined by gjkj and bounded, and k′jm
′
j converges to the KMP -component

of g. By choosing suitable factors in KP , we can assume that k′j → k, and
m′j → m, where g = kman as above. Since

gjyj = k′jm
′
ja
′
jn
′
jnjajzj = k′j

m′ja
′
j (n′jnj)a

′
jajm

′
jzj ,

and
(n′jnj)

a′jaj → e, m′j → m,

it follows from the definition of convergence of sequences that gjyj converges
to k · (mz∞) ∈ XkP in Xmax, which is equal to g · z∞ as defined above.

The same proof works for a sequence yj in XQ for any parabolic subgroup
Q ⊃ P . A general sequence in Xmax follows from combinations of these two
cases, and the continuity of this extended G action on Xmax is proved.

Remark I.10.9 In the above proof, the horospherical decomposition allows
us to decompose the g-action into two components. The K-component is easy
and the difficulty lies in the P -component. Since it is easy to compute the
action of elements of P in terms of the horospherical decomposition associated
with P , this difficulty can be overcome. In this step, the NP -factor in the
definition of convergence to boundary points is crucial. We want the NP -
factor to be large enough to absorb bounded elements in NP but still to be
negligible. This motivates the definition of generalized set in Equation (I.9.2).

On the other hand, in [GJT], convergence to boundary points in the dual-
cell compactification X ∪∆∗(X) is defined in terms of the Cartan decompo-
sition X = KA+x0, and it is difficult to compute the Cartan decomposition
of g(keH) in terms of g, k ∈ K and eH ∈ A+. Because of this difference, the
continuous extension of the G-action to X ∪∆∗(X) is not easy. In fact, the
continuity of the G-action is not proved directly there. As mentioned earlier,
this is one of the motivations of Part I of this book.

Next we identify this compactification with the maximal Satake compact-
ification X

S

max in §I.4.

Proposition I.10.10 For any Satake compactification X
S

τ , the identity map
on X extends to a continuous G-equivariant surjective map Xmax → X

S

τ .
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Proof. Since every boundary point of Xmax is the limit of a sequence of
points in X, by [GJT, Lemma 3.28], it suffices to show that for any unbounded
sequence yj in X which converges in Xmax, then yj also converges in X

S

τ . By
definition, there exists a parabolic subgroup P such that yj can be written as
yj = kjnjajmjKP , where kj ∈ K,nj ∈ NP , aj ∈ AP , mjKP ∈ XP satisfy the
conditions: (1) kj → e, (2) najj → e, (3) for all α ∈ Φ(P,AP ), α(log aj) →
+∞, (4) mjKP converges to m∞KP for some m∞. Then under the map
iτ : X → P (Hn),

iτ (yj) = [τ(kjnjajmj)τ(kjnjajmj)∗]

= [τ(kj)τ(aj)τ(najj )τ(mj)τ(mj)∗τ(najj )∗τ(aj)τ(kj)∗].

Let P0 be a minimal parabolic subgroup contained in P . Write P = PI . As
in the proof of Proposition I.9.8 (or I.9.11), we can assume, with respect to a
suitable basis, that τ(aj) = diag(aµ1

j , · · · , a
µn
j ) and that µ1, · · · , µl are all the

wrights whose supports are contained in I. Then as j → +∞,

[diag(aµ1
j , · · · , a

µn
j )]→ [diag(1, · · · , 1, 0, · · · , 0)];

and hence

iτ (yj)→ [diag(1, · · · , 1, 0, · · · , 0)τ(m∞)τ(m∞)∗diag(1, · · · , 1, 0, · · · , 0)∗].

Proposition I.10.11 For the maximal Satake compactification X
S

max, the
map Xmax → X

S

max in Proposition I.10.10 is a homeomorphism.

Proof. Since both Xmax and X
S

max are compact and Hausdorff, it suffices
to show that the continuous map Xmax → X

S

max is injective. By Equa-
tion (I.4.31), X

S

max = X ∪
∐
P XP . By the proof of the previous propo-

sition, a sequence yj = kjnjajmjKP in X satisfying the conditions above
with mjKP → m∞KP in Xmax converges to the same limit as the sequence
ajmjKP . Under the above identification of X

S

max, ajmjKP converges to
m∞KP ∈ XP in X

S

max. This implies that the map Xmax → X
S

max is the iden-
tity map under the identification Xmax = X ∪

∐
P XP = X

S

max, and hence is
injective.

I.10.12 Summary and comments. In this section, we follow the uniform,
intrinsic method to construct the maximal Satake compactification. This con-
struction explains the motivation and definition of generalized Siegel sets, and
how they are used in proving the Hausdorff property of the compactification
and the continuous extension of the G-action to the compactification.
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I.11 Uniform construction of non-maximal Sa-
take compactifications

In this section we apply the uniform method in §I.8 to construct the non-
maximal Satake compactifications. Unlike the case of the maximal Satake
compactification, we choose a proper G-invariant collection of parabolic sub-
groups of G and attach their boundary components.

We first motivate and define the collection of these parabolic subgroups
and their boundary components in I.11.2-I.11.7. Then describe the conver-
gence of interior points to these boundary components in I.11.10. Neighbor-
hood base of boundary points are given in I.11.11-I.11.13. Both steps are
more complicated than in the maximal Satake compactification X

S

max. One
reason is that the boundary components are not parametrized by all parabolic
subgroups rather than by saturated parabolic subgroups.

After showing the Hausdorff property (Proposition I.11.14 ) and relations
between these compactifications and the maximal Satake compactification, we
use them to prove the compactness (Proposition I.11.16) and the continuous
extension of the G-action on X (Proposition I.11.17). Finally we identify
them with the Satake compactifications X

S

τ in §I.4. (Proposition I.11.18)
This construction of the non-maximal Satake compactifications is more

complicated than the original one in [Sat1]. But the gain is the explicit de-
scription of neighborhoods of boundary points and sequences converging to
them, which are useful for applications.

I.11.1 Let P0 be a minimal parabolic subgroup, and µ ∈ a∗+P0
, a dominant

weight, both of which will be fixed for the rest of this section. For each such µ,
we will construct a compactification Xµ such that the Satake compactification
X
S

τ is isomorphic to X
µτ . Before defining the boundary components, we need

to choose the collection of parabolic subgroups and to refine the horospherical
decomposition of X which are needed to attach the boundary components at
infinity.

To motivate the choice of the collection of parabolic subgroups, we recall
the decomposition of X

S

τ into boundary components in Proposition I.4.38.
The boundary components are parametrized by their normalizers, which are
given by µτ -saturated parabolic subgroups.

First we introduce the analogous definitions. A subset I ⊂ ∆(P0, AP0)
is called µ-connected if the union I ∪ {µ} is connected, i.e., it can not be
written as a disjoint union I1

∐
I2 such that elements in I1 are perpendicular

to elements in I2 with respect to a positive definite inner product on a∗P0

invariant under the Weyl group.
A standard parabolic subgroup P0,I is called µ-connected if I is µ-connected.

Let I ′ be the union of roots in ∆(P0, AP0) which are perpendicular to I ∪{µ}.
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Then J = I ∪ I ′ is called the µ-saturation of I, and P0,J is called the µ-
saturation P0,I . Any parabolic subgroup P conjugate to a µ-connected stan-
dard parabolic subgroup P0,I is called µ-connected. Any parabolic subgroup
Q conjugated to P0,J for a µ-saturated J is called a µ-saturated parabolic
subgroup.

For any standard parabolic subgroup P0,J , let P0,IJ be the unique maximal
one among all the µ-connected standard parabolic subgroups contained in
P0,J , i.e., IJ is the largest µ-connected subset contained in J . Then IJ is
called the µ-reduction of J , and the parabolic subgroup P0,IJ is called the µ-
reduction of P0,J . In general, for any parabolic subgroup Q = gP0,J , we define
a µ-reduction of Q by gP0,IJ , a µ-connected parabolic subgroup contained in
Q. In fact, it is a maximal element in the collection of µ-connected parabolic
subgroups contained in Q. It should be pointed out that this µ-reduction of
Q is not unique. In fact, for any q ∈ Q− gP0,IJ , qgP0,IJ is also a µ-reduction.
On the other hand, the µ-saturation of a parabolic subgroup is unique.

Clearly, the collection of µ-saturated parabolic subgroups is invariant un-
der the conjugation of G, and will be used construct the compactification of
Xµ.

I.11.2 Next we define the boundary components of µ-saturated parabolic
subgroups in two steps: (1) for the standard ones containing the fixed minimal
parabolic subgroup P0, (2) the general case.

Let Q be a µ-saturated standard parabolic subgroup, Q = P0,J . Let
Q = NQAQMQ be the Langlands decomposition associated with the basepoint
x0 = K ∈ X, andXQ = MQ/(KQ) the boundary symmetric space. Let I = IJ
be the µ-reduction of J , J = I ∪ I ′. Let P0,I be the standard µ-reduction of
P0,J , and XP0,I its boundary symmetric space. Then

XQ = XP0,I ×XP0,I′ .

Define the boundary component e(Q) of Q by

e(Q) = XP0,I . (I.11.1)

For any µ-saturated parabolic subgroup Q, write Q = kP0,J , where J
is µ-saturated. Then kP0,I is a µ-reduction of P0,J . Define the boundary
component e(Q) of Q by

e(Q) = XkXP0,I
.

To show that this definition is independent of the choice of k, we define it
directly without using conjugation to the standard parabolic subgroups.

Let Q be any µτ -saturated parabolic subgroup. Let g = k ⊕ p be the
Cartan decomposition of g, and a a maximal subalgebra of p contained in the
Lie algebra of Q. Then A = exp a is a maximal split torus contained in Q and
stable under the Cartan involution θ associated with the basepoint x0.
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Let P be a minimal parabolic subgroup contained in Q. Then A is a split
component of P and Q = PJ , where J ⊂ ∆(P,A). Since P is conjugate to
P0, µ defines a dominant weight on a, still denoted by µ. Let I ⊂ J be the
maximal µ-connected subset of J , and I ′ = J \ I its orthogonal complement.
Let XI = XPI , XI′ = XPI′ .

Proposition I.11.3 The boundary symmetric space of Q splits as

XQ = XI ×XI′ , (I.11.2)

and the splitting is independent of the choice of the minimal parabolic subgroup
P and the splitting component A. Define the boundary component e(Q) of Q
by

e(Q) = XI .

Proof. Clearly, this splitting of XQ does not depend on the choice of the
minimal parabolic subgroup P contained in Q. In fact, in the Langlands
decomposition of P , P = NPAMP , MP is the same for all the different
choices of P .

To show that that the factors XI , XI′ , and the splitting in Equation
(I.11.2) do not depend on the choice of the subalgebra a, we determine all
such choices of a. Note that

a = aJ ⊕ aI ⊕ aI
′
,

where aI is the orthogonal complement of aI in a, and aI
′

is the orthogonal
complement of aI′ in a. Since exp aI is a maximal split torus in MPI stable
under the Cartan involution associated with KPI and exp aI

′
is a maximal

split torus in MPI′ stable under the Cartan involution associated with KPI′ ,
for any k ∈ KPI and k′ ∈ KPI′ ,

a′ = aJ ⊕Ad(k)aI ⊕Ad(k′)aI
′

is a maximal subalgebra of p contained in the Lie algebra of Q, and any
such abelian subalgebra of the Lie algebra of Q is of this form a′ for some
k, k′. Since Ad(k′) acts as the identify on MPI and Ad(k) also acts as the
identify on MPI′ , the factors XI , XI′ and the splitting of XQ induced from
the subgroup A′ = exp a′ are the same. Hence, the splitting in Equation
(I.11.2) is canonical.

I.11.4 The discussion of the standard Satake compactification Pn
S

in I.4 is
a good example illustrating these definition. Let P0 be the minimal parabolic
subgroup consisting of upper triangular matrices in G− PSL(n,C). Then

aP0 = {diag(t1, · · · , tn) | ti ∈ R, t1 + · · ·+ tn = 0},
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Φ(P0, AP0) = {ti − tj | 1 ≤ i < j ≤ n},
∆(P0, AP0) = {α1 = t1 − t2, · · · , αn−1 = tn−1 − tn}.

Let µ = i1. Then µ-connected subsets of ∆ are of the form I = {α1, · · · , αk1}.
The µ-saturation of P0,I is the maximal parabolic subgroup P0,∆−{αk}. Hence,
a parabolic subgroup is µ-saturated if and only if it is a maximal parabolic
subgroup. For the parabolic subgroup Q = P0,∆−{αk}, the canonical splitting
of XQ in Equation I.11.2 is given by

XQ = Pk × Pn−k,

and the boundary component

e(Q) = Pk.

I.11.5 Another example is the Baily-Borel compactification of Hermitian
symmetric spaces. Assume that X is an irreducible Hermitian symmetric
space of noncompact type. By Proposition I.5.18, the root system Φ(g, a) is
either of type Cr or BCr. If µ is only connected to the last distinguished root
αr, then µ-connected subsets of ∆ = ∆(g, a) are of the form I = {α`, · · · , αr}.
Let P0 be the minimal parabolic subgroup containing exp a such that ∆ is the
set of simple roots in Φ(P0, exp a). Then the µ-saturation of P0,I is equal to
P0,∆−{α`−1}, which is a maximal parabolic subgroup. Let Q = P0,∆−{α`−1}.
Then the boundary symmetric space XQ is not Hermitian, but the boundary
component e(Q) = XI is a Hermitian symmetric space of lower rank. In fact,
the root system of XI is generated by I and has the same type as X. Since the
Baily-Borel compactification of X was used to compactify locally symmetric
spaces Γ\X into projective varieties, in particular complex analytic spaces, it
is important that the boundary components have are complex spaces as well.
This explains the necessity of the splitting of the boundary symmetric space
XQ in Equation (I.11.2).

Remark I.11.6 In the above two examples, the µ-saturated parabolic sub-
groups are maximal parabolic subgroups. It should be pointed out that this
is not always the case. In fact, in the above examples, assume the rank r ≥ 5,
and the dominant µ is exactly connected to the two end roots α1 and αr. Let
I = {α1, αr}. Then the µ-saturation of P0,I is equal to P0,∆−{α2,αr−1}, which
is not a maximal parabolic subgroup of G.

I.11.7 For any parabolic subgroup Q, by Equation (I.1.13), the boundary
symmetric space XQ is a homogeneous space of Q. When Q is µ-saturated,
the boundary component e(Q) = XI is also a homogeneous space of Q. In
fact, we can define an action of Q on XI as follows. Let

π : XQ = XI ×XI′ → XI
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be the projection onto the first factor. For any q ∈ Q and z = mKP0,I ∈ XI ,
define the action

q · z = π(q ·mKQ), (I.11.3)

where mKQ is a point in XQ and q ·mKQ is given by the action of Q on XQ.
It can be shown that this defines a group action of Q on e(Q). Briefly,

for any q ∈ Q, there exist mq ∈ MP0,I , m
′
q ∈ MP0,I′ such that for any

(z, z′) ∈ XI ×XI′ = XQ,

q · (z, z′) = (mqz,m
′
qz
′) ∈ XI ×XI′ .

Hence, for q1, q2 ∈ Q,

q1q2 · (z, z′) = (mq1mq2z,m
′
q1m

′
q2z
′),

which implies that
q1q2 · z = q2 · (q1 · z).

The stabilizer of the basepoint x0 = KP0,I ∈ XI can also be described explic-
itly (see [BJ2, §5]).

I.11.8 Once the boundary components are defined, we are ready to define
the compactification Xµ. As a set,

Xµ = X ∪
∐

µ−saturated Q

e(Q) = X ∪
∐

µ−saturated Q

XI . (I.11.4)

As in the previous section on Xmax, to define the topology on the set
of boundary components of Xµ, we need to define a K-action on the set of
boundary components. Let Q be any µ-saturated parabolic subgroup, and
e(Q) = XI = XPI its boundary component. For any k ∈ K and z = mKPI ,
define

k · z = kmKkPI ∈ e(
kQ). (I.11.5)

To describe the convergence of interior points of X to the boundary points
in Xmax, the horospherical decomposition was used. For the compactification
Xµ, we need the following more refined decomposition.

Lemma I.11.9 Let Q be a µ-saturated parabolic subgroup, P a minimal parabolic
subgroup contained in Q. Let Q = PJ , and PI be the µ-connected reduction
of Q. For any parabolic subgroup R satisfying PI ⊆ R ⊆ Q, write R = PJ′
and J ′ = I ∪ I ′, where I ′ is perpendicular to I. Let XR = XI ×XPI′ be the
decomposition similar to that in Equation (I.11.2). Then the horospherical
decomposition of X with respect to R

X = NR ×AR ×XR

can be refined to
X = NR ×AR ×XI ×XPI′ . (I.11.6)
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Proof. When R = Q, the decomposition XQ = XI × XPI′ was described
in Equation (I.11.2). The general case is similar. As in the case R = Q, the
decomposition XR = XI ×XPI′ is independent of the choice of the minimal
parabolic subgroup P contained in R. For simplicity, XI′ is also denoted by
XI′ and the decomposition in Equation (I.11.6) written as

X = NR ×AR ×XI ×XI′ . (I.11.7)

I.11.10 A topology on Xµ is given as follows:

1. For a µ-saturated parabolic subgroup Q, let P0 ⊆ Q be a minimal
parabolic subgroup, and P0,I be a µ-connected reduction of Q. Then
a unbounded sequence yj in X converges to a boundary point z∞ ∈
e(Q) = XI if there exists a parabolic subgroup R that is contained in Q
and contains P0,I such that in the refined horospherical decomposition
X = NR×AR×XI ×XI′ in Equation (I.11.6), yj can be written in the
form yj = kjnjajzjz

′
j such that the factors kj ∈ K, nj ∈ NR, aj ∈ AR,

zj ∈ XI , z′j ∈ XI′ satisfy the following conditions:

(a) the image of kj in the quotient K/K ∩ Z(e(Q)) converges to the
identity coset,

(b) for α ∈ ∆(R,AR), aαj → +∞,

(c) n
aj
j → e,

(d) zj → z∞,

(e) z′j is bounded.

2. For a pair of µ-saturated parabolic subgroups Q1 and Q2 such that a µ-
connected reduction of Q1 is contained in a µ-connected reduction of Q2,
let Q′1 be the unique parabolic subgroup in MQ2 determined by Q1∩Q2.
For a sequence kj ∈ K whose image in K/K ∩Z(e(Q1) converges to the
identity coset, and a sequence yj in e(Q2) = XI(Q2), the sequence kjyj in
Xµ converges to z∞ ∈ e(Q1) = XI(Q1) if yj satisfies the same condition
as in part (1) above when G is replaced by the subgroup GI(Q2) of MQ2

whose symmetric spaces of maximal compact subgroups is XI(Q2), and
Q by Q′1 ∩GI(Q2).

These are special convergent sequences, and their (finite) combinations
give general convergent sequences. We note that all the µ-connected reduc-
tions of Q are conjugate under Z(e(Q)). Hence in (1), it does not matter
which µ-connected reduction is used, and we can fix a minimal parabolic sub-
group P0 ⊆ Q and the µ-connected reduction P0,I of Q. Then there are only
finitely many parabolic subgroups R with P0,I ⊆ R ⊆ Q.
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The definition of the convergent sequences is motivated by the fact that
the maximal Satake compactification X

S

max of X dominates all non-maximal
Satake compactifications and the characterizations of convergent sequences of
X
S

max in §4, together with the observation that the action by elements in the
centralizer Z(e(Q)) will not change the convergence of sequences to points in
e(Q).

I.11.11 Neighborhoods of boundary points can be given explicitly.
For any µ-saturated parabolic subgroup Q and a boundary point z∞ ∈

e(Q), let V be a neighborhood of z∞ in e(Q).
Fix a minimal parabolic subgroup P0 contained in Q. Let aP0 be the

Lie algebra of its split component AP0 , W be the Weyl group of aP0 , and
T ∈ a+

P0
be a regular vector. The convex hull of the Weyl group orbit W · T

is a convex polytope ΣT in aP0 , whose faces are in one-to-one correspondence
with parabolic subgroups R whose split component aR is contained in aP0 .
Denote the closed face of Σ corresponding to R by σR. Then

aP0 = ΣT ∪
∐
R

(σR + a+
R), (I.11.8)

where aR ⊆ aP0 as above. Define

aµ,Q,T = ∪P⊆R⊆Q (σR + a+
R), (I.11.9)

where P ranges over all the µ-connected reductions of Q with aP ⊆ aP0 , and
for each such P , R ranges over all the parabolic subgroups lying between P
and Q. Then for any such pair P and R, aµ,Q,T ∩ aP is a connected open
subset of aP ; when R 6= P , it has the property that when a point moves out
to infinity along aR in the direction of the positive chamber, its distance to
the boundary of aµ,Q,T ∩ aP goes to infinity.

More precisely, write R = PJ , J 6= ∅. Recall from Equation (I.1.17) that
aP = aPJ ⊕ aJP and aJP is the split component of the parabolic subgroup of
MPJ corresponding to P . Then for a sequence Hj ∈ a+

R with α(Hj) → +∞
for all α ∈ ∆(R,AR) and any bounded set Ω ⊂ aJ,+P , when j � 1,

(Hj + Ω) ⊂ aµ,Q,T ∩ aP . (I.11.10)

The positive chamber a+
R intersects the face σR at a unique point TR, and

exp(a+
R ∩ (σR + a+

R)) = AR, expTR = exp(a+
R + TR),

the shifted chamber defined in Equation (I.9.3). The face σR is contained in
the shift by TR of the orthogonal complement of aR in aP0 , and KR expσR ·x0

is a codimension 0 set in XR. Denote the image of KR expσR ·x0 in XI′ under
the projection XR = XI ×XI′ → XI′ by WR,T .
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For each such parabolic subgroup R which is contained in Q and contains
a µ-connected reduction P with aP ⊆ aP0 , define

SR,ε,eTR ,V×WR,T
= {(n, a, z, z′) ∈ NR ×AR ×XI ×XI′

| a ∈ AR,eTR , na ∈ BNR(ε), z ∈ V, z′ ∈WR,T },
(I.11.11)

a generalized Siegel set in X associated with R defined in Equation (I.9.4).
Then

exp aµ,Q,T · x0 ⊂ ∪P⊆R⊆Q SR,ε,eTR ,V×WR,T
, (I.11.12)

where P ranges over all the µ-connected reductions of Q with aP ⊆ aP0 , and
for each such P , R ranges over all the parabolic subgroups lying between P
and Q.

Define
Sµε,T,V = ∪P⊆R⊆Q SR,ε,eTR ,V×WR,T

, (I.11.13)

where P ranges over all µ-connected reductions of Q with aP ⊆ aP0 , and for
any such P , R ranges over all parabolic subgroups lying between P and Q. It
is important to note that there are only finite parabolic subgroups R in the
above union.

For each µ-saturated parabolic subgroupQ′ such that one of its µ-connected
reductions contains a µ-connected reduction P of Q with aP ⊆ aP0 , we get a
similar set SQ

′,µ
ε,T,V in e(Q′).

For a compact neighborhood C of the identity coset in K/K ∩ Z(e(Q)),
let C̃ be the inverse image in K of C for the map K → K/K∩Z(e(Q)). Then

C̃(Sµε,T,V ∪µ−saturatedQ′ S
Q′,µ
ε,T,V ) (I.11.14)

is a neighborhood of z∞ in Xµ.

Proposition I.11.12 With the above notation, for a basis of neighborhoods
Ci of the identity coset in K/K ∩Z(e(Q)), a sequence of points Ti ∈ a+

P0
with

α(Ti) → +∞ for all α ∈ ∆(P0, AP0), a sequence εi → 0, and a basis Vi of
neighborhoods of z∞ in e(Q), the associated sets in Equation (I.11.14) form
a neighborhood basis of z∞ in Xµ with respect to the topology defined by the
convergent sequences above.

See [BJ2, Proposition 5.3] for a proof.

Remark I.11.13 It was shown in [Cas2] and [Ji1] that the closure of the flat
aP0 = aP0x0 in the Satake compactification X

S

τ is canonically homeomorphic
to the closure of the convex hull of the Weyl group orbit Wµτ of the highest
weight µτ . When µτ is generic, we can take T = µτ . For non-generic µτ ,
there is a collapsing from ΣT to the convex hull of Wµτ , and all the faces σR
for P ⊆ R ⊆ Q collapse to the face σP . The domain Sµε,T,V was suggested by
this consideration.
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Proposition I.11.14 The topology on Xµ defined above is Hausdorff.

Proof. It suffices to show that if an unbounded sequence yj in X converges
in Xµ, then it has a unique limit. Suppose yj has two different limits z1,∞ ∈
e(Q1), z2,∞ ∈ e(Q2), where Q1, Q2 are two µ-saturated parabolic subgroups.
By passing to a subsequence, we can assume that there exist two parabolic
subgroups R1, R2, R1 ⊆ Q1, R2 ⊆ Q2, such that yj satisfies the condition (1)
in the definition of convergent sequences with respect to both R1 and R2. By
passing to a further subsequence, we can assume that

yj ∈ CjSR1,εj ,tj ,V1 ∩ CjSR2,εj ,tj ,V2 , (I.11.15)

where Cj ⊂ K is a sequence of compact neighborhoods of e converging to e,
εj → 0, tj → +∞, and V1, V2 are compact neighborhoods of z1,∞, z2,∞ re-
spectively. If R1 6= R2, Equation (I.11.15) contradicts the separation property
of general Siegel sets for R1, R2 in Proposition I.9.8. If R1 = R2, we can take
V1, V2 to be disjoint since z1,∞ 6= z2,∞. Then Equation (I.11.15) contradicts
the separation property in Proposition I.9.11. These contradictions show that
yj must have a unique limit in Xµ.

Proposition I.11.15 (Relations between Satake compactifications) For
any two dominant weights µ1, µ2 ∈ a∗+P0

, if µ2 is more regular than µ1, i.e., if
µi ∈ a∗+P0,Ii

and I2 ⊆ I1, then the identity map on X extends to a continuous
surjective map from Xµ2 → Xµ1 . If µ1, µ2 belong to the same Weyl chamber
face, then the extended map from Xµ1 to Xµ2 is a homeomorphism. When µ

is generic, Xµ is isomorphic to the maximal Satake compactification X
S

max.
Hence, for any Xµ, the identity map on X extends to a continuous surjective
map from Xmax to Xµ.

Proof. Since µ2 is more regular than µ1, every µ1-connected parabolic
subgroup is also µ2-connected, and every subset of ∆ perpendicular to µ2 is
also perpendicular to µ1. This implies that for any µ1-connected parabolic
subgroup P , its µ2-saturation Qµ2 is contained in its µ1-saturation Qµ1 .

For every µ2-saturated parabolic subgroup Q, let Pµ2 be a µ2-connected
reduction, and Pµ1 a µ1-connected reduction contained in Pµ2 . Then Pµ1

is also a maximal µ1-connected parabolic subgroup contained in Pµ2 . The
decomposition XR = XI ×XP0,I′ in Equation (I.11.7) for R = Pµ2 gives

XPµ2
= XPµ1

×XP0,I′ .

Let Qµ1 be the µ1-saturation of Pµ1 . Then Qµ1 ⊂ Q. Define a map π :
Xµ2 → Xµ1 such that it is equal to the identity on X, and on the boundary
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component e(Q) = XPµ2
, a point (z, z′) ∈ XPµ1

×XP0,I′ = XPµ2
is mapped

to z ∈ XPµ1
= e(Qµ1). Clearly, π is surjective.

Since the convergence in Xµ1 is determined in terms of the refined horo-
spherical coordinates decomposition, using AQµ1

⊂ AQ, and XPµ2
= XPµ1

×
XP0,I′ , it can be checked easily that any unbounded sequence yj in X that con-
verges to (z, z′) ∈ XPµ1

×XP0,I′ = XPµ2
⊂ Xµ2 also converges to z ∈ XPµ1

⊂
Xµ1 . By [GJT, Lemma 3.28], this proves that the map π is continuous.

Proposition I.11.16 For any dominant weight µ ∈ a∗+P0
, Xµ is compact.

Proof. It was shown in Proposition I.10.7 that Xmax is compact. By Propo-
sition I.11.15, Xµ is the image of a compact set under a continuous map and
hence compact.

Proposition I.11.17 The G-action on X extends to a continuous action on
Xµ.

Proof. First, we define the G-action on Xµ. For any µ-saturated parabolic
subgroup Q and any point z ∈ e(Q), and any g ∈ G, write g = kq, where
k ∈ K and q ∈ Q. Define

g · z = k · (qz),
where qz = q · z is defined in Equation (I.11.3). Then it can be shown as in
the case of Xmax that the G-action on Xµ is continuous, by using the refined
horospherical decomposition in Equation (I.11.7).

Proposition I.11.18 For any Satake compactification X
S

max, the identity
map on X extends to a homeomorphism Xµτ → X

S

τ .

The proof is similar to the proof of Proposition I.10.10. See [BJ2, §5] for
details.

Remark I.11.19 Propositions I.11.15 and I.11.18 give a more explicit proof
of Proposition I.4.35. In [Zu2], Proposition I.4.35 was proved by comparing
the closures of a flat in these compactifications of X. On the other hand, the
proof here gives an explicit map and its surjectivity is immediate.

I.11.20 Summary and comments. In this section, we follow the uniform
method to construct non-maximal Satake compactifications. It might be more
complicated than the original construction in [Sat1]. On the other hand,
the explicit description of convergent sequences to boundary points and of
neighborhood base makes it easier to understand the compactifications and is
also useful for other purposes.
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I.12 Uniform construction of the geodesic com-
pactification

In this section, we construct the geodesic compactification X ∪ X(∞) using
the uniform method in §I.8. Though this construction is not as direct as the
geometric definition in terms of geodesics in §I.2, it is needed for the uniform
construction of the Martin compactification X

M
in the next section. It also

illustrates the use of the geometric realization of the Tits building ∆(G) in
§I.2.

This section is organized as follows. The boundary components are defined
in I.12.1. The topology is described in terms of convergent sequences in I.12.2,
and neighborhood base are given in I.12.3. The compactness and Hausdorff
property are proved in Proposition I.12.4, and the continuous extension of
the G-action on X to the compactification is given in Proposition I.12.5. The
identification with the geodesic compactification is given in Proposition I.12.6.

I.12.1 As in the compactification X
S

max, we use the whole collection of
parabolic subgroups. For every parabolic subgroup P , define the geodesic
boundary component to be

e(P ) = a+
P (∞),

an open simplex.
Define

X
c

= X ∪
∐
P

a+
P (∞).

The superscript c stands for the conic compactification (in fact, the geodesic
compactification X ∪ X(∞) is called the conic compactification in [GJT]),
while X

G
denotes the Gromov compactification in §I.17.

To describe the topology of the boundary components, we need a K-action
on the boundary points, which is described as follows: for k ∈ K, H ∈ a+

P (∞),

k ·H = Ad(k)H ∈ a+
kP

(∞). (I.12.1)

I.12.2 The topology on X
c

is given in terms of convergent sequences as
follows.

1. A unbounded sequence yj in X converges to H∞ ∈ a+
P (∞) if and only if

yj can be written as yj = kjnjajzj with kj ∈ K,nj ∈ NP , aj ∈ AP , zj ∈
XP satisfying the conditions:

(a) kj → e,
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(b) for all α ∈ ∆(P,AP ), α(log aj)→ +∞ and log aj/|| log aj || → H∞,

(c) n
aj
j → e,

(d) d(zj , xo)/|| log aj || → 0, where x0 ∈ XP is the basepoint KP , and
d(zj , x0) is the Riemannian distance on XP for the invariant metric.

2. For a sequence kj ∈ K, kj → e, and a parabolic subgroup P ′ contained
in P and a sequence Hj ∈ a+

P ′(∞), kj ·Hj converges to H∞ ∈ a+
P (∞) if

and only if Hj → H∞ ∈ a+
P ′(∞). (Note that a+

P (∞) ⊂ a+
P ′(∞).)

Combinations of these two special types of convergent sequences give gen-
eral convergent sequences. It can be checked that they define a convergence
class of sequences in Definition I.8.11 and hence define a topology on X

c
.

I.12.3 Neighborhoods of boundary points can be given as follows. Note that
for any parabolic subgroup P , the closure of a+

P (∞) in X
c

is equal to

a+
P (∞) =

∐
Q⊇P

a+
Q(∞).

Let P0 be a minimal parabolic subgroup contained in P . Then a+
P (∞) ⊂

a+
P0

(∞). For H ∈ a+
P (∞) and ε > 0, let

Uε,H = {H ′ ∈ a+
P0

(∞) | ||H ′ −H|| < ε},

a neighborhood of H in a+
P0

(∞). For t > 0, let

Vε,t,H = {(n, a, z) ∈ NP ×AP ×XP = X

| a ∈ AP,t, log a/|| log a|| ∈ Uε,H , na ∈ BNP (ε), d(z, x0)/|| log a|| < ε}.

Let C be a compact neighborhood of e in K. Then the set

CVε,t,H ∪ CUε,H

is a neighborhood of H in X
c
.

For sequences εi → 0, ti → +∞, and a basis Ci of neighborhoods of e in
K, CiVεi,ti,H ∪ CUεi,H forms a basis of neighborhoods of H in X

c
.

Proposition I.12.4 The space X
c

is a compact Hausdorff space.

Proof. Since every parabolic subgroup is conjugate under K to a standard
parabolic subgroup P0,I , we have

X
c

= K(exp a+
P0
x0 ∪

∐
∅⊆I⊂∆

a+
P0,I

(∞)) = K(exp a+
P0
x0 ∪ a+

P0
(∞)),
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where P0 is a minimal parabolic subgroup. Since K and a+
P0

(∞) are compact,
to prove X

c
is compact, it suffices to show that every unbounded sequence of

the form expHjx0, Hj ∈ a+
P0

, has a convergent subsequence. Replacing by a
subsequence, we can assume that Hj/||Hj || converges to H∞ ∈ a+

P0,I
(∞) for

some I. By decomposing

Hj = Hj,I +HI
j , Hj,I ∈ aP0,I , H

I
j ∈ aIP0

,

it follows immediately that expHjx0 = expHj,I(expHI
j x0) converges to H∞

in X
c
.

To prove the Hausdorff property, let H1,H2 ∈ X
c

be two distinct points.
Clearly they admit disjoint neighborhoods if at least one of them belongs to
X. Assume that Hi ∈ a+

Pi
(∞) for some parabolic subgroups P1, P2.

First consider the case that P1 = P2. Let P0 be a minimal parabolic
subgroup contained in P1, and Uε,1, Uε,2 be two neighborhoods of H1,H2 in
a+
P0

(∞) with Uε,1 ∩ Uε,2 = ∅. Let C be a small compact neighborhood of e
in K such that for all k1, k2 ∈ C, k1Uε,1 ∩ k2Uε,2 = ∅. We claim that the
neighborhoods CVε,t,H1 ∪ CUε,1, CVε,t,H2 ∪ CUε,2 are disjoint when t� 0, ε
and C are sufficiently small.

By the choice of C,
CUε,1 ∩ CUε,2 = ∅.

We need to show that

CVε,t,H1 ∩ CVε,t,H2 = ∅.

If not, there exist sequences εj → 0, tj → +∞, Cj → e such that

CjVεj ,tj ,H1 ∩ CjVεj ,tj ,H2 6= ∅.

Let yj ∈ CjVεj ,tj ,H1 ∩ CjVεj ,tj ,H2 . Since yj ∈ CjVεj ,tj ,H1 , yj can be written
as yj = kjnjajzj with the components kj ∈ K,nj ∈ NP1 , aj ∈ AP1 , zj ∈ XP1

satisfying (1) kj → e, (2) || log aj || → +∞, log aj/|| log aj || → H1, (3) najj → e,
(4) d(zj , x0)/|| log aj || → 0. Similarly, yj can be written as yj = k′jn

′
ja
′
jz
′
j with

k′j , n
′
j , a
′
j , z
′
j , satisfying similar properties and log a′j/|| log a′j || → H2.

The idea of the proof is that we can ignore the K-, NP -components and
use the separation of geodesics with different directions to get a contradiction.
Specifically,

d(yj , xo) = (1 + o(1))|| log aj || = (1 + o(1))|| log a′j ||,

hence
|| log a′j || = (1 + o(1))|| log aj ||;

and

d(yj , kjajx0) = d(kjnjajzj , kjajx0) = d(njajzj , ajx0) = d(najj zj , x0) = o(1)|| log aj ||,
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d(yj , k′ja
′
jx0) = o(1)|| log a′j ||.

SinceX is simply connected, nonpositively curved, H1 6= H2, and kjajx0, k
′
ja
′
jx0

lie on two geodesics from x0 with an uniform separation of angle between them,
comparison with the Euclidean space gives

d(kjajx0, k
′
ja
′
jx0) ≥ c0|| log aj ||

for some positive constant c0. This contradicts with the inequality

d(kjajx0, k
′
ja
′
jx0) ≤ d(yj , kjajx0) + d(yj , k′ja

′
jx0) = o(1)|| log aj ||.

The claim is proved.
The case P1 6= P2 can be proved similarly. In fact, for suitable neighbor-

hoods Uε,H1 , Uε,H2 and a neighborhood C of e inK such that for all k1, k2 ∈ C,

k1Uε,H1 ∩ k2Uε,H2 = ∅,

the same proof works.

Proposition I.12.5 The G-action on X extends to a continuous action on
X
c
.

Proof. For g ∈ G and H ∈ a+
P (∞), write g = kp with k ∈ K and p ∈ P .

Define
g ·H = Ad(k)H ∈ akP .

Since k is uniquely determined up to a factor in KP and KP commutes with
AP , this action is well-defined and extends the K-action in Equation (I.12.1).
Clearly, P fixes a+

P (∞).
To show that it is continuous, by [GJT, Lemma 3.28], it suffices to show

that for any unbounded sequence yj in X, if yj converges to H∞ in X
c
, then

gyj converges to gH∞. By definition, yj can be written as yj = kjnjajzj
with (1) kj ∈ K, kj → e, (2) aj ∈ AP , for all α ∈ ∆(P,AP ), α(log aj) →
+∞, log aj/|| log aj || → H∞, (3) nj ∈ NP , najj → e, and (4) zj ∈ XP ,
d(zj , x0)/|| log aj || → 0. Write

gkj = k′jm
′
ja
′
jn
′
j ,

where k′j ∈ K, m′j ∈ MP , n′j ∈ NP and a′j ∈ AP . Then m′j , n
′
j , a
′
j are

bounded, and k′jP converges to kP . Since

gyj = k′jm
′
ja
′
jn
′
jnjajzj = k′j

m′ja
′
j (n′jnj)a

′
jaj(m

′
jzj),

it is clear that gyj converges to Ad(k)H∞ ∈ a+
kP

(∞), which is equal to gH∞
by definition.
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Proposition I.12.6 The identity map on X extends to a continuous map
X
c → X ∪X(∞), and this map is a homeomorphism.

Proof. To prove that the identity map extends to a continuous map X
c →

X ∪ X(∞), by [GJT, Lemma 3.28], it suffices to prove that if a unbounded
sequence in X converges in X

c
, then it also converges in X ∪ X(∞). For

a unbounded sequence yj in X which converges to H∞ ∈ a+
P (∞) in X

c
,

yj can be written as yj = kjnjajzj where the components satisfy (1) kj ∈
K, kj → e, (2) || log aj || → +∞, log aj/|| log aj || → H∞, (3) najj → e, (4)
d(zj , x0)/|| log aj || → 0.

By the definition of X ∪ X(∞) in §I.2, the geodesic passing through
ajx0 and x0 clearly converges to the geodesic exp tH∞x0. Since kj → e,
the geodesic passing through kjajx0 and x0 also converges to exp tH∞x0.
We claim that the geodesic passing through yj and x0 also converges to
exp tH∞x0.

Since
d(kjnjajzj , kjnjajx0) = d(zj , x0),

and hence
d(kjnjajzj , kjnjajx0)/|| log aj || → 0,

comparison with the Euclidean space shows that both sequences yj and kjnjajx0

will converge to the same limit if kjnjajx0 converges in X ∪X(∞). Since

d(kjnjajx0, kjajx0) = d(najj x0, x0)→ 0

and the geodesic passing through kjajx0 and x0 clearly converges to the
geodesic exp tH∞x0, it follows that kjnjajx0 and hence yj converges to H∞ ∈
X ∪X(∞). Therefore, the identity map on X extends to a continuous map
X
c → X ∪X(∞).

To show that this extended map is a homeomorphism, it suffices to prove
that it is bijective, since X

c
and X ∪X(∞) are both compact and Hausdorff.

By Proposition I.2.16,

X ∪X(∞) = X ∪
∐
P

a+
P (∞).

Under this identification, the map X
c → X∪X(∞) becomes the identity map

and is hence bijective.

I.12.7 Summary and comments.
By Propositions I.2.16 and I.2.19, the sphere at infinity X(∞) is the under-

lying space of the spherical Tits building ∆(G). The point here is to describe
the topology of the geodesic compactification, or the convergence of interior
points to the boundary points, in terms of the horospherical decomposition.
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For the maximal Satake compactification X
S

max, the boundary complex is dual
to the Tits building ∆(G). For the geodesic compactification X ∪X(∞), the
boundary complex is exactly the Tits building ∆(G).

I.13 Uniform construction of the Martin com-
pactification

In this section, we apply the uniform method in §I.8 to construct a compact-
ification X

M
which is isomorphic to the Martin compactification X ∪ ∂λX

for any λ below the bottom of the spectrum λ0(X) as recalled in §I.7. Note
that for different values of λ, X ∪ ∂λX are isomorphic to each other. In
X
S

max = Xmax, the boundary is a cell-complex dual to the Tits building
∆(G), while in X ∪ X(∞) = X

c
, the boundary is a cell-complex equal to

∆(G). On the other hand, it will be seen below that the boundary of X
M

is
a combination of the boundaries of Xmax and X

c
and hence is a cell-complex

of more complicated nature.
This section is organized as follows. First we define the boundary compo-

nent of parabolic subgroups in §I.13.1 and explain the reason for this choice
of boundary components in §I.13.2. In fact, there are two choices, and the
other one leads to an inductive, complicated construction. The topology in
terms of convergent sequences is given in I.13.4. Neighborhood base are given
in Proposition I.13.6. The continuous extension of the G-action on X to the
compactification is given in Proposition I.13.7. The compactness is given in
Proposition I.13.8. In Proposition 1.13.9, X

M
is shown to be isomorphic to

the least common refinement of X ∪ (∞) and the X
S

max. The compactifica-
tion X

M
is illustrated via the example of X = D × D in I.13.10. Then we

show that the uniform construction gives a Hausdorff compactification X
M

.
Finally we show that the compactification X

M
is isomorphic to the Martin

compactification X ∪ ∂λX, λ < λ0(X).

I.13.1 As in the case of Xmax, we choose the full collection of parabolic sub-
groups. For any parabolic subgroup P , define its Martin boundary component
e(P ) by

e(P ) = a+
P (∞)×XP ,

where a+(∞) is the intersection of the unit sphere in aP with a+
P (see Equation

I.2.1), and a+
P (∞) the closure in aP . Define

X
M

= X ∪
∐
P

a+
P (∞)×XP ,

where P ranges over all proper parabolic subgroups.
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I.13.2 As recalled in Proposition I.7.15 in §I.7, the Martin compactification
X ∪ ∂λX for λ < λ0(X) is the least compactification dominating both the
geodesic compactification X∪X(∞) and the maximal Satake compactification
X
S

max. It is natural to expect that the boundary components of X ∪ ∂λX are
obtained by combining those of X ∪X(∞) and X

S

max.
In X ∪X(∞) = X

c
, the boundary component of a parabolic subgroup P

is equal to a+
P (∞); while in X

S

max = Xmax, the boundary component of P is
XP . An immediate guess for the boundary component of P in X∪∂λX would
be a+

P (∞)×XP . This turns out to be incorrect for the following reason. Let

π : X ∪ ∂λX → X
S

max

be the extension of the identity map on X. The fiber over every boundary
point in XP contains a+

P (∞) and should be compact. Hence it should be
some compactification of a+

P (∞). The choice of a+
P (∞)×XP as the boundary

component will lead to the noncompact fiber. It turns out that a+
P (∞)×XP

is the right choice.
On the other hand, the identify map on X also extends to a dominating

map
π′ : X ∪ ∂λX → X ∪X(∞),

and the fiber over a point in a+
P (∞) contains XP , which turns out to be

(XP )
S

max. Therefore, another possible choice for the boundary component of

P would be a+
P (∞)× (XP )

S

max. It is true that

X ∪ ∂λX = X ∪
∐
P

a+
P (∞)× (XP )

S

max,

but the description of the topology using this choice of the boundary compo-
nent is inductive and complicated, similar to the original construction of the
Karpelevič compactification X

K
in §I.3.

I.13.3 In X
S

max, each boundary component is a cell, and the boundary
complex ∪P e(P ) is a cell complex dual to the Tits building ∆(G) of G in the
sense that for any pair of parabolic subgroups P and Q, e(P ) is contained in
the closure of e(Q) if and only if P ⊆ Q. In X ∪X(∞) = X

c
, the boundary

complex is isomorphic to the Tits building ∆(G), in particular, for any pair
of parabolic subgroups P and Q, e(P ) is contained in the closure of e(Q) if
and only if P ⊇ Q.

On the other hand, the boundary components in X
M

are of mixed type,
and the boundary complex is not isomorphic or dual to the Tits building of
G. In fact, for any pair of (proper) parabolic subgroups P and Q, neither
e(P ) nor e(Q) is contained in the closure of the other.
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I.13.4 To define a topology on the set of boundary components of X
M

, we
need a K-action on the set of boundary components. For k ∈ K, (H, z) ∈
a+
P (∞)×XP = e(P ),

k · (H, z) = (Ad(k)H, k · z) ∈ a+
kP

(∞)×XkP . (I.13.1)

A topology on X
M

is given in terms of convergent sequences as follows:

1. For a boundary point (H∞, z∞) ∈ a+
P (∞)×XP , a unbounded sequence

yj in X converges to (H∞, z∞) if yj can be written in the form yj =
kjnjajzj with the components kj ∈ K, nj ∈ NP , aj ∈ AP , zj ∈ XP

satisfying the conditions:

(a) kj → e,

(b) for all α ∈ ∆(P,AP ), α(log aj)→ +∞, log aj/|| log aj || → H∞,

(c) n
aj
j → e,

(d) zj → z∞.

2. For a pair of parabolic subgroups P,Q, P ⊂ Q, let P ′ be the unique
parabolic subgroup of MQ determined by P in Equation (I.1.21). For a
sequence kj ∈ K with kj → e and a sequence yj = (Hj , zj) ∈ a+

Q(∞)×
XQ, the sequence kj · yj converges to (H∞, z∞) ∈ a+

P (∞)×XP if H∞ ∈
a+
Q(∞), Hj → H∞, and zj can be written in the form zj = k′jn

′
ja
′
jz
′
j ,

where k′j ∈ KQ, n′j ∈ NP ′ , a′j ∈ AP ′ , z′j ∈ XP ′ satisfy the same condition
as part (1) above when the pair (G,P ) is replaced by (MQ, P

′) except
(b) is replaced by (b’): for all α ∈ ∆(P ′, AP ′), α(log a′j)→ +∞, i.e., zj
converges in (XQ)max in §I.10.

These are special convergent sequences, and their combinations give the
general convergent sequences. It can be checked that they form a convergence
class of sequences, and hence define a topology on X

M
.

I.13.5 Neighborhoods of boundary points can be given explicitly as follows.
For a parabolic subgroup P and a point (H, z) ∈ a+

P (∞)×XP , there are two
cases to consider: H ∈ a+

P (∞) or not.
In the first case, let U be a neighborhood of H in a+

P (∞) and V a neigh-
borhood of z in XP . Let

SMε,t,U,V = {(n, a, z) ∈ NP ×AP ×XP = X |
a ∈ AP,t, log a/|| log a|| ∈ U, na ∈ BNP (ε), z ∈ V }.
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For a neighborhood C of e in K, the set

C(SMε,t,U,V ∪ U × V )

is a neighborhood of (H, z) in X
M

. The reason is that (H, z) is contained
in the closure of other boundary components only when H ∈ ∂a+

P (∞), and
hence there is no contribution from parabolic subgroupsof different types, i.e.,
not conjugate under K.

In the second case, H ∈ ∂a+
P (∞). Let Q be the unique parabolic subgroup

containing P such that H is contained in a+
Q(∞). Let Q = PJ . Then PI with

I ⊆ J are all the parabolic subgroups containing P such that H ∈ a+
PI

(∞)
and XP is a boundary symmetric space of XPI . By Equation (I.1.21), P
determines a parabolic subgroup of MPI . Let SIε,t,V be the generalized Siegel
set in XPI associated with P ′ as defined in Equation (I.9.2), where V is a
bounded neighborhood of z. Let U be a neighborhood of H in a+

P (∞). Then

(a+
PI

(∞) ∩ U)× SIε,t,V

is the intersection of a neighborhood of (H, z) in X
M

with the boundary
component a+

PI
(∞)×XPI . Let C be a neighborhood of e in K. Then

C(SMε,t,U,V ∪
∐
I⊆J

(a+
PI

(∞) ∩ U)× SIε,t,V )

is a neighborhood of (H, z) in X
M

.

Proposition I.13.6 The topology on X
M

is Hausdorff.

Proof. We need to show that every pair of distinct points x1, x2 ∈ X
M

admit disjoint neighborhoods. If at least one of them belongs to X, it is clear.
Assume that they both lie on the boundary, xi = (Hi, zi) ∈ a+

Pi
(∞) × XPi

for a pair of parabolic subgroups P1, P2. There are two cases to consider:
P1 = P2 or not.

In the first case, (H1, z1), (H2, z2) ∈ a+
P1

(∞) ×XP1 . If z1 6= z2, existence
of the disjoint neighborhoods follows from the corresponding results for Xmax

in Proposition I.10.6. If z1 = z2, then H1 6= H2, and the existence of disjoint
neighborhoods follows from the similar result of X

c
in Proposition I.12.4.

In the second case, P1 6= P2, existence of the disjoint neighborhoods follow
similarly from the results for Xmax and X

c
.

Proposition I.13.7 The G-action on X extends to a continuous action on
X
M

.
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Proof. First we define a G-action on the boundary of X
M

. For (H, z) ∈
a+
P (∞) × XP , g ∈ G, write g = kman, k ∈ K,m ∈ MP , a ∈ AP , n ∈ NP .

Define
g · (H, z) = (Ad(k)H, k ·mz) ∈ a+

kP
(∞)×XkP ,

where k ·mz ∈ XkP is defined in Equation (I.1.15) in §I.1.
To show that this is a continuous extension of the G-action on X, by

[GJT, Lemma 3.28], it suffices to show that if a unbounded sequence yj in X
converges to a boundary point (H, z), then gyj converges to g · (H, z).

By definition, yj can be written in the form yj = kjnjajzj , where kj ∈ K,
nj ∈ NP , aj ∈ AP , zj ∈ XP satisfy (1) kj → e, (2) for all α ∈ ∆(P,AP ),
α(log aj)→ +∞, log aj/|| log aj || → H, (3) najj → e, (4) zj → z. Write

gkj = k′jm
′
ja
′
jn
′
j ,

where k′j ∈ K, m′j ∈ MP , n′j ∈ NP , a′j ∈ AP . Then n′j , a
′
j are bounded

and k′jm
′
j → km. The components k′j ,m

′
j are not uniquely determined, but

determined up to an element in KP . By choosing this element suitably, we
can assume that k′j ,m

′
j converge to k, m respectively. Then

gyj = k′jm
′
ja
′
jn
′
jnjajzj = k′j

m′ja
′
j (n′jnj) a′jajm

′
jzj

= k′jm
′
ja
′
j (n′jnj)

k′j (a′jaj) (kj ′m′jzj) = (k′jk
−1) km

′
ja
′
j (n′jnj)

k(a′jaj)(km
′
jzj).

From the last expression it can be checked easily that the conditions for
convergence in X

M
are satisfied, and gyj converges to (Ad(k)H, kmz) ∈

a+
kP

(∞)×XkP .

Proposition I.13.8 The space X
M

is compact.

Proof. We need to show that every sequence in X
M

has a convergent
subsequence. First we consider sequences yj in X. If yj is bounded, it clearly
has a convergent subsequence. Otherwise, we can assume that yj goes to
infinity. Using the Cartan decomposition X = K exp a+

P0
x0, yj = kj expHjx0

and replacing Hj by a subsequence, we can assume that

1. kj converges to some k ∈ K,

2. there exists a subset I ⊂ ∆(P0, AP0), such that for α ∈ I, α(Hj) con-
verges to a finite number, while for α ∈ ∆− I, α(Hj)→ +∞.

3. Hj/||Hj || → H∞ ∈ a+
P0,I

(∞).
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Writing Hj = Hj,I + HI
j , where Hj,I ∈ aP0,I , H

I
j ∈ aIP0

, then expHI
j x0

converges to a point z∞ ∈ XP0,I , and Hj,I/||Hj,I || → H∞. From this, it is
clear that yj = kj expHj,IH

I
j x0 converges to k(H∞, z∞) ∈ a+

kP0,I
(∞)×XkP0,I

in X
M

.
Let P0 be a minimal parabolic subgroup. Since every parabolic subgroup

is conjugate to a standard parabolic subgroup P0,I under some elements in
K, we have

X
M

= X ∪
∐
I

K(a+
P0,I

(∞)×XP0,I ).

Since K is compact and the closure of XP0,I in X
M

is (XP0,I )max
and hence

compact. Together with the previous paragraph, it implies that X
M

is com-
pact.

Proposition I.13.9 The compactification X
M

is isomorphic to the least com-
mon refinement Xmax

∨
X
c

of Xmax and X
c
.

Proof. By [GJT, Lemma 3.28], it suffices to show that an unbounded sequence
yj in X converges in X

M
if and only if yj converges in both Xmax and X ∪

X(∞).
If yj in X converges in X

M
to (H, z) ∈ a+

P (∞)×XP , then it can be written
in the form yj = kjnjajzj with kj ∈ K, nj ∈ NP , aj ∈ AP and zj ∈ XP

satisfying (1) kj → e, (2) α(log aj)→ +∞, α ∈ ∆(P,AP ), log aj/|| log aj || →
H, (3) zj → z. Since these conditions are stronger than the convergence
conditions of Xmax, it is clear that yj converges in Xmax to z ∈ XP . On the
other hand, let PI be the unique parabolic subgroup containing P such that
a+
P (∞) contains H as an interior point. By decomposing log aj according to

aP = aP,I ⊕ aIP , it can be seen easily that yj converges to H ∈ a+
PI

(∞) in X
c
.

Conversely, suppose that yj converges in both Xmax and X
c
. Let z ∈ XP

be the limit in Xmax. Then yj can be written as yj = kjnjajzj with the
components satisfying similar conditions as above except (2) is replaced by
(2’): α(log aj)→ +∞, α ∈ ∆(P,AP ). We claim that the second part of (2) is
also satisfied, i.e., log aj/|| log aj || → H for some H ∈ a+

P (∞). In fact, since yj
converges in X

c
, the proof of Proposition I.12.4 shows that ajx0 also converges

in X
c
. This implies that log aj/|| log aj || converges in aP (∞) and the limit

clearly belongs to a+
P (∞). Since all the conditions (1)–(4) are satisfied, yj

converges in X
M

to (H, z) ∈ a+
P (∞)×XP .

I.13.10 Example. When the rank of X is equal to 1, X
M

is isomorphic
to both X ∪ X(∞) and X

M
. They are different when the rank is at least
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2. We illustrate their difference through the example X = H ×H. For each
geodesic γ in X, the inverse image in X

M
of the equivalence class [γ] under

the map X
M → X ∪X(∞) is either a point or the geodesic compactification

of H depending on if γ is nonsingular or not. (Recall that γ is non-singular if
γ(t) = (γ1(at), γ2(bt)), where γ1, γ2 are geodesics in H, and a, b > 0, a2 +b2 =
1. On the other hand, the inverse images in X

M
of the boundary points in

X
S

max are either points or closed 1-dimensional simplexes. For example, for
all a, b > 0, as t → +∞, γ(t) converges to the same point in X

S

max, but
for different values of a, b, they converge to different boundary points in X

c

and hence in X
M

. These different choices of a, b > 0 give the 1-dimensional
simplex.

Corollary I.13.11 The compactification X
M

is isomorphic to the Martin
compactification X ∪ ∂λX, λ < λ0(X).

Proof. By Proposition I.7.15, X ∪ ∂λX, λ < λ0(X), is isomorphic to the
least common refinement X

S

max

∨
X∪X(∞). By Proposition I.10.11, X

S

max
∼=

Xmax, and by Proposition I.12.6, X
c

= X∪X(∞). Then the corollary follows
from Proposition I.13.9.

I.14 Uniform construction of the Karpelevič
compactification

In this section we apply the uniform method in §I.8 to construct a compacti-
fication XK which is isomorphic to the Karpelevič compactification X

K
. We

emphasize that in order to distinguish the new construction from the original
one, we use the subscript in XK .

The construction of XK is a generalization of the construction of X
M

in
the previous section. The basic issue is the choice of the boundary compo-
nents. It is known that the Karpelevič compactification X

K
dominates the

Martin compactification and hence both the maximal Satake compactifica-
tion X

S

max and the geodesic compactification X ∪ X(∞). As pointed out in
§I.13.2, each of the dominating maps X

K → X
S

max, X
K → X ∪X(∞) leads

to a choice of the boundary component, and we will use the first map. Hence,
the boundary component e(P ) of P is XK is of the form

e(P ) = a+
P (∞)

K
×XP ,
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where a+
P (∞)

K
is a compactification of a+

P (∞). Since the boundary com-

ponent of P in X
M

is a+
P (∞) × XP and X

K
dominates X

M
, a+

P (∞)
K

is a
refinement (or blow-up) of a+

P (∞).

I.14.1 This section is organized as follows. We define the boundary of flats
in I.14.1, and its topology is given in I.14.2. The relation to the closure in
the geodesic compactification is given in Proposition I.14.4. The Karpelevič
boundary components are given in I.14.5. The topology of the Karpelevič
compactification of flats is given in I.14.6. The topology of X

K
is described

both in terms of convergent sequences and neighborhood base are given in
I.14.7. The Hausdorff property of XK is proved in Proposition I.14.9, the
compactness in Proposition I.14.10, and the continuous extension of the G-
action on X in Proposition I.14.11.

The fibers of the map from XK to X
c

= X∪X(∞) is described in Proposi-
tion I.14.12. Relation to the Martin compactification is determined in Propo-
sition I.14.13. In I.14.13, we discuss examples of polydiscs X = D × · · · ×D.
Finally in I.14.13, we identify XK with the original Karpelevič compactifica-
tion X

K
in Proposition I.14.15.

I.14.2 The simplicial faces in the compactification a+
P (∞) are parametrized

by subsets of the set ∆ = ∆(P,AP ) of simple roots in Φ(P,AP ). The basic

idea in defining the compactification a+
P (∞)

K
is to construct faces for all

decreasing filtration of ∆, or equivalently, all ordered partitions of ∆. If we
only pick out the first set in the filtration, we get the map to a+

P (∞).
For a pair of J, J ′ ⊂ ∆(P,AP ), J ⊂ J ′, let

aJ
′

J = aPJ ∩ aJ
′

P . (I.14.1)

The restriction of the roots in J ′ − J yields a homeomorphism aJ
′

J
∼= R

J′−J .
Since

aP = aPJ ⊕ aJP , aP = aPJ′ ⊕ aJ
′

P ,

and
aPJ′ ⊂ aPJ , aJP ⊂ aJ

′

P ,

we have
aP = aPJ′ ⊕ aJ

′

J ⊕ aJP .

Define

aJ
′,+
J (∞) = {H ∈ aJ

′

J | ||H|| = 1, α(H) > 0, α ∈ J ′ − J}. (I.14.2)

For any ordered partition

Σ : I1 ∪ · · · ∪ Ik = ∆,



§I.14. Uniform construction of the Karpelevič compactification 171

let Ji = Ii∪· · ·∪Ik, 1 ≤ i ≤ k, Jk+1 = ∅, be the induced decreasing filtration.
Then we have a decomposition

aP = aJ2 × aJ2
J3
× · · · × aJkJk+1

,

where dim aJiJi+1
= |Ii|. Define

aΣ,+
P (∞) = a+

J2
(∞)× aJ2,+

J3
(∞)× · · · × aJk,+Jk+1

(∞).

Note that aJk,+Jk+1
(∞) = aJk,+P (∞). If we use the improper parabolic subgroup

P∆ = G, a+
J2

(∞) = a+
PJ2

(∞) can be identified with aJ1,+
J2

(∞). When Σ is

the trivial partition consisting of only ∆, aΣ,+
P (∞) = a+

P (∞), the interior of
a+
P (∞). Other pieces are blow-ups of the boundary faces of a+

P (∞) in as shown
in Proposition I.14.4 below.

Define
aK,+P (∞) =

∐
Σ

aΣ,+
P (∞), (I.14.3)

where Σ runs over all the partitions of ∆.

I.14.3 The space aK,+P (∞) is given the following topology:

1. For every partition Σ, aΣ,+
P (∞) is given the product topology.

2. For two partitions Σ,Σ′, aΣ,+
P (∞) is contained in the closure of aΣ′,+

P (∞)
if and only if Σ is a refinement of Σ′, i.e., every part in Σ′ is union of
parts of Σ, or equivalently, the filtration of Σ′ is a subfiltration of that
of Σ. Specifically, the convergence of a sequence of points in aΣ′,+

P (∞)
to limits in aΣ,+

P (∞) is given as follows. Assume Σ : I1 ∪ · · · ∪ Ik,
Σ′ : I ′1 ∪ · · · ∪ I ′k′ . For any part I ′m in Σ′, write I ′m = In1 ∪ · · · ∪
Ins , where the indexes n1, · · · , ns are strictly increasing. Then it suf-
fices to describe how a sequence in a

J′m,+
J′m+1(∞) converges to a limit in

a
Jn1 ,+

Jn1+1(∞)× · · · × a
Jns ,+
Jns+1(∞). Let Hj be a sequence in a

J′m,+
J′m+1(∞), and

(Hn1,∞, · · · ,Hns,∞) ∈ a
Jn1 ,+

Jn1+1(∞) × · · · × a
Jns ,+
Jns+1(∞). Then Hj con-

verges to (Hn1,∞, · · · ,Hns,∞) if and only if the following conditions are
satisfied:

(a) For α ∈ In1 , α(Hj)→ α(Hn1,∞), in particular, α(Hj) 6→ 0.

(b) For α ∈ I ′m − In1 , α(Hj)→ 0.

(c) For α ∈ Ina , β ∈ Inb , a < b,

β(Hj)
α(Hj)

→ 0.
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(d) For α, β ∈ Ina , 1 ≤ a ≤ s,

β(Hj)
α(Hj)

→ β(Hna,∞)
α(Hna,∞)

6= 0.

For ε > 0, define a subset UΣ′

ε (H∞) in aΣ′,+
P (∞) as follows:

UΣ′

ε (H∞) = {(H1, · · · ,Hk′) ∈ aΣ′,+
P (∞) | for 1 ≤ m ≤ k′, I ′m = In1 ∪ · · · ∪ Ins ,

(1) for α ∈ In1 , |α(Hm)− α(Hn1,∞)| < ε,

(2) for α ∈ I ′m − In1 , |α(Hm)| < ε,

(3) for α ∈ Ina , β ∈ Inb , a < b, |β(Hm)
α(Hm)

| < ε,

(4) for α, β ∈ Ina , 1 ≤ a ≤ s, |
β(Hm)
α(Hm)

− β(Hna,∞)
α(Hna,∞)

| < ε}.

(I.14.4)

Proposition I.14.4 There exists a continuous surjective map π : aK,+P (∞)→
a+
P (∞). This map is a homeomorphism if and only if dimAP ≤ 2.

Proof. Recall that
a+
P (∞) =

∐
I⊂∆

a+
PI

(∞).

For each partition Σ : I1 ∪ · · · ∪ Ik = ∆, define a map by projecting to the
first factor:

π : aΣ,+
P (∞) = a+

J2
(∞)× aJ2,+

J3
(∞)× · · · × aJk,+Jk+1

(∞)→ a+
J2

(∞) = a+
PJ2

(∞),

π(H1,∞, · · · ,Hk,∞) = H1,∞

where Ji = Ii ∪ · · · ∪ Ik as above. This gives a surjective map

π : aK,+P (∞)→ a+
P (∞).

If Hj ∈ a+
P (∞) converges to (H1,∞, · · · ,Hk,∞) ∈ aΣ,+

P (∞), it is clear from
the description of the topology of aK,+P (∞), in particular conditions (a) and
(b), that Hj converges to H1,∞ in a+

P (∞). Since a+
P (∞) is dense in aK,+P (∞)

and hence every point in aK,+P (∞) is the limit of a sequence of points in
a+
P (∞), this proves the continuity of π.

When dimAP = 1, this map π is clearly bijective. When dimAP = 2,
there are only two nontrivial ordered partitions, Σ1 : I1 ∪ I2, Σ2 : I2 ∪ I1 of
∆, and each of aΣ1,+

P (∞), aΣ2,+
P (∞) consists of one point, corresponding to

the two end points of the 1-simplex a+
P (∞), and hence the map π is bijective.
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On the other hand, if dimAP ≥ 3, there are nontrivial ordered partitions
Σ : ∆ = I1 ∪ I2 where |I1| = 1, |I2| ≥ 2. For such a Σ, aΣ,+

P (∞) has positive
dimension and is mapped to the zero dimensional space a+

J2
(∞), and hence π

is not injective.

I.14.5 For each parabolic subgroup P , define its Karpelevič boundary com-
ponent to be

e(P ) = aK,+P (∞)×XP .

Define
XK = X ∪

∐
P

aK,+P (∞)×XP ,

where P runs over all parabolic subgroups.
To put a topology on X

K
, we need a topology on the set of boundary

components, which is given by the K-action on the boundary components.
For k ∈ K, (H, z) ∈ aK,+P (∞)×XP ,

k · (H, z) = (Ad(k)(H), k · z) ∈ aK,+kP
(∞)×XkP , (I.14.5)

where for H = (H1, · · · ,Hj) ∈ aΣ,+
P (∞) ⊂ aK,+P (∞) and Σ : I1 ∪ · · · ∪ Ij ,

Ad(k)H = (Ad(k)H1, · · · , Ad(k)Hj)) ∈ aΣ,+
kP

(∞),

where Σ induces an ordered partition of ∆(kP,AkP ) by Ad(k) : aP → akP ,
which is denoted by Σ also in the above equation.

I.14.6 Before defining a topology on XK , we need to define a topology of
aP ∪ aK,+P (∞). Given an ordered partition Σ : I1 ∪ · · · ∪ Ik and a point H∞ =
(H1,∞ · · · ,Hk,∞) ∈ aΣ,+

P (∞), a unbounded sequence Hj ∈ aP converges to
(H1,∞ · · · ,Hk,∞) if and only if

1. For all α ∈ ∆, α(Hj)→ +∞.

2. For every pair m < n, α ∈ Im, β ∈ In, β(Hj)/α(Hj)→ 0.

3. For every m, α, β ∈ Im, β(Hj)/α(Hj)→ β(Hm,∞)/α(Hm,∞).

Neighborhoods of boundary points in aP ∪aK,+P (∞) can be given explicitly.
For any H∞ = (H1,∞ · · · ,Hk,∞) ∈ aΣ,+

P (∞), and ε > 0, define

UXε (H∞) ={H ∈ aP | (1) for α ∈ ∆, α(H) >
1
ε
,

(2) for every pair m < n,α ∈ Im, β ∈ In, |β(H)/α(H)| < ε,

(3) for every m,α, β ∈ Im, |β(H)/α(H)− β(Hm,∞)/α(Hm,∞)| < ε}.
(I.14.6)
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Combining with the set UΣ′

ε (H∞) in Equation (I.14.4), set

Uε(H∞) = UXε (H∞) ∪ ∪Σ′U
Σ′

ε (H∞), (I.14.7)

where Σ′ runs over all the ordered partitions for which Σ is a refinement. This
is a neighborhood of H∞ in aP ∪ aK,+P (∞).

I.14.7 The topology of the space XK is given in terms of convergent se-
quences as follows:

1. A unbounded sequence yj in X converges to (H∞, z∞) ∈ aK,+P (∞)×XP

if yj can be written as yj = kjnjajzj with kj ∈ K,nj ∈ NP , aj ∈ AP ,
zj ∈ XP satisfying the conditions:

(a) kj → e.

(b) log aj → H∞ in aP ∪ aK,+P (∞) in the topology described above.

(c) n
aj
j → e.

(d) zj → z∞.

2. Let Q be a parabolic subgroup containing P , and P ′ be the parabolic
subgroup in MQ corresponding to P . We note that a partition ΣQ
of ∆(Q,AQ) and a partition of ΣP

′
of ∆(P ′, AP ′) combine to form a

partition ΣP = ΣQ∪ΣP
′

of ∆(P,AP ), where the roots in ∆(Q,AQ) and
∆(P ′, AP ′) are identified with the roots in ∆(P,AP ) whose restrictions
are equal to them.

For a sequence kj ∈ K with kj → e, and a sequence yj = (Hj , zj) in
aK,+Q (∞)×XQ, the sequence kjyj converges to (H∞, z∞) ∈ aK,+P (∞)×
XP if and only if zj can be written as zj = k′jn

′
ja
′
jz
′
j with k′j ∈ KQ, n

′
j ∈

NP ′ , a′j ∈ AP ′ , z′j ∈ XP ′ , and these components and Hj satisfy the
conditions:

(a) There exists a partition Σ of the form Σ = ΣQ ∪ ΣP
′
, i.e., a

combination of two partitions ΣQ,ΣP
′
, such that H∞ ∈ aΣ,+

P .

Write H∞ = (H∞,Q,H ′∞) ∈ a
ΣQ,+
Q (∞) × aΣP

′
,+

P ′ (∞). The com-
ponents k′j , n

′
j , a

′
j , z
′
j satisfy the same condition as in part (1)

above when the pair X,P is replaced by XQ, P
′ and the limit by

(H ′∞, z∞) ∈ aK,+P ′ (∞)×XP ′ .

(b) (Hj ,H
′
∞)→ H∞ in aP ∪ aK,+P (∞).

These are special convergent sequences and their combinations give general
convergent sequences. It can be checked that they form a convergence class
of sequences and hence define a topology on X

K
.
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I.14.8 Neighborhood systems of boundary points in X
K

can be described
as follows. For a point (H∞, z∞) ∈ aK,+P (∞) × XP , let V be a bounded
neighborhood of z∞ in XP , and Uε = Uε(H∞) a neighborhood of H∞ in
aP ∪ aK,+P (∞) defined in Equation (I.14.7) above. For ε > 0, t > 0, define

SKε,t,V = {(n, a, z) ∈ NP ×AP ×XP = X | (I.14.8)

log a ∈ Uε, a ∈ AP,t, na ∈ BNP (ε), z ∈ V }. (I.14.9)

Let Σ be the partition of ∆(P,AP ) such that H∞ ∈ aΣ,+
P (∞). For a

parabolic subgroup PI containing P , let P ′ be the parabolic subgroup of
MPI corresponding to P in Equation (I.1.21). If a partition Σ is of the form
ΣPI∪ΣP

′
in the above notation, we call PI a Σ-admissible parabolic subgroup.

For example, when Σ = ∆, the only Σ-admissible parabolic subgroup is P .
For each Σ-admissible parabolic subgroup PI , write H∞ = (H∞,I ,HI

∞) ∈
aK,+PI

(∞)× aK,+P ′ (∞). For ε > 0, Let UI,ε = Uε(H∞,I)∩ aK,+PI
(∞), a neighbor-

hood of H∞,I in aK,+PI
(∞). (Recall that Uε(H∞,I) is a neighborhood of H∞,I

in aPI ∪ aK,+PI
(∞) as defined in Equation (I.14.7) above). Let SK,Iε,t,V be the

corresponding neighborhood of HI
∞ in XPI defined as in Equation (I.14.8).

For a neighborhood C of e in K, the set

C(SKε,t,V ∪
∐

Σ−admissible PI

UI,ε × SK,Iε,t,V ) (I.14.10)

is a neighborhood of (H∞, z∞) in XK .

Proposition I.14.9 The topology on XK is Hausdorff.

Proof. We need to show that any two distinct points x1, x2 in XK admit
disjoint neighborhoods. This is clearly the case when at least one of them
belongs to X. Assume that xi = (Hi, zi) ∈ aK,+Pi

(∞) × XPi . There are two
cases to consider: P1 = P2 or not.

In the first case, if z1 6= z2, it follows from the proof of Proposition I.10.6
that when t� 0, ε is sufficiently small, C is a sufficiently small neighborhood
of e, and Vi a sufficiently small neighborhood of zi, i = 1, 2, the neighborhoods
C(SKε,t,Vi ∪

∐
UIi,εj ×S

K,I
ε,t,Vi

) of xi are disjoint. On the other hand, if z1 = z2,
then H1 6= H2. We claim that the same conclusion holds.

If not, there exists a sequence yj in the intersection of Cj(SKεj ,tj ,Vi,j ∪∐
UIi,εj × S

K,I
εj ,tj ,Vi,j

) for sequences εj → 0, tj → +∞, Cj that shrinks to e,
and Vi,j shrinks to zi, i = 1, 2.

Assume first yj ∈ X. Then yj = kjnjajzj with kj ∈ K, nj ∈ NP , aj ∈ AP ,
zj ∈ XP satisfying the conditions (1) kj → e, (2) log aj → H1 ∈ aK,+P (∞),
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(3) najj → e, (4) zj → z1. Similarly, yj = k′jn
′
ja
′
jz
′
j with the components

satisfying the same condition except log a′j → H2, z′j → z2. Since H1 6= H2,

|| log aj − log a′j || → +∞. (I.14.11)

Since
d(kjnjajzj , kjajzj) = d(najj zj , zj)→ 0

and
d(kjajzj , kjajx0) = d(zj , x0)

is bounded, it follows that

d(kjajx0, k
′
ja
′
jx0) ≤ c

for some constant c. By [AJ, Lemma 2.1.2],

d(kjajx0, k
′
ja
′
jx0) ≥ || log aj − log a′j ||,

and hence
|| log aj − log a′j || ≤ c.

This contradicts Equation (I.14.11), and the claim is proved. The case where
yj belongs to the boundary of XK can be handled similarly.

In the second case, P1 6= P2, and we can use the fact that SKε,t,V is contained
in the generalized Siegel set Sε,t,V defined in Equation (I.9.2) in §I.1 and
the separation result in Proposition I.9.8 to prove that x1, x2 admit disjoint
neighborhoods.

Proposition I.14.10 The space XK is compact.

Proof. Since X = K exp a+
P0
x0, XK = Kexp a+

P0
x0, where P0 is a minimal

parabolic subgroup, and exp a+
P0
x0 is the closure of exp a+

P0
x0 in XK . Since

K is compact, it suffices to prove the compactness of exp a+
P0
x0, which follows

easily from the definition. In fact, for any unbounded sequence Hj ∈ a+
P0

,
there exists an ordered partition Σ′ : I1 ∪ · · · ∪ Ik ∪ J = ∆ of ∆(P0, AP0),
where J could be empty, such that, after replacing by a subsequence, Hj

satisfies the conditions:

1. For all α ∈ J , α(Hj) converges to a finite limit.

2. For all α 6∈ J , α(Hj)→ +∞.

3. For α, β ∈ Im, α(Hj)/β(Hj) converges to a finite positive number.

4. For α ∈ Im, β ∈ In, m < n, α(Hj)/β(Hj)→ +∞.
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Then it follows from definition that expHjx0 converges to a point in aΣ,+
PJ

(∞)×
XPJ ⊂ aK,+PJ

(∞) × XPJ , where Σ is the partition I1 ∪ · · · ∪ Ik of ∆ \ J =
∆(P0,J , AP0,J ).

Proposition I.14.11 The G-action on X extends to a continuous action on
XK .

Proof. For any g ∈ G and (H, z) ∈ aK,+P (∞) × XP , write g = kman with
k ∈ K,m ∈MP , a ∈ AP , n ∈ NP . Define

g · (H, z) = (Ad(k)H, k ·mz) ∈ aK,+kP
(∞)×XkP ,

where k canonically identifies aK,+P (∞) with aK,+kP
(∞) in Equation (I.14.5),

and the K-action on XP is defined in Equation (I.1.15) in §I.1. This defines
an extended action of G on XK . Arguments similar to those in the proof of
Proposition I.13.7 show that this extended action is continuous.

Proposition I.14.12 The identity map on X extends to a continuous sur-
jective map π : XK → X

c
, and for every point H ∈ a+

P (∞), the fiber π−1(H)
is equal to (XP )K , in particular,

XK = X ∪
∐
P

a+
P (∞)× (XP )K ,

where P runs over all parabolic subgroups. Equivalently, for any z ∈ X(∞),
let Gz be the stabilizer of z, which is a parabolic subgroup of G, and Xz = XGz ,
the boundary symmetric space. Then

XK = X ∪
∐

z∈X(∞)

(Xz)K .

Proof. For any unbounded sequence yj inX, if it converges to (H∞, z) ∈ aK,+P

in XK , then it follows from the definitions of convergence of sequences that
yj converges to π(H∞) in X

c
, where π is the map in Proposition I.14.4. By

[GJT, Lemma 3.28], this defines a continuous map

π : XK → X
c

= X ∪X(∞).

For any point H ∈ ∂X
c

=
∐
Q a+

Q(∞), let Q be the unique parabolic
subgroup such that H ∈ a+

Q(∞). For any parabolic subgroup P contained in
Q, let P ′ be the corresponding parabolic subgroup in MQ. Let J ⊂ ∆(P,AP )
such that Q = PJ . For any partition Σ : I1 ∪ · · · ∪ Ik of ∆(P,AP ) satisfying
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I1 = ∆ − J , Σ induces a partition Σ′ : I2 ∪ · · · ∪ Ik of ∆(P ′, AP ′). For
every point H ′ ∈ aΣ′,+

P ′ (∞), z ∈ XP , then (H,H ′) ∈ aΣ,+
P (∞), ((H,H ′), z) ∈

aK,+P (∞)×XP , and the fiber π−1(H) consists of the union

∪P⊆Q ∪Σ {((H,H ′), z) | H ′ ∈ aΣ′,+
P ′ (∞), z ∈ XP }

where for each P ⊆ Q, write Q = PJ as above, the second union is over all
the partitions Σ with I1 = ∆− J . This set can be identified with

∪P ′⊆MQ
∪Σ′ a

Σ′,+
P ′ (∞)×XP ′ = XQ ∪ ∪P ′⊂MQ

aK,+P ′ (∞)×XP ′

which is equal to (XQ)K by definition.

Proposition I.14.13 The identity map on X extends to a continuous map
XK → X

M
, and this map is a homeomorphism if and only if the rank of X

is less than or equal to 2.

Proof. It is clear from the definitions that if a unbounded sequence yj in X

converges to (H∞, z∞) ∈ aK,+P (∞)×XP in XK , then yj also converges in X
M

to (π(H∞), z∞) ∈ a+
P (∞) × XP , where π is the map defined in Proposition

I.14.4. By [GJT, Lemma 3.28], this defines a continuous map XK → X
M

.
By Proposition I.14.4, this map is bijective if and only if rk(X) ≤ 2. In this
case, it is a homeomorphism.

I.14.14 Example. When X = D × D, X
K

is the same as the Martin
compactification X

M
. On the other hand, when X = D × D × D, they are

different. To see this, let γ be a singular geodesic such that the boundary
symmetric space X[γ] is equal to D × D. For example, we can take γ(t) =
(γ1(t), 0, 0), where γ1 is a geodesic in D. Then D × D is contained in the
boundaries of both X

M
and X

K
. The closure of D × D in X

M
is equal to

D × D, where D is the closed unit disc, but its closure in X
K

is D ×DM
,

the Martin compactification, which strictly dominates D × D, the maximal
Satake compactification.

A maximal flat subspace in D × D × D is isometric to R × R × R. Its
closure in the maximal Satake compactification is a cube. Its closure in the
Martin compactification is a blow-up of the cube by rounding off the corners.
To get the closure in the Karpelevič compactification, we need to blow up
further each boundary face in the closure of the Martin compactification into
a cell of dimension 2, i.e., of codimension 1.
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Proposition I.14.15 Let X
K

be the Karpelevič compactification, and XK

the compactification defined in this section. Then the identity map on X

extends to a homeomorphism χ : X
K → XK

Proof. The idea is to prove that any unbounded sequence yj in X that
converges in X

K
also converges in XK , and hence we only need to describe

the intersection with X of neighborhoods of boundary points in X
K

which is
given in [Ka, §13.8] [GJT, §5.5] and show that it is contained the intersection
with X of the neighborhoods of boundary points in XK . For details, see [BJ2,
§8].

I.14.16 Summary and comments. We give a non-inductive construction
of X

K
following the general method in §I.8. A key point is to understand

the closure of the maximal flat subspaces. The original definition in [Ka] is
inductive on the rank of the symmetric spaces. An important observation
in [GJT] is that for a unbounded sequence of points in a positive chamber,
the limit point which the sequence converges to depends on the relative rates
going to infinity of the coordinates of the sequence with respect to the simple
roots. Then compactifications of flats in X are glued into the compactification
of X. As in the case of dual-cell compactification, it is not easy to show
directly that the G-action on X extends to a continuous action on the resulting
compactification.

The approach here is more global in some sense, and the continuous ex-
tension of G-action is easy to be obtained.

I.15 Real Borel-Serre partial compactification

In this section, we use the uniform method in §I.8 to give a slightly differ-
ent construction of the partial Borel-Serre compactification RX

BS
of X over

the real numbers in [BS2]. It is well-known that [BS2] constructs a par-
tial compactification over the rational numbers, called the partial Borel-Serre
compactification of X, whose quotient by an arithmetic subgroup Γ gives the
Borel-Serre compactification Γ\X

BS
of Γ\X in [BS2] (see §III.5 below). Actu-

ally, the construction in [BS2] works over any subfield of R. Compactifications
of this real Borel-Serre partial compactification RX

BS
of X are useful for some

applications concerning global properties of arithmetic subgroups such as the
Novikov conjectures (see [Gol]).

Suggested by the reductive Borel-Serre compactification of locally sym-
metric spaces, we also construct in this section a quotient of RX

BS
, called

the real reductive Borel-Serre partial compactification of X and denoted by
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RX
RBS

.
This section is organized as follows. In I.15.1, we define the Borel-Serre

boundary components, and define the topology via convergent sequences.
Neighborhood base are given in I.15.2. The Hausdorff property of RX

BS
is

proved in Proposition I.15.3. Though the G-action on X extends to RX
BS

, the
extension is not continuous (Proposition I.15.6). It is non-compact (Propo-
sition I.15.4) and hence called a partial compactification. In I.15.6, the diffi-
culty of compactifying this partial compactification in the case of X = D is
discussed. The real reductive Borel-Serre partial compactification RX

RBS
is

defined in I.15.9. It is shown in Proposition I.15.11 that it is noncompact and
Hausdorff. Its relation to the maximal Satake compactification is discussed
in Proposition I.15.13.

I.15.1 We follow the uniform method to construct this partial compactifi-
cation RX

BS
. There is a boundary component e(P ) for each real (proper)

parabolic subgroup P , defined by

e(P ) = NP ×XP .

Let
RX

BS
= X ∪

∐
P

e(P )

with the following topology. First, we describe some special convergent se-
quences.

1. An unbounded sequence yj in X converges to a boundary point y∞ =
(n∞, z∞) if in the horospherical decomposition yj = (nj , aj , zj) ∈ NP ×
AP ×XP , the components satisfy the conditions:

(a) nj → n∞,
(b) zj → z∞,
(c) and for any α ∈ Φ(P,AP ), aαj → +∞.

2. For two parabolic subgroups P,Q with P ⊆ Q, e(P ) is contained in the
closure of e(Q). Let P ′ be the parabolic subgroup of MQ corresponds
to P in Equation (I.1.21). Then

XQ = NP ′ ×AP ′ ×XP ′ = NP ′ ×AP ′ ×XP ,

and hence
e(Q) = NQ ×XQ = NP ×AP ′ ×XP , (I.15.1)

where NP = NQ ×NP ′ is used. Under the above notation, a sequence
yj ∈ e(Q) converges to any given point (n∞, z∞) ∈ e(P ) if in the decom-
position in Equation (I.15.1), the coordinates of yj = (nj , a′j , zj) satisfy
the conditions:
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(a) nj → n∞ in NP ,
(b) zj ∈ z∞,
(c) for all α ∈ Φ(P ′, AP ′), a′j

α → +∞.

A general convergent sequence is a combination of these special ones. It
can be checked easily that they form a convergence class of sequences and
hence defines a topology on RX

BS
.

I.15.2 Neighborhoods of boundary points can be given explicitly. For any
(n∞, z∞) ∈ e(P ), let U be a neighborhood of n∞ in NP , and V be a neigh-
borhood of z∞ in XP . For t > 0, U ×AP,t× V is a Siegel set in X associated
with P , and

U ×AP ′,t × V ⊂ NP ×AP ′ ×XP = XQ.

The union
U ×AP,t × V ∪

∐
Q⊇P

U ×AP ′,t × V

is a neighborhood of (n∞, z∞) in RX
BS

.

Proposition I.15.3 The space RX
BS

is Hausdorff.

Proof. It follows from the separation of Siegel sets in X in Propositions I.9.8
and I.9.11 and its generalization to subsets U × AP ′ × V in e(Q) associated
with P ⊂ Q.

Proposition I.15.4 The space RX
BS

is noncompact.

Proof. Fix any parabolic subgroup P and consider a sequence yj = (nj , aj , zj)
whose coordinates satisfy the conditions: (1) aαj → +∞ for all α ∈ Σ(P,AP ),
(2) nj is unbounded, najj → e, (3) zj → z∞ for some z∞ ∈ XP . From the
separation of generalized Siegel sets in Proposition I.9.11, it can be shown
that for any boundary point (n, z) ∈ e(P ), z 6= z∞, yj does not belong to
any sufficiently small neighborhood of (n, z) when j � 1. Since nj is not
bounded, yj does not belong to any neighborhood of (n, z∞) either when
j � 1. Similarly, Proposition I.9.8 implies that it does converge to any point
in e(Q) for any Q 6= P . Therefore, yj does not converge to any point in

RX
BS

.

I.15.5 The G-action on X can be extended to RX
BS

as follows. For any
g ∈ G and a boundary point (n, z) ∈ NP × XP , write g = km0a0n0, where
k ∈ K, m0 ∈MP , a0 ∈ AP and n0 ∈ NP . Define

g · (n, z) = (km0a0(n0n), Ad(k)m0z) ∈ NgP ×XgP .
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Proposition I.15.6 This extended action G-action on RX
BS

is not contin-
uous.

Proof. In fact, any sequence yj = (n, aj , z) ∈ NP ×AP ×XP with aαj → +∞
for all α ∈ Φ(P,AP ) converges to (n, z) ∈ e(P ). On the other hand, yj
can also be written as gj · (nj , a′j , zj), where gj → e in G, nj → e in NP ,
(a′j)

α → +∞ for all α ∈ Φ(P,AP ), and zj converges to z. If the G-action is

continuous, then yj will also converge to (e, z) ∈ e(P ) in RX
BS

. Since it will
be shown below that the space RX

BS
is Hausdorff, this gives a contradiction

when n 6= e.

On the other hand, for some applications to topology, only the action of
discrete subgroups Γ on compactifications of RX

BS
is required.

I.15.7 The above proof shows that the noncompactness of the factor NP in
the boundary component e(P ) causes the noncompactness of RX

BS
. To get

a compactification of RX
BS

, we need to compactify the spaces NP suitably.
This turns out to be subtle since there are compatibility conditions of the
boundary components of different parabolic subgroups to be satisfied.

I.15.8 Consider the example of G = SU(1, 1) and X = D, the unit disc.
For each parabolic subgroup P , the boundary component e(P ) = NP ∼= R.
Compactify NP by adding two points at infinity −∞,+∞,

e(P ) = {−∞} ∪ e(P ) ∪ {+∞} ∼= [−∞,+∞].

The topology of
D
∗

= D ∪
∐
P

e(P )

is given as follows:

1. Fix any point n∞ ∈ e(P ). An unbounded sequence yj in X converges
to n∞ if in the horospherical coordinate decomposition X = NP × AP
(note that XP consists of one point and dimAP = 1), yj = (nj , aj),
aj → +∞ and nj → n∞. A sequence yj in the boundary

∐
Q e(Q)

converges to n∞ if yj ∈ e(P ) for j � 1 and yj → n∞ in e(P ) = NP .

2. Identify NP with the open cell in G/P− using the Bruhat decomposition,

G/P− = NP ∪ {∞},

where P− is the parabolic subgroup opposite to P . Each point gP− ∈
G/P− corresponds to the parabolic subgroup gP−, and the point∞ cor-
responds to P . For the point ξ = −∞ ∈ e(P ), an unbounded sequence yj
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in X converges to ξ if in the horospherical decomposition X = NP ×AP ,
yj = (nj , aj), nj → −∞ but there is no condition on aj ; a sequence yj
on the boundary

∐
Q e(Q) converges to ξ = −∞ if yj = gjP−, where

gj ∈ NP for j � 1, and gj → −∞ inNP = e(P ) = {−∞}∪e(P )∪{+∞}.
Convergence to the point +∞ ∈ e(P ) can be described similarly.

It can be shown that D
∗

is a compactification of RD
BS

.

Remark I.15.9 This compactification X
∗

was first defined in [Gol], and the
topology was described differently. The above definition of the topology em-
phasizes the role of AP -, NP -actions, and the AP -action is the geodesic action
in [BS2]. In a certain sense, the NP -action on X takes precedence over the
AP -action.

I.15.10 If we drop the factor NP and take the boundary component to be
XP , then we get the reductive Borel-Serre partial compactification

RX
RBS

= X ∪
∐
P

XP .

with the following topology. Fix any point point z∞ ∈ XP . There are two
special types of sequences converging to z∞, and the general convergent se-
quences are combinations of these.

1. An bounded sequence yj ∈ X converges to z∞ if in the horospherical
decomposition yj = (nj , aj , zj) ∈ NP ×AP ×XP , the coordinates satisfy
(1) zj → z∞, (2) aαj → +∞ for all α ∈ Σ(P,AP ), (3) najj → e.

2. For any pair of parabolic subgroups P,Q, e(P ) is contained in the clo-
sure of e(Q) if and only if P ⊆ Q, and a sequence yj in the boundary
component e(Q) converges to z∞ if it satisfies the same condition as in
(1) when X is replaced by XQ and P by the parabolic subgroup P ′ of
MQ corresponding to P .

Proposition I.15.11 The partial compactification RX
RBS

is a noncompact,
Hausdorff space.

Proof. The Hausdorff property follows from the separation properties of gen-
eralized Siegel set in Propositions I.9.8 and I.9.11 . To show it is noncompact,
take sequence kj ∈ K, kj → e but kj 6∈ P . For any point z∞ ∈ XP , then
kjz∞ does not converge to any limit point in RX

RBS
.
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I.15.12 Set theoretically, RX
RBS

is equal to the maximal Satake compacti-
fication X

S

max. In fact, RX
RBS

is the analogue of the partial reductive Borel-
Serre compactification QX

RBS
whose quotient by arithmetic groups Γ gives

the reductive Borel-Serre compactification Γ\X
RBS

discussed later in §III.6.

Proposition I.15.13 The identity map on X∪
∐
XP gives a continuous map

from RX
RBS

to X
S

max, but this map is not a homeomorphism.

Proof. Since both RX
RBS

and X
S

max are equal to X ∪
∐
P XP , they can

be identified with each other as sets. From the definition of the topologies of

RX
RBS

and X
S

max, it is clear that if a sequence in RX
RBS

, in particular an
unbounded sequence in X, converges in RX

RBS
, it also converges in X

S

max.
This implies the identity map on X extends to a continuous map from RX

RBS

to X
S

max.
The proof of Proposition I.15.11 shows that there is no convergence be-

tween points of boundary components in RX
RBS

of different conjugate parabolic
subgroups, i.e., the topology on the set of boundary components is discrete.
For example, in the case G = SU(1, 1), X = D, RX

RBS
= D ∪ S1 with dis-

crete topology on the boundary. Since X
S

max admits a continuous G-action,
they are not isomorphic.

Remark I.15.14 This proposition explains that for compactifications of sym-
metric spaces with a continuous G-action, it is the topological Tits building
rather than the (usual) Tits building that is used to parametrize the boundary
components.

Proposition I.15.15 The action of G on X extends to actions on RX
BS

and RX
RBS

, but the extended actions are not continuous.

Proof. The results on RX
BS

were given in Proposition I.15.6. Now we define
the extended action on RX

RBS
. For any g ∈ G, z∞ ∈ XP , write g = kman,

where k ∈ K, m ∈MP , a ∈ AP and n ∈ NP . Define

g · z∞ = k · (mz∞) ∈ XkP = XgP .

To show that this extended action is not continuous, we note that for any
sequence kj ∈ K, kj → e, but kk 6∈ P . Then for any boundary point
(n∞, z∞) ∈ z∞, kj · (n∞, zn∞) does not converge to (n∞, z∞).
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I.15.16 Summary and comments. In this section, we apply the general
method to construct two partial compactifications of X, the Borel-Serre and
the reductive Borel-Serre partial compactifications. Since they compactify X
in certain directions but are not compact, they are called partial compactifi-
cations. Though the terminology of partial compactification is not ideal, it
seems to be difficult to choose a good one. Some people call the Borel-Serre
partial compactification over Q defined in §III.5 the Borel-Serre bordification,
since it is a manifold with corners, and hence some borders have been added.
But the bordification is probably not suitable for the reductive Borel-Serre
partial compactification over Q.
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Chapter 3

Properties of
compactifications of
symmetric spaces

In the previous chapters, we have recalled and constructed many different
compactifications of symmetric spaces. In this chapter, we study relations
between these compactifications and their more refined properties such as
analytic structures and the global shape as topological manifolds.

In §I.16, we introduce the notions of dominating maps between, com-
mon quotients and common refinements of compactifications of symmetric
spaces. Then we study domination relations between all the compactifica-
tions of symmetric spaces mentioned in Chapter 1. To motivate the subgroup
compactification of locally symmetric spaces in Part III, we discuss in §I.17
two other constructions of the maximal Satake compactification X

S

max, one
using the space of closed subgroups and another using a Grassmanian variety
associated with the Lie algebra g. We also give a different construction of the
geodesic compactification X ∪ X(∞) by embedding X into ambient spaces
and taking the closure, which gives the Gromov compactification of X. In
§I.18, we recall the Atiyah’s convexity theorem on the moment map and use
it to identify the closure of flats in the Satake compactifications and use it
to show that the Satake compactifications are topological balls. In §I.19, we
recall the dual-cell compactification X ∪∆∗(X) in [GJT] and a modification
X̃S

max suggested by the Oshima construction in [Os1] to show that X
S

max is a
real analytic manifold with corners.

187
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I.16 Relations between the compactifications

In the previous sections, we have studied many different compactifications
which arise from various problems. In this section, we study relations between
them.

First we introduce several notions which describe different relations be-
tween compactifications of the same space. Then we prove the existence of
the greatest common quotient (GCQ) and the least common refinement (LCR)
of two compactifications (Proposition I.16.2). After illustrating these concepts
through the example of X = D×D, the bi-disc, in I.16.3, we state the general
result in I.16.5.

I.16.1 As mentioned earlier, in this book, all compactifications are assumed
to be Hausdorff. Recall that given two compactifications X

1
, X

2
of X, X

1
is

said to dominate X
2

if the identity map on X extends to a continuous map
X

1 → X
2
, which is automatically surjective and called the dominating map.

The compactification X
1

is called a refinement of X
2
, and X

2
is called a

quotient of X
1
. Two compactifications X

1
, X

2
are isomorphic if the identity

map on X extends to a homeomorphism between them. If both X
1

and X
2

are
G-compactifications, the extended map is clearly G-equivariant. A common
quotient of X

1
and X

2
is a compactification X which is dominated by both

X
1

and X
2
. On the other hand, if a compactification X dominates both X

1

and X
2
, it is called a common refinement.

Proposition I.16.2 Any two compactifications X
1

and X
2

admits a unique
greatest common quotient (GCQ), denoted by X

1∧X2
or GCQ(X

1
, X

2
), and

a least common refinement denoted by X
1 ∨X2

or LCR(X
1
, X

2
).

Proof. The set of compactifications of X is partially ordered with respect
to the relation of domination. It can be checked easily that for any ordered
chain in this partially ordered set, there is a maximal element and a minimal
element. By Zorn’s lemma, both GCQ and LCR exist.

The LCR can be realized as the closure of X under the diagonal embedding
into X

1×X2
. On the other hand, there is no such simple procedure to obtain

X
1 ∧X2

.

I.16.3 Example. We consider several examples to illustrate these concepts.
Let X = D ×D. It has the one-point compactification X ∪ {∞}, the Satake
compactification X

S
= D × D (all the Satake compactifications of D and

hence of D × D are isomorphic to each other), the geodesic compactifica-
tion, the Martin compactification X

M
, which is isomorphic to the Karpelevič
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compactification X
K

.
The one-point compactification X ∪ {∞} is a quotient of all others, and

X
K

dominates all other compactifications. The GCQ of X ∪X(∞) and X
S

is X
M

, and their LCR is X ∪ {∞}.

I.16.4 Recall that g = k+p is the Cartan decomposition of g associated with
K, and a ⊂ p a maximal abelian subspace. Let a+ a positive chamber, and
∆ = ∆(g, a) the set of simple roots in Φ(g, a). Let P0 be the minimal parabolic
subgroup containing A = exp a such that ∆(P0, A) = ∆(G,A) = ∆(g, a).

Proposition I.16.5 The relations between the compactifications: the geodesic
compactification X ∪X(∞), the Satake compactifications X

S

τ , the Baily-Borel
compactification X

BB
, the Furstenberg compactifications X

F

I , the Martin com-
pactification X

M
= X ∪ ∂λX, λ < λ0(X), the Karpelevič compactification

X
K

, and the real Borel-Serre partial compactification RX
BS

, RX
RBS

are
given as follows:

1. When the rank of X is equal to 1, all these compactifications are iso-
morphic to each other.

2. The Karpelevič compactification X
K

dominates the Martin compactifi-
cation X

M
, and they are isomorphic if and only if the rank of X is less

than or equal to 2.

3. X
M

dominates both the geodesic compactification X ∪ X(∞) and the
maximal Satake compactification X

S

max and is equal to X∪X(∞)∨XS

max,
i.e., the LCR of X ∪X(∞) and X

S

max. On the other hand, the GCQ of
X ∪X(∞) and X

S

max is the one point compactification if the rank of X
is strictly greater than 1.

4. The maximal Satake compactification X
S

max dominates all other Satake
compactifications. More generally, for any two Satake compactifications
X
S

τ1 and X
S

τ2 , X
S

τ1 dominates X
S

τ2 if and only if the highest weight µτ1
of τ1 is more regular than µτ2 in the sense that if Ci is the Weyl chamber
face of a∗,+ containing µτi as an interior point, then C2 is a face of C1.
In particular, if τ is a regular representation, X

S

τ is the maximal Satake
compactification X

S

max.

5. When X is a Hermitian symmetric space (or equivalently a bounded
symmetric domain), the Baily-Borel compactification X

BB
is isomor-

phic, as a topological G-compactification, to the minimal Satake com-
pactification X

S

τ , whose highest weight µτ is only connected to the dis-
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tinguished (either the longest or the shortest) in the Dynkin diagram of
Φ(g, a).

6. The Furstenberg compactifications are isomorphic to the Satake com-
pactifications, where X

F

P0,I
, I ⊂ ∆, is isomorphic to a Satake compact-

ification X
S

τ , where the highest weight µτ is connected to the simple
roots in ∆− I. In particular, the maximal Furstenberg compactification
X
F

max corresponds to I = ∅ and is isomorphic to the maximal Satake
compactification X

S

max.

7. The real Borel-Serre partial compactification RX
BS

dominates the real
reductive Borel-Serre partial compactification RX

RBS
, which in turn

dominates the maximal Satake compactification X
S

max. The dominating
map RX

RBS → X
S

max is continuous and bijective but is not a homeo-
morphism.

Proof. It basically follows from the uniform construction of these compact-
ifications by comparing the sizes of the boundary components. Specifically,
(1) follows from Propositions I.14.13 and I.14.15, (2) follows from Proposi-
tion I.7.15, (3) is contained in Proposition I.4.35, (4) follows from Corollary
I.5.29 and the definition of the distinguished root, (5) follows from Proposi-
tion I.6.21, the first statement of (6) follows from the definitions of RX

BS
and

RX
RBS

, and the second statement from Proposition I.15.13.

Remark I.16.6 In this book, we have not discussed functorial properties
of compactifications of X, i.e., if X1 → X2 is an embedding, and X2 is a
compactification of X2, the question is what the induced compactification of
X1 is. Similarly, we can also ask whether a compactification X preserves the
product, i.e., if X = X1 ×X2, then X = X1 ×X2.

It can be shown easily that the geodesic compactification X ∪X(∞) has
the functorial property. In fact, for any isometric embedding X1 → X2, every
equivalence class of geodesics in X1 is mapped to mapped into an equivalence
class in X2. This defines an injective map from X1 ∪X1(∞) to X2 ∪X2(∞).
It can be shown easily that it is an embedding.

The example of X = D×D shows easily that it does not preserve the prod-
uct structure, i.e., the geodesic compactification of D ×D is not isomorphic
to (D ∪D(∞))× (D ∪D(∞)) = D ×D.

On the other hand, it can be shown that the Satake compactifications
preserve the product structure.
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I.17 More constructions of the maximal Satake
compactification

In this section, we recall two more realizations of the maximal Satake compact-
ification X

S

max: the subgroup compactification X
sb

, the subalgebra compacti-
fication X

sba
, the dual-cell compactification X ∪ ∆∗(X) and a modification

X̃S
max suggested by the Oshima compactification.

The subgroup compactification X
sb

is related to the compactifications of
locally symmetric spaces in Part III, Chapter 12, while the subalgebra com-
pactification X

sba
allows us to embed the maximal Satake compactification

X
S

max into the real locus of the wonderful compactification XC
W

of the com-
plex symmetric space XC = GC/KC in Part II, Chapter 7, and the modified
dual-cell compactification X̃S

max shows that X
S

max is a real analytic manifold
with corners. We also give another realization of the geodesic compactification
X ∪X(∞) by the Gromov compactification X

G
and its variant. The Gromov

compactification applies to any complete, locally compact metric space, and
the Gromov compactification of locally symmetric spaces will be determined
and identified with the geodesic compactification in §III.20. As an applica-
tion, we reconstruct the Martin compactifications X ∪ ∂λX via embeddings
into compact ambient spaces in I.17.17.

I.17.1 Let S(G) be the space of closed subgroups in G. It has the following
topology. Let C ⊂ G be a compact subset, and U ⊂ G a neighborhood of e
in G. For any closed subgroup H ⊂ G, define

V (H;U,C) = {H ′ ∈ S(G) | H ′ ∩ C ⊂ U(H ∩ C),H ∩ C ⊂ U(H ′ ∩ C)}.

Then V (H;U,C) is a neighborhood of H in S(G). When Cj is an exhausting
family of subsets of G, ∪jCj = G, and Uj ranges over a neighborhood basis of
e, then V (H;Uj , Cj) forms a neighborhood basis of H. It can be checked easily
that this defines a topology on S(G). Intuitively, a sequence Hj converges to
H if within any fixed compact subset of G, Hj approximates H uniformly.

Clearly, G acts continuously on S(G) by conjugation. Hence S(G) is a
G-space.

Proposition I.17.2 The space S(G) is a compact Hausdorff space.

Clearly, the limit of a sequence of subgroups is a closed subgroup. The
point is to prove that any sequence of subgroups has a limit. For details, see
[Bu3, Chap. 8, §5].

Define a map

i : X = G/K → S(G), gK 7→ gKg−1,
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which is G-equivariant. The injectivity of the map i follows from the next
result.

Lemma I.17.3 The maximal compact subgroup K is equal to its own nor-
malizer N (K).

Proof. Fix any g ∈ N (K). By definition, for any k ∈ K, there exists k′ ∈ K
such that kg = gk′. Let x0 = K ∈ X be the basepoint. Then

k(gx0) = g(k′x0) = gx0,

and K fixes gx0. If gx0 6= x0, then the geodesic γ(t) from x0 passing through
gx0 is fixed by K. But this is impossible. In fact, let g = k + p be the
Cartan decomposition. There exists a maximal abelian subspace a in p and
an nonzero element H ∈ a such that γ(t) = exp tH. Since the Weyl group of
a can be realized as a subgroup of K and the Weyl group of a does not fix
any nonzero element of a, the claim follows.

Proposition I.17.4 The map i : X → S(G) is an embedding.

Proof. Clearly, by the above lemma, the map i is injective. We need to show
that for any sequence gjK in X, gjKg−1

j converges to g∞Kg
−1
∞ in S(G) if

and only if gjK converges to g∞K in X.
If gjK → g∞K in X, then

gjKg
−1
j = (gjK)(gjK)−1 → (g∞K)(g∞K)−1 = g∞Kg

−1
∞ .

On the other hand, assume that gjKg−1
j converges to g∞Kg−1

∞ . We claim
that the orbit gjKgjx0, where x0 = K ∈ X, is contained in the sphere in X
with center gjx0 and radius d(gjx0, x0) with respect to the invariant metric d
on X. In fact, for any k ∈ K,

d(gjkg−1
j x0, gjx0) = d(kg−1

j x0, x0) = d(g−1
j x0, x0) = d(gjx0, x0).

This implies that as the center of the sphere, gjx0 → g∞x0, and hence gjK →
g∞K.

Remark I.17.5 See [GJT, p. 132] for other proofs of Lemma I.17.3. The
proof of the above Proposition is similar to the proof of [GJT, Proposition
9.3].

The closure of i(X) in S(G) is a G-compactification of X and called the
subgroup compactification of X and denoted by X

sb
.
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Proposition I.17.6 The subgroup compactification X
sb

is isomorphic to the
maximal Satake compactification X

S

max.

This proposition is proved in [GJT, Chap. IX]. The basic idea is as fol-
lows. Let a be a maximal abelian subspace in p as before, and a+ a positive
chamber. Recall from [JGH, Definition 3.35] that a sequence yj in X is called
fundamental if yj can be written in the form yj = kj expHjx0 such that
kj ∈ K, Hj ∈ a+ satisfy the conditions:

1. kj converges to some k∞ in K,

2. there exists a subset I ⊂ ∆ = ∆(g, a) such that for all α ∈ ∆ − I,
α(Hj)→ +∞, and for α ∈ I, α(Hj) converges to a finite limit.

Then a characterization of X
max

is given in terms of convergence behavior
of fundamental sequences in [GJT, Theorem 3.38]. The basic point of the
proof of the above proposition is to identify the limit of i(yj) in S(G) for
fundamental sequences yj , which is done in [GJT, Proposition 9.14]. In this
process, the Furstenberg boundaries play an important role.

I.17.7 There is a variant of the above construction. Let h = dim k and
Gr(g, h) be the Grassmanian of h dimensional subspaces in g. Using the fact
that the normalizer of K in G is equal to K in Lemma I.17.3, it can be shown
that the normalizer of k in G is equal to K under the adjoint action,

N (k) = {g ∈ G | Ad(g)k = k} = K.

Then the map

ι : X = G/K → Gr(g, h), gK 7→ Ad(g)k,

is injective.

Proposition I.17.8 The map ι : X → Gr(g, h) is an embedding.

Proof. We need to show that for any sequence gjK in X, gjK con-
verges to g∞K if and only if Ad(gj)k converges to Ad(g∞)k. By Proposition
I.17.4, gjK → g∞K implies gjKg−1

j → g∞Kg
−1
∞ , which in turn implies that

Ad(gj)k → Ad(g∞)k. Conversely, since gjKg−1
j and g∞Kg

−1
∞ are maximal

compact subgroups, the convergence of their Lie algebras,

Ad(gj)k→ Ad(g∞)k,

implies that
gjKg

−1
j → g∞Kg

−1
∞ .
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which, by Proposition I.17.4 again, implies that gjK → g∞K.

The closure of ι(X) in Gr(g, h) is a G-compactification of X, called the
subalgebra compactification of X, denoted by X

sba
.

Proposition I.17.9 The subalgebra compactification X
sba

is isomorphic to
X
S

max.

This proposition is proved in [JL, Theorem 1.1]. The idea is as follows.
Let a be a maximal abelian subspace of p as above. Using the explicit action
of a on the root spaces gα, it is easy to show that for a fundamental sequence
yj = gjK ∈ X in the sense [GJT, Definition 3.35] as recalled earlier, the limit
Ad(gj)k exists and can be described explicitly. Once the stabilizers of these
limit subalgebras are determined, one can apply the characterization of X

S

max

in Proposition I.4.33 to finish the proof.

Remark I.17.10 The subalgebra compactification X
sba

is suggested by the
wonderful compactification XC = GC/KC discussed in §II.9 later. In fact, De
Concini and Procesi [DP1] defined the wonderful compactification by a con-
struction similar to the maximal Satake compactification, and Demazure [De]
realized it via embedding XC into the Grassmanian Gr(g⊗ C, h) of complex
subspaces in g⊗ C of dimension h,

XC = GC/KC → Gr(g⊗ C, h), gKC 7→ Ad(g)k⊗ C,

where h = dimC k⊗ C.

I.17.11 As mentioned earlier, the geodesic compactification X ∪ X(∞) of
X is intrinsically defined, unlike the Satake and the Furstenberg compactifi-
cations, which are obtained by embedding into compact ambient spaces. We
review a compactification of Gromov which allows us to realize X ∪X(∞) as
the closure of X embedded into an ambient space (I.17.14). Then we discuss
a modification to obtain a compact ambient space in I.17.16.

Let C0(X) be the space of continuous functions on X with the topology
of uniform convergence on compact subsets. Let C̃(X) be the quotient of
C0(X) by the one dimensional subspace of constant functions. The quotient
topology of C̃(X) is characterized as follows: a sequence f̃j ∈ C̃(X) converges
to f̃ ∈ C̃(X) if and only if there exist lifts fj , f∞ ∈ C0(X) such that fj → f∞
uniformly over compact subsets.

For each point x ∈ X, let dx(·) = d(·, x) be the distance function measured
from the point x. Denote the image of d(·, x) in C̃(X) by [d(·, x)] or [dx(·)].

Lemma I.17.12 The map i : X → C̃(X), x 7→ [d(·, x)], is an embedding.
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Proof. First we show that i is injective. For any two points y1, y2 ∈ X,
if i(y1) = i(y2), then dy1 − dy2 is a constant function, i.e., there exists a
constant c such that for any x ∈ X, dy1(x) − dy2(x) = c. Setting x = y1,
we get −d(y2, y1) = c. Setting x = y2, we get d(y1, y2) = c. Therefore,
d(y1, y2) = 0 and y1 = y2. This proves that i is injective.

Since dy depends continuously on y ∈ X, the map i is continuous. To finish
the proof, we need to show that for any sequence yj ∈ X, if [dyj ] converges to
[dy0 ] for some y0 ∈ X, then yj → y0.

By definition, there exists a sequence of constants cj such that

dyj (x) + cj → dy0(x) (I.17.1)

uniformly for x in compact subsets of X.
Suppose that yj 6→ y0, i.e., d(y0, yj) 6→ 0 as j → ∞. For simplicity,

we assume that there exists a positive constant d0 such that d(y0, yj) ≥ d0

when j ≥ 1 and the distance minimizing geodesic segment γj(t) from y0 to
yj converge to a segment γ0(t) with γ0(0) = y0. Fix a positive t0 such that
t0 < d0.

Setting x = y0 in Equation (I.17.1), we get

dyj (y0) + cj → dy0(y0) = 0. (I.17.2)

Since γj(t0)→ γ0(t0), we obtain that as j → +∞,

|dyj (γ0(t0))− dyj (γj(t0))| ≤ d(γ0(t0), γj(t0))→ 0,
dyj (γ0(t0)) + cj = dyj (γj(t0)) + cj + o(1)

= dyj (γj(0)) + cj − t0 + o(1)
= dyj (y0) + cj − t0 + o(1)
→ −t0.

In the second equality, we have used the assumption that t0 < d0 <
d(yj , y0), and in the last inequality, we have used Equation (I.17.2).

On the other hand, by Equation (I.17.1),

dyj (γ0(t0)) + cj → dy0(γ0(t0)) = t0.

This implies that −t0 = t0, and hence t0 = 0. This contradicts the positivity
of t0. Therefore yj → y0.

Proposition I.17.13 The closure of i(X) in C̃(X) is compact.

Proof. For any y ∈ X, dy satisfies the following inequality

|dy(y1)− dy(y2)| ≤ d(y1, y2).
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For any representative of the class [dy], the same inequality holds. Fix a
basepoint x0 ∈ X. In every equivalence class d̄y, choose a representative d̂y
such that d̂y(x0) = 0. Then the family {d̂y | y ∈ X} is equicontinuous on any
compact subsets on X. It follows that for any sequence yj in X, there exists
a subsequence yn′ such that d̂yj′ converges uniformly over compact subsets to
a continuous function on X. That is, any sequence in i(X) has a subsequence
converging to a point on the closure of i(X). Therefore, the closure of i(X)
is C∗(X) is compact.

The closure of X in C̃(X) is called the Gromov compactification, denoted
by X

G
. This construction works for any complete locally compact manifold.

Proposition I.17.14 The geodesic compactification X∪X(∞) is isomorphic
to te Gromov compactification X

G
, i.e., the closure of ι(X) in the compact

space S̃(X).

For the proof, see [BGS]. The basic idea is to characterize the limit func-
tions and to use the characterization to show that for any unbounded sequence
yj in X, yj converges in X ∪X(∞) if and only if the image [dyj ] of dyj con-
verges in S̃(X).

I.17.15 The spaces C0(X) and C̃(X) are both noncompact. This is one
difference between the Gromov compactification and the Satake compactifi-
cations and the Furstenberg compactifications, since the ambient spaces are
compact in the latter cases. But C̃(X) has removed some noncompactness.
In fact, let yj be an unbounded sequence in X, and fj(x) = d(x, yj). Then
fj is not bounded on any compact subset and hence can not converge uni-
formly over compact subsets to a function in C0(X). Therefore, C0(X) is
noncompact. On the other hand, the proof of the above proposition shows
that the image f̃j ∈ C̃(X) will converge after passing to a subsequence. To
show that C̃(X) is noncompact, we take gj(x) = f2

j (x) = d2(x, yj). Let cj be
the sequence of constant functions such that that fj(x) − cj converges uni-
formly over compact subsets to a function h(x). Clearly the limit h(x) is not
a constant function. Since

gj(x) = (fj(x)− cj)2 + 2(fj(x)− cj)cj + c2j ,

the fact that h(x) is nonconstant and cj → +∞ implies that the image of gj
in C̃(X) does not converge. This implies that C̃(X) is non-compact.

I.17.16 By using a suitable compact subspace of C̃(X), we can embedX into
a compact ambient space and hence its closure is automatically compact. This
will fit in the same set-up as the Satake and Furstenberg compactifications.

One such subspace is the Sobolev type space

S̃(X) = {f ∈ C̃(X) | |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ X}.



§I.18. Compactifications as a topological ball 197

It can be shown as in the proof of Proposition I.17.13 that the image of
X in C̃(X) belongs to S̃(X) and S̃(X) is compact. Hence, the closure of
ι(X) in S̃(X) is compact. Clearly, these embeddings are G-equivariant, and
the G-action on X extends to the compactification X

G
. Therefore, the next

proposition gives a realization of the geodesic compactification X ∪X(∞) via
the embedding method, i.e., by embedding into a compact ambient G-space.

I.17.17 The Martin compactifications X∪∂λX were originally defined in an
intrinsic way using asymptotic behaviors of Green’s function. By combining
Proposition I.17.14, the space S̃(X) in I.17.16 and Proposition I.7.15, we can
obtain every X ∪ ∂λX as the closure of X under an embedding into some
compact ambient G-space.

In fact, let τ : G → PSL(n,C) be a generic representation of G, and
iτ : X → P (Hn) the associated embedding. Denote the embedding of X into
S̃(X) in the previous paragraph by iG. Then P (Hn) × S̃(X) is a compact
G-space, and the closure of X under the diagonal embedding

X → P (Hn)× S̃(X), x 7→ (iτ (x), iG(x))

is isomorphic to the Martin compactification X ∪ ∂λX for λ < λ0. On the
other hand, for λ = λ0, X ∪ ∂λX is isomorphic to the closure of X under the
embedding iτ .

I.17.18 Summary and comments. In this section, we discussed two more
constructions of the maximal Satake compactification. Two more will be given
in §I.19. These results show that the maximal Satake compactification occur
more naturally than other Satake compactifications in some sense. We also
gave another construction of the geodesic compactification by embedding X
into some ambient space and taking the closure instead of the original intrinsic
approach.

I.18 Compactifications as a topological ball

In this section, we study topological properties of compactifications of X. The
basic reference is [Ji1].

Since X is a symmetric space of noncompact type, X is diffeomorphic to,
and hence homeomorphic to, the open ball in the tangent space Tx0X. A nat-
ural question is whether this diffeomorphism or the homeomorphism extends
to compactifications of X. A weaker question is whether compactifications
are diffeomorphic or homeomorphic to the closed unit ball in Tx0X without
preserving the interior diffeomorphism to the open ball.

In this section, we show that many compactifications are topological balls.
In the next section, we discuss the differential and analytic structures on
compactifications, which show that if the rank of X is greater than or equal
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to 2, the compactifications are not differential manifolds with boundary and
hence not diffeomorphic to the closed ball.

This section is organized as follows. First we discuss the example of X =
D × D. Then we show that the Baily-Borel compactification of a bounded
symmetric domain is a ball. This motivated the general result that Satake
compactification of symmetric spaces are topological balls. To show that
the closure of a flat in the Satake compactification is a ball, we recall the
moment map in I.18.6 and Atiyah’s convexity theorem in Proposition I.18.7.
To determine the shape of the convex polytope in Atiyah’s result, we discuss
the case of the standard torus action on CPn in I.18.8. Then the closure of
flats in the Satake compactifications is determined in Proposition I.18.11.

I.18.1 For X = D × D, we have four different compactifications: the one
point compactification X ∪ {∞}, the geodesic compactification X ∪ X(∞),
the Martin compactification X

M
which is isomorphic to the Karpelevič com-

pactification.
The one point compactification is too small and is homeomorphic to the

sphere of dimension 4. The geodesic compactification is clearly homeomorphic
to the closed unit ball in the tangent space T(0,0)X at (0, 0). The Satake
compactifications are all isomorphic to D ×D, which can be easily shown to
be homeomorphic to a unit ball, since a square is homeomorphic to a disc.

Let π1 : X ∪X(∞) → T(0,0)X, π2 : X ∪X(∞) → T(0,0)X be the homeo-
morphisms to the unit ball. Then under the diagonal embedding (π1, π2), the
image is a bounded star-shaped region in the diagonal subspace and is hence
homeomorphic to a closed unit ball in the diagonal subspace.

I.18.2 When X is a symmetric space of non-compact type, it is simply
connected and nonpositively curved, and hence the exponential map gives a
diffeomorphism from the tangent space Tx0X to X. This fact can also be seen
explicitly from the Cartan decomposition

G = epK, X = G/K ∼= p.

Since [0,∞) is diffeomorphic to [0, 1) by t 7→ tanh t, the radial contraction
gives a diffeomorphism from X to the unit ball in Tx0X = p.

I.18.3 As proved in Proposition I.5.29, when X is a Hermitian symmetric
space of noncompact type, X

BB
is, as a topological G-compactification, iso-

morphic to a minimal Satake compactification. We will concentrate on the
Satake compactifications.

Proposition I.18.4 The Baily-Borel compactification X
BB

is a topological
ball.
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Proof. Embed X into the holomorphic tangent space p+ at x0 as a bounded
symmetric domain,

π+ : X → p+.

Identify the holomorphic tangent space p+ with the tangent space Tx0X. Then
by Corollary I.5.16, the closure of any flat eax0 in X is a cube Ω = [−1, 1]r

contained in a, where r = dim a. Let Ba be the unit ball in a. Under suitable
scaling, the cube Ω is mapped homeomorphically to Ba such that for any
Weyl chamber face aI and H ∈ aI ∩ Ω, the image of H also belongs to aI .
This implies that these homeomorphisms for the flats eax0 can be glued into
a homeomorphism from X

BB
to the closed unit ball in Tx0X.

In this proposition, the bounded realization of X
BB

as a bounded set in
p+ is crucial. In fact, by Herman convexity theorem (see [Wo3, p.286]), under
the Harish-Chandra embedding π+, the image π+(X) in p+ is the open ball
with respect to a Banach norm on p+, which of course implies that X

BB
is

a topological ball. Note that the norm is not differentiable, and hence the
closure is not differentially a unit ball.

I.18.5 The proof of the above proposition follows 2 steps:

1. show that the closure of a flat can be mapped homeomorphically to a
unit ball,

2. show that these homeomorphisms on the flats can be glued into a home-
omorphism between the compactification of X and the unit ball in the
tangent space at x0.

For general Satake compactifications X
S

τ , the idea is to get a bounded
realization of the closure of each flat eax0 in X

S

τ in a ⊂ Tx0X and to glue
up the homeomorphisms of the flats. Such a bounded realization is given by
the moment map in sympletic geometry associated with torus action and the
convexity result.

I.18.6 We first recall several facts about the moment maps in sympletic
geometry. An even dimensional manifold M is a sympletic manifold if there
exists a closed nondegenerate 2 form ω on M . An important class of sym-
pletic manifolds consists of Kahler manifolds, whose Kahler form is closed and
positive definite, hence on-degenerate. Let T = (S1)n, n ≥ 1, be a compact
torus. Assume that T acts sympletically on M , i.e., preserves the sympletic
form ω, and M is simply connected. Any v ∈ t, the Lie algebra of T , induces
a vector field on M which is also denoted by v. Then ω(v, ·) is a closed 1-form
on M , and hence there exists a function ϕv on M such that

dϕv = ω(v, ·).
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The functions ϕv, v ∈ t, can be chosen up to a constant such that the map

t→ C∞(M), v 7→ ϕv,

becomes a Lie algebra homomorphism when C∞(M) is given the Poisson
structure. These functions ϕv define the moment map of the T -action on M :

Φ : M → t∗, Φ(x)(v) = ϕv(x), x ∈M, v ∈ t. (I.18.1)

Assume that M is a Kahler manifold and T acts on M sympletically and
holomorphically. Then the T -action on M extends to a holomorphic action
of the complex torus TC, the complexification of T . Let Y be an orbit of TC,

Y = TC · y0, y0 ∈M

and Y its closure in M . The moment map Φ in Equation (I.18.1) restricts to
a map

Φ : Y → t∗.

The following result of Atiyah [At, Theorem 2] describes this map.

Proposition I.18.7 The image Φ(Y ) is a bounded convex polytope in t∗

whose vertexes are the image of the fixed points of T in Y . The map Φ is
constant on the T -orbits and induces a homeomorphism from the quotient
Y /T → to the convex polytope Φ(Y ).

Since TC/T = eit ∼= R
n is the non-compact part eit of the complex torus

TC, Y /T is homeomorphic to the closure eity0, and the proposition identifies
this closure with a convex polytope. We will apply this result to identify the
closure of flats in the Satake compactifications X

S

τ . For this purpose, we need
to compute explicitly the moment map.

I.18.8 We start with the example of the torus action on CPn−1. The com-
pact torus T = (S1)n acts on Pn−1(C) as follows. Let [z1, · · · , zn] be the
homogeneous coordinates of CPn−1. Then for any t = (eit1 , · · · , eitn) ∈ T ,

t · [z1, · · · , zn] = [eit1z1, · · · , eitnzn].

Clearly, T acts holomorphically and preserves the Kahler form. Identify
CPn−1 with the quotient {(z1, · · · , zn) | 1

2

∑n
j=1 |zj |2 = 1}/ ∼, where points

(z1, · · · , zn), (z′1, · · · , z′n) are equivalent if there exists θ ∈ R such that (z1, · · · , zn) =
eiθ(z′1, · · · , z′n). Then the map

Φ : CPn−1 → t∗ = R
n, (z1, · · · , zn) 7→ (

1
2
|z1|2, · · · ,

1
2
|zn|2),
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is the moment map of T acting on CPn−1. The image Φ(CPn−1) is the stan-
dard simplex of dimension n− 1 with vertices (1, 0, · · · , 0), · · · , (0, · · · , 0, 1) ∈
R
n. Clearly, the fixed points of T on CPn−1 are the points corresponding to

the coordinate axes [1, 0, · · · , 0], · · · , [0, · · · , 0, 1], and their images under Φ
give these vertices.

The projective spaces admit other torus actions defined through repre-
sentations of T . Let T : T → SL(N,C) be a representation with image
τ(T ) ⊂ SU(N). Then T acts on CPN−1 by

t · [z1, · · · , zN ] = τ(t)[z1, · · · , zN ].

Clearly, T acts holomorphically on CPN−1. Since τ(T ) ⊂ SU(N), T also
preserves the Kahler metric.

Lemma I.18.9 Denote the weights of τ by µ1, · · · , µN . Then the image of
the moment map Φ(CPN−1) of the T -action associated with τ as above is the
convex hull of the weights µ1, · · · , µN in t∗.

Proof. Decompose CN into the weight subspaces

C
N = V1 ⊕ · · · ⊕ VN ,

where Vj is the weight space of µj . Let the torus (S1)N act on CPN−1 by

(eit1 , · · · , eitN ) · [v1, · · · , vN ] = [eit1v1, · · · , eitN vN ],

where vj ∈ Vj . Then the T -action on CPN−1 is the composition of the map

T → (S1)N , eH 7→ (eµ1(H), · · · , eµN (H))

and the action of (S1)N on CPN−1. This implies that the moment map of
T on CPN−1 is obtained by composing the moment map of (S1)N with the
projection RN → t∗. It is clear that the vertices (1, 0, · · · , 0), · · · , (0, · · · , 0, 1)
in RN are projected to µ1, · · · , µN in t∗. It follows from the above discussion
on the image of the moment map (S1)N that the image of the moment map
Φ(CPN1) associated with T is the convex hull of the weights µ1, · · · , µN .

I.18.10 Now we are ready to apply the Atiyah convexity result to identify
the closure of flats in the Satake compactification X

S

τ .
Let g = k⊕p be the Cartan decomposition as above, and a ⊂ p a maximal

abelian subalgebra. Then eax0 is a maximal totally geodesic flat submanifold
in X passing through the basepoint x0. Conversely, any such flat passing
through x0 is of this form.

Let τ : G→ PSL(n,C) be an irreducible faithful projective representation
and X

S

τ the associated Satake compactification as in §I.4. Denote the weights
of τ in a∗ by µ1, · · · , µn. Choose and fix a positive Weyl chamber a+ of a,
and let µτ be the highest weight of µ. Let W be the Weyl group of a.
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Proposition I.18.11 The closure of the flat eax0 in the Satake compacti-
fication X

S

τ is canonically homeomorphic to the convex hull of the weights
2µ1, · · · , 2µn in a∗. This convex hull is stable under the Weyl group, and is
equal to the convex hull of the Weyl orbit through τµ.

Proof. Let Hn be the real vector space of Hermitian matrices, and Hn ⊗ C
its complexification. Let P (Hn⊗C) the associated complex projective space.
Then the real projective space P (Hn) is canonically embedded into P (Hn⊗C).

Choose a basis of Cn such that for any H ∈ a, τ(eH) is a diagonal matrix,

τ(eH) = (eµ1(H), · · · , eµn(H)).

Then the restriction of the G-action on Hn to ea is given as follows: for any
H ∈ a, M = (mjk) ∈ Hn,

eH ·M = τ(eH)Mτ(eH) = (eµj(H)+µk(H)mjk).

This action clearly extends to a holomorphic action of the complex torus
ea+ia on Hn ⊗ C and hence on P (Hn ⊗ C). The compact torus eia, which is
contained in the compact dual of G, acts on P (Hn ⊗ C) by: for eiH ∈ eia,
[M ] = [(ajk)] ∈ P (Hn ⊗ C),

eiH · [M ] = [(eiµj(H)+iµk(H)mjk)].

This action of eia clearly preserves the Kahler form of P (Hn⊗C). Denote its
moment map by

Φ : P (Hn ⊗ C)→ ia∗ ∼= a.

Let Id be the image in P (Hn⊗C) of the identify matrix. Then the closure
of the orbit eaId in P (Hn ⊗ C) is the closure of the flat eax0 in the Satake
compactification X

S

τ . We will use the moment map Φ to identify it.
Let Y be the orbit ea+iaId of the complex torus ea+iaId in P (Hn⊗C), and

Y its closure. Then the closure of the orbit eaId can be identified with the
quotient of Y by the compact torus eia. Therefore, it follows from Proposition
I.18.7 that the closure of the flat eax0 in X

S

τ is homeomorphic to the convex
polytope Φ(Y ).

We claim that Φ(Y ) is the convex hull of the weights 2µ1 · · · , 2µn. To
prove the claim, letDn be the complex subspace of diagonal matrices inHn⊗C
and P (Dn) its associated complex projective space. Clearly the complex torus
ea+ia preserves Dn and the orbit ea+iaId is contained in P (Dn). The weights
of the representation of ea+ia on Dn are 2µ1 · · · , 2µn, and hence by Lemma
I.18.9, Φ(P ∗Dn)) is equal to the convex hull of 2µ1 · · · , 2µn, which implies
that Φ(Y ) is contained in this convex hull.
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To finish the proof, we need to show that this convex hull is contained in
Φ(Y ). Let 2µj be any vertex of the convex hull of 2µ1 · · · , 2µn. Without
loss of generality, we can assume that j = 1. Then 2µ1 is the image of
[1, 0, · · · , 0] ∈ P (Dn) under Φ. It suffices to show that [1, 0, · · · , 0] ∈ Y .

Since 2µ1 is an extremal weight, there exists a positive chamber a+ such
that 2µ1 is the highest weight of the representation on Dn. Then for any
j ≥ 2,

2µ1 − 2µj =
∑

α∈∆(g,a)

cα,jα, cα,jα,

where ∆(g, a+) is the set of simple roots determined by the positive chamber
a+, cα,j ≥ 0, and

∑
α∈∆(g,a) cα,j > 0. For any H ∈ a+, as t→ +∞,

etH · Id =[e2µ1(tH), e2µ2(tH), · · · , e2µn(tH)]

=[1, e(2µ2−2µ1)(tH), · · · , e(2µn−2µ1)(tH)]→ [1, 0, · · · , 0] in P (Dn).

This proves the claim and hence the first statement of the proposition. The
second statement follows the known fact that the set of weights µ1, · · · , µn is
invariant under the Weyl group W , and the their convex hull is equal to the
convex hull of the Weyl group orbit Wµτ of the highest weight µτ (see [FH,
p.204]).

I.18.12 Let φ be the map in Proposition I.18.11 from the closure eax0 in X
S

τ

to a∗ induced from the moment map Φ. Then its restriction to the interior
eax0 can be given explicitly as follows (see [Od, p. 94] and [Ju]):

φ(eHx0) =
∑
s∈W

e2sµτ (H)∑
s∈W e22sµτ (H)

2sµτ . (I.18.2)

This function is clearly equivariant under the action of the Weyl group. In
particular, for any subset I ⊂ ∆(g, a) of simple roots, the Weyl wall aI is
mapped into its dual a∗I ,

φ(eaIx0) ⊂ a∗I . (I.18.3)

Proposition I.18.13 Every Satake compactification X
S

τ is canonically home-
omorphic to the closed unit ball in the tangent space Tx0X of X at the base-
point x0.

Proof. For any maximal abelian subspace a in p, denote the map in Propo-
sition I.18.11 by

φa : eax0 → a∗.

We claim that for any two flats eax0, ea′x0, the maps φa, φa′ agree on their
intersection eax0 ∩ ea′x0. By continuity, it suffices to prove that they agree
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on eax0 ∩ ea′x0 = ea∩a′x0. Note that on each flat eax0, the moment map is
equivariant with respect to the Weyl group, and hence for any Weyl wall aI ,
where I ⊂ ∆(g, a),

φa(eaIx0) ⊂ a∗I .

This map coincides with the moment map of the compact torus eiaI on
eaI+iaIx0. (See also the formula in Equation I.18.2). It is known that the
intersection a ∩ a′ is of the form aI for some I, and hence the claim follows.

For any maximal abelian subspace a in p, identify its dual a∗ with a under
the Killing form. Then the map φa induces a map from eax0 to a, still denoted
by φa. Any ray from the origin of a to the boundary of the convex polytope
φa(eax0) can be scaled down to a vector of unit length. This scaling gives a
homeomorphism from eax0 to the closed unit ball B(a) in a:

Φa : eax0 → B(a).

By the claim in the previous paragraph, these homromorphisms for different
flats agree on their intersection and hence define a global homeomorphism

Φ : X
S

τ → B(p) = B(Tx0X),

where B(p) is the closed unit ball in p, which is canonically identified with
the closed unit ball in the tangent space Tx0X.

Remarks I.18.14 (1). A result similar to the above proposition was also
obtained in [Cas2], where it was shown that the decomposition of the closure
of the flat eax0 in X

S

τ into the ea-orbits is combinatorially equivalent to the
faces of the convex hull in Proposition I.18.11.

(2) The polytope of the convex hull of the weights 2µ1, · · · , 2µn appear
naturally in Arthur’s trace formula through the weighted integrals (see [Ar1]).
Related decompositions of the flats eax0 = a also occur in the precise reduction
theory (see [Sap1] [OW1] [Ar3, §3.2]).

Proposition I.18.15 The Martin compactifications X∪∂λX are homeomor-
phic to the unit ball in the tangent space Tx0X.

Proof. By Proposition I.7.15, when λ = λ0, X ∪ ∂λX is isomorphic to the
maximal Satake compactification X

S

max, and hence homeomorphic to the unit
ball by Proposition I.18.13. On the other hand, when λ < λ0(X), X ∪ ∂λX
is homeomorphic to the closure of X under the diagonal embedding X ↪→
X ∪X(∞)×X ∪ ∂λX. Since X ∪X(∞) is clearly homeomorphic to the unit
ball, it can be combined with Proposition I.18.13 to show that X ∪ ∂λX is
homeomorphic to the unit ball in Tx0X.
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I.18.16 Proposition I.18.15 and related results were motivated by a ques-
tion of Dynkin in his ICM talk [Dy1] on relations between the geometry of
Riemannian manifolds and the Martin boundaries. His question basically
amounts to that if M is simply connected and nonpositively curved, then for
any λ < λ0(M), the Martin compactificationM∪∂λM is homeomorphic to the
closed unit ball in Tx0 , and hence the Martin boundary ∂λM has dimension
dimM − 1.

When M is negatively pinched, the answer was positive and given in [An]
[AS]. Proposition I.18.15 affirms the case when M is a symmetric space of
noncompact type. See [Ji1] for more details.

Remark I.18.17 In [Kus], Kusner proved that the Karpelevič compactifica-
tion X

K
is also homeomorphic to a closed ball.

By Proposition I.16.5, the Karpelevič compactification X
K

dominates the
Satake compactifications X

S

τ . It is conceivable that any G-compactification of
X which dominates a Satake compactification is homeomorphic to the closed
unit ball in Tx0X. It should be emphasized that by a G-compactification of
X, we mean that the isometric G-action on X extends to a continuous action
to the compactification. The continuity of the G-action is important since it
allows one to reduce the problem basically to the closure of flats through the
basepoint x0 using the Cartan decomposition of G (or the polar decomposition
of X). In fact, if the continuity assumption is dropped, the conclusion may
not hold, and the compactification in [Gol] gives such an example. See [Ji1]
for more details about related issues.

I.18.18 Summary and comments. The basic result in this section is that
the Satake compactifications are topological balls. It should be emphasized
that they are not differential manifolds with boundary if the rank of X is
strictly greater than 1. When the rank is equal to 1, they are real analytic
manifolds with boundary and diffeomorphic to the closed unit ball. The max-
imal Satake compactification is a real analytic manifold with corners (see the
next section), but other Satake compactifications are more singular. It is not
clear whether non-maximal Satake compactifications have natural canonical
analytic structures.

As will be seen in Part II, the analogue of the maximal Satake compactifi-
cation X

S

max for a complex symmetric space XC is the wonderful compactifi-
cation XC

W
in [DP1] [DP2]. The analogues of non-maximal Satake compact-

ifications have been defined for complex symmetric spaces (see [Lu1] [Lu2]
[Lu3] [LV] [Vu1] [Vu2]), and the Satake compactifications of X can be em-
bedded into these compactifications of the complexification XC (in fact, into
the real locus if they are defined over R). But a problem is that the ana-
lytic structure of these non-maximal compactifications of complex symmetric
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spaces may depend on the representation used in the definition rather than
only on the relative position (or degeneracy) of the highest weight of the rep-
resentation. Recall that as topological G-spaces, the Satake compactifications
X
S

τ only depends on the Weyl chamber face which contains the highest weight
µτ (Proposition I.4.35).

I.19 Dual-cell compactification and maximal Sa-
take compactification as a manifold with
corners

In this section, we recall two more constructions of the maximal Satake com-
pactification X

S

max using the structure of the closure of maximal flats3 ob-
tained in the previous section: the dual-cell compactification X ∪ ∆∗(X) in
[GJT] and a modification X̃S

max suggested by the Oshima compactification in
[Os1]. The dual-cell compactification will be presented in a slightly different
way from [GJT, Chapter 3] so that it motivates the modification X̃S

max of the
construction in [Os1].

In X ∪ ∆∗(X), the basic idea is to start with a compactification of flats
through the basepoint x0 using the combinatorial data given by the Weyl
chamber decomposition and to glue these compactifications naturally along
the Weyl chamber walls. In the modification X̃S

max of the Oshima compactifi-
cation, we start with compactifications of all flats whether they pass through
the basepoint x0 or not and define suitable equivalence relation on the union of
these compactifications of flats in X. Considering all flats gives more flexibil-
ity and allows one to show that the maximal Satake compactification X

S

max is
a real analytic manifold with corners, but also makes the equivalence relation
on the compactified flats more complicated.

This section is organized as follows. First we recall polyhedral cone de-
compositions of vector spaces in I.19.1 and the associated polyhedral com-
pactifications of the vector spaces in I.19.2 and Lemma I.19.5. Then we dis-
cuss the Weyl chamber decompositions in I.19.8 and the induced polyhedral
compactification of the flats. Due to the symmetry of the Weyl chamber de-
composition, the dual-cell compactifications of flats are compatible and glue
up into the dual-cell compactification X ∪∆∗(X) of the symmetric space X
(Proposition I.19.13). It is difficult to see why the G-action on X extends
continuously to the dual cell compactification, though it is easy to see that
the K-action extends continuously. To overcome this problem, we combine
the constructions of the dual-cell compactification and the Oshima compact-

3For convenience, in the following, a flat in X means a maxmal totally geodesic sub-
manifold in X
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ification to construct the modification X̃S
max and use it to show that X

S

max is
a real analytic manifold with corners in I.19.16, I.19.26 and I.19.27. An im-
portant step in this construction is to extend the corner structure of closure
of flats to corners of the compactification of symmetric spaces.

I.19.1 Let V be a vector space over R. A convex cone C in V with the
vertex at the origin of V is called a (convex) polyhedral cone if there exist
linear functions λ1, · · · , λn, γ1, · · · , γm on V such that

C = {H ∈ V | λ1(H) = · · · = λn(H) = 0, γ1(H) > 0, · · · , γm(H) > 0},
(I.19.1)

where n could be equal to 0, which implies that dimC = dimV . We always
require that C is proper, i.e., it does not contain any line passing through the
origin, which is equivalent to that m > 0 unless C consists of the origin. The
linear span Span(C) is the vector subspace generated by H ∈ C, i.e.,

Span(C) = {H ∈ V | λ1(H) = · · · = λn(H) = 0}.

Clearly, C is an open subset of Span(C).
The origin is clearly a face of every polyhedral cone. For any proper subset

I ⊂ {1, · · · ,m}, there is a nontrivial face

CI = {H ∈ V | λ1(H) = · · ·λn(H) = 0, γi(H) = 0, i ∈ I; γi(H) > 0, i 6∈ I}.

Any nontrivial proper face of C is of this form CI for some I.
A polyhedral cone decomposition of V consists of a collection Σ of polyhe-

dral cones C such that

1. V admits the disjoint decomposition

V = {0} ∪
∐
C∈Σ

C.

2. Every face of any cone C ∈ Σ is also a cone in Σ.

3. For any two cones C1, C2 ∈ Σ, if C1 ∩ C2 6= ∅, then C1 is a face of C2.

Remarks I.19.2 (1). We emphasize that all the cones here are open in their
linear spans in order to get the disjoint decomposition and to be consistent
with the Weyl chamber decomposition discussed later. In some places, the
closed cones are used. In that case, faces of a (closed) cone are contained in
the cone.

(2). In torus embeddings or toric varieties, partial polyhedral cone decom-
positions of vector spaces are often used. These are collections of polyhedral
cones satisfying only the conditions (2) and (3) above. Our decompositions
here are called complete polyhedral decompositions (see [Od] [Jur] [Ful]).
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I.19.3 Given a polyhedral cone decomposition Σ of a vector space V , there
is a polyhedral compactification V Σ defined as follows. For each nontrivial
cone C in Σ, define its boundary component

e(C) = V/Span(C).

Then the polyhedral compactification V Σ is obtained by adding these boundary
components:

V Σ = V ∪
∐

C∈Σ,C 6={0}

e(C). (I.19.2)

To describe convergence of points on the boundary
∐
e(C), we need to

describe an induced polyhedral cone decomposition on the boundary compo-
nent e(C) for every nontrivial cone C ∈ Σ. Let ΣC be the collection of all
the cones in Σ for which C is a face. If dimC = dimV , there is no such
cone. But in this case, the boundary component e(C) consists of one point.
If dimC < dimV , there exist such cones. In fact, the union of such cones ΣC
is an open subset containing C. Let

π : V → V/Span(C) = e(C)

be the projection. Then for any C ′ ∈ ΣC , the image π(C ′) is a polyhedral
cone in e(C), and the collection of π(C ′), C ′ ∈ ΣC , gives a polyhedral cone
decomposition of e(C), which is also denoted by ΣC for simplicity. For any
cone C ′ in V satisfying C ′ ∈ ΣC , the boundary component e(C ′) can be
identified with the boundary component of π(C ′) in the lower dimensional
vector subspace e(C).

I.19.4 Now we are ready to describe the topology of V Σ.

1. For any C and a boundary point ξ ∈ e(C), a sequence xj ∈ V converges
to ξ ∈ e(C) if the projection π(xj) in e(C) converges to ξ, and in the
notation of Equation (I.19.1), for any k = 1, · · · ,m,

γk(xj)→ +∞.

2. For any two cones C1, C2 in Σ, e(C1) is contained in the closure of
e(C2) if and only if C2 is a face of C1, and the convergence of sequences
of points in e(C2) to points in e(C1) is the same as in (1) using the
polyhedral cone decomposition ΣC2 of e(C2), where e(C1) is identified
with a boundary component of e(C2) as above.

These are special convergent sequences, and combinations of them give the
general convergent sequences. It can be checked that they form a convergence
class of sequences and define a topology on V Σ.
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Lemma I.19.5 The space V Σ is Hausdorff and compact.

Proof. It can be checked easily that every unbounded sequence in V has a
convergent subsequence in V Σ, and every convergent sequence has a unique
limit. By induction, it can be shown that the same conclusion holds for every
of the finitely many boundary components, and hence for every sequence in
V Σ, which implies that it is Hausdorff and compact.

I.19.6 Let V (∞) be the unit sphere with respect to any inner product. For
any cone C in Σ, the intersection C ∩ V (∞) is a cell in V (∞) and these cells
form a cell complex, denoted by Σ(∞). It can be shown that the boundary
components of V Σ is a cell complex dual to Σ(∞).

Remarks I.19.7 The construction of the polyhedral compactification V Σ

has been discussed in [Ta2] [GJT] [Ger1] in different ways. It is also closely
related to the torus embeddings when the polyhedral cones in Σ are rational
with respect to a lattice in V . In fact, in this case, V Σ is the noncompact part
of the torus embedding, or equivalently, the quotient of the torus embeddings
by the compact part of the complex torus (C×)d, where d = dimV (see [Od]
[Ful] [Jur]).

I.19.8 Let a be a maximal abelian subspace of p. Each root α ∈ Φ(g, a)
defines a root hyperplane

Hα = {H ∈ a | α(H) = 0}.

The connected components of

a− ∪α∈ΦHα

are called Weyl chambers. These Weyl chambers together with their faces
form a polyhedral cone decomposition of a, called the Weyl chamber decom-
position and denoted by Σwc. In fact, since a face of a Weyl chamber face is
a Weyl chamber face, it can be checked easily that the conditions in (I.19.1)
are satisfied.

Since this polyhedral cone decomposition Σwc is canonical, and the bound-
ary of the induced polyhedral cone decomposition aΣwc is a cell complex dual
to this canonical decomposition, the boundary of aΣwc is also denoted by
∆∗(a), called the dual-cell complex, and the compactification

aΣwc = a ∪∆∗(a) (I.19.3)

is called the dual-cell compactification of a in [GJT, Chapter 3]. For simplicity,
the compactification a ∪∆∗(a) is also denoted by a∗.
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Remark I.19.9 By definition, the boundary components in the dual-cell
∆∗(a) are attached at infinity of a. A bounded realization of these boundary
components and the dual-cell compactification a ∪ ∆∗(a) can be realized as
follows. Let ρ be a non-singular element in a or a∗ if a∗ is identified with a
under the Killing form, for example, the half sum of positive roots in Φ(g, a)
with multiplicity. Then the convex hull of the Weyl group orbit W · ρ is a
bounded polytope homeomorphic to the dual-cell compactification of a under
a suitable map.

I.19.10 There are many symmetries of this Weyl chamber decomposition
Σwc. In fact, let W be the Weyl group of a. Then W acts on Σwc. Further-
more, for any collection of roots I ⊂ Φ(g, a), if the intersection

HI = ∩α∈IHα

is nonempty, it is called a Weyl wall. The Weyl chamber faces contained in the
wall HI form a polyhedral cone decomposition of HI . In fact, they consists
of the connected components of

HI − (Hβ ∩HI),

where β runs over all roots such that Hβ 6⊇ HI , and their faces.
An important corollary of these symmetries is the following.

Corollary I.19.11 For any other maximal abelian subspace a′ in p, the in-
tersection a∩a′ of the two maximal abelian subspaces a, a′ of p is a Weyl wall
of both of them, and the Weyl chamber decompositions of a and a′ induce the
same polyhedral cone decomposition on a ∩ a′.

Corollary I.19.12 For any two maximal abelian subalgebras a, a′, the dual-
cell compactifications a∗, a′

∗
induce the same compactification on the inter-

section a ∩ a′, which is the polyhedral compactification a ∩ a′
∗

of a ∩ a′ with
respect to the polyhedral cones in the previous corollary.

This compatibility of the polyhedral compactifications a∗ allow us to glue
them into a compactification of X.

As recalled earlier, every maximal flat in X passing through x0 is of the
form eax0. Since eax0 can be canonically identified with a, the dual-cell
compactification a∗ of a induces a dual-cell compactification eax0

∗ of the flat
eax0.

Define
X
∗

=
∐
a

eax0
∗
/ ∼ ∼=

∐
a

a∗/ ∼, (I.19.4)

where a runs over all maximal abelian subspaces of p, and the equivalence re-
lation ∼ is given by: for any two flats a and a′, the dual-cell compactifications
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a∗ and a′
∗

are identified along a ∩ a′
∗

in Corollary I.19.12. Equivalently, X
∗

is the union of the dual-cell compactifications a∗ identified along the closure
of the intersection a∩a′. (See [FK, pp. 31-34] for general results on quotients,
gluing and unions). As a set,

X
∗

= X ∪
⋃
a

∆∗(a)/ ∼,

where a runs over all maximal abelian subspaces of p, and ∼ is defined by the
identification along ∆∗(a ∩ a′).

Clearly, the space X
∗

has the quotient topology, which induces the original
topology on the dual-cell compactifications of the flats. But X

∗
is not compact

in this topology.
To make X

∗
into a compactification of X, we fix a maximal abelian sub-

space a0 of p, or equivalently a maximal flat ea0x0 through x0. Then any
maximal abelian subalgebra a of p is of the form Ad(k)a0 for any k ∈ K.
Since Ad(k) maps the Weyl chamber decomposition of a0 to the Weyl cham-
ber decomposition of a, the map Ad(k) extends to a homeomorphism

Ad(k) : a0
∗ → Ad(k)a0

∗
. (I.19.5)

Therefore, we have a map

K × a0
∗ →

∐
a

∆∗(a), (k,H) 7→ Ad(k)H ∈ Ad(k)a0
∗
,

which induces a map
K × a0

∗ → X
∗
. (I.19.6)

The spaceX
∗

endowed with the quotient topology fromK×a0
∗ is also denoted

by X ∪∆∗(X). Clearly, the subset topology on X coincides with the original
topology of X.

Proposition I.19.13 The space X∪∆∗(X) is a compact Hausdorff compact-
ification of X, called the dual-cell compactification, and is isomorphic to the
maximal Satake compactification X

S

max.

Proof. Let R be the equivalence relation on K × a0
∗ which defines the

quotient X
∗
. Since every equivalence class of R is a homogeneous space of

K, it is compact and hence closed. More generally, the R-saturation of any
closed set is closed, which implies that the induced partition is closed. Since
K × a0

∗ is metrizable and hence normal, by [FK, p.33], X ∪ ∆∗(X) is a
compact Hausdorff space. To prove the second statement, we note that the
compactification X ∪∆∗(X) satisfies the conditions in [GJT, Theorem 3.39]
and hence is isomorphic to X

S

max by Theorem 4.43 in [GJT].
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I.19.14 The dual-cell compactification X ∪∆∗(X) was constructed in [GJT,
Chapter 3] and the above construction is a variant. In fact, the construction
in [GJT] is given via the Cartan decomposition. Specifically, let A+ = A+

P0

be a positive Chamber, where P0 is a minimal parabolic subgroup. Then a
sequence yj in X is called fundamental if yj admits a decomposition yj =
kjajx0, where kj ∈ K, aj ∈ A+ satisfy the following conditions:

1. kj converges to some k∞,

2. There exists a subset I of ∆(P0, AP0) such that for α ∈ I, aαj converges
to a finite number, while for α ∈ ∆− I, aαj → +∞.

Let H∞ ∈ aI be the unique element such that for all α ∈ I, α(H∞) =
limj→+∞ α(log aj). Then the formal limit of such a fundamental sequence yj
is defined to be k∞ · eH∞KP0,I ∈ k∞ ·XP0,I . The dual-cell compactification
X ∪ ∆∗(X) is characterized as the unique compactification of X such that
every fundamental sequence converges to its formal limit.

By construction, the K-action on X extends to a continuous action on
the dual-cell compactification X ∪ ∆∗(X). In [GJT, p. 45], a G-action on
X ∪∆∗(X) was given, but it does not seem to be easy to prove directly the
continuity of this extension of the G-action. In fact, in [GJT], the continuity
was proved by identifying X ∪∆∗(X) with the Martin compactification X ∪
∂λ0X [GJT, Theorem 7.33] (or equivalently X

S

max) and using the continuous
G-action on the latter. As mentioned earlier, this issue about the continuity of
the G-action is one of the motivations of the uniform method for constructing
compactifications in §I.8.

I.19.15 Another method to solve this problem of the continuity of the G-
action is to build in the G-action in gluing up the compactifications of flats
X. Clearly, we need to use flats besides those passing through the basepoint
x0 as well. Roughly, instead of taking the quotient of K × a0

∗, we construct
a compactification of X as a quotient of G × a0

∗. The rest of this section is
motivated by this, which will be used for the problem of obtaining a different
construction of the Oshima compactification X

O
[Os1] using the self-gluing

method in §II.1 below.

I.19.16 For this purpose, we need a more concrete realization of the bound-
ary components of the dual-cell compactification a∗ and a partial compactifi-
cation contained in a∗.

The Weyl group W of a acts on the Weyl chamber decomposition Σwc and
hence on the compactification a∗, carrying a boundary component to another.
Let a+ be a positive Weyl chamber of a. Then any cone C in Σwc is mapped
under some element of W to a Weyl chamber face a+

I , for some I ⊂ ∆(g, a),
and the corresponding boundary component e(C) to e(a+

I ), where

aI = {H ∈ a | α(H) = 0, α ∈ I}, a+
I = {H ∈ aI | α(H) > 0, α ∈ ∆− I}.
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It suffices to give a concrete realization of e(a+
I ), the boundary component of

the Weyl chamber face a+
I .

In the notation of §I.1, let aI be the orthogonal complement of aI in a
with respect to the Killing form. Then

e(a+
I ) = a/aI ∼= aI .

By adding only the boundary components e(a+
I ) = aI for I ⊂ ∆(g, a), we get

a partial compactification, called the partial dual-cell compactification,

a+ = a ∪
∐
I⊂∆

aI . (I.19.7)

Clearly, a+ ⊂ a∗, and any boundary point of a∗ is mapped to a point in
a+ under some element of W . Hence,

Wa+ = a∗. (I.19.8)

This relation is related to the fact that the closure of the positive chamber
a+ is a fundamental domain of the W -action on a. But a+ strictly contains a
fundamental domain of the W -action on a∗.

I.19.17 The choice of the partial compactification a+ is natural also in
connection to the Oshima compactification X

O
[Os1] to be discussed later in

§II.2.
Let α1, · · · , αr be the set of simple roots in ∆(g, a). Then a can be iden-

tified with R∆
>0 = R

r
>0 by

i : a→ R
r
>0, H → (e−α1(H), · · · , e−αr(H)).

The closure of i(a) in Rr defines a partial compactification of a,

i(a) ∼= R
r
≥0. (I.19.9)

Proposition I.19.18 The partial compactification i(a) of a is the same as
the partial dual-cell compactification a+ in Equation (I.19.7), i.e., the closure
in the dual-cell compactification a∗.

Proof. By [GJT, Lemma 3.28], it suffices to show that a unbounded sequence
yj in a converges in a+ if and only if it converges in i(a). Suppose that
Hj → H∞ ∈ aI in a+. Since

a+
I = {H ∈ a | α(H) = 0, α ∈ I;α(H) > 0, α ∈ ∆− I},

by the definition of the topology of a∗ and hence of a+, for α ∈ ∆− I,

α(Hj)→ +∞, (I.19.10)
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and the image of Hj in a/aI ∼= aI converges to H∞. Since the roots α ∈ I
vanish on aI and give coordinates of aI , the latter condition is equivalent to

α(Hj)→ α(H∞), α ∈ I. (I.19.11)

The conditions in Equations (I.19.10, I.19.11) are exactly the conditions for
Hj to converge to a boundary point in i(a) ⊂ Rr≥0.

I.19.19 By the above proposition and Equation (I.19.9),

a+
∼= R

r
≥0,

e(a+) ∼= {0},

e(a+
I ) = aI ∼= {(x1, · · · , xl) | xj ∈ R, αj ∈ I;xj = 0, αj ∈ ∆− I.}

In particular, a+ is a corner. This will be used to show that the maximal
Satake compactification X

S

max is a real analytic manifold with corners of codi-
mension r.

Let P be the minimal parabolic subgroup containing A = exp a and cor-
responding to the positive chamber a+, i.e., in the Langlands decomposition
P = NPAPMP , AP = A, and the Lie algebra of NP is given by

nP =
∑

α∈Φ+(g,a)

gα.

Let
n−P =

∑
α∈−Φ+(g,a)

gα,

the sum of the root spaces of the negative roots, let N−P be the corresponding
Lie subgroup, which is the unipotent radical of the parabolic subgroup P− =
N−P APMP opposite to P .

Proposition I.19.20 The map

N−P × a→ X, (n,H) 7→ neHx0,

is an analytic homeomorphism and extends to a homeomorphism

N−P × a+ → X
S

max,

whose image is an open dense subset in X
S

max.
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Proof. By Proposition I.19.13, the closure of the flat eax0
∼= a in X

S

max is
the dual-cell compactification a∗ = a ∪∆∗(a). This implies that the map

a→ X
S

max, H 7→ eHx0,

extends to an embedding

i : a+ → X
S

max.

For any subset I ⊂ ∆, the boundary component e(a+
I ) = aI , and

i(e(a+
I )) ⊂ XPI ⊂ X

S

max −X.

By Proposition I.4.40, the stabilizer in G of a point mKPI ∈ XPI in X
S

max

is equal to NPIAPI
mKPI . Note that the Bruhat decomposition (see [GJT,

Corollary 2.21]) implies that

N−P × e
aI ×NPIAPImKPI → G, (n−, eH , nak) 7→ n−eHnak (I.19.12)

is an analytic diffeomorphism onto an open subset of G. In fact, by the
Bruhat decomposition, N−PINPIAPIMPI is open dense in G. Let P ′ be the
parabolic subgroup in MPI corresponding to P in Equation (I.1.21). Then
N−P ′AP ′

mKPI = MPI , and Equation (I.19.12) follows from N−P = N−PIN
−
P ′

and AP ′ = eaI .
Then Equation (I.19.12) implies that the map

N−P × a+ = N−P × (a ∪
∐
I

aI)→ X
S

max

is an embedding. Since

X
S

max = X ∪
∐
I⊂∆

GXPI ,

the image of N−P × a+ is open and dense in X
S

max.

Remark I.19.21 By Proposition I.19.18, a+
∼= R

r
≥0 is an analytic corner,

and hence N−P ×a+ is an analytic manifold with corners of codimension r. By
Proposition I.19.20, X

S

max is covered by these corners. It will be shown later
in Proposition I.19.27 that the analytic structures of these corners are com-
patible, and hence X

S

max is a compact manifold with corners of codimension
r.
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I.19.22 Now we are ready to construct the compactification X̃S
max with a

built-in continuous G-action, which will turn out to be isomorphic to X
S

max.
Define an equivalence relation ∼ on

G× a+ = G× (a ∪
∐
I⊂∆

aI)

by
(g1,H1) ∼ (g2,H2)

if and only if

1. either H1,H2 ∈ a, and

g1e
H1K = g2e

H2K, (I.19.13)

2. or there exists I ⊂ ∆ such that H1,H2 ∈ aI , and

g1e
H1NPIAPIKPI = g2e

H2NPIAPIKPI . (I.19.14)

Define X̃S
max to be the equivalence classes of ∼ on G× a+,

X̃S
max = G× a+/ ∼

with the quotient topology. The group G acts on G× a+ by

g(g1,H1) = (gg1,H1).

Clearly, the action preserves the equivalence relation ∼ and induces a contin-
uous action on the quotient X̃S

max.
It will be shown that X̃S

max is a Hausdorff compactification isomorphic to
the maximal Satake compactification X

S

max. This isomorphism is the motiva-
tion for the definition of the equivalence relation ∼ above. In fact, the group
NPIAPI

mKPI is the stabilizer of the point mKPI ∈ XPI ⊂ X
S

max (see the
proof of Proposition I.19.20).

I.19.23 Let
π : G× a+ → X̃S

max

be the quotient map. To determine the quotient topology of X̃S
max, it suffices

to find subsets U of G× a+ such that the inclusion U ↪→ G× a is continuous,
π : U → X̃S

max is injective, and the ∼-saturation of open subsets V of U are
open subsets of G× ã+, i.e., π−1(π(V )) is open. Then the map π : U → X̃S

max

is a homeomorphism onto π(U). We need to find such sets π(U) which cover
X̃S

max.
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Let P be a minimal parabolic subgroup containing A = exp a as the split
component and corresponding to the positive chamber a+ as above. Let

UP = N−P × a+ ⊂ G× a+. (I.19.15)

For any g ∈ G, then
gUP = gN−P × a+.

Lemma I.19.24 For any g ∈ G, the image of π : gUP → X̃S
max is an open

subset, and π is a homeomorphism onto its image.

Proof. As in the proof of Proposition I.19.20, the Bruhat decomposition (see
Equation I.19.12) shows that the map π : gUP → X̃S

max is injective.
Clearly, the inclusion gUP → G × a+ is continuous and hence the map

π : gUP → X̃S
max is continuous, by the definition of the quotient topology.

We need to show that it is an open map, i.e., the ∼-saturation of any open
subset of gUP is an open subset in G × a+. Let W ⊂ N−P , V ⊂ a+ be any
two open subsets. It suffices to show that for any point (q,H) ∈ W × V , the
∼-saturation of gW × V contains an neighborhood of g(q,H) in G× a+.

Without loss of generality, we assume that g = e and V is of the form

V = V∆ ∪
∐
I⊂∆

VI ,

where V∆ ⊂ a, and VI ⊂ aI . We will construct the desired neighborhood
using this decomposition.

Assume first that H ∈ a. Then we can assume that VI = ∅ for all I ⊂ ∆.
Let U∆ be a small neighborhood of e in ea and V ′∆ be a neighborhood of eH

such that
WU∆e

HKe−HV ′∆ ⊂WV∆K.

Such neighborhoods exist since

eHKe−HeH = eHK ⊂ V∆K

and WV∆K is an open subset containing WeHK. Hence, WU∆e
HKe−H ×

V ′∆ is contained in the ∼-saturation of W × V∆. Since G = N−P APK,
WU∆e

HKe−H is an open subset of G. This proves WU∆e
HKe−H × V ′∆

is an neighborhood of (q,H) in G× a+.
In general, let H ∈ aI , where I ⊂ ∆. In this case, we can assume that for

J ⊂ I, VJ is empty. On the other hand, for J ⊃ I, VJ is a non-bounded. Fix
a J ⊃ I. Let UJ be a (small) neighborhood of e in aJ to be determined later.
Let V ′ ⊂ V be a smaller neighborhood of H in a+, and let V ′J = V ′ ∩ aI . Let
Hj be a sequence in V ′J such that

V ′J ⊂ ∪jeHjUJ .
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Then

WUJNPJAPJ e
HjKPJ e

−HjeHjUJ ⊂WNPJAPJVJNPJAPJKPJ .

This holds when UJ is sufficiently small. Now

∪J⊃IUjWUJNPJAPJ e
HjKPJ e

−Hj × eHjUj
is an neighborhood of (q,H) in G × a+, this shows that the ∼-saturation of
W × V contains a neighborhood of (q,H). This completes the proof of the
lemma.

Remark I.19.25 The sets π(gUP ) clearly cover X̃S
max. The open subset UP

is the canonical corner associated with the parabolic subgroup P and depends
on the horospherical decomposition of X with respect to P and the basepoint
x0. The set gUP can also be interpreted this way. In the definition of UP ,
we used the Langlands decomposition of P with respect to the basepoint
x0, and this Langlands decomposition induces the associated horospherical
decomposition of X associated with P . Under the conjugation by g, the
Langlands decomposition becomes the Langlands decomposition of gP with
respect to the basepoint gx0,

gP = NgPAgPMgP ,

and the corresponding horospherical decomposition is obtained by the left
multiplication by g,

X = NgP ×AgP ×MgP /(gK ∩MgP ).

Therefore, gUP is the canonical corner associated with gP with respect to the
basepoint gx0.

Proposition I.19.26 The space X̃S
max is a Hausdorff G-compactification of

X.

Proof. Clearly, X̃S
max contains X as an open dense subset. To show it is

Hausdorff, we note that for any point x ∈ X̃S
max, the set of points g such

that x ∈ gUP is open and dense in G. This basically follows from the Bruhat
decomposition (see [Os1, p.127]). This implies that for any two points x, y ∈
X̃S

max, there exists an element g ∈ G such that x, y ∈ gUP . Since gUP is an
open Hausdorff subset, x, y are separated disjoint open subsets.

To show it is compact, we note that the image π(G× a) ∼= X is open and
dense in X̃S

max. By the Cartan decomposition, π(G × a) = π(K × cl(a+)),
where cl(a+) is the closed Weyl chamber, and X̃S

max is equal to the closure
of π(K × cl(a+)). Since the closure of cl(a+) in a+ is compact and K is also
compact, the closure of π(K × cl(a+)) is compact, hence X̃S

max is compact.
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Proposition I.19.27 The space X̃S
max is a compact real analytic manifold

with corners of codimension r = rk(X).

Proof. The proof of the analyticity is the main technical part of this con-
struction. The basic idea is as follows. As pointed out earlier, the corner UP
associated with P has a canonical real analytic structure. For any g ∈ G,
the subset gUP is the corner associated with the parabolic subgroup gP and
the basepoint gx0. These corners are charts of X̃S

max. The only problem is to
show that their analytic structures are compatible.

When restricted to the interior X, these analytic structures are clearly
compatible, since the horospherical decomposition of X is real analytic. The
issue is at the boundary of X̃S

max. It is not easy to compute explicitly the
transition function from UP to gUP , which is equivalent to express the horo-
spherical decomposition of x ∈ X with respect to gP and the basepoint gx0 in
terms of the horospherical decomposition with respect to P and the basepoint
x0.

For a point x ∈ X, its horospherical coordinates with respect to P and
basepoint x0 are conjugated by g to the horospherical coordinates of gx with
respect to gP and the basepoint gx0. So if we know how to compute the
horospherical coordinates of g−1x with respect to P and the basepoint x0

in terms of the horospherical coordinates of x with respect to P and the
basepoint x0, we can compute the desired horospherical coordinates of x with
respect to gP and the basepoint gx0 in terms of the horospherical coordinates
of x with respect to P and the basepoint x0.

To show that the horospherical coordinates of g−1x, x ∈ X, with respect to
P and the basepoint x0 are given by real analytic functions of the horospherical
coordinates of x with respect to P and the basepoint x0, and can be extended
to real analytic functions, it suffices to show that when g belongs to one
parameter family exp tY , Y ∈ g, the associated vector field on X extends
to an analytic field on X̃S

max. It turns out that the explicit computation
of this vector field over X is easier and given in [Os1, Lemma 3] (since it
essentially deals with only one horospherical decomposition), and the formula
[Os1, Equation (2.3)] shows that it extends to a real analytic vector field on
X̃S

max.

Proposition I.19.28 The identity map on X extends to a homeomorphism
X̃S

max → X
S

max, i.e., the compactification X̃S
max is isomorphic to the maximal

Satake compactification X
S

max. Hence X
S

max is a real analytic compact mani-
fold with corners of codimension r = rk(X). In particular, when rk(X) = 1,
X
S

max is a compact manifold with boundary.
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Proof. Under the identification

a ∼= eax0, H 7→ eHx0,

it extends to a map
a+ → X

S

max,

which is a homeomorphism onto its image. Hence it induces a continuous map

G× a+ → X
S

max.

Since the equivalence relation ∼ on G × a+ is defined in terms of stabilizers
in G of points in X

S

max, this induces a continuous bijective map

X̃S
max = G× a+/ ∼→ X

S

max,

which extends the identity map onX. Since both X̃S
max andX

S

max are compact
and Hausdorff, they are homeomorphic.

I.19.29 The above construction of X̃S
max was suggested by the construction

of the Oshima compactification X
O

in [Os1], which is a closed (i.e., compact
without boundary) analytic manifold. The Oshima compactification X

O
was

motivated by the study of boundary behaviors at the unique closed G-orbit
G/P in X

S

max of joint eigenfunctions of all the invariant differential operators
on X, where P is a minimal parabolic subgroup.

Now we recall briefly the Oshima construction (see §II.2 in Part II for
more details). Instead of Rr≥0

∼= a+, we use Rr and define

X
O

= G× Rr/ ∼, (I.19.16)

where the equivalence relation ∼ is a generalization of the equivalence relation
for X̃S

max in Equations (I.19.13, I.19.14). Briefly, for any real number x, define
its sign

sgn(x) = 0 if x = 0, sgn(x) =
x

|x|
if x 6= 0.

For any t = (t1, · · · , tr) ∈ Rr, define its signature

εt = (sgn(t1), · · · , sgn(tr)).

A signature ε = (ε1, · · · , εr) is called proper if εi 6= 0 for all i = 1, · · · , r. For
each proper signature ε, let

R
r
ε = {(t1, · · · , tr) | εt = ε}.
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Then
R
r
ε
∼= a+,

and
R
r = ∪εRrε = ∪εa+,

where ε runs over all proper signatures.
Using the above identification, the equivalence relation ∼ on G × Rr is

defined as follows. Two points (g, t), (g′, t′) ∈ G × Rr are equivalent if and
only if

1. εt = εt′ , and hence there exists a proper signature ε such that t, t′ ∈ Rrε.

2. Under the identification Rrε ∼= a+, (g, t) and (g′, t′) are mapped to the
same point in X̃S

max.

By the same arguments as above (see [Os1] [Sch]), we can show that

Proposition I.19.30 The space X
O

is a compact and Hausdorff real analytic
G-manifold. It contains 2r disjoint copies of X, and its analytic structure
extends the natural analytic structure of X, and the closure of each X is
isomorphic to the maximal Satake compactification X̃S

max
∼= X

S

max.

The space X
O

is called the Oshima compactification.

I.19.31 In Part II, we will give an alternative construction of X
S

(see Re-
mark II.10.12) in two steps:

1. Show that X
S

max is a real analytic (and semi-algebraic) manifold with
corners by embedding X into the real locus of the wonderful compacti-
fication XC

W
of XC = GC/KC, the complexification of X.

2. Self-glue X
S

max into a closed real analytic manifold, which gives X
O

.

As discussed earlier in Proposition I.19.27, the main, technical step in [Os1]
is to show that X

O
has a real analytic structure. In this alternative approach,

the real analytic structure is obtained rather easily from the analytic structure
of the smooth projective variety XC

W
(note that XC is a quasi-projective

variety).

I.19.32 Summary and comments. In this section, we gave two more
constructions of the maximal Satake compactification X

S

max. The basic idea
is to pass from the compactifications of maximal flats in X to the whole
symmetric space X. The polyhedral compactification or rather the dual-cell
compactification of a vector space explains the underlying duality between the
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maximal Satake compactification X
S

max and the spherical Tits building ∆(G).
The Oshima compactification X

O
will be discussed more in §II.2. From the

point of view of this section, one of the key points in [Os1] is to build in a
G-action in the construction of X

O
.



Part II. Smooth
Compactifications of
Semisimple Symmetric
Spaces

In Part I, we have discussed many compactifications of a Riemannian sym-
metric space in the classical sense that the symmetric space is an open dense
subset. Under this restriction, none of these compactifications is a closed
smooth manifold.

Part II is chiefly devoted to compactifications of a given semisimple sym-
metric space in which the symmetric space is an open, not dense subset, but
the compactification is a closed real analytic manifold. Therefore, there are
two features of the compactifications in Part II which are different from those
in Part I:

1. Symmetric spaces are not necessarily Riemannian.

2. Compactifications are closed smooth manifolds, but the symmetric spaces
are not dense.

In Chapter 4, we study the first such compactification, the Oshima com-
pactification X

O
, of a Riemannian symmetric space X. The basic point is to

apply a general self-gluing procedure to obtain it from the maximal Satake
compactification X

S

max, using the fact that X
S

max is a compact manifold with
corners.

In Chapter 5, we study basic facts on semisimple symmetric spaces, in
particular, those arising from the real form of semisimple linear algebraic
groups defined over R. In Chapter 6, we identify the real locus of complex
symmetric spaces using the Galois cohomology.

In Chapter 7, we apply the general facts developed in the earlier chap-
ters to determine the real locus of the wonderful compactification X

W
of a

223
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complex symmetric space X. As a corollary, we obtain easily the existence
of the real analytic structure on the maximal Satake compactification X

S

max.
Combined with the self-gluing result in Chapter 4, this gives a simple proof of
the existence of real analytic structure on the Oshima compactification X

O
.

The results of this chapter also explain naturally why the study of compact-
ifications of Riemannian symmetric spaces X leads to compactifications of
non-Riemannian semisimple symmetric spaces Xε.

In Chapter 8, we relate the Oshima-Sekiguchi compactification X
OS

to the
real locus of the wonderful compactification X

W
(R) of X = XC, and explain

naturally why compactifications of different semisimple symmetric spaces and
Riemannian symmetric spaces can be glued together into a closed smooth
manifold.



Chapter 4

Smooth compactifications
of Riemannian symmetric
spaces G/K

The Oshima compactification X
O

of a Riemannian symmetric space X is a
closed real analytic manifold which contains the union of 2r copies of X as
an open dense subset, where r = rk(X). The closure of each X contains a
unique compact G-orbit in its boundary, which is isomorphic to the maximal
Furstenberg boundary of G or X and hence the Poisson boundary of X.

The Oshima compactificationX
O

has the crucial property thatG-invariant
differential operators on X can be extended to differential operators on X

O

with regular singularities on the Poisson boundary. This property depends on
the real analytic structure of X

O
and can be used to study the asymptotic

behaviors at the Poisson boundary of joint eigenfunctions on X of the G-
invariant differential operators. Asymptotic behaviors and boundary values
of eigenfunctions played an important role in solving the Helgason conjec-
ture in [KaK] (see also [Sch]), which says roughly that joint eigenfunctions
on X are the Poisson transform of hyperfunctions on the Poisson boundary.
The Oshima compactification X

O
is also important for other problems in the

representation theory of G (see [Os4]).

As briefly recalled in Part I, §I.19, the Oshima compactification X
O

is
closely related to the maximal Satake compactification X

S

max. In §II.1, we
study a procedure of self-gluing a multiple copies of a compact manifold with
corners into a closed manifold, which is a generalization of doubling a com-
pact manifold with boundary into a closed manifold. It turns out that there
is an obstruction to the self-gluing using the minimal number of copies. In
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§II.2, we apply this procedure to self-glue the maximal Satake compactifica-
tion X

S

max into the Oshima compactification X
O

. The result that the maximal
Satake compactification X

S

max is a real analytic manifold with corners can be
obtained easily by embedding X into the real locus of the wonderful com-
pactification of the corresponding complex symmetric space XC = GC/KC.
Hence, this approach gives a more direct and conceptional construction of the
Oshima compactification X

O
, avoiding the difficult proof of the existence of

real analytic structure in [Os1].

Besides the application to the Oshima compactification X
O

, the self-gluing
procedure will also be used in §III.16 to self-glue the Borel-Serre compacti-
fication Γ\X

BS
of the locally symmetric space Γ\X into a closed analytic

manifold Γ\X
BSO

.

II.1 Gluing of manifolds with corners

The notion of manifold with corners is assumed to be known. We only review
some facts and notations. (See the appendix in [BS] by Douady-Herault).

This section is organized as follows. In II.1.1, we introduce notions of the
rank, boundary faces and boundary hypersurfaces of a manifold with corners.
An important concept for the self-gluing of manifolds with corners is that of
embedded hypersurfaces. To carry out the self-gluing, we introduce a partition
of the set HM of boundary hypersurfaces of M . Then the self-gluing of M into
M̃ is given in Proposition II.1.2. Properties of M̃ are given in Propositions
II.1.4 and II.1.5. In the special case where the rank is equal to the number of
subsets in the partition of HM , a more direct construction of M̃ is given in
Proposition II.1.9.

II.1.1 Let M a connected manifold with corners, m its dimension. Every
point p ∈M has a local chart of the form R

m−i×Ri≥0, where Ri≥0 is a positive
(closed) quadrant in Ri and p is sent to the origin. The integer i is called the
rank of p, and the maximum of i is called the rank of M , denoted by rk(M).

The manifold M has a stratification such that each stratum consists of
points of the same rank. Every connected component of a stratum is called
an open boundary face of M , and its closure in M is called a boundary face.
If a boundary face is of codimension 1, it is called a boundary hypersurface.

The boundary ∂M of M is the union of boundary hypersurfaces, which
are themselves manifolds with corners of rank strictly less than rk(M). We
shall assume they are all of rank equal to rk(M)− 1 and embedded (no self-
intersection). More precisely, a boundary hypersurface H is embedded if for
every point p of rank i and belonging the boundary of H, there exist i − 1
boundary hypersurfaces H1, · · · ,Hi−1 different from H such that p belongs



§II.1. Gluing of Manifolds with Corners 227

to the intersection H ∩H1 · · · ∩Hi−1 and the intersection has codimension i,
which is automatically satisfied if all H1, · · · ,Hi−1 are different.

If all the boundary hypersurfaces are embedded, the intersection of two
boundary hypersurfaces is a manifold with corners of rank equal to rk(M)−
2 (if not empty), and is union of boundary hypersurfaces of each of them,
considered as manifolds with corners.

For any boundary face of M of codimension i, its boundary hypersurfaces
are also embedded if all the boundary hypersurfaces of M are embedded, and
they are intersections of i+ 1 boundary hypersurfaces of M .

An example of a manifold with corners whose boundary hypersurfaces are
not embedded is a 2-dimensional manifold with one corner point and one
boundary hypersurface. It is clear that this two dimensional manifold can not
be self-glued into a closed smooth manifold. Therefore, the assumption that
boundary hypersurfaces are embedded is crucial.

Our aim here is to glue M to a certain number of copies of itself so as
to get a smooth manifold, and to give an alternate formulation in the case
where it is possible to use the smallest possible number of copies of M , namely
2rk(M).

For any connected manifold M with corners, we assume that the set HM
of boundary hypersurfaces is locally finite in the sense that each point has a
neighborhood which only meets finitely many of them.

For the gluing purpose, we need to assume that the set HM admits a finite
partition:

HM =
N∐
j=1

HM,j

such that the elements of each HM,j are disjoint (1 ≤ j ≤ N). If M is
compact, then HM is finite and such a partition always exists. This is the case
considered in [Me2]. The following proposition is an obvious generalization.

Proposition II.1.2 Suppose that M is a manifold with corners, and the set
HM of boundary hypersurfaces admits a finite partition as above. Then it is
possible to construct a closed manifold M̃ by gluing 2N copies of M along
boundary hypersurfaces.

Proof. It is by induction on N . Let M ′ be a copy of M with the same
partition of the set H = HM = HM ′ of boundary hypersurfaces. Glue M
and M ′ along the elements of H1. We claim that M ∪M ′ is a manifold with
corners. In fact, the interior points of the H ∈ H1 are manifold points of
M ∪M ′, i.e., have euclidean neighborhoods. We need to check that boundary
points of these hypersurfaces in H1, i.e., corner points of M , are also corner
points of M ∪M ′. Let H ∈ H1 and p in the boundary of H. Suppose that
p is of rank i in M . Then i ≥ 2. Since all the boundary hypersurfaces of M
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are embedded, there exist i different hypersurfaces H1 = H, · · · ,Hi such that
p ∈ H1 ∩ · · · ∩Hi. By the assumption on the partition, the hypersurfaces in
H1 are disjoint. This implies that H2, · · · , Hi do not belong to H1. Then it
is clear that after the gluing along H1, p has a chart in M ∪M ′ of the form
R
m−i+1 × Ri−1

≥0 and becomes a point of rank i− 1.
We claim that HM∪M ′ admits a partition in N−1 subsets, each consisting

of disjoint boundary hypersurfaces.
For every j > 1, divide HM,j into two subsets:

HM,j = Hj,1 qHj,2,

where
Hj,1 = {H ∈ Hj | H ∩ Z = ∅ for all Z ∈ H1},

and Hj,2 is the complement. The elements of Hj,1 and their homologues in
M ′ form a set of disjoint boundary hypersurfaces of M ∪M ′, say H′′j,1.

On the other hand, if H ∈ Hj,2, there exists Z ∈ H1 such that H ∩Z 6= φ.
For any such Z, H ∩ Z is a boundary hypersurface of H and Z, and is equal
to H ∩ H ′, where H ′ is the homologue of H on M ′. As observed earlier,
the assumption on embeddedness of the boundary hypersurfaces of M implies
that the boundary hypersurfaces of H are also embedded. Then the gluing of
M ∪M ′ induces one of H and H ′ along their intersection, which is similarly
a manifold with corners, locally euclidean around an interior point of H ∩H ′.
In particular, H ∪ H ′ is a boundary hypersurface of M ∪M ′. Let H′′j,2 be
the set of these glued up boundaries of M ∪M ′. They are disjoint since two
elements of HM,j are disjoint. Let H′′M,j = H′′j,1 ∪H′′j,2. Clearly hypersurfaces
in H′′j are disjoint.

Since every boundary hypersurface of M ∪M ′ belongs to a unique H′′j for
j ≥ 2, we have a partition of HM∪M ′ in N − 1 subsets:

HM∪M ′ =
∐

2≤j≤N

H′′j .

If N = 1, then M is a manifold with boundary and the previous con-
struction provides the desired manifold M̃ = M ∪M ′. We can now use an
induction hypothesis, which implies that we can glue 2N−1 copies of M ∪M ′
to obtain a closed manifold M̃ . Altogether, M̃ is constructed by gluing 2N

copies of M .

Remark II.1.3 In a corner of rank r, there are r boundary hypersurfaces
with a non-empty intersection, hence N ≥ rk(M). The number N depend on
the partition. When M is compact, the maximum value of N is the number N ′

of boundary hypersurfaces, hence rk(M) ≤ N ≤ N ′. We can try to minimize
N by a suitable choice of the partition. For instance, start with a maximal
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set H1 of disjoint boundary hypersurfaces. Then let H2 be a maximal set of
disjoint boundary hypersurfaces in H−H1, and so on. However, the number
N may depend on the successive choices, as simple examples show.

Proposition II.1.4 If M is C∞ (resp. real analytic), then so is M̃ . More-
over, if a group H acts on M , then this action extends to one on M̃ . The
extended action is smooth (resp. real analytic) if H is a Lie group and the
given action on M is so.

Proof. This follows from the construction: around a smooth point x ofH∩H ′,
the local charts in M and M ′ are obtained from one another by a “reflection
principle” with respect to H ∩H ′. These charts glue into a neighborhood of
x in M̃ , which is C∞ (resp. real analytic) if M is so. To see that a group
action on M extends to M̃ , we note that for any two copies of M in M̃ , the
group action on them agree on their intersection, and the combined action on
M̃ gives the extension.

Proposition II.1.5 The closed manifold M̃ constructed in Proposition II.1.2
admits a (Z/2Z)N -action such that the quotient of M̃ by (Z/2Z)N is equal to
M . If M admits a group action by H as in Proposition II.1.2, then the
extended H-action commutes with this (Z/2Z)N -action.

Proof. We prove this by induction. When N = 1, M is a manifold with
boundary, and M̃ is obtained from M by doubling across the boundary and
clearly admits a Z/2Z-action.

As in the proof of Proposition II.1.2, HM∪M ′ admits a partition in N − 1
subsets, and M̃ is glued from 2N−1 copies of M∪M ′. By induction, M̃ admits
a (Z/2Z)N−1-action, and the quotient by this group is equal to M ∪M ′. By
Proposition II.1.2, the Z/2Z-action on M ∪M ′ extends to an action on M̃ .
This Z/2Z-action commutes with the (Z/2Z)N−1-action on M̃ by induction.
Hence M̃ admits a (Z/2Z)N -action, and the quotient of M̃ by (Z/2Z)N is
equal to the quotient M ∪M ′ by Z/2Z and hence to M .

To show that the extended H-action on M̃ commutes with (Z/2Z)N , we
note that (Z/2Z)N interchanges different copies of M . Since the H-actions on
the all the copies of M are the same, the extended H-action commutes with
the (Z/2Z)N -action.

II.1.6 A special case of gluing. The most important cases for us are some
in which N = rk(M) and a further assumption of homogeneity is assumed.
In the rest of this section, an alternative construction of M̃ is given under the
assumption that N = rk(M).
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The standard example of dimension m is that of a closed quadrant in Rm,
say the positive quadrant where all coordinates xi are non-negative. A first
gluing to the quadrant

{(x1, · · · , xm) | x1 ≤ 0, xi ≥ 0, i ≥ 2}

produces the manifold M1 with corners of rank m− 1

{(x1, · · · , xm) | xi ≥ 0, i ≥ 2}.

A second gluing of M1 provides the manifold with corners of rank m− 2

{(x1, · · · , xm) | xi ≥ 0, i ≥ 3},

etc. After m steps, we get Rm, a smooth manifold without corners.
We want to reformulate this construction so as to carry it out in one step

rather than m and then apply the procedure to general manifolds.

II.1.7 First we need to define a partition of Rm into 3m subsets, the open
quadrants in Rn and the lower dimensional coordinate planes. We follow the
conventions of [Os1] and [OsS1]. The natural set of indices for the applications
to follow is a set ∆ of simple roots, so we shall label the coordinates by
elements of ∆ and speak of a partition of R∆. The value of a ∈ ∆ on t ∈ R∆

is denoted by ta.

Definition.

1. The signature of t ∈ R, denoted by sgn t, is 0 if t = 0 and t/|t| otherwise.

2. A signature ε on a finite set ∆ is a map ε : ∆→ {1, 0,−1}. Its support
s(ε) is the set

s(ε) = {a ∈ ∆ | ε(a) 6= 0}.

3. A signature ε is called proper if s(ε) = ∆.

We let E(∆) be the set of all signatures on ∆ and Eo(∆) the subset of
proper signatures. They have cardinalities 3|∆| and 2|∆| respectively, where
|∆| is the cardinality of ∆. If J ⊂ ∆, an element of E(J) is identified with the
signature of ∆ which is equal to ε on J , and is zero outside J . If I ⊂ J , and
ε ∈ E(I), ε′ ∈ E(J), we write ε ⊂ ε′ if ε and ε′ coincide on I. For ε ∈ E(∆),
let

R
∆, ε = {t ∈ R∆ | sgn ta = ε(a)}. (II.1.1)

It can be identified to RJ, ε
′

where J = s(ε) and ε′ is the restriction of ε to
J . We have

R
∆ =

∐
ε∈E(∆)

R
∆, ε.
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This can also be written as

R
∆ =

∐
J⊂∆, ε∈Eo(J)

R
J, ε.

Note that J can be empty, in which case RJ,ε is the origin.
The closed quadrants in R∆ are exactly the subspaces R∆(δ) defined by

R
∆(δ) =

∐
ε⊂δ

R
∆, ε,

where δ ∈ Eo(∆), and R∆ may be viewed as the space obtained by gluing
them along their intersections. They are all isomorphic and so R∆ is the
manifold obtained by gluing 2|∆| copies of R∆(δ).

II.1.8 Let M be a manifold with corners, r its rank, and ∆ a set of cardi-
nality r. We assume that HM has a partition

HM =
∐
a∈∆

Ha,

where the elements of Ha are disjoint boundary hypersurfaces of rank r − 1.
For J ⊂ ∆, and |J | boundary hypersurfaces Ha, with Ha ∈ Ha, a ∈ J ,
the intersection Z of these Ha is either empty or a manifold with corners of
codimension and rank

Let J ′ ⊂ ∆ and Z ′ be similarly constructed. If J ∩ J ′ = ∅, then Z ∩ Z ′ is
a manifold with corners of rank and codimension r − (|J |+ |J |′) or is empty.
Assume now that I = J∩J ′ is not empty. If for some a ∈ I, the hypersurfaces
Ha and H ′a are distinct, then they are disjoint, by the definition of Ha, hence
Z ∩ Z ′ is empty. If Ha = H ′a for all a ∈ I, then we are back to the previous
case with J ′ replaced by J ′′ = J ′ − I.

To be consistent with the notation of Definition II.1.7 on signatures which
are used to parametrize different parts of R∆, we will change slightly the one
just used. For J ⊂ ∆, let us denote by HJ the set of non-empty intersections
of elements Ha, where a runs through ∆− J . Thus our previous Ha becomes
H∆−{a}.

Given a manifold with corners N , we let No be its interior. Let HoJ be the
set of interiors of the elements of HJ . Then

M =
∐
J⊂∆

HoJ . (II.1.2)

Here it is understood that if J = ∆, then HJ = M and HoJ = {Mo}. If
J = ∅ and Z ∈ HJ then Z = Zo is a closed manifold.

The elements of the HoJ are the strata of a stratification of M in which the
closed subspace of codimension i (0 ≤ i ≤ r) is the union of the HoJ where J
runs through the subsets of ∆ of cardinality ≤ r− i, or, simply

⋃
|J|=|∆|−iHJ .
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We consider now objects (Z, ε), where Z ∈ HoJ and ε is a signature on ∆
with support equal to J , or, equivalently, a proper signature on J . Let

M̃ =
∐
J⊂∆

∐
Z∈HoJ , ε∈Eo(J)

(Z, ε).

Proposition II.1.9 There exists a suitable topology on M̃ with respect to
which M̃ is the manifold M̃ constructed in Proposition II.1.2.

Proof. Fix δ ∈ Eo(∆). Define a subset M̃(δ) of M̃ by

M̃(δ) =
∐
ε⊂δ

(Z, ε).

For each Z, there is only one possibility for ε, hence we see from (II.1.2)
that M̃(δ) is, set theoretically, a copy of M . We endow it with the topology
of M . We have

M̃ =
⋃

δ∈Eo(∆)

M̃(δ).

Let δ′ ∈ Eo(∆). We want to describe M̃(δ) ∩ M̃(δ′). Let

J(δ, δ′) = {a ∈ ∆ | δ(a) = δ′(a)},

and let ε(δ, δ′) be the common restriction of δ and δ′ to J(δ, δ′). Then

M̃(δ) ∩ M̃(δ′) =
∐

J⊂J(δ, δ′)

∐
Z∈H0

J , ε⊂ε(δ, δ′)

(Z, ε).

The topologies of M̃(δ) and M̃(δ′) induce the same topology on the in-
tersection M̃(δ) ∩ M̃(δ′). We then endow M̃ with the sum topology of the
topologies on the M̃(δ).

We next show that M̃ is a smooth manifold without corners. For any
point o in a corner of M̃(δ) of codimension |∆| , a neighborhood of o in
M̃(δ) is the same as a neighborhood of the origin in Rn−|∆| ×R|∆|(δ), where
n = dimM . From the fact that R|∆| is the manifold obtained by gluing the
closed quadrants R|∆|, we conclude that these identical neighborhoods of o in
M̃(δ) glue into a smooth neighborhood of o in M̃ . Similarly, for any point o
in a boundary face (Z, ε) of M̃(δ), the neighborhoods of o in M̃(δ) for all the
δ equal to ε on the support s(ε) glue into a smooth neighborhood.

Since any two M̃(δ) only intersect on their common boundary faces, it
can be seen by induction on the rank that M̃ is the manifold constructed in
Proposition II.1.2. Furthermore, the (Z/2Z)|∆| action on M̃ corresponds to
changing the proper signatures δ.
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II.1.10 Summary and comments. In this section, we gave two construc-
tions of self-gluing several copies of a manifold M with corners into a closed
manifold M̃ . The self-gluing depends on the choice of a partition of the set
HM of boundary hypersurfaces. When the partition consists of one subset, M
is a manifold with boundary, and the self-gluing is the familiar doubling of a
manifold with boundary into a closed manifold. The first method is inductive
and depends inductively on the number of subsets inHM . The second method
is modeled on obtaining Rn from the self-gluing of Rn≥0 and applies when the
number of subsets in the partition of HM is equal to the rank of M .

II.2 The Oshima compactification of G/K

In [Os1], Oshima constructs a smooth analytic compactification of X = G/K
which contains 2r open orbits isomorphic toG/K, where r = rkR(G). We shall
first construct it as an application of (II.1.8), using the fact that the maximal
Satake compactification of X is a manifold with corners (Proposition I.19.27),
and then we recall Oshima’s construction.

II.2.1 In order to apply (II.1.8) to G/K, we have to exhibit the structure
of manifold with corners of its maximal Satake compactification X

S

max.
Let P = MAN be the minimal standard parabolic subgroup, P− be the

opposite standard minimal parabolic subgroup and N− the unipotent radical
of P−. Then

X = N− ·A and N− ·A is an open chart in X
S

max. (II.2.1)

Here A = R∆
≥0 with the identification

a 7→ (a−α1 , . . . , α−αr ), (∆ = {α1, . . . , αr}) (II.2.2)

of A with R
∆
>0. (See Propositions I.19.20 and I.19.27 for proofs of these

assertions.)
The orbits of G in X

S

max are the subspaces

OJ = G/KJAJNJ , (II.2.3)

where J ⊂ ∆ = ∆(g, a), OJ fibers over G/PJ , the fibers being the boundary
symmetric spaces conjugate to XJ . The subgroup KJAJNJ is denoted by QJ
in the following. In the terminology of II.1.1, the OJ are open boundary faces
and their closures are the boundary faces. OJ has codimension rk(X) − |J |.
The boundary hypersurfaces are the sets

O(α) = O∆−{α} (α ∈ ∆). (II.2.4)
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These boundary hypersurfaces are embedded and the condition II.1.1 trivially
fulfilled by taking Hα = O(α)(α ∈ ∆).

Let M = X
S

max. Then Proposition II.1.2 can be applied to obtain a closed
manifold M̃ . The space M̃ is a G-space containing the union of 2r copies of X
and consisting of 3r orbits of G. By Proposition I.19.27, X

S

max is a compact
analytic G-space with corners. It follows then from II.1.4 that M̃ is a closed
real analytic manifold.

We shall see later that an easier way to show that X
S

max is an analytic
G-space with corners is by embedding X into the wonderful compactification
of the complexification X of X. Together with the above discussion, this gives
a more direct construction of the Oshima compactification X

O
.

II.2.2 We give here briefly Oshima’s definition of X
O

, which is isomorphic
to M̃ (see Remark II.2.3 below). Given t ∈ R∆, we let εt be the signature
εt(α) = sgn tα(α ∈ ∆), and s(t) will stand for s(εt):

s(t) = s(εt) = {α ∈ ∆|tα 6= 0}.

Let Hα(α ∈ ∆) be the basis of a dual to ∆. We define a map a : R∆ → A by
the rule

a(t) = exp−
∑
α∈s(t)

log |tα| Hα. (II.2.5)

Oshima defines a quotient

X
O

= G× R∆/ ∼

of G× R∆ by the equivalence relation ∼:

(g, t) ∼ (g, t′)

if

1. εt = εt′ ,

2. g · a(t) ·Qs(t) = g′ · a(t′).Qs(t′) (Note that s(t) = s(t′) in view of (1)).

The G-action is defined by left translations on the first factor. Oshima shows
that X

O
is a compact G-space, into which N− × R∆ maps bijectively on an

open chart. X
O

consists of 3r orbits, 2r being copies of X. The hard point,
however, is to prove that X

O
is an analytic G-space. One has to show that

the infinitesimal actions of g on the orbits match to define analytic vector
fields on X

O
, and then use one of the fundamental theorems of the original

Lie theory. We refer to [Os1] for details.
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Remark II.2.3 By Proposition I.19.27 and §II.2.1, the maximal Satake com-
pactification X

S

max can be self-glued into a closed real analytic manifold M̃ .
Since X

S

max = X̃S
max by Proposition I.19.30 and X

O
is the union of 2r-copies

of X̃S
max and the boundary faces fit together as in the self-gluing, it follows

that X
O

is the self-gluing M̃ of 2r-copies of X
S

max.

Remark II.2.4 Oshima has generalized this construction in [Os1] for Rie-
mannian symmetric spaces to the case of semisimple symmetric spaces in
[Os2]. Specifically, for any semisimple symmetric space G/H of rank r, there

exists a closed real analytic manifold G/H
O

containing the union of 2r-copies

of G/H as an open dense subset. The closure of each G/H in G/H
O

is a
real analytic manifold with corners and can be considered as the analogue
of the maximal Satake compactification. This procedure can be reversed if
we have such a compactification of G/H similar to the maximal Satake com-

pactification to start with, i.e., G/H
O

can be obtained from self-gluing the
compactification as in the case of Riemannian symmetric spaces discussed
above.

Also as in the case of the Riemannian symmetric space case, the compact-
ification of G/H as a real analytic manifold with corners can be achieved by
mapping G/H into the real locus of the wonderful compactification of G/H.

Remark II.2.5 The self-gluing procedure can be generalized to the situa-
tion where different pieces can be different as long as their boundaries can be
patched up. A typical application is to glue up the Oshima-Sekiguchi com-
pactification from compactifications of the Riemannian symmetric space X
and its associated semisimple symmetric spaces Xε. Since this will not be
pursued in this book in detail, we will briefly outline the procedure. The key
problem is the marking of all boundary faces so that they can match and be
glued together in one step.

In the notation of [OsS1], for each proper signature ε, let Xε be the ana-
logue of the maximal Satake compactification. This can either be constructed
using embedding (or immersion) into the real locus of the wonderful compact-
ification XC, or constructed directly by adding all the boundary components
of appropriate classes of parabolic subgroups. For each ε, take Wε copies of
Xε and define a marking on the boundary faces of their union. First, we start
with the corners. The Riemannian symmetric space X has only one corner
C. Fix one copy of X. Then the corners of the other copies w ·X are w · C,
where w ∈W . For each ε, fix one Xε and one corner Cε. Then the Wε-copies
of Xε are w1Xε, w1 ∈ Wε. The corners of Xε are w2 · Cε, where w2 ∈ W (ε).
If we denote the distinguished corner of w1 · Xε by w1 · Cε, then the other
corners of the piece w1Xε are w2 · (w1 · Cε), where w2 ∈ W (ε). Therefore,
every corner of the union of the Wε copies of Xε is of the form w2(w1Cε). By
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definition, every w in W can be written uniquely as w2w1 with w2 ∈ W (ε),
w1 ∈Wε.

In summary, for every signature ε, the corners of the Wε-copies of Xε are
canonically parametrized by elements of W . A basic point is that the corner
Cε can be identified with the corner C of X. Hence, the W -corners of the
Wε-copies of Xε can be matched up with the W -corners of the W -copies of
X. Other boundary faces of X and Xε can be similarly marked and matched.

II.2.6 Summary and comments.
In this section, we apply the general method of self-gluing in §II.1 to

obtain the Oshima compactification X
O

as a self-gluing of the maximal Satake
compactification X

S

max. In applying this method, the crucial point is to show
that X

S

max is a compact manifold with corners. Since the closure of flats of X
in X

S

max is a manifold with corners, a natural approach is to extend this corner
structure to the compactification X

S

max. This was carried out in Proposition
I.19.27 by following the method in [Os1]. As will be shown below by using
the real locus of the wonderful compactification of the complexification XC of
X, it is easy to show that X

S

max is a real analytic manifold with corners. This
allows us to give a more direct and streamlined construction of the Oshima
compactification.



Chapter 5

Semisimple symmetric
spaces G/H

Though Riemannian symmetric spaces are the most important class of sym-
metric spaces, non-Riemannian symmetric spaces are important in themselves
and also occur naturally in the study of the former spaces, for example, when
we study different real forms of complex semisimple Lie groups.

In §II.3, we study some general results on semisimple symmetric spaces.
In §II.4, we construct real forms associated to signatures on simple roots.

II.3 Generalities on semisimple symmetric spaces

II.3.1 A (real) semisimple symmetric pair (G,H) or (G, σ) consists of a real
semisimple group G, an involutive automorphism σ of G, and a closed sub-
group H of finite index in the fixed point set Gσ of σ. We shall always assume
that G is of finite index in the set of real points of a linear semisimple con-
nected algebraic group G defined over R. The quotient G/H is a semisimple
symmetric space. We recall that H is always reductive.

The involution σ has a fixed point in the space of maximal compact sub-
groups of G, hence leaves a maximal compact subgroup of G stable. We fix
one, denote it K and let θ or θK be the associated Cartan involution. It
commutes with σ. We have the Cartan decompositions:

g = k⊕ p = h⊕ q (II.3.1)

where q is the orthogonal complement of h in g with respect to the Killing
form. These spaces are all stable under σ and θ. The restriction of the latter to
h is a Cartan involution. We use below some known facts about this situation

237
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proved in [OsS1] and [OsS2]. Later on, we shall give a more extended review,
with references.

II.3.2 It is known that g contains Cartan subalgebras aι invariant under σ
and θ and any two of them are conjugate under K ∩ H ([OsS1, 2.4], [Ro]).
Then

aθ = aι ∩ p, aσ = aι ∩ q and a(σ,θ) = aι ∩ p ∩ q (II.3.2)

are maximal abelian subspaces of p, q and p∩q respectively. Their dimensions
are the θ-rank, σ-rank and (σ, θ)-rank of g respectively. The θ-rank is also
the R-rank. For notational simplicity, we write ao for a(σ,θ). The non-zero
weights of ao in g form a root system, to be denoted Φo = Φ(g, ao) and we
have the decomposition

g = z(ao)⊕⊕β∈Φogβ , where gβ = {x ∈ g
∣∣[h, x] = β(h) · x, (h ∈ ao)}. (II.3.3)

It is known ([Ro, Thm. 5]) that the Weyl group W (Φσ) may be identified
to NK(ao)/ZK(ao). We shall also denote it by Wo or W (K, ao). It may
be identified to the image in GL(ao) of the subgroup of NK(aθ) leaving ao
stable. We shall have also to consider the subgroup of W (K, ao) to be denoted
W (K ∩H, ao):

W (K ∩H, ao) = NK∩H(ao)/ZK∩H(ao). (II.3.4)

We note also that aθ is a Cartan subalgebra of the symmetric pair (G,K).
We denote it by a. Then Φ = Φ(g, a) is as before the root system of the
symmetric pair (G,K). We have

h = z(ao)σ ⊕ ⊕
β∈Φ+
x∈gβ

〈x+ σx) q = z(ao)−σ ⊕ ⊕
β>0
x∈gβ

< x− σ(x)〉 (II.3.5)

If mo is the orthogonal complement of ao in z(ao), we have

z(aσ) = mo ⊕ ao (II.3.6)

and mo is stable under θ and σ.
The product σ′ = σ · θ is also an involution of G. Write H ′ for Gσ. We

have the decomposition

g = h′ ⊕ p′, h′ = k ∩ h⊕ p ∩ q, p′ = k ∩ q⊕ p ∩ h (II.3.7)

ao is also a Cartan subalgebra of the Riemannian symmetric pair (h′, k ∩ h′).
Note that k ∩ h = k ∩ h′,K ∩H = K ∩H ′.

II.3.3 A semisimple Riemannian symmetric space is a product of irreducible
ones and it is always possible to reduce the general case to the irreducible one.
We want here to describe a similar reduction.
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Let then (G,H) be a symmetric pair. The involution σ permutes the
simple factors of G so that (G,H) is a product of the two following basic
cases

a) G is (almost) simple (i.e. the identity component Go of G is simple
modulo its center).

b) G = G′ × G′ permutes the two simple factors G′. There exists then
automorphisms µ, ν of G such that σ

(
(x, y)

)
= (ν(y), µ(x)

)
. Since σ is

an involution, we must have µ · ν = 1. The full fixed point H = Gσ is
then the set of pairs (x, ν(x)

)
. Let p be the map G′ ×G′ → G′ defined

by
p
(
(x, y)

)
= x · ν(y)−1. (II.3.8)

It is an easy exercise to see that it is constant on the left H-cosets and
induces an isomorphism (of manifolds) of G/H onto G′. Moreover

p(g · x, h · y) = g · p
(
(x, y)

)
· ν(h)−1 (x, y, g, h ∈ G′). (II.3.9)

In particular the diagonal in G acts by twisted conjugation

g ◦ x = g · x · ν(g−1) (x ∈ G/H : g ∈ G′).

II.3.4 The four basic cases. When we go over to G, these two cases
subdivide each into two, depending on whether G or G′ are absolutely sim-
ple or not, so that we have four basic cases, and any other real semisimple
symmetric space is a product of those

a1) G in a) is absolutely simple

a2) G is not absolutely simple. It is then a complex simple subgroup G′

viewed as a real group, hence G = G′ ×G′, where the two factors are
permuted by the complex conjugation g 7→ ḡ of G with respect to G.
The latter group may be identified with the set of points (g, ḡ) (g ∈ G′).

b1) the complexification G′ of G′ in b) is simple

b2) G′ is a complex simple group G′′, viewed as a real group. Then

G = G′′ ×G′′ ×G′′ ×G′′ (II.3.10)

The complex conjugation of G with respect to G then permutes the first
two factors and the last two, and σ permutes these two pairs.
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II.4 Some real forms Hε of H

II.4.1 Let Φ be a root system in a rational vector space V , and ∆ the set
of simple roots for some given ordering.

A signature on Φ (or an extended signature) is a map ε : Φ → {±1, 0}
such that

ε(β) = ε(−β), ε(β + γ) = ε(β) · ε(γ) if β, γ, β + γ ∈ Φ. (II.4.1)

The support s(ε) is again defined as the set of β for which ε(β) 6= 0 and ε is
proper if s(ε) = Φ. Let E(Φ) and Eo(Φ) be the sets of signatures and proper
signatures respectively. If ε̃ ∈ E(Φ), then its restriction to ∆ is a signature of
∆ (proper if and only if ε̃ is so). Conversely, given ε ∈ E(∆), define ε̃ on Φ by

ε̃(β) = ε̃(−β) =
∏
α∈∆

ε(α)|nβα| ( where β =
∑
α

nβαα), (II.4.2)

whence natural bijections E(∆)↔ E(Φ) and Eo(∆)⇔ Eo(Φ). Both Eo(∆) and
εo(Φ) are elementary abelian 2-groups, the composition being defined by the
product of values, and the bijection Eo(∆)↔ Eo(Φ) is a group isomorphism.
The Weyl group W of Φ operates in a natural way on Eo(Φ) by the rule

w(ε)(β) = ε(w−1 · β) (β ∈ Φ). (II.4.3)

If ε ∈ E(∆) and ε̄ is its extension to Φ, then, it is immediately seen that

s(ε̃) = 〈s(ε)〉 ∩ Φ. (II.4.4)

II.4.2 Given ε ∈ Eo(∆), define a map σε : g→ g by the rule

σε = σ on z(ao) (II.4.5)

σε(x) = ε(β)σx (x ∈ gβ) (II.4.6)

It is a linear bijective map of g onto itself of order ≤ 2. It is readily checked
to be compatible with the bracket and hence defines an involution of g. We
let hε = gσε .

We have
hε = gσε = z(a0)⊕ ⊕

β>0,x∈gβ
〈x+ ε(β) · σx〉

and the orthogonal complement of gσε in g, with respect to the Killing form,
is

qε = z(ao)−σ ⊕ ⊕
β>0,x∈gβ

〈x− ε(β)σx〉.

We note that a and ao play for the pair (g, hε) the same role as for (g, h). In
particular (g, h) and (g, hε) have the same R-rank, the σ-rank of (g, h) is equal
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to the σε-rank of (g, hε) and similarly the (θ, σ)-rank of (g, h) is the same as
the (θ, σε)-rank of (g, h).

II.4.3 Definition of Hε. We now want to globalize the above. The as-
sumption that G is the full group of real points of a semisimple R-group has
not been used so far, but will be from now on.

Let q : G→ Ad gc be the adjoint representation of G. Let Ao (resp. A′o)
be the torus in G (resp. G′ = Ad gc) with Lie algebra ao,c. It is R-split, thus,
if d = dim ao we have

Ao = (C∗)d,Ao(R) = R
∗d = Ao × (Z/2Z)d,A = eiao ×Ao (II.4.7)

where Ao,u = eiao is the biggest compact subgroup of Ao, and 2Ao = 2Ao,u.
Similarly for A′o.

Of course, q defines a surjective morphism of Ao onto A′o which maps Ao,u
onto A′o,u and 2Ao into 2A′o. The kernel of 2Ao → 2A′o is the intersection of
2Ao with the center CG of G, to be denoted C2.

The roots are now viewed as rational characters of Ao or A′o. Their
restrictions to 2Ao or 2A′o take the values ±1. To s ∈ 2Ao we associate the
map ε(s) or εs : Φ→ {±1} defined by

εs(β) = sβ (β ∈ Φo). (II.4.8)

It is clearly a signature and the map s 7→ εs is a homomorphism of 2Ao into
Eo(Φo) which is equivariant under the Weyl group of Φo, operating on 2Ao

by inner automorphisms and on Eo(Φo) by II.4.1(2). It will be called the
signature map.

The elements of ∆o form a basis of a∗o, hence also define a basis of X(A′o).
Therefore the map s 7→ εs is an isomorphism of 2A′o onto Eo(Φo).

Fix ε ∈ Eo(Φo), and let s′ε ∈ 2Ao be the unique element such that ε(s′ε) =
ε. It also belongs to A′o,u, hence we can find s̃ε ∈ Ao,u such that q(s̃ε) = s′ε.
It is defined up to an element of CG. Every β ∈ Φo takes the values ±1 on
s̃ε or s′ε hence s̃2

ε ∈ CG. Moreover, the complex conjugation g 7→ ḡ of G with
respect to G is the inversion on Ao,u, hence s̃ε = s̃−1

ε . From this we see that
Int s̃ε leaves G invariant, and so does Int s̃ε ◦ σ. Since s̃ε is defined modulo
CG, the transformation Ad s̃ε is well defined by ε. It is immediate that

Ad s̃ε ◦ σ = Ad sε ◦ σ = σε. (II.4.9)

We then set
Hε = Gσε . (II.4.10)

We claim it is a real form of H. To see this, choose u ∈ Ao,u such that
u2 = s̃ε. We want to prove that Adu(hε,c) = hc. First u centralizes z(ao). If
now x ∈ gβ , then

Adu(x+ sε(β) · σ(x)) = uβ · x+ sε(β)u−βσ(x) = uβ(x+ sε)(β)u−2β · σ(x).



242 Part II. Smooth Compactifications of G/K

But u−2β = s̃βε = ε(β) hence

Adu(x+ s(ε)σx) ∈ hc.

II.4.4 Real forms corresponding to different signatures may be isomorphic.
In particular, let w ∈ W (K ∩H, ao) (see II.3.2(3)) and n be a representative
of w in NK∩H(ao). It is easily checked that In n ◦ σε ◦ Inn−1 = σw(ε), hence
nHε = Hw(ε). Since Hε contains ZK∩H(ao), the conjugate nHε depends only
on w, so we can write the previous equality as

wHε = Hw(ε) (w ∈W )(K ∩H, ao).



Chapter 6

The real points of complex
symmetric spaces defined
over R

Let (G,H) be a symmetric pair, and G, H be the complexification of G,H
respectively. Then X = G/H is a complex symmetric space. It is an affine
homogeneous space defined over R. Its real locus (G/H)(R) contains G/H,
of course, but it is in general the union of more than one but finitely many
orbits of G. Our goal is to describe them in terms of quotients G/Hε. We
shall do this via Galois cohomology.

We first review the little needed here from Galois cohomology in §II.5. In
§II.6, we use the results in §II.5 to determine the G-orbits in G/H(R). In
§II.7, we illustrate these results through the example of G = SL(n,C) and
H = SO(n,C).

II.5 Galois Cohomology

In this section, we recall the definition and basic properties of the Galois
cohomology of the group C of order 2. For more discussions about the general
case, see [Ser1] [BS1].

II.5.1 We have only to consider Galois cohomology with respect to a group
C = {1, t} t2 = 1, of order 2. Let L be a group on which C operates. We let
tx be transform of x by t. By definition

H0(C;L) = LC = Lt (II.5.1)

Z1(C;L) = {x ∈ L | x · tx = 1} (II.5.2)
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If x ∈ Z1 and x ∈ L, then x−1 ·z · tx ∈ Z1, hence L operates on Z1 by twisted
conjugation. Then

H1(C;L) = Z1(C;L)/H, (II.5.3)

H acting by twisted conjugation. If L is commutative, H1 is a commutative
group. If L is not commutative, H1 is just a set with a distinguished element,
the twisted conjugacy class of the identity, the elements of which are also
called coboundaries. Call 1 that class.

II.5.2 If C operates trivially on L, then twisted conjugacy is ordinary con-
jugacy and x ∈ L is a cocycle if and only if x2 = 1. Therefore H1(C;L) =
2L/InL is the set of conjugacy classes of elements of order ≤ 2.

II.5.3 Let H be a subgroup of L stable under C. Then C also operates on
the space of left cosets L/H. We are interested in (L/H)C . We consider the
sequence

1→ HC i0∗−→LC
p0
∗−→(L/H)C δ−→H1(C;H)

i1∗−→H1(C;L) (II.5.4)

where i0∗, i
1
∗ (resp. p0

∗) are the obvious maps defined by inclusion (resp. pro-
jection) and δ is to be defined below. By 1.12 in [BS1] or I, 5.3 in [Ser1], this
sequence is exact (meaning that the image of a map is the kernel of the next
one. It implies the following lemma
Lemma. The coboundary operator δ induces a bijection of the set LC\(L/H)C

of LC-orbits in (L/H)C onto ker i1∗.
For the sake of completeness, we give the proof (loc. cit.). We first define

δ. Let x ∈ (L/H)C . Choose g ∈ L such that g · 0 = x. Then

tg · 0 = tx = x = g · 0

hence g−1 · tg ∈ H. It is obviously a cocycle, the class of which [g−1 · tg] ∈
H1(C;H) belongs to ker i1∗. If g′ · 0 = x, then g′ = g · h (h ∈ H), hence

g′−1 · tg′ = h−1 · g−1 · tg · th

and therefore [g′−1 · tg′] = [g−1 · tg]. Their common value is δ(x) by definition.
We have seen that δ(x) ∈ ker i1x. Conversely, if an element of H1(C;H)
belongs to ker i1∗, it is represented by a cocycle of the form g−1 · tg (g ∈ L) and
we see by the reverse computation that x = g ·0 ∈ (L/HC). Therefore δ maps
(L/H)C onto ker i1∗. There remains to see that δ(x) = δ(y) (x, y ∈ (L/H)C)
if and only if y ∈ LC · x.

If y = r ·x (r ∈ LC), and g ·0 = x, then r ·g ·0 = y and g−1 · tg = (r ·g)−1 ·
(r · g), hence δ(x) = δ(y). Conversely, assume that δ(x) = δ(y). Let g, g′ ∈ L
be such that g · 0 = x, g′ · 0 = y, hence δ(x) = [g−1 · tg], δ(y) = [g′−1 · tg′].
There exists then h ∈ H such that g−1 · tg = h−1 · g′−1 · g′ · th, whence

g · h−1 · g′−1 = t(g · h−1 · g′−1) ∈ LC
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and g · h−1 · g′−1 · y = x.

II.5.4 We shall be interested in various special cases of the following sit-
uation. L is an algebraic group defined over R,H a closed R-subgroup.
Then L/H is defined over R and we want information on the orbits of L
on (L/H)(R). We let then t be the complex conjugation of L and C =
Gal(C/(R). Then LC = L. In this case, (4) reads

1→ H(R)→ L(R)→ (L/H)(R)→ H1(C; H)→ H1(C; L) (II.5.5)

and the lemma provides a canonical bijection

L(R)\(L/H)(R) = ker(H1(C; H)→ H1(C; L)) (II.5.6)

We want to make it explicit and relate it to R-forms of H. Let h ∈ Z1 (C; H)
and assume it splits in L, i.e. there exists g ∈ L such that h = g−1 · tg. Then

t(g · 0) = tg · 0 = g · h · 0 = g · 0

hence g · 0 belongs to (L/H)(R). Its isotropy group g ·H · g−1 is defined over
R, hence g ·H · g−1 ∩ L is a real form of H. Conversely, if x ∈ (L/H)(R),
then, as recalled in II.5.3, if we write x = g · 0 we see that g−1 · tg ∈ H is a
H-cocycle which splits in L.

The R-forms of H correspond bijectively to the element of H1 (C; Aut L).
Clearly, the R-form attached to h ∈ ker

(
H1(C; H) → H1(C; L)

)
is the one

associated to the image of h in Aut H.

Proposition II.5.5 Let G be a real reductive linear group, K a maximal
compact subgroup and t an involution of G leaving K stable. Let C = {1, t}.
Then the natural map j : H1(C;K)→ H1(C;G) is bijective.

Let θ be the Cartan involution and G = K · P the Cartan decomposition
associated to K. The P is stable under t and t commutes with θ.

Let z ∈ Z1(C;G). Then z · tz = 1. Write z as z = k · p (k ∈ K, p ∈ P ).
The relation z · tz = 1 gives k · p · tk · tp = 1, which can be written

k · tk · tk−1 · p · tk = tp−1.

By the uniqueness of the Cartan decomposition, this yields

k · tk = 1, tk−1 · p · tk = tp−1. (II.5.7)

The first equality shows that k is a cocycle. We want to show that j([k]) = [z].
Let q = exp(−1/2 · lg p) be the unique square root of p−1 in P . The second

relation in (7) then applies

tk−1 · q · tk = tq−1 or k−1 · tq · k = q−1, tq · k = k · q−1
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whence
tq · k · p · q−1 = k · q−1 · p · q−1 = k

which proves that [z] = j([k]), hence j is surjective. Let now k ∈ Z1(C;K)
and assume it splits in G, i.e. there exist u ∈ K and v ∈ P such that

k = (u.v)−1 · t(u · v) = v−1 · u−1 · tu · tv

hence
k · tv−1 = (u−1 · tu) · (tu−1 · u · v−1 · u−1 · tu)

which implies

k = u−1 · tu tv−1 = tu−1 · u · v−1 · u−1 · tu,

and shows that k splits already in K.

II.5.6 Applications. Let K be a compact Lie group and Kc its complex-
ification. Then K = Kc(R) (by the algebraicity of compact linear groups, or
Tannaka duality), and is a maximal compact subgroup of Kc. Therefore II.5.5
implies that

j : H1(C;K)→ H1(C;Kc) (II.5.8)

is bijective, if C is generated by the complex conjugation of Kc with respect
to K, (cf. [BS1, 6.8]). By II.5.2, H1(C;K) = 2K/InK.

For an R-group G, the set of isomorphisms of R-forms of G may be iden-
tified with H1(C; Aut G). Thus

{R-forms of Kc} ⇔ H1(C; AutKc) = 2(AutK)/AutK

(Cartan’s classification).
If G is connected, let T be a maximal torus of K. Then any element of

2K is conjugate to one of 2T and, as is well-known, 2K/In K = 2T/W (K,T ).

II.6 Orbits of G in (G/H)(R)

We now come back to the situation of the earlier sections and want to apply
(II.5.4) to our main case of interest, i.e., to determine the G-orbits in the real
locus G/H(R).

We have therefore to investigate

ker j : H1(C; H)→ H1(C; G) (II.6.1)

where C is generated by the complex conjugation of G with respect to G, and
determine the orbits of G associated to its elements. They will all be of the
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form G/Hε. We have first to fix some notation and recall a generalization of
the Cartan decomposition K ·A+ ·K. The G-orbits in G/H(R) are listed in
Theorem II.6.5.

II.6.1 Let RC/R denote restriction of scalars from C or R. Then RC/R(gc)(R)
is gc viewed as a real Lie algebra, to be denoted gc,r for simplicity. Similarly,
if needed, we let Gc,r stand for RC/RGc(R), i.e. Gc viewed as a real group.
The real Lie algebra

gu = k⊕ ip (II.6.2)

is a compact real form of gc, or the Lie algebra of a maximal compact subgroup
Gu of Gc. The corresponding Cartan decompositions are

gc,r = gu ⊕ pu (pu = igu) Gc,r = Gu · epu . (II.6.3)

We let θu be the Cartan involution of Gc,r with respect to Gu. It is the
complex conjugation of Gc w.r. to Gu. Let sc, θc be the automorphisms of
gc obtained by extension of scalars from s and θ. The involutions sc, θc, θu
and the complex conjugation of Gc with respect to G are pairwise commut-
ing automorphisms of Gc,r. They leave stable the decomposition (2) and
the decompositions obtained by complexifications of II.3.1(1). The Cartan
involution θu leaves Hc stable and induces on Hc, or rather Hc,r, a Cartan
involution with maximal compact subgroup

Hu = Gu ∩Hc with Lie algebra hu = k ∩ h⊕ i(h ∩ p). (II.6.4)

We need the following generalization of the Cartan decomposition.

Lemma II.6.2 We have Gu = K ·eiao ·Hu and G = K ·Ao ·H. In particular
if Ao = {1} G = K ·H, G/H = K/(K ∩H), and G/K = H/(H ∩K).

Proof. The first two equalities are proved in the same way, and the second
one is well-known (cf. e.g. [Sch, 7.1.3]). For the sake of completeness, we
prove the first one. By the Cartan decomposition for the symmetric pair
(Gu,K) we have

Gu = K · eip = K · ei(p∩q) · eq∩h (II.6.5)

K ∩ H leaves all three factors of the right hand side stable and we have,
by the Cartan theory for the pair (H ′,K ∩ H ′) (see II.3.2) or, equivalently,
(H ′u,K ∩H ′)

ei(p∩q) =
⋃

k∈K∩H′
k · eiao · k−1, (II.6.6)

hence, taking into account the equality K ∩H ′ = K ∩H (II.3.2)

G = K · ei(p∩q) · (K ∩H) · ei(p∩h) = K · eiao · (K ∩H) · ei(p∩h) = K · eiao ·Hu.
(II.6.7)
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Remark. The lemma and its proof are valid for g reductive.

II.6.3 Group inclusions yield the following commutative diagram

H1(C;Hu)
ju−−−−→ H1(C;Gu)y y

H1(C; H)
j−−−−→ H1(C; G)

(II.6.8)

where C is as above. By II.5.5, the two vertical arrows are isomorphisms.
This reduces the determination of ker j to that of ker ju.

We use the notation and definitions of II.3.2 and II.4.3. We haveH1(C; 2Ao) =
2Ao since 2Ao is commutative, consists of elements of order ≤ 2 and t acts
trivially on it. We consider the maps

2Ao
m1−→ H1(C;K ∩H) m2−→ H1(C;Hu) and let m = m2 ◦m1. (II.6.9)

Proposition II.6.4 We keep the previous notation.

(i) m1 induces an injective map of 2Ao/W (K ∩H, ao) into H1(C;K ∩H)

(ii) m2 is an isomorphism of Imm1 onto ker ju.

(i) By II.6.4, H1(C;K∩H) is equal to 2(H∩K) modulo conjugacy. Hence
Imm1 is equal to 2Ao modulo conjugacy in H ∩K. But the latter is, on 2Ao

the same as the conjugacy under W (K ∩H, ao), whence (i)
(ii) (In the Riemannian case, K ∩ H and Hu are both equal to K, and

there is nothing to prove.) We have to show: (a) m2 maps Imm1 onto ker ju;
(b) m2 is injective.

Proof of (a): The map 2Ao → H1(C;Gu) factors through H1(C; 2Ao) →
H1(C;Ao,u). However, this last group is zero: since t acts by inversion on
Ao,u, every element is a cocycle. Moreover every element s ∈ Ao,u has (at
least) one square root, say u, in Ao,u, therefore s = u2 = u · t(u−1) is a
coboundary. This shows that Imm2 ⊂ ker ju.

Let now h ∈ H1(C;Hu) and assume that ju(h) = 0. By II.6.2, there exist
then k ∈ K, z ∈ Ao,u and y ∈ Hu such that

h = (k · z · y)−1 · t(k · z · y) = y−1 · z−1 · k−1 · k · z−1 · ty = y−1 · z−2 · ty,

therefore h = z−2 in H1(C;Hu). We have z−2 ∈ Ao,u ∩ Hu. The Cartan
involution of Gu with respect to Hu is the inversion on Ao,u and the identity
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on Hu, hence z−2 ∈ 2Ao, which shows that ker j2 ⊂ Imm2 and concludes the
proof of (a).

Proof of (b). Let z ∈ m1(2Ao) and assume it splits in Hu, i.e. that there
exists y ∈ Hu such that z = y−1 · ty. By the Cartan decomposition in Hu

with respect to K ∩H, we can write

y = u · v (u ∈ K ∩H, v ∈ ei(p∩h))

hence z = v−1 · u−1 · u · tv = v−2. This implies that z ∈ ei(p∩h), therefore, to
prove (b) to suffices to show

2Ao ∩ ei(p∩h) = {1}. (II.6.10)

We use the notation of II.3.2 and set b = a∩h. Then b is a Cartan subalgebra
of the Riemannian symmetric pair (h, h∩k). We have a = ao⊕b. Let B be the
maximal R-split torus of H with Lie algebra bc. The maximal R-split torus
A of G with Lie algebra ac is the direct product of Ao and B. In particular

2A = 2Ao × 2B. (II.6.11)

By the Cartan theory in Hu, we have

ei(p∩h) =
⋃

k∈K∩H

kBu . (II.6.12)

In order to prove (9), it suffices to establish

2Ao ∩ kBu = {1} for every k ∈ K ∩H. (II.6.13)

Assume, contrary to (13), that there exist k ∈ K ∩ H and z ∈ 2Ao, z 6= 1,
such that

z ∈ kBu, hence z ∈ k
2B.

Let Z = ZH(z). It is reductive. Since z ∈ K, the group Z is stable under
θ, hence the restriction of θ to Z is a Cartan involution of Z, whence the
Cartan decompositions

Z = (K ∩ Z) · ep∩z Zu = (K ∩ Z) · ei(p∩z). (II.6.14)

The group Bu and kBu are Cartan subgroups of the symmetric pair (Hu,K ∩
H) hence a fortiori of the symmetric pair (Zu,K ∩Z). There exists therefore
q ∈ K ∩Z such that qkBu = Bu. Since q centralizes z, it follows that z ∈ Bu,
hence that 2Ao ∩ 2B 6= {1}, but this contradicts (II.6.11).

This proves (II.6.14), hence also (II.6.12) and (b).

Theorem II.6.5 We keep the previous notation
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(i) There is a natural bijection

µ : 2Ao/W (K ∩H, ao) = G\(G/H)(R) (II.6.15)

(ii) let s ∈ 2Ao and εs ∈ Eo(Φo), be its image under the signature map
(II.4.3).

Then the orbit of G assigned to s by µ is isomorphic to G/Hεs .

Let ν be the composition of m : 2Ao → H1C;Hu) with the isomorphism
H1(C;Hu) ∼→ H1(C; G) of (II.5.5). Using the diagram II.6.3(8) we get a
bijection

2Ao/W (K ∩H, ao)↔ ker
(
H1(C; H)→ H1(C; G)

)
.

Then µ is the composition of ν and the inverse of the bijection II.5.5.
(ii) Let s ∈ 2Ao. Then m(s) splits in G. But in proving (a) in II.6.4(ii),

we pointed out that it already splits in Ao,u, namely s = u·tu−1 with u ∈ Ao,u
a square roots of s. According to the recipe given in II.5.3, the orbit assigned
to µ(s) is the one of u · o, where o is the fixed point of H. Therefore we have
to see that the intersection of G with the stability group u−1 ·H · u of u · 0 is
Hε, but the computation made at the end of II.4.3 shows this.

Remark. Let π : G → G/H be the natural projection. Clearly, the inverse
image of (G/H(R) is the set

E = {g ∈ G, tg ∈ g ·H}

and the real orbits of G are the orbits of the points g · o, where g ∈ E.
The set E contains the finite subgroup 4Ao,u of elements of order ≤ 4 in

Ao,u′ which is generated by the square roots of the elements in 2A = Ao,u∩H.
The gist of II.6.5 is that already G · 4Ao,u · o is the union of all orbits of G
in (G/H)(R). More precisely µ(s) is equal to G · us · o, where us is a square
root of s in 4Ao,u.

II.6.6 A free action of C2 = CG ∩ Ao on G/H. To define it, it is
convenient to use Cartan’s way to look at symmetric spaces as subspaces of
the group (see e.g. [Bo11] IV, §3)). For simplicity, let us write g∗ for σ(g−1).
The map g 7→ g∗ is an antivolution of G

g∗∗ = g, (g · h)∗ = h∗ · g∗ (II.6.16)

and H = {g ∈ G|g · g∗ = 1}. Let ϕ : G → G be the map defined by ϕ(g) =
g · g∗. This is a R-morphism of varieties of G into itself which induces an R-
isomorphism of G/H onto a subvariety M of G which is pointwise fixed under
∗. The map ϕ is G-equivariant if we let G act on G/H by left translations
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and on M by g ◦m = g ·m · g∗. In particular H acts by inner automorphisms
and M acts on itself by the “transvections” g ◦m = g ·m · g (g,m ∈M).

Lemma. M is stable under right translations (in G) by C2. This defines
a free action by C2 on M which commutes with G and leaves M = M(R)
stable.

The second assertion is obvious, once the first one is proved. Let c ∈ C2.
There exists u ∈ Ao,u such that u2 = c. We have u∗ = u, whence c = u · u∗
and

g · g∗ · c = g · c · g∗ = g · u · u∗ · g∗ = g · u · (g · u)∗ ∈M.

Remark. Although we shall not need it, it is worth noting that M is (Zariski)
closed in G. Moreover, the full fixed point set Q of x 7→ x∗ consists of finitely
many connected components, acted upon transitively by G via the ∗ action,
one of which is M.

See [Ri1], Prop. 9.1. This is in fact valid whether G and H are defined
over R or not, or more generally over an algebraically closed groundfield of
characteristic not 2.

In our situation, it implies that Q and M are closed in G, in the ordinary
topology, and are finite unions of closed orbits of G.

II.6.7 The group C2 is the kernel of the signature map (II.4.3). Its elements
are fixed under W (K∩H, ao). The signature map is constant on the left cosets
of C2 in 2A. Each such coset provides |C2| orbits isomorphic to G/H, where
ε is the image of the coset under the signature map, which are permuted in
a simply transitive manner by C2. Thus, if C2 6= {1}, only some of the Hε

appear as isotropy groups of real orbits. Let now ε not be the image of the
signature map. Then Hε, which is defined by II.4.3(10) is the isotropy group
of a G-orbit isomorphic to G/Hε, but which does not contain any real point,
though it is stable under complex conjugation. To see this, let s̃ε as defined
in II.4.3. q(s2

ε) = 1, hence s̃2
ε = c ∈ C2. We have

s̃ε = s̃−1
ε = s̃ε · c.

The isotropy group in G of s̃ε ·o is Hε by the definition II.4.3(10), and s̃ε · o =
s̃ε · o · c. Thus G · s̃ε · o =̃G/Hε. This orbit is stable under c, and c transforms
each point onto its complex conjugate.

II.6.8 As in II.4.3, let G′ = Ad gc and q : G→ G′ the canonical morphism.
Let us write H′ for the fixed point set of σ in G′. The homomorphism H→ H′

has H∩CG as its kernel and q(H) may have finite index in H ′. The morphism
q induces a morphism qR : (G/H)(R) → (G′/H′)(R). The image of qR is
open, but qR is not necessarily surjective. The image of qR is isomorphic
to (G/H)(R)/C2, where C2 acts by II.7.6. The C2-orbits assigned to the
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elements of a C2-coset map onto the orbit isomorphic to G′/H ′ε. The orbits
G/Hε without real points consist of pairs of complex conjugate points m and
m · c for some c ∈ C2, which map therefore onto real points belonging to an
orbit isomorphic to G′/H ′ε.

II.6.9 As a first example take G = SL2(R). It will be convenient to let L2

be the subgroup of GL2(C) consisting of matrices of determinant ±1 (We do
not know of any standard notation).

Let then G = SL2(R),H = K = SO2 and σ = θ be the standard Cartan
involution. As usual, take as a basis of sl2(R)

h =
(

1 0
0 −1

)
e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
Then θε maps (h, e, f) into (−h,−f,−e) and e − f spans the Lie algebra of
SO2. Let ε be the signature which is −1 on the unique simple root. Then
θε maps (h, e, f) onto (−h, f, e). The Lie algebra of kε is spanned by e + f ,
which generates the group of hyperbolic rotations

Ko
ε =

(
cosh t sinh t
sinh t cosh t

)
(t ∈ R).

The group Kε is generated by Ko
ε and −Id. We let of course a = ao be the Lie

algebra spanned by h and Ao the torus of diagonal matrices (x, x−1) (x ∈ C∗).
We view G/H as the space of complex quadratic forms of determinant

one, acted upon in the usual manner. In our case, C2 = CG = 2Ao. Let
also c = -Id, then, II.6.5 shows the existence of 2 orbits of G in (G/H)(R),
isomorphic to G/K, the spaces of positive and negative definite real quadratic
forms of determinant 1, translated of one another by c.

There are no real indefinite quadratic forms of determinant one, but there
are complex ones, e.g. F = i(x2 − y2). Its stability group is Kε. We have
F = c · F , hence right translation by c transforms a point in its complex
conjugate one, as in II.6.7.

We view G′ as the quotient GL2(C)/C∗. This presentation shows that
G′(R) is the image of L2(R) and has two connected components, one of which
is q(G). Similarly, the standard maximal compact subgroup K ′ of G′ is the
image of the full orthogonal group and has two connected components.

q : G/H → G′/H′ is a 2-fold covering and qR maps (G/H)(R) onto one
orbit of G′ in (G′/H′)(R), isomorphic to the upper half-plane. The other
orbit is G′/H ′ε, and G/Hε is a twofold covering of it.

Note that G/Kε may be identified to G modulo the diagonal matrices and
is an open cylinder. It is a 2-fold covering of G′/K ′ε, which is diffeomorphic
to an open Möbius band.

II.6.10 In II.6.6–II.6.8 we have carried the discussion in general, but it
should be noted that C2 is quite small in the basic cases (II.3.4). It is at most
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of order 2, except when G is simply connected of type D4n, or is a product
of two such groups, in which case it can be of order four.

II.7 Examples

II.7.1 In these first subsections, we consider the case whereG = SLn(R),H =
K = SOn and σ = θ is the standard Cartan involution, or also where G is
the group of real points of the adjoint group of SLn(C).

G splits over R and ao is a Cartan subalgebra of g. We choose of course
ao to be the algebra of real diagonal matrices with trace zero. Then Ao is the
group of complex diagonal matrices of determinant one, and 2Ao its subgroup
of matrices with entries ±1. Let xi be the rational character of Ao which
associates to each element its ith coefficient. The root system Φ = Φ(G,Ao)
is of type An−1, and consists of the roots xi−xj (i 6= j). As usual, we choose
as set ∆ of simple roots the forms αi = xi − xi+1 (1 ≤ i ≤ n− 1). The Weyl
group W is the group of permutations of the diagonal entries.

II.7.2 Let Ẽ be the set of proper signatures on {x1, . . . , xn} and µ : Ẽ →
Eo(Φ) be the map which associates to δ ∈ Ẽ the signature defined by

ε(xi − xj) = ε(xi) · ε(xj) (II.7.1)

(it is immediate that it is indeed a signature). The map µ is a surjective
homomorphism with kernel the two signatures which are constant on the xi.

We also view the xi as coordinates on Rn or Cn, in which case they are of
course allowed to take the value zero. To δ ∈ Ẽ we associate the quadratic form
F (δ) :=

∑n
1 δ(xi)·x2

i . If δ, δ′ form a fiber of µ, then δ = δ′ and F (δ) = −F (δ′).
If n is odd, one of them has determinant one. If n is even, both have the same
determinant, which is one if and only the number of xi on which δ takes the
value 1 (or -1) is even.

II.7.3 Recall (II.4.3) the signature map s 7→ εs from 2Ao to Eo(Φ), where

εs(β) = sβ (β ∈ Φ).

By a slight abuse of notation, we let F (εs) = F (δ) where δ ∈ ν−1(εs). It is
defined only up to sign, which does not change its isotropy group. We claim
that the latter is equal to Hεs . The computation is as in II.4.3: let u ∈ Ao,u
be such that u−2 = s = u2. Let Fo be the form

∑
x2
i . Then u ·Fo ·u = F (εs),

and its isotropy group in G is u−1 ·K · u. By the computation in II.4.3, its
intersection with G is Kεs .

Let n be odd. Then the signature map is a bijection. The cosets 2Ao/W
or Eo(Φ)/W are represented by the quadratic forms SO(p, q) (0 ≤ p ≤ [n/2])
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and we get
G\(G/H)(R) '

∐
0≤p≤[n/2]

G/SO(p, q).

Let n be even. The signature map has a kernel the intersection C2 of 2Ao with
the center of G, consisting of ±Id. The image of the signature map has index
2 in Eo(Φ) and the forms associated to its image are those with even number
of positive (or negative) squares. Modulo W , they are the forms F (p, q) with
an even number p of positive squares. For each of them, there are two orbits
of G isomorphic to G/SO(p, q), translated of one another by −Id.

As in (II.6.7), one can construct orbits of G in G/H of the formG/SO(p, q)
with p odd consisting of pairs of complex conjugate points permuted by C2.

II.7.4 Let G′ = GLn(C)/C∗ be the adjoint group of SLn(C), K ′ the stan-
dard maximal compact subgroup of G′. The quotient G′/K′ is the space of
non-degenerate quadrics in Cn. The group G′ is the group Ln(R) of n × n
real matrices with determinant ±1 and K ′ is the full orthogonal group On of
orthogonal matrices of determinant ±1 (in both cases modulo the center, if n
is even).

If n is odd, the parametrization of the real orbits is the same as for SLn.
If n is even, the real orbits are now G′/O(p, q) (0 ≤ p ≤ n/2) each occurring
once. The quotient G/K is a covering of order 2 of G′/K ′, under the free
action of C2 (II.6.6). Each pair of real orbits projects onto one orbit G′/O(p, q)
(p even, p ≤ n/2). The orbits G′/O(p, q) for p odd are the images of the orbits
of type G/SO(p, q) (p odd) consisting of pairs of complex conjugate points.



Chapter 7

The DeConcini-Procesi
compactification of a
complex symmetric space
and its real points.

The wonderful compactification X
W

of a complex symmetric space X = G/H
was motivated by problems in enumerative algebraic geometry and is a gen-
eralization of the variety of complete quadrics (see [DGMP]). Though its con-
struction is similar to the Satake compactifications of Riemannian symmetric
spaces, its relations to compactifications of symmetric spaces (Riemannian or
semisimple) have not been studied before.

In this chapter, we establish such connections by identifying its real locus
X
W

(R) in terms of compactifications of symmetric spaces when X = G/H is
defined over R. Such an identification can be used to show that the maximal
Satake compactification X

S

max is a real analytic manifold with corners, which
can be used in §II.2 to give a simple construction of the Oshima compactifica-
tion X

O
. It can also be used to explain the Oshima-Sekiguchi compactification

X
OS

in the next chapter.
In §II.8, we recall some general results on relations of different commutative

subalgebras and associated root systems. Then we define Λ-relevant parabolic
subgroups which describe the geometry at infinity (or rather boundary com-
ponents) of semisimple symmetric spaces. In §II. 9, we recall the wonderful
compactification X

W
of a complex symmetric space X. In §II.10, we describe

the real locus X
W

(R) when X and X
W

are defined over R. As an appli-
cation, we show that the maximal Satake compactification X

S

max is a real

255
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analytic manifold with corners, as mentioned earlier.

II.8 Generalities on semisimple symmetric spaces

II.8.1 We now come back to §II.3, and consider again the four commutative
algebras aι, aθ, aσ and a(σ,θ). The last one was denoted ao above, for brevity,
but now we restore the notation aσ,θ.

We have a commutative diagram

a∗σ,0
rσ,θ

rσ

a∗ι,c

rθ

a∗θ,c

rθ,(σ,θ)

a∗σ,θ,c

rσ,(σ,θ)

rσ

......................................................................................................................................................
.........................
...

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

.
............

................

.................................................................................................................................................................
......................
......

......................................................................................................................................................
.........................
...

......................
......

(II.8.1)

where the arrows are the restriction maps. To avoid repetitions, let us intro-
duce the set ∑

= {ι, θ, σ, (σ, θ)} (II.8.2)

For every Λ ∈
∑

, the set ΦΛ = Φ(gc, aΛ,c) is a root system ([OsS1] 2.4, [Ro1]).
The root spaces are at first defined on gc, and we have to do so if Λ = σ, ι
since in this case the roots may have complex values on aΛ. On the other
hand, they are real valued on aΛ for Λ = θ, (θ, σ) and, as was always done, we
consider the root spaces in g. Those in gc are just their complexifications. Φ is
the restricted root system of the Riemannian symmetric pair (G,K) and Φσ,θ
is our previous Φo. We choose compatible orderings on these root systems
and denote by ∆Λ the set of simple roots in ΦΛ.

The Λ-rank rΛ = rkΛ(G) is the cardinality of ∆Λ. Let Λ,Λ′ be the initial
and end points of an arrow in (1). By compatibility

∆Λ′ ⊂ rΛ,Λ′(∆Λ) ⊂ ∆Λ′ ∪ {0}. (II.8.3)

II.8.2 Given Λ, we have to distinguish a family of standard parabolic sub-
groups of G parametrized by the subset of ∆Λ, to be called the Λ-relevant
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standard parabolic subgroups. Let first nι be the standard maximal nilpotent
subalgebra

nι = ⊕β∈Φ+
ι

gι,β , where gι,β = {x ∈ gc, [h, x] = β(h) · x (h ∈ aΛ)}. (II.8.4)

Given I ⊂ ∆Λ, let, as usual

aΛ,I = ∩α∈I kerα. (II.8.5)

Then the standard parabolic subalgebra PΛ,I is generated by z(aΛ,I) and nι.
By definition, the standard relevant parabolic subgroup PΛ,I is the normalizer
in G of pΛ,I . It is the semi-direct product

PΛ,I = LΛ,I ·NΛ,I , where LΛ,I = ZG(AΛ,I), (II.8.6)

AΛ,I is the torus with Lie algebra aΛ,I,c, and

nΛ,I = ⊕′ gΛ,β , (II.8.7)

where the sum runs over the β ∈ Φ+
Λ which are not linear combination of

elements of I.
The Lie algebras z(aΛ,I) are aΛ,I are reductive in g and we can write

uniquely
z(aΛ,I) = mΛ,I ⊕ aΛ,I (II.8.8)

where mΛ,I is the orthogonal complement of aΛ,I in z(aΛ,I) with respect to the
Killing form (whose restrictions to these two subalgebras are non-degenerate).
Since the centralizer of a torus is always connected, we also have LΛ,I =
MΛ,I ·AΛ,I with MΛ,I ∩AΛ,I finite, and

PΛ,I = MΛ,I ·AΛ,I ·NΛ,I (II.8.9)

The group MΛ,I is stable under Λ. For later use, we also introduce the
notation

QΛ,I = Mσ
Λ,I ·AΛ,I ·NΛ,I OΛ,I = G/QΛ,I (I ⊂ ∆Λ). (II.8.10)

Note that
PΛ,∆Λ = G,QΛ,∆Λ = H and OΛ,∆Λ = X. (II.8.11)

There is a natural projection G/QΛ,I → G/PΛ,I with fibers isomorphic to
MΛ,I/Mσ

Λ,I .
By definition, the conjugates of the PΛ,I are the Λ-relevant parabolic sub-

groups of G. The group PΛ,I is of course a standard parabolic subgroup of
G hence can also be written PΛ,I = PJ(I) with J(I) ⊂ ∆ι. It is clear from
the definition that

J(I) = r−1
Λ (I ∪ {0}) ∩∆2. (II.8.12)
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If Λ = ι, the Λ-relevant parabolic subgroups are all standard parabolic sub-
groups. If Λ = θ, the Λ-relevant parabolic subgroups are the standard
parabolic subgroups of G which are defined over R, and the parabolic R-
subgroups are all Λ-relevant (recall that AΛ is in this case a maximal R-split
torus). By 2.8 in [OsS1]

rσ,θ(β) = 0⇔ rθ(β) = 0 or rσ(β) = o (β ∈ ∆t) (II.8.13)

or, equivalently
r−1
σ,θ(0) = r−1

θ (0) ∪ r−1
σ (0). (II.8.14)

This can also be expressed by the following

Proposition II.8.3 Let Pι,J be a standard parabolic subgroup. Then the
following conditions are equivalent

a) Pι,J is (σ, θ)-relevant; b) Pι,J is both θ and σ-relevant; c) Pι,J is σ-
relevant and defined over R.

II.9 The DeConcini-Procesi wonderful compact-
ification of G/H

In this section, G is a connected complex semisimple group, σ an automor-
phism of order two of G and H = Gσ the fixed point set of σ. Let X = G/H.

This is the same situation as before, except that G, σ,H are not assumed
to be defined over R, a condition we shall return to in the next section.

II.9.1 We note first that Ho is reductive ([Vu1, §1]). Another argument is
the following: g is the direct sum of the 1 and −1 eigenspaces of σ, which are
necessarily orthogonal with respect to the Killing form: Hence the restriction
of the Killing form to each of them is non-degenerate. The 1-space is of
course h. If the unipotent radical RuHo of Ho is 6= {1}, then, putting it in
triangular form (in any embedding of G in some GLN ), one sees that its Lie
algebra is orthogonal to h with respect to the restriction of the Killing form,
a contradiction.

Let T be a (n algebraic) torus in G stable under σ. The decomposition of
its Lie algebra in 1− and −1 eigenspaces for σ gives rise to a decomposition

T = T1 ·T−1 (T1 ∩T−1 a finite elementary abelian 2-group) (II.9.1)

such that σ is the identity on T1 and the inversion on T−1. Equivalently,
the action of σ on X(T) induces the identity on X(T1) and -Id· on X(T−1).
The torus T−1 is the σ-anisotropic part of T (a terminology introduced in
[Vu1]). We shall also call T1 the σ-isotropic part of T (although this is not an



§II.9. DeConcini-Procesi wonderful compactification of G/H 259

accepted terminology). Note that σ-split is often used for σ-anisotropic. The
torus T is σ-anisotropic (resp. σ-isotropic) if T1 (resp. T−1) is reduced to
the identity.

II.9.2 The following is proved in [Vu1]: The maximal σ-anisotropic tori of
G are conjugate under Ho. Let S be one. Then any maximal torus of G
containing S is stable under σ. The group ZG(S) is the almost direct product
of S and ZH(S). The derived group of ZG(S) is contained in H.

Let T be a maximal torus of G containing S, and Φι = Φ(G,T) the
root system of G with respect to T. Its Weyl group Wσ may be identi-
fied to NG(T)/T. The non-zero restrictions to S of elements of Φ form
also a root system Φσ := Φ(G,S). Its Weyl group Wσ may be identified
to NHo(S)/ZHo(S) ([Ri2], §4). In the situation of II.8.2, the present Φσ is
the same as the one there (and S = Tσ). Once a simple system ∆σ of σ-roots
is chosen, the σ-relevant parabolic subgroups are defined as in II.8.2 (with
Λ = σ). The minimal ones are conjugate under Ho ([Vu1], Prop. 5). The
standard ones are parametrized by the subsets of ∆σ, as in II.8.2. In the next
statement, we use the notation of II.8.2 for Λ = σ.

Theorem II.9.3 (DeConcini-Procesi [DP1]). We assume G to be of adjoint
type. There exists a compactification of X, to be denoted X

W
, with the follow-

ing properties: (i) X
W

is a smooth projective variety, on which G acts mor-
phically. It is a disjoint union of 2r orbits isomorphic to the Oσ,J(J ⊂ ∆σ),
where Oσ,J is locally closed of complex codimension |∆σ − J |. In particular
Oσ,∆σ

= G/H is open, Zariski-dense.

The compactification X
W

is the DeConcini-Procesi or wonderful compact-
ification of X. More precisely, it is the minimal wonderful compactification
since there are other compactifications, which also deserve the title wonderful
according to [DP1] and are certain blow ups of the minimal one. We shall
omit the word minimal as long as we do not have to consider others. In
fact, the main statements of [DP1] are on the closures of the orbits, which we
summarize in the following

II.9.3′ Complement. Let Dσ,J be the Zariski closure of Oσ,J and let us also
write DJ

σ for Dσ,∆σ−J (J ⊂ ∆σ). Then

Dσ,J = ∪I⊂JOσ,I (II.9.2)

The variety DJ
σ is smooth of codimension |J |. We have

Dσ,I ∩Dσ,J = Dσ,I∩J or DI
σ ∩DJ

σ = DI∪J
σ , (I, J ⊂ ∆o). (II.9.3)

The D{α}(α ∈ Λσ) are smooth divisors with normal crossings.
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Note that J = ∅ is always allowed

Dσ,∅ = D∆σ
σ = Oσ,∅ = ∩α∈∆σDα

σ = G/P∅ (II.9.4)

is the only closed orbit.
Since Qσ,J ⊂ Pσ,J we have a natural G-equivariant morphism Oσ,J →

G/Pσ,J . If I ⊂ J then G/Pσ,I maps naturally onto G(Pσ,J).
By the theorem in [DP1, 5.2], these maps combine to a G-equivariant

fibration
Dσ,J → G/Pσ,J

with typical fiber the wonderful compactification of the quotient DL′σ,J , where
DL′σ,J is the adjoint group of the derived group of Lσ,J .

[DP1] gives two definitions of the wonderful compactification. The first one
is the closure of the G-orbit of h under the adjoint action in the Grassmannian
of h-planes in g (h = dim h). The second one is representation theoretic
and may be viewed as a complex analogue of the original definition of the
maximal Satake compactification. The first one is similar to the subalgebra
compactification X

sba
in §I.16.

Let (τ,V) be an irreducible faithful linear rational representation of G.
It is known that V H is at most one dimensional [Vu1]. The representation is
called spherical or of class one if VH has dimension one. Let (τ, V ) be one and
assume moreover that its highest weight is regular, meaning that the stability
group of the highest weight line is Pσ,φ (see II.9.5). Then X

W
is, by definition,

the closure of the G-orbit of the point [V H ] in the projective space P(V) of
one-dimensional subspaces of V . Up to isomorphism, it is independent of the
representation satisfying the previous conditions.

We refer to [DP1] for the proof. We content ourselves here with some
indications to make the structure of X

W
plausible. This is not needed in the

sequel.

II.9.4 We first intercalate some remarks on morphic actions of C∗ = GL1(C)
on projective spaces. We have P1(C) = C

∗ ∪ {0} ∪ {∞}. It is a standard fact
that any morphism of C∗ into a projective (or complete) variety M over C
extends to P1(C). If this morphism is an orbit map for an algebraic action,
the images of 0 and ∞ are fixed points of C∗. We can check this directly in
the only case of interest here: M = PN (C) and C∗ acts on M via a linear
action on the underlying vector space W = C

N+1. Write W as a direct sum
of one-dimensional subspaces Wi invariant under C∗. Then C∗ acts on Wi

by means of a character t 7→ tmi(mi ∈ Z). We may assume that mi ≤ mj if
i < j. Let now w = (wi) ∈W,w 6= 0. The point t·w has coordinates (tmi ·wi).
In PN (C), it has the same homogeneous coordinates as (t̃mi−m1 · wi). Now
all the exponents are ≥ 0, so if t → 0, the point has the limit 0 · w with
coordinates (0 · w)i equal to 1 if mi = m1 and to 0 otherwise. Similarly, if
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we divide by tmN+1 , all exponents are ≤ 0, and if t → ∞ the point t · w·
tends to the point ∞ · ω with homogeneous coordinates (∞ · ω)i equal to 1 if
mi = mN+1, and to 0 otherwise.

II.9.5 Write xo for [V H]. It is of course fixed under H but, since G is of
adjoint type by assumption, H is the full isotropy group in G of xo ([DP1], (iii)
of the lemma on p. 7), hence the orbit map g 7→ g · xo induces an embedding
of G/H into P(V). [In the case of G/K, the group K is self-normalizing in
G and this point was not an issue.] Write V = ⊕Vµ, where µ runs through
the weights of S in V:

Vµ = {v ∈ V, τ(s) · v = sµ · v (s ∈ S)}. (II.9.5)

Let ν be the highest weight of τ (it is noted 2λ in [DP1]). A general weight
is of the form

µ = ν −
∑
α∈∆

cα(µ) · α (cα(µ) ∈ N). (II.9.6)

We view S as embedded in C∆ by the map s 7→ (s−α1 , · · · , s−αr ) so that s
tends to a coordinate plane if some of the s−αi tend to infinity, while the
others remain constant. In studying Zariski closure of G · xo, we may ignore
the common factors sν and look at sequences for which some of the sαi remain
constant while the others tend to infinity. This yield an isomorphism of N−×
C

∆ onto an open chart in X
W

, the intersection of which with X is N− × S.
An analysis similar to that of §I.4 show that the complement of X is the union
of orbits Oσ,J(J ⊂ ∆σ).

II.9.6 To complete this sketch, we give some indications on the class of
representations with regular highest weight. (See [DP1, §1], [Vu, Théor. 3]).

Let T1 be the σ-split part of T (II.9.1). Thus T is the almost direct
product of T1 and S, (and S is the subtorus denoted T−1 in II.9.1). The
involution σ operates on Φ = Φ(G,T ), and gασ = σ(gα)(α ∈ Φ). Following
[DP1], we let

Φo = {β ∈ Φ, sβ = 1 (s ∈ S)} Φ1 = Φ− Φo. (II.9.7)

They are stable under σ. The elements of Φo are completely determined by
their restrictions to T1, on which σ acts trivially, hence they are fixed under
σ. In fact gα(α ∈ Φo) is also pointwise fixed under σ and the gα (α ∈ Φo) are
the roots subspaces with respect to T1 in ZG(S) ([DP1, 1.3]). Let also

∆o = ∆ι ∩ Φo,∆1 = ∆ι ∩ Φ1. (II.9.8)

As in II.9.1, we assume orderings in ∆ι and ∆σ to be compatible. Therefore
rι,σ(∆1) = ∆σ. Since σ is the inversion on S, it is clear that if α ∈ Φ1 is
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> 0, then σ(α) < 0. More precisely, ([DP1, 1.4]) shows the existence of a
permutation σ̃ of ∆1, of order 2, such that

σ(α) ≡ −ασ̃(α) (II.9.9)

modulo a negative linear integral combination of elements in ∆o. It is then
easily seen that the fibers of rι,σ are the orbits of σ̃ in ∆1.

By Théor. 3 in [Vu1], a dominant weight ω in X(T) is the highest weight
of a spherical irreducible representation if and only if

σ(ω) = −ω ω|S ∈ 2X(S). (II.9.10)

Following [DP1], we give an explicit description of weights satisfying those
conditions. Let {ωα}(α ∈ ∆ι) be the fundamental highest weights, defined
as usual as the elements of the dual basis to the basis formed by the simple
coroots. It is shown in [DP1, 1.4] that

σ(ωα) = −ωσ̃(α) (α ∈ ∆1). (II.9.11)

On the other hand, since σ acts trivially on Φσ it also fixes the ωα for α ∈ ∆o.
As a consequence, a dominant weight

ω =
∑
α∈∆ι

nα · ωα (II.9.12)

satisfies the first condition of (10) if and only

nα = 0 (α ∈ ∆o), nα = nσ̃(α) (α ∈ ∆1) (II.9.13)

in which case it is called special; ω is moreover said to be regular if nα 6= 0
for all α ∈ ∆1, or, equivalently, if Pι,φ is the isotropy group of the highest
weight line. The doubles of the special regular dominant weights also satisfy
the second condition of (10). The corresponding representations are those
used in [DP1] to construct X

W
.

Note that the spherical representations may have a finite kernel, and so
may not be linear representations of the adjoint group. However, only the
associated projective representations matter to define the wonderful compact-
ifications, and those are of course defined on the adjoint group.

II.10 Real points of G/H

G,H, σ,X are as in §II.9, except that they are moreover assumed to be defined
over R.

The main goal of this section is to describe X
W

(R) as a union of orbits of
G.
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II.10.1 We first recall some known facts about real points of algebraic vari-
eties defined over R. Let V be one and let n be its (complex) dimension. The
dimension of V(R) = V , as a real algebraic variety, is at most n. It is equal
to n if V is of Zariski dense in V. Assume this is the case and let x ∈ V. If x
is simple on V, then it is also simple on V , and V is a manifold of dimension
n around x. In particular if V is smooth (our case of interest), so is V . For
all this, see [Wh], especially §§10, 11.

II.10.2 By II.9.3, X
W

is a smooth projective variety. Let n be its complex
dimension. Let X

W
= X

W
(R) be the real locus of X

W
. Then X

W
, contains

G/H, which has real dimension n, hence is Zariski dense in X
W

. Thus X
W

is
a smooth real projective variety of dimension n, and the action of G makes it
an algebraic transformation group. In particular X

W
is an analytic G-space.

By II.9.3

X
W

=
∐
J∈∆σ

Oσ,J(R), where Oσ,J = G/Qσ,J . (II.10.1)

We have to know when a term on the right-hand side is not empty. Let
x ∈ Oσ,J(R). Its isotropy group is defined over R, and so is the unipotent
radical of the latter. But the unipotent radical of Qσ,J is the same as the
unipotent radical of Pσ,J , therefore the latter is defined over R. By II.8.3, it
is therefore (σ, θ) relevant. On the other hand, if Pσ,J is defined over R, so
is Qσ,J and Oσ,J has real points. The parametrization in (1) is effectively by
subsets of ∆(σ,θ) and we have to replace aσ by a(σ,θ). As in Chapter 6, we
shall denote the index (σ, θ) by o. We have then

X
W

=
∐
J⊂∆o

(G/Qo,J)(R). (II.10.2)

For J = ∆σ, the right-hand side is (G/H)(R) and the description of the G-
orbits is given by II.6.5. We want to reduce the general case to that one by
going over to the subgroups Mo,J .

Lemma II.10.3 Let J ⊂ ∆o. The orbits of G in (G/Qo,J)(R) may be iden-
tified naturally to the orbits of Mo,J in (Mo,J)(R).

Note first that we have the R-isomorphism

Po,J/Qo,J = Mo,j/Mσ
o,J (II.10.3)

whence a bijection

(Po,J/Qo,J)(R) = (Mo,J/Mσ
o,J)(R) (II.10.4)
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which identifies the orbits of Mo,J on the right-hand side to the orbits of Po,J
on the left-hand side. There remains therefore to show the existence of a
bijection

(G/Qo,J)(R) ' (Po,J/Qo,J)(R) (II.10.5)

which maps the orbits of G on the left-hand side on to the orbits of Po,J on
the right-hand side. The main point to establish (II.10.5) is the following
assertion

(∗) Let x ∈ (G/Qo,J)(R). Then G · x∩ (Po,J/Qo,J)(R) consists of one orbit
of Po,J and every such orbit occurs.

Proof. The last part is obvious. We recall that

(G/Po,J)(R) = G/Po,J (II.10.6)

a standard consequence of the fact that the fibration of G by a parabolic
R-subgroup has many local sections defined over R, provided by the big cell
of the Bruhat decomposition and its translates by G.

Let r be the projection G/Qo,J → G/Po,J . By (II.10.6), there exists g ∈ G
such g · 0 = r(x), where 0 denotes the identity coset in G/Po,J , therefore

G · x ∩ (Po,J/Qo,J)(R) 6= ∅. (II.10.7)

The second term is clearly a union of Po,J -orbits.

Replacing x by g−1 · x, if necessary, we may assume that r(x) = 0. Of
course, r maps Po,j/Qo,J onto 0. The second term in (II.10.7) is a union of
Po,J orbits. Assume that y = h · x (h ∈ G) also belongs to that intersection.
Then

0 = r(x) = r(y) = h · r(y) = h · 0,

therefore h normalizes the isotropy group Po,J of 0, hence belongs to it since
a parabolic subgroup is self-normalizing. This concludes the proof of (∗) and
therefore of II.10.3.

II.10.4 We want to apply II.6.5 to Mo,J , endowed with the restriction σJ
of σ. For this we have to introduce some definitions and notation. We let θJ
be the restriction of θ to Mo,J , and write Ho,J for Mσ

o,J .
Let aJo = mo,J ∩ ao. The algebra ao is the direct sum of ao,J and aJo and

aJo is a maximal (σJ , θJ)-anisotropic subalgebra of mo,J . The (σJ , θJ)-root
system Φo,J of mo,J with respect to aJo consists of the (σ, θ)-roots which are
linear combinations of elements in J . Its Weyl group Wo,J is generated by the
reflection sα(α ∈ J). Let AJ

o be the (σJ , θJ)-anisotropic torus with Lie algebra
aJo,c. To each element s ∈ AJ

o is attached a proper signature εs of J and hence
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a real form Ho,J,ε of Ho,J (II.4.3) and a real form Qo,J,ε = Ho,J,ε · Ao,J ·NJ
of Qo,J . II.6.5, II.10.2(2) and II.10.3, imply the first three assertions of

Theorem II.10.5 (i) X
W

(R) =
∐
J⊂∆o

(G/Qo,J)(R)

(ii) The orbits of G in (G/Qo,J)(R) may be naturally identified to the orbits
of Mo,J in (Mo,J/Ho,J)(R).

(iii) There is a natural bijection of 2A
J
o /Wo,J onto the orbits of G in (G/Qo,J)(R).

It assigns to 2AJ
o the orbit

G · us · o = G/Qo,J,εs,

where εs is the image of s ∈ 2A
J
o under the signature map (II.4.3) and

us ∈ 4A
J
o,u is a square root of s.

(iv) The codimension of (G/Qo,J)(R) in X
W

(R) is equal to |∆o − J |.

II.10.6 There remains to prove II.10.5(iv). In the following, we also use the
notation |M | to denote the dimension of the manifold M . In agreement with
previous conventions, we let Oo,J stand for (G/Qo,J)(R). We have therefore
to show that codim Oo,J = |∆o − J |. The product N−∅ ·M∅ · A∅ ·N∅ is open
in G, hence we see, using II.3.2(5) that

|H| = |N∅|+ |Mσ
∅ |, (II.10.8)

also taking into account the obvious relation ZG(ao)σ = Mσ
∅ . We have

Qo,J = Mσ
o,J ·Ao,J ·No,J (II.10.9)

hence
|Qo,J | = |Mσ

o,J |+ |J |+ |No,J |. (II.10.10)

Let
P Jo = M ∩ Po,J . (II.10.11)

It is a parabolic subgroup of M∅, which can be written

PJ
o = ZM∅(A

J
o ) ·NJ

o (NJ
o unipotent radical of P Jo ) (II.10.12)

If N−Jo is the unipotent radical of the parabolic subgroup of M∅ opposed to
P Jo , then N−Jo ·ZM∅(AJo ) · NJ

o is an open submanifold of M∅. By the same
calculation as above, we see that

|Mσ
o,J | = |NJ

o |+ |ZM∅(A
J
o )σ| (II.10.13)
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But ZM∅(AJo ) ·Ao,J = ZG(Ao), therefore

|ZM∅(A
J
o )σ| = |ZG(Ao)σ| = |Mσ

o,∅|. (II.10.14)

On the other hand, N∅ is the semidirect product of NJ and No,J , so that (8),
(10), (13), (14) imply

|Qo,J | = |H|+ |J | (II.10.15)

and our assertion follows.
We now consider the homomorphism σ(θ, σ) of II.8.1. As before, we replace

(θ, σ) by o.

Corollary II.10.7 Let α ∈ ∆σ. Then r−1
σ,o(α) consists of one element in ∆σ.

Proof. Fix α ∈ ∆0, and let J = ∆o−{α}. Let J ′ = r−1
σ,o(J ∪{0}. Then Po,J ,

viewed as a σ-relevant parabolic subgroup, can be written Pσ,J ′ . Similarly,
Qo,J = Qσ,J ′ and we have

Oσ,J ′(R) = Oo,J . (II.10.16)

By II.11.5, codimR(Oo,J) = |∆o − J | = 1.

Therefore codimC(Oσ,J ′) = 1. But it is equal to |∆σ − J | (II.9.3). Hence
the complement of J ′ in ∆σ consists of one root, say α′, and then r−1

σ,o(α) = α′.

II.10.8 Let ∆o be the kernel of σσ,o. The corollary implies that if J ⊂ ∆o,
then r−1

σ,o(J)∩∆σ has the same cardinality as J . Thus ∆σ = ∆o ∪∆1, where
∆1 is mapped bijectively onto ∆o.

In terms of σ-relevant parabolic subgroups, the union of the orbits of G in
X
W

which contain real points can therefore be written∐
J′,∆o⊂J′⊂∆σ

Oσ,J ′ . (II.10.17)

Proposition II.10.9 Let α ∈ ∆o. Then r−1
ι,o (α)∩∆ι has one or two elements.

If it has two, it is an orbit of the involution σ̃ (notation of II.9.6).

The map rι,o is the composition of rι,σ and rσ,o. The proposition then
follows from II.10.7 and the results of [DP1] recalled in II.9.6.

II.10.10 We use the notation of II.9.3′. Then

D∆o−J
o = Do,J = Do,J(R) = Dσ,J ′(R), (II.10.18)

(where J ⊂ ∆o and J ′ is as in II.10.7), is the closure of Oo,J in X
W

. In view
of II.9.3′ and II.10.1, we see that Do,J has (real) codimension |∆o − J |, is a
smooth manifold,

Do,I ∩Do,J = Do,I∩J (I, J ⊂ ∆o). (II.10.19)
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In particular the D{α}o (α ∈ ∆o) are smooth hypersurfaces with transversal
intersections. It follows that the closure of G/H in X

W
is a semi-algebraic

G-space with corners, of rank ro. In particular it is an analytic G-space.

II.10.11 Remarks. 1). If we apply the remark II.6.5 to all the G/Qo,J ,
we see that X

W
(R) is the union over J ⊂ ∆ of the orbits G · 4AJo,u · o.

2). It is worth noting explicitly what happens if J is the empty set. It is
implied by the above that (Mo,∅/Ho,∅)(R) is compact, although, unless ∆o

is empty, Mo,∅/Ho,∅ is not a projective variety. However, (Mo,∅,Ho,∅) is of
(θ∅, σ∅)-rank zero and so are the pairs (Mo,θ,Ho,θ,ε) and therefore the orbits
of Mo,∅ in (Mo,∅,Ho,∅)(R) are indeed compact, and orbits of the standard
maximal compact subgroup of Mo,∅, by II.6.2.

Remark II.10.12 As pointed out in II.10.2, X
W

(R) is a smooth real pro-
jective variety. The symmetric space X is clearly contained in X

W
(R) and

its closure in the regular topology is a compactification of X. Since X
W

is
the closure of the G-orbit of k in Gr(g, h) (see the comments after II.9.3’),
by Proposition I.17.9, the closure of X in X

W
(R) is isomorphic to X

S

max. By
Theorem II.9.3 (II.9.3’) and Theorem II.10.5, the closure of X in X

W
(R) is a

real analytic manifold with corners. This implies that X
S

max is a real analytic
manifold with corners and hence can be self-glued into a closed real analytic
manifold isomorphic to X

O
, as pointed out near the end of §I.19 and §II.2.1.

II.11 A characterization of the involutions σε

This section answers a rather natural question, but its main result (II.11.2)
will not be used later. In the proof we need a theorem of [ABS]. We begin
by reviewing just what we need from [ABS], where the results are proved in
greater generality.

II.11.1 As usual, G is a connected complex semisimple group, A a maximal
torus, Φ = Φ(G,A) the system of roots of G with respect to A and ∆ the set
of simple roots for a given ordering on Φ. For J ⊂ ∆, the standard parabolic
subgroup PJ is the semi-direct product of the Levi subgroup ZG(AJ) and
of its unipotent radical NJ . The roots of G with respect to AJ are the
restrictions to AJ of roots which are not linear combinations of elements in
J . The positive ones form Φ(PJ ,AJ) and are positive linear combinations of
elements in J ′ = ∆− J , or rather of their restrictions to AJ .

Any root α can be written uniquely α = αJ +αJ′ , where αJ (resp. αJ′) is
a linear combination of elements in J (resp. J ′), (with integral coefficients of
the same sign). The element αJ′ is called in [ABS] the shape or J-shape of α.
It will also be denoted shJ(α). By restriction to AJ the (non-zero) positive
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shapes may be identified to the elements of Φ(PJ ,AJ). For α ∈ Φ(G,AJ)
we obviously have

gι,α = ⊕β∈Φ,shJ (β)=α gι,β . (II.11.1)

This space is denoted VS in [ABS], where S stands for the shape α. The group
ZG(AJ), operating by the adjoint representation, leaves invariant each such
space and we need to know

(+) The space gι,α (α ∈ Φ(G,AJ)) is an irreducible ZG(AJ)-module.

This is contained in Theorem 2 of [ABS].
We now come back to the situation of Chapter 5 and let G, σ, θ, ao be as

before. We want to prove

Proposition II.11.2 Let τ be an involution of G which commutes with σ and
let θ be a Cartan involution commuting with σ and τ (it exists, see below).
Assume that ao = aθ,τ and that σ = τ on ZG(Ao). Then there exists ε ∈
Eo(Φo) such that τ = σε.

It is clear that the conditions imposed on τ are necessary. So we are
proving that they are sufficient. We divide the proof into five steps.

a) σ and τ generate a group of order 4 (we assume σ 6= τ) in the automor-
phism group of G. By Cartan’s fixed point theorem, it has a fixed point on the
space of maximal compact subgroups of G, and this provides a θ commuting
with σ and τ . The product δ = σ · τ is the identity on ZG(Ao). In particular,
it leaves each root space go,β stable. We claim that it suffices to prove

(*) The restriction of δ to go,β is equal to ±Id. (β ∈ Φo).

Indeed, let us denote c(β)·Id the restriction of δ to go,β . Since [go,β , go,−β ] ⊂
z(ao) and is not zero, [go,β , go,γ ], 6= 0 and belongs to go,β,γ if β, γ and β + γ
are σ-roots, we see that β 7→ c(β) is a signature on Φo, and we have τ = σε
by definition.

b) Let J be the kernel of the map rι,o : ∆ι → ∆o. Then Po,∅ can be
written Pι,J . The torus Aι,J is a maximal torus of the radical of Pι,J and we
have

ZG(Ao) = ZG(Aι,I). (II.11.2)

We shall apply II.11.1 to Pι,J . The J-shapes are therefore the elements of
Φ(G,Aι,J). We let

ν : X(Aι,J)→ X(Ao) (II.11.3)

be the restriction map. It sends Φ(Pι,J ,Aι,J) onto Φ(Po,∅,Ao). For γ ∈
Φ(G,Aι,J), let us denote by uγ the subspace of elements of J-shape γ, i.e.

uγ = ⊕β∈Φι,shJ (β)=γ gι,β . (II.11.4)
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By (+), the representation of ZG(Aι,J) in uγ is irreducible. Since δ fixes
elementwise ZG(Ao), which is equal to ZG(Aι,J) by (1), and is of order 2,
there exists a constant c(γ) = ±1 such that the restriction of δ to uγ is equal
to c(γ)·Id. We note that

c(γ) · c(−γ) = 1, (II.11.5)

c(γ+ γ′) = c(γ) · c(γ) (if γ, γ′, and γ+ γ′ belong to Φ(Pι,JAι,J). (II.11.6)

This follows from the fact that [u(γ), u(−γ)] and [u(γ), u(γ′)] are not zero and
belong to z(ao) and uγ+γ′ respectively. By definition,

go,α = ⊕γ,ν(γ)=α uγ . (II.11.7)

The right hand side may have several summands, since ν, restricted to ∆(Pι,J ,Aι,J)
is not necessarily injective. Therefore to deduce (∗) from (+), we have to prove

c(γ) = c(γ′) if ν(γ) = ν(γ′) (II.11.8)

c) We first consider the case where ao has dimension one, hence where
∆o = {α} is a singleton. This subdivides into two cases, in view of II.10.9.

(i) There exists exactly one element α′ ∈ ∆ι such that rι,o(α′) = α. Then
Po,∅ is proper maximal, equal to Pι,J (J = ∆ι − {α′}).

In the highest root of the simple summand of g of which γ is a root, the
latter has coefficient 1 if Φo is reduced, and 2 if Φo is not reduced. In this
case ν is bijective and g0,α = uγ , go,2α = u2γ .

(ii) There are two distinct simple roots γ, γ′ which map onto α. Then

go,α = uγ ⊕ u′γ . (II.11.9)

As recalled in II.9.6, it is shown in [DP1] that σ(γ) = −γ′, modulo a linear
combination of elements in a subset ∆1 of ∆2, mapped to 0 under rι,σ, hence
also under rι,o, which belongs therefore to J . As a consequence,

σ(uγ) = u−γ′ σ(uγ′) = u−γ .

Since σ normalizes ZG(Ao), it follows that

c(γ) = c(−γ′) c(γ′) = c(−γ),

so that (8) follows in this case from (5). Therefore (∗) holds for α. This
concludes the proof if Φo is reduced. Assume it is not. Then either γ, γ′

belongs to the same component of the Dynkin diagram of g, have coefficient
one in its highest root, and

go,2α = uγ+γ′

is irreducible or they belong to different components. At least one of them
has coefficient 2 in the relevant highest root.
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If both have coefficient 2 in their respective highest roots, then

go,α = u2γ ⊕ u2γ′

and we see that c(2γ) = c(2γ′) as before (or use the above and (6)). If only
one of them, say γ, has coefficient 2, then go,α = u2γ is irreducible and we
apply (+).

d) We now assume that dim ao > 1. Fix α ∈ ∆o. We want to show that
(∗) holds for α. This is a simple reduction to the previous case. Let I = {α}.
Consider the parabolic subgroups Po,I = Mo,I ·Ao,I ·No,I . The subspace go,α
belongs to mo,I . The group Mo,I has (θI , σI)-rank one with maximal (θI , σI)-
anisotropic torus AI

o and simple root α (see II.10.4). Moreover, ZMo,I
(AI

o) ·
AI = ZG(Ao). Hence c), applied to Mo,I with respect to σI , shows that (∗)
is true for α.

e) We have now shown the existence of a constant ε(α) = ±1 (α ∈ ∆o)
such that the restriction of δ to go,α is equal to ε(α)·Id. The assignment
α 7→ ε(α) is a signature on ∆o. It extends uniquely to a signature on Φo. We
want to prove that the restriction of δ to go,α is equal to ε(α)·Id for all α ∈ Φo.
From (b) we see that it is also true for α ∈ −∆o and that it suffices to prove
it for α > 0. In view of (4), we are reduced to show that if γ ∈ Φ(Pι,J ,Aι,J)
is a J-shape, then

c(γ) = ε
(
ν(γ)

)
. (II.11.10)

As usual the degree d(α) of α is the sum of the coefficients of the simple
roots, when α is written as a sum of simple roots. We want to prove (10) by
induction on the degree of α. If it is one, this was shown in c) and d). So we
let d(α) > 1 and assume (10) to hold for all α′ ∈ Φo of degrees < d(α).

Let γ ∈ Φ(P′ι,JAι,J) be a shape such that ν(γ) = α. There exists β ∈ Φ+
ι

which restricts to γ on Ao,J and therefore to α on Ao. Choose one of smallest
possible degree. It is of course a sum of simple roots. There is at least one,
say β1, which has a strictly positive scalar product with β, (since the scalar
product of β with itself is > 0). Then β = β1 + β2, where β2 is also a root.
We have rι,o(β1) 6= 0, because otherwise β2 would be a root restricting to γ
with degree < d(β). Let α1 = rι,o(β1). It belongs to ∆0. We have γ = γ1 +γ2

where γ1 and γ2 are the shapes of β1 and β2, whence also α = α1 +α2, where
α2 = ν(γ2) has degree < d(α). By definition, ε(α) = ε(α1) · ε(α2); by (5),
c(γ) = c(γ1) · c(γ2). By the induction assumption

ε(α1) = c(γ1), ε(α2) = c(γ2)

whence ε(α) = c(γ).



Chapter 8

The Oshima-Sekiguchi
Compactification of G/K
and comparison with

G/H
W

(R)

This chapter has two main purposes: first to review the construction in [OsS1]
of a smooth compactification of G/K, different from the Oshima compactifi-
cation X

O
(see §II.2.2), and second to compare it with the real locus of the

wonderful compactification of G′/K′, where G′ is the adjoint group of G and
G′ the complexification of G′, and K ′ is a maximal compact subgroup of G′

and K′ the complexification of K ′. In order to be consistent with the notation
of the previous sections, we shall have to deviate in part from the conventions
of [OsS1], but we shall try to relate the two.

After discussing some preliminaries on semisimple symmetric spaces such
as the Weyl groups in §II.12, we introduce the Oshima-Sekiguchi compacti-
fication in §II.13. Its main properties are listed in §II.15. To compare with
the real locus X

W
(R), an action of a Weyl group W ′ on X

OS
is defined in

§II.13.6. In §II.14, a different definition of X
W

due to Springer is introduced
in order to facilitate the comparison with X

OS
. Then Theorem II.4.5 shows

that X
W

(R) is a finite quotient of X
OS

.

271
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II.12 Preliminaries on semisimple symmetric
spaces

II.12.1 The starting point of [OsS1] is a connected semisimple real Lie group
with finite center. We shall limit ourselves to the case where the group is linear
but, on the other hand, is the full group of real points of the connected complex
semisimple Lie group G. It may therefore have several connected components
(only one if G is simply connected). We note also that the construction of
[OsS1] does not change if G is replaced by a locally isomorphic group (still
with finite center). In particular it may be assumed to be of adjoint type (see
1.4 in [OsS1]).

We use the usual notation for Riemann symmetric spaces. In particular
g = k⊕p is the Cartan decomposition of g with respect to k and a is a maximal
abelian subalgebra of p. In the general notation of II.8.1, it would be aθ and
would be equal to aθ,σ. Let Φ = Φ(g, a) and ∆ the set of simple roots for
a given ordering. Let P∅ = M∅ · A · N∅ be the standard minimal parabolic
subgroup, hence

M∅ = K ∩ ZG(A) = ZK(A) and ZG(A) = M∅ ×A.

We claim that M∅ meets every connected component of K, hence of G.
Let W = W (g, a) be the Weyl group of G. By definition it is equal to

NK(a)/ZK(a). It is well-known that it can also be written NG(A)/ZG(A),
but it is also equal to NG(A)/ZG(A). In fact, the complexification A of A is
a maximal R-split torus of G, so that Φ can also be viewed as the system of
R-roots of G, the Weyl group of which is defined in the theory of algebraic
groups as NG(A)/ZG(A) and this is clearly equal to NG(A)/ZG(A). Since
the Cartan subalgebras of the symmetric pair (g, k) are conjugate under Ko,
we see that any connected component of K contains an element centralizing
a, as claimed above.

II.12.2 We specialize the considerations of §4 to the case σ = θ. Given a
proper signature ε on Φ, we have associated to it an involution θε of G and
defined the R-form Kε of K as Gθ (II.4.2, II.4.3). Besides, we will have to
consider a subgroup of finite index of Kε used in [OsS1], to be denoted here
K∗ε .

θε commutes with θ, as follows from its definition, hence θ leaves Kε stable
and induces on it a Cartan involution. Let

Lε = K ∩Kε (II.12.1)

be its fixed point set. It is a maximal compact subgroup of Kε and we have
the Cartan decompositions

Kε = Lε · exp pε, where pε = p ∩ kε. (II.12.2)
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The Cartan algebra a of (G,K) is contained in lε and A ·M = ZGA ⊂ Lε.
Let Uε be the subgroup of W defined by

Uε = NA ∩ Lε/ZA. (NA ∩ Lε)/ZA. (II.12.3)

It is the Weyl group of the symmetric pair (Kε, Lε) with respect to A.
It is clear from the definitions that ε andKε determine one another. There-

fore we also have
Uε = {w ∈W | w(ε) = ε}. (II.12.4)

Let
K∗ε = Ko

ε ·M. (II.12.5)

This is the group denoted Kε in [OsS1]. It is normal, of finite index in our
Kε.

The last remark in II.12.1 shows that

G/K∗ε = Go/(K∗ε ∩Go) (II.12.6)

Let
Φε = {α ∈ Φ, ε(α) = 1}. (II.12.7)

It is a root system, in the subspace of a∗ it generates, closed in Φ (i.e. α, β ∈
Φε, α + β ∈ Φ ⇒ α + β ∈ Φε). Let Wε be the Weyl group of Φε. It follows
from 1.6, 1.7 in [OsS1] that Φε is the restricted root system of the Riemannian
symmetric pair (K∗ε ,K

∗
ε ∩K), hence

Wε = (K∗ε ) ∩N (A)/ZA. (II.12.8)

The group K∗ε is normal in Kε, and

Kε/K
∗
ε = Uε/Wε (II.12.9)

therefore Uε/Wε acts freely via right translations on G/K∗ε and the quotient
is G/Kε.

II.12.3 In II.12.2, ε was assumed to be proper. We now have to extend
these considerations to non proper signatures.

Fix J ⊂ ∆. We shall now consider signatures with support Jε = J . In
§§4, 6 we have introduced the parabolic R-subgroup PJ = MJ · AJ · NJ ,
and its subgroup QJ = KJ ·AJ ·NJ , where KJ = Mθ

J is the fixed point of
the restriction of θ to MJ . Thus KJ is a maximal compact subgroup of MJ .
To ε ∈ Eo(J) there is associated a real form KJ,ε of KJ and the subgroup
QJ,ε = KJ,ε ·AJ ·NJ , where KJε is the fixed point set of θJε on MJ .

We have also defined the root system ΦJ , consisting of the roots which are
linear combinations of elements in J and its Weyl group WJ . As above, we
let

ΦJ,ε = {α ∈ ΦJ , ε(α) = 1} (II.12.10)
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and let WJ,ε be its Weyl group.
The counterparts in [OsS1] of our groups KJ,ε, QJ,ε are denoted here K∗J,ε

and Q∗J,ε = K∗J,εAJ ·NJ . By definition, K∗J,ε is generated by (KJ,ε)o and the
centralizer of A in KJ or, what is the same, of AJ in KJ . By 1.6, 1.7 of
[OsS1], applied to MJ we have

WJ,ε =
(
K∗J,ε ∩N (A)

)
/ZA. (II.12.11)

The group K∗J,ε is normal in KJ,ε and we have, as before

KJ,ε/K
∗
J,ε = UJ,ε/WJ,ε (II.12.12)

where UJ,ε is the stability group of ε in WJ .
As in II.12.2, it follows that UJ,ε/WJ,ε operates freely on K∗J,ε by right

translations and the quotient is KJ,ε. Similarly, since WJ leaves AJ and NJ
stable, right translations also induce a free action of UJ,ε/WJ,ε on G/Q∗J,ε and
the quotient is G/QJ,ε.

As in [OsS1], W (ε) denotes the canonical set of representatives ofWJ,ε\WJ,ε

defined by
WJ(ε) = {w ∈WJε ,Φε ∩ wΦ+ = Φε ∩ Φ+}.

[It is indeed a set of representatives since WJ,ε is simply transitive on the
Weyl chambers of ΦJ,ε.]

Remark. In the above, J is implied by ε so that it could be omitted from
t he notation and we could use just ε as index, whether it is proper or not.
This is the point of view of [OsS1]. Although it leads to a clumsier notation,
we prefer to make J explicit, except when ε is proper, i.e. J = ∆.

II.12.4 In case Φ is not reduced, [OsS1] introduces some subgroups or sub-
sets of the above. Let

Φ′ = {α ∈ Φ, 2α 6∈ Φ, α/2 6∈ Φ) W ′ = 〈sα, α ∈ Φ)〉.

The intersection with Φ′ or W ′ of the previously defined objects will be in-
dicated by a superscript ′, for instance W ′ε = Wε ∩ W ′,W ′Jε = WJε ∩ W ′,
etc.

If Φ is reduced, then Φ = Φ′ and W = W ′. If not, and if Φ is irreducible,
then Φ is of type BCr (in the notation of [Bu2]), and Φ′ is a root system of
type Dr, with Weyl group W ′ of index 2 in W . (But Φ′ is not closed in Φ).

By 2.5(iii) in [OsS1], W (ε) is also a set of representatives for W ′ε\W ′Jε , i.e.

W ′Jε = W ′ε ·W ′Jε(ε),WJε = Wε ·WJε(ε). (II.12.13)

We summarize the proof. It suffices to consider the case of a simple non
reduced root system of type BCr. In this case the reflection si to xi = 0(1 ≤



§II.13. Oshima-Sekiguchi compactification of G/K 275

i ≤ r) is a representative of W/W ′. Note that if ε(xr) 6= 0, then ε(x2r) = 1,
hence sr ∈ WJ,ε, and a fortiori sr ∈ WJ . Thus W ′J,ε (resp. W ′J) is of index
2 in WJ,ε (resp. WJ) and our assertion is proved. If now ε(xr) = 0. Then
WJ,ε = W ′J,ε and the claim is obvious.

In analogy with (13), we want to prove

KJ,ε/K
∗
J,ε = U ′J,ε/W

′
J,ε where U ′J,ε = W ′J ∩ UJ,ε. (II.12.14)

The argument is the same as above: assume that ε(xr) 6= 0. Then sr ∈ WJ,ε

hence a fortiori sp ∈ UJ,ε, and again U ′J,ε (resp. W ′J,ε) is of index 2 in UJ,ε
(resp WJ,ε). If ε(xr) = 0 then WJ = W ′J hence U ′J,ε = U ′J,ε and WJ,ε = W ′J,ε.
Therefore, it is again true that the quotient of K∗J,ε (resp. G/Q∗J,ε) by right
translations of U ′J,ε/W

′
J,ε is equal to KJ,ε (resp. G/QJ,ε).

We shall later need the following lemma, where we keep the previous no-
tation

II.12.5 Lemma. Let J ⊂ ∆. Every element of WJ not contained in
W ′J leaves invariant every signature in Eo(ΦJ). In particular Eo(ΦJ)/WJ =
Eo(ΦJ)/W ′J .

Proof. It suffices to consider the case where ΦJ is of type BCm (m = |J |).
Let xi be coordinates in Rm. Then the roots are

±xi ± xj (1 ≤ i < j ≤ m), and ± xi,±2xi(1 ≤ i ≤ m).

Let ε ∈ Eo(J). Then ε(2xj) = ε(xj)2 = 1, and therefore, if i 6= j,

ε(xi + xj) = ε(xi − xj + 2xj) = ε(xi − xj).

The elements of WJ not contained in W ′J are the reflections si to the hyper-
planes xi = 0. The map si transforms xi to −xi and leaves xj fixed for j 6= i.
Let α = xa ∓ xb (a 6= b). Then it is fixed by si if a, b 6= i. If one of them, say
b is equal to i, then si(xa ± xb) = xa ∓ xb, and the lemma follows from the
previous remarks.

II.13 The Oshima-Sekiguchi compactification of
G/K

II.13.1 It will be convenient to introduce one more notation, borrowed from
[OsS1]. Let t ∈ R∆. There is associated to it a signature εt ∈ E(Φ), a support
Jt of t or εt in ∆, a standard parabolic subgroup PJt and then a subgroup
Q∗J . All these data are determined by t and so can also be indexed simply
by t. In particular, we shall also write Q∗t for Q∗J,ε where J = Jt, and ε is
identified to its restriction to Jt, and φt for φεt , etc.
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Let {Hα} (α ∈ ∆) be the basis of a dual to ∆. For J ⊂ ∆, let

aJ = 〈Hα, α ∈ J〉, AJ = exp aJ . (II.13.1)

Then A is the direct product of AJ and AJ . In analogy with [OsS1] we define
a map a : R∆ → A by the rule

a(t) = exp−1/2
∑
α∈Jt

log |tα| Hα (t ∈ R) (II.13.2)

or equivalently

a(t)α = |tα|−1/2 (α ∈ Jt), a(t)α = 1 (α 6∈ Jt). (II.13.3)

For J ⊂ ∆, ε ⊂ Eo(J), the map a is an isomorphism of RJ,ε onto AJ .

Remark. This notation does not agree with the one used in I for AJ . Call
here ÃJ the AJ as defined there using a basis of a formed by the simple
coroots. We also have A = ÃJ · AJ and so ÃJ and AJ are isomorphic mod
AJ , and two equivalent points act in the same way on MJ . In particular the
root spaces of AJ are the same as the weight spaces of ÃJ .

II.13.2 Let X̃ = G× R∆ ×W ′. [OsS1] introduces the following relation ∼
on X̃

(g, t, w) ∼ (g′, t′, ω′)

if

(i) w(εt) = w′(εt′)

(ii) w−1 · w′ ∈W (εt)

(iii) g · a(t) ·Q∗t · w−1 = g′ · a(t′) ·Q∗t′ · w′
−1.

The Oshima-Sekiguchi compactification, to be denoted here X
OS

, is by
definition the quotient X̃/ ∼, the action of G being defined by left translations
on the first factor of X̃.

II.13.3 We have first to see that ∼ is an equivalence relation and that left
translations by G on X̃ are compatible with it.

From (i) and the definitions, we get

w · Φt = w′ · Φt′ w · ΦJt = w′ · ΦJt′ (II.13.4)

hence also
wWJt = w′WJt′ · wWt =w′ Wt′ (II.13.5)
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By (ii), w−1 · w′ ∈W (t), hence w′−1 · w ⊂WJt and we get from (3)

WJt = WJt′ hence ΦJt = ΦJt′ , Jt = Jt′ (II.13.6)

By (ii),
Φt ∩ w−1 · w′Φ+ = Φt ∩ Φ+. (II.13.7)

Together with (4) this implies

w(Φt ∩ Φ+) = w(Φt ∩ w′Φ+) = w′Φt′ ∩ w′φ+

w(Φt ∩ Φ+) = w′(Φt′ ∩ Φ+) (II.13.8)

therefore

Φt′ ∩ Φ+ = w′
−1 · w(Φt ∩ Φ+) = (Φt′ ∩ w′

−1 · wφ+) (II.13.9)

which shows that w′−1 · w ∈W (εt), hence that ∼ is symmetric.
The proof that it is transitive is left to the reader.

II.13.4 For w ∈ W , we fix a representative w̄ of w in NA. Note however
that a conjugate w̄L or a translate w̄ · L by w̄ of a subgroup L containing M
depends only on w and we shall also denote it wL or w · L. Similarly, W is
viewed as usual as a group of automorphisms of A.

The subgroup AJt (resp. AJt′ ) is the intersection of kernels of the elements
in ΦJt (resp. ΦJt′ ). Therefore (6) implies

AJt = AJt′ , NJt = NJt′ . (II.13.10)

We claim that
w̄−1·w̄′Q∗t′ = Q∗t . (II.13.11)

Assume for the moment this to be true. Then (iii) can be written

g · a(t) · w̄−1 · w̄′ ·Q∗t = g′ · a(t′) ·Q∗t in G/Q∗t , (II.13.12)

which makes it clear that ∼ is compatible with left translations on G.
We still have to prove (11). Since w−1 · w′ ∈ WJt = WJt′ , it normalizes

AJt and NJt , as well as M∗Jt = M∗Jt′ . There remains to see that w̄−1 · w̄′
transforms M∗Jt′,ε′ onto M∗Jt,ε. By definition, these groups are generated by
M and their identity components. It suffices therefore to prove

Ad (w̄−1 · w̄′)mJt′ε′ = mJt,ε. (II.13.13)

This is a straightforward computation carried out in [OsS1], p. 15 (in the case
where εt and εt′ are proper): by definition

mJt′ ,ε
′ = m⊕⊕α∈ΦJ

t′
〈x+ ε(α)θx〉x∈gα
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hence

Ad (w̄−1 ·w̄′)(mJt′ ,ε
′) = m⊕⊕α∈ΦJt

〈 Ad (w̄−1 ·w′)x+ε(α)θ(Ad w̄−1 ·w̄′x〉x∈gα .

We have

Ad (w̄−1 · w̄′)x ∈ g(w−1·w′)α εt′(α) = εt(w̄−1 · w̄′ · α)

(11) now follows immediately.

Remark. We see from (12) that the equivalence classes are the left cosets of
the various groups Q∗t , and that two cosets Q∗t and h ·Q∗t represent the same
equivalence class if and only if h ∈W (ε). This explains (14) in II.13.5.

II.13.5 Main Properties of X
OS

.
They are stated in Theorem 2.7 of [OsS1] and proved there on p.16–19.

We review here the main ones. Let π : X̃ → X
OS

be the canonical projection.
(a) X

OS
is a connected compact Hausdorff analytic G-space. If x =

(g, t, w) ∈ X̃, the orbit of π(x) is isomorphic to G/Q∗t . It is open if and
only if εt is proper, closed if and only if t = 0, in which case the orbit is
isomorphic to G/P∅.

(b) We shall again use the labeling of orbit types by ε ∈ E(∆) and the
support J = Jε of ε. i.e. O∗J,ε = G/Q∗J,ε. A given orbit O∗J,ε may occur several
times. More precisely, since [W ′ : W ′ε] = W (ε), the number of orbits of type
OJ,ε is

[W ′ : W ′J ] · |W ′ε| = |W ′| · |W (ε)|−1. (II.13.14)

If ε is proper, then J = ∆ and WJ = W ′, hence

G/K∗ε occurs |W ′ε| times. (II.13.15)

In particular, if E = E1 is the signature E(α) = 1 for all α, then K∗ε = K,
hence

there are |W ′| copies of G/K. (II.13.16)

If ε is the zero signature, then W ′J = W ′ε = W (ε) = {1} and

there are |W ′| copies of G/P∅. (II.13.17)

It is also shown that every orbit G/K has one orbit G/P∅ in its closure.
More generally G/K∗ε has [W ′ : W ′ε] orbits G/P∅ in its closure.

We shall establish these properties later (II.14.8), by arguments different
from those of [OsS1], except for the connectedness of X

OS
.

II.13.6 A free action of W ′ on X
OS

.
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First we define a right action of W ′ on X̃ by translations on the last factor

(g, t, w) ◦ u = (g, t, u−1 · w) (g ∈ G, t ∈ R∆, u, w ∈W ′). (II.13.18)

It is obviously a right action:

(◦ u) ◦ (◦ v) = ◦(u · v) (u, v ∈W ′)

which is free and which commutes with G. We leave it to the reader to check
that it is compatible with ∼, whence an action on X

OS
, to be also denoted

◦ u, which commutes with G. We want to prove that it is free. Let then
u ∈ W ′ and assume that (g.t.w) is equivalent to (g, t, u−1 · w). We have to
show that u = 1. By (i) in II.13.2,

w(ε) = u−1 · w(ε), hence u−1·wUε = wUε (II.13.19)

where ε stands for εt. This implies

u−1·wQ∗t = wQ∗t ,
u−1·wWε = wWε. (II.13.20)

By (ii) in II.13.2 we have w−1 · u−1 · w ∈W ′(ε), hence

u−1 ∈ wW ′(ε). (II.13.21)

By (iii) of II.13.2, or rather the equivalent statement II.13.4 (12), we have

g · a(t) · w−1 · u−1 · w ·Q∗t = g · a(t) ·Q∗t ,

hence, by II.12.3(12)
u−1 ∈ wW ′ε. (II.13.22)

Since W ′ε ∩W ′(ε) = {1}, our assertion now follows from (21) and (22).

II.14 Comparison with G/H
W

(R)

II.14.1 We first recall a definition of the wonderful compactification X
W

of
the symmetric variety X analogous to the one of X

O
, due to Springer [Sp1].

There, a general involution is considered but we limit ourselves to the case
of a Cartan involution. G is assumed to be adjoint. Let C∆ be the affine
space with coordinates in ∆. As usual, the value of α on c ∈ C∆ is denoted
cα. The coordinate ring of C∆ is of course C[∆]. The coordinate ring of A
is the polynomial algebra in the α and α−1(α ∈ ∆). The involution θ is the
inversion on A and its fixed points form the subgroup 2A = A∩K of elements
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of order ≤ 2. Let Ā = A/2A. Its coordinate ring is the polynomial algebra
in the α2, α−2(α ∈ ∆). Given J ⊂ ∆, we let

o
C
J = {c ∈ C∆, cα 6= 0 if and only if α ∈ J}. (II.14.1)

Therefore
C

∆ =
∐
J⊂∆

o
C
J . (II.14.2)

and given c ∈ C∆, there is a unique subset of ∆, to be denoted Jc, such that
c ∈ o

C
J . In analogy with II.13.1, we define a map ã : C∆ → Ā by the rule

ã(c)2α = cα (α ∈ Jc) ã(c)2α = 1 (α 6∈ Jc). (II.14.3)

Thus ã(oCJ) = ĀJ = {t ∈ Ā, t2β = 1 if β 6∈ J . In particular, Ā = ĀJ · ĀJ .

II.14.2 Springer defines on Ỹ = G × C∆ an equivalence relation ∼ by the
rule (g, c) ∼ (g′, c′) if and only if

(i) Jc = Jc′ ,
(ii) g · ã(c) ·QJc = g′ · ã(c′) ·QJc ,
The equivalence classes are therefore the left cosets of the groups QJ

(J ⊂ ∆), and the orbits of G are the quotients OJ , as in X
W

. Let N− be
the unipotent radical of θ(P∅). It is obvious that

{(u, c) ∼ (u′, c′), u, u′ ∈ N−, c, c′ ∈ C∆} ⇔ u = u′, c = c′. (II.14.4)

The projection π̃ : Ỹ → Y = Ỹ/ ∼ maps N− × C∆ bijectively onto a subset
Uo of Y. It admits of course a structure of affine variety. The assertion is
that its translates by G are open charts of a structure of smooth projective
variety naturally isomorphic to X

W
. The set Uo is the disjoint union of the

N−×ĀJ . In particular its intersection with G/K is N−×Ā. More generally,
the intersection with OJ is the image of N− × o

C
J and is isomorphic to

N− ×AJ .

II.14.3 Let j : R∆ → C
∆ be defined by

j(t)α = tα (α ∈ ∆). (II.14.5)

It identifies the left hand side with the real points of the right hand side. It
maps RJ,ε

(
ε ∈ Eo(J)

)
, into o

C
J ; the union over ε of the images is the set of

real points of oCJ . We also assume the group G involved in the definition of
X
OS

to be adjoint. Let

µ : X̃ = G× R∆ ×W ′ → Ỹ = G× C∆ (II.14.6)

be defined by
µ(g, t, w) =

(
g, j(t)

)
(II.14.7)
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It commutes with left translations by G and with W ′ acting on the right as in
II.13.6. Our goal is to prove that it is compatible with the given equivalence
relations on both sides and induces a continuous bijection of X

OS
/W ′ onto

X
W

(R). The next subsection is denoted to some preparation.

II.14.4 We can arrange that the inclusion of G in G maps A isomorphically
onto Āo. Let us denote by j̄ this isomorphism. It also identifies AJ to (ĀJ)o

(J ⊂ ∆).
Fix t ∈ R∆. It defines a signature ε = εt and a support J = Jt. The

signature also defines an element st ∈ 2Ā and we let ut ∈ 4Āu be a square
root of st. We claim

ã
(
j(t)

)
= j̄
(
a(t)

)
· ut. (II.14.8)

This is a straightforward computation. By definition

a(t)−α = |tα|1/2(α ∈ Jt), a(t)α = 1 (α ∈ Jt)

hence also

a(t)−2α =

{
|tα| α ∈ Jt
1 α 6∈ Jt

ã
(
j(t)

)−2α =

{
j(t)α α ∈ Jt
1 α 6∈ Jt

On the other hand (
j̄
(
a(t)

)
· ut
)−2α = j̄

(
a(t)

)−2α · u−2α
t

(
j(t)

)α =

{
tα = ε(α′) · |tα| (α ∈ Jt)
1 α 6∈ Jt

(ut)−2α = s−αt =

{
ε(α) α ∈ Jt
1 α 6∈ Jt

so that
(j̄
(
a(t)) · uε

)−2α = tα = ã
(
j(t)

)−2α (α ∈ Jt)(
j̄(a(t)) · uε

)−2α = ã
(
j(t)−2α = 1 (α 6∈ Jt).

Note that the right hand side of (8) belongs to the real points of G/OJ , by
the remark 1 in II.10.11.

Let us denote in the following proof by ∼OS and ∼S the equivalence rela-
tions used in (II.13.2) and (II.14.2).

II.14.5 Theorem. The map µ : X̃ → Ỹ defined in II.14.3 is compatible
with ∼OS and ∼S. It induces a continuous G-equivariant bijection of X

OS
/W ′

onto X
W

(R).
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Proof. We have to show that

(g, t, w) ∼OS (g′, t′, w′)⇒
(
g, g(t)

)
∼S

(
g′, j(t′)

)
.

By II.13.4(10), Jt = Jt′ , NJt = NJt′ . This implies (see II.14.3) that Jj(t) =
Jj(t′), whence the first condition of ∼S .

By II.13.4(12),

g · a(t) · w̄−1 · w̄′Q∗t = g′ · a(t′) ·Q∗t

which we can also write

g · j̄
(
a(t)

)
· w̄−1 · w̄′Q∗t = g′j̄

(
a(t′)

)
·Q∗t . (II.14.9)

Multiply both sides by ut on the right. Note that uε · QJ,ε · u−1
ε ⊂ QJ .

Moreover, w̄−1 · w̄′ ∈WJ ⊂ QJ . Therefore, II.14.4(11), shows that the second
condition of ∼S is fulfilled.

As a consequence, µ defines a G-equivariant map continuous map

µ̄ : X
OS
/W ′ → X

W
(R).

The G-orbits in X
OS

are the quotients G/Q∗J,ε′
(
ε ∈ Eo(J)

)
, which are

finite coverings of our G/QJ,ε = OJ,ε. There are [W ′ : W ′J ] · |W ′J,ε| copies of
G/QJ,ε. If we divide out by representatives of [W ′ : W ′J ] ·W ′J,ε, they collapse
to one copy of OJ,ε. If we divide further by UJ,ε/WJ,ε (see II.12.4), then we get
one copy of OJ,ε. Translation by an element of W ′J maps OJ,ε isomorphically
onto OJ,w(ε) (see II.4.4). Altogether, the orbits in X

OS
/W ′ are in a natural

bijection with
∏
J⊂∆ Eo(ΦJ)/W ′J and we can replace W ′J by WJ in view of

II.12.5. As we saw in II.6, this last quotient may also be identified to 2AJ/WJ .
As a consequence the G-orbits in X

OS
/W ′ are parametrized in the same way

as its orbits in X
W

(R), (see II.6.5, II.10.11). There remains to see that this
bijection is induced by µ̄. This follows from II.14.4(11): if we let ε = εt,
and J = Jt, this shows that the orbit OJ,ε goes over to the orbit of uε · o in
(G/QJ)(R).

II.14.6 For general topology, we refer to [Bu1]. In particular “compact”
implies Hausdorff separation, and “quasi-compact” means that the Borel-
Lebesgue cover axiom is satisfied: every open cover contains a finite one.
These conventions are different from those of [OsS1], where compact (resp.
compact and Hausdorff) stands for quasi-compact (resp. compact) of [Bu1].

II.14.7 The map µ̄ is continuous, bijective. We claim it as a homeomor-
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phism. First we shall show that it is open. We have a commutative diagram

G× C∆

X
W

X
OS
/W ′

X
OS

π2

π1

π3

µ̄

µ
G× R∆ ×W ′

.......................
..............................

.......

.......................
.......

..............................

..............................

(II.14.10)

where πi(i = 1, 2, 3) is the natural projection. We have seen in II.14.2 that
π3 maps N− × C∆ bijectively onto an open chart, denoted U ′0, of X

W
. It

translates by g from an open cover of X
W

. This implies that π3(N− × R∆),
is an open chart on X

W
(R). Since uε normalizes N−, it also follows that the

translates uε(N−×R∆) = N−×uε ·o are open charts on X
W

(R), which then
form an open cover by real affine sets.

µ maps homeomorphically (N−×R∆×w) onto N−×R∆. The commuta-
tivity of (10) implies that, given g ∈ G, w ∈W,π1 induces a homeomorphism
of (g ·N− × R∆ × w) onto an open subset Uwg of X

OS
, as is proved directly

in [OsS1], see 2.6 there.
The equivalence relation defined by the action of a finite group is obviously

both open and closed, hence π2 is open and closed. In particular π2(Uwg ) is an

open set mapped homeomorphically onto an open subset of X
W

(R). These
sets form an open cover, hence µ̄ is open. Since it is continuous, bijective, it
is a homeomorphism, as claimed, and X

OS
/W ′ is therefore compact.

II.14.8 We want to prove that X
OS

itself is compact. First we show that it is
Hausdorff. Let x, y ∈ XOS

be distinct. If π2(x) 6= π2(y) they can be separated
(since X

OS
/W ′ is Hausdorff, being homeomorphic to X

W
(R)), hence so can

x and y. Assume now that x and y = x ◦ w (w ∈ W ′) are on the same W ′-
orbit. We have already seen that x has an open neighborhood U on which π2

is injective. But then U ◦w is an open neighborhood of y which has no point
in common with U , hence x and y are also separated. This also implies that
W ′ operates properly on X

OS
([Bul], III, §4, no 1, Prop. 2), hence that π2 is

proper. Then X
OS

= π−1
2 (X

OS
/W ′) is compact, since X

OS
/W ′ is so.

As a consequence, X
OS

may be viewed as a regular finite covering of
X
W

(R), with projection map µ̄ ◦ π2. The space X
W

(R) is a smooth real
projective variety on which G acts as an algebraic transformation group. In
particular X

W
(R) is a smooth analytic G-space. The covering map µ̄ ◦ π2

then allows one to lift that structure to X
OS

and shows that it is a smooth
compact analytic G-space too.
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There remains to see that X
OS

is connected. This is the first step of
the proof of Theorem 2.7 in [OsS1], (see the first seven lines of the proof of
Theorem 2.7, p. 19). For the sake of completeness, we repeat the argument.

Let {β1, . . . , βr′} be a simple set of roots for Φ′. For i ∈ [1, r′] we let
wi = sβi and fix a signature εi which is −1 on βi. We have Φwi ∩W ′ = {βi}
([Bu2], VI, §1, no 6, Cor. 1, p. 157), whence wi ∈W (εi) (cf. [OsS1], Lemma
2.5). As a consequence(

1, εi(α1), . . . , εi(αr), w
)
∼
(
w̄, (εi(wi(α1), . . . , εi(wi(αr), wwi)

for every w ∈W ′ and therefore

π(G× R∆ × w) ∩ π(G× R∆ × wwi) 6= ∅.

Since (G×R∆ × x\w) is connected and W ′ is generated by the wi, the claim
follows.

II.14.9 Example. Let G = SL2(R). We refer to II.6.9 for some notation.
In particular, for the non-trivial signature, K∗ε = G/SO(1, 1).

The compactification X
OS

may be identified with the 2 sphere with five
orbits. 2 copies of G/K one of G/SO(1, 1) and two copies of G/P∅ which sep-
arate the three open orbits (see [Os3]). It may be interpreted in the following
manner: identify R3 − {0} to the space of non-zero binary symmetric forms.
The quotient by R∗>0, operating by dilation, is the 2-sphere and the five orbits
correspond to the positive definite forms, the positive forms of rank one, the
indefinite forms, the negative forms of rank 1 and the negative definite forms.
The Weyl group is of order 2. The non-trivial element w is the antipodal
map. It identifies the two orbits isomorphic to G/K, and the two lines G/P∅.
It acts freely on G/SO(1, 1), which is an open cylinder and the quotient is
G/N (K∗ε ) = G/Kε, which is a Möbius band. The quotient is P2(R). It is the
union of three orbits: the definite, indefinite and degenerate forms.

On the other hand, X
W

is P2(C), with two orbits: the non-degenerate
conics and the degenerate ones, which form P1(C). The real locus X

W
(R) is

P2(R). The group G has one orbit G/P∅ in the space of degenerate conics,
and two in the space of non-degenerate conics corresponding to definite and
indefinite forms.

Remark II.14.10 By Theorem 2.10.5, different semisimple symmetric spaces
Xε (or rather their finite quotients) appear together with X in the real locus
X
W

(R). The closure of X in X
W

(R) is the maximal Satake compactification.
The closure of the finite quotient of Xε in X

W
(R) can be used to define a

compactification of Xε, which is a manifold with corners and should be an
analogue of the maximal Satake compactification. In fact, since the finite
group W ′ acts freely on X

OS
(II.13.6), the local structure of boundary points
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in the closure of the finite quotient of Xε can be used to compactify Xε into
a real analytic manifold with corners. This should be the analogue of the
maximal Satake compactification for Xε. Theorem II.14.5 shows that this
compactification of Xε is isomorphic to the closure of Xε in X

OS
, and also

gives a natural explanation why different pieces of X and Xε in the Oshima-
Sekiguchi compactification X

OS
can be glued together.
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Part III. Compactifications
of locally symmetric
symmetric spaces

In this part, we study compactifications of locally symmetric spaces. Locally
symmetric spaces arise naturally from many different areas in mathematics.
For example, many interesting moduli spaces in algebraic geometry such as
the moduli space of principally polarized abelian varieties or of other polariza-
tions and additional endomorphism structures are locally symmetric spaces
and are often noncompact. An important problem is to compactify them. For
example, the Baily-Borel compactification Γ\X

BB
, the Borel-Serre compact-

ification Γ\X
BS

, the Satake compactifications Γ\X
S

, the toroidal compacti-
fications Γ\X

tor

Σ have been constructed for many different purposes.
In Chapter 9, we recall the motivations and the original construction of

many known compactifications. In Chapter 10, we discuss a uniform approach
to compactifications of locally symmetric spaces and apply it to reconstruct
the known compactifications. This uniform construction is very similar to
and motivates the uniform method to compactify symmetric spaces in §I.8.
In Chapter 11, we study relations between and more refined properties of
these compactifications of locally symmetric spaces. For example, Γ\X

BS
is

a real analytic manifold with corners and can be self-glued into a closed real
analytic manifold Γ\X

BSO
. In Chapter 12, we study another type of com-

pactifications of locally symmetric spaces by embedding them into compact
spaces such as the space of closed subgroups in G and the space of flags in Rn

and flag lattices. This approach is similar to the compactifications of symmet-
ric spaces X such as the Satake and Furstenberg compactifications, and more
directly related to the subgroup compactification X

sb
in §I.17. In Chapter 13,

we study metric properties of compactifications of locally symmetric spaces.
Then we explain applications to a conjecture of Siegel on comparison of two
metrics on Siegel sets and a result on extension of holomorphic maps from
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a punctured disc to a Hermitian locally symmetric space to its Baily-Borel
compactification. Finally, we relate the boundary components of the reduc-
tive Borel-Serre compactification Γ\X

RBS
and the geodesic compactification

Γ\X ∪ Γ\X(∞) to the continuous spectrum of Γ\X, and a Poisson relation
relating normalized lengths of geodesics which go to infinity, the sojourn times
of scattering geodesics, and the spectral measure of the continuous spectrum.



Chapter 9

Classical compactifications
of locally symmetric spaces

Motivated by problems in automorphic forms, algebraic geometry and topol-
ogy, many compactifications of locally symmetric spaces have been constructed.
In this chapter, we recall these compactifications and their motivations. For
example, the Satake compactifications and the Baily-Borel compactification
were motivated by automorphic forms, the Borel-Serre compactification Γ\X

BS

by topology, the toroidal compactifications by algebraic geometry, and the re-
ductive Borel-Serre compactification Γ\X

RBS
by L2-analysis.

In §III.1, we recall some of the basics of linear algebraic groups defined
over Q and rational parabolic subgroups, in particular, the Langlands decom-
position and the horospherical decomposition. In §III.2, we recall arithmetic
subgroups of linear algebraic groups and give several important examples,
and summarize reduction theories for arithmetic groups: both the classical
and the precise ones. In §III.3, we recall the Satake compactifications. The
Satake compactifications started the modern study of compactifications of lo-
cally symmetric spaces and give a general method of passing from (partial)
compactifications of symmetric spaces to compactifications of locally sym-
metric spaces. In §III.4, we recall the Baily-Borel compactification. Unlike
the Satake compactifications, which are only topological compactifications,
the Baily-Borel compactification is a normal projective variety defined over a
number field, and hence plays an important role in the Langlands program.
In §III.5, we recall the Borel-Serre compactification, which plays an important
role in understanding topological properties of arithmetic groups, for exam-
ple, the cohomology of arithmetic groups. In §III.6, we recall the reductive
Borel-Serre compactification, a variant of the Borel-Serre compactification,
which is useful in the study of L2-cohomology and other cohomology groups.
In §III.7, we briefly recall the toroidal compactifications by emphasizing the

289
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role of torus embeddings and explaining how such tori arise, and discuss an
alternative approach using the uniform method formulated in §III.8 below.

III.1 Rational parabolic subgroups

In this section, we recall basic facts about linear algebraic groups defined over
Q, rational parabolic subgroups of reductive linear algebraic groups defined
over Q and their associated Langlands, horospherical decompositions. Results
are similar to those for real parabolic subgroups in §I.1. The basic reference
of this section is [Bo9].

This section is organized as follows. After recalling the definition of linear
algebraic groups in III.1.1, we study several examples of tori in III.1.2, which
show that the various ranks with respect to different fields could be different.
Then we define the class of semisimple and reductive linear algebraic groups in
III.1.4, and study the structure of rational parabolic subgroups in III.1.6 and
III.1.7. To describe the geometry at infinity of locally symmetric spaces using
rational parabolic subgroups, we introduce the rational Langlands decomposi-
tion in III.1.9 and compare it in III.1.12 with the real Langlands decomposition
discussed in §I.1. The relative Langlands decomposition is defined in III.1.15.
Finally, we define Siegel sets associated with rational parabolic subgroups in
III.1.17.

III.1.1 Let G be a linear algebraic group, i.e., a Zariski closed subgroup of
some general linear group GL(n,C):

G = {g = (gij) ∈ GL(n,C) | Pa(gij) = 0, a ∈ A},

where each Pa is a polynomial in gij , A a parameter space. If the polynomials
Pa have Q coefficients, G is called a linear algebraic group defined over Q.

Linear algebraic groups often occur as the automorphism group of some
structures such as determinant, quadratic forms. For example,

SL(n,C) = {g ∈ GL(n,C) | det g = 1};

Sp(n,C) = {g ∈ GL(2n,C) | det g = 1, ω(gX, gY ) = ω(X,Y ), X, Y ∈ C2n},

where

ω(X,Y ) = x1y2n + x2y2n−1 + · · ·+ xnyn+1 − xn+1yn − · · · − x2ny1

is a skew-symmetric form; and

SO(2n,C) = {g ∈ GL(2n,C) | det g = 1, 〈gX, gY 〉 = 〈X,Y 〉, X, Y ∈ C2n},

where
〈X,Y 〉 = x1y2n + · · ·+ x2ny1
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a symmetric quadratic form.

III.1.2 A linear algebraic group T is called an algebraic torus if it is iso-
morphic to a product of C∗ = GL(1,C). If the isomorphism is defined over
Q (resp. R), the torus T is said to split over Q (resp. R). By definition, it
always splits over C. We discuss several examples of tori to show that these
splittings are different.

First, consider the algebraic group

T1 = {g ∈ SL(2,C) | tg
(

0 1
1 0

)
g =

(
0 1
1 0

)
}.

It can be checked easily that if g =
(
a b
c d

)
∈ T1, then b = c = 0, d = a−1,

and hence g =
(
a 0
0 a−1

)
. This implies that T1 is isomorphic to GL(1,C)

over Q under the map g 7→ a.
On the other hand, the algebraic group

T2 = {g ∈ SL(2,C) | tg
(

1 0
0 1

)
g =

(
1 0
0 1

)
}

is also a torus defined over Q but does not split over Q or R. In fact, the real
locus

T2(R) = SO(2,R)

is compact. To see that T2 is a torus, we note that T2 preserves the quadratic
form 〈X,X〉 = x2

1+x2
2, while T1 preserves the quadratic form 2x1x2, and these

two forms are equivalent over C, i.e., the quadratic form x2
1 +x2

2 splits over C
as (x1 + ix2)(x1 − ix2).

Consider another algebraic group defined over Q,

T3 = {g ∈ SL(2,C) | tg
(

1 0
0 −2

)
g =

(
1 0
0 −2

)
}.

Since the quadratic form preserved by T3 is x2
1 − 2x2

2 which splits over R but
not over Q, it follows that T3 splits over R but not over Q.

III.1.3 A linear algebraic group G is called unipotent if every element g of
G is unipotent, i.e., (g − I)k = 0 for some integer k.

Clearly, the subgroup of SL(n,C) consisting of upper triangular matri-
ces with ones on the diagonal is unipotent. The converse is also true, i.e.,
any connected unipotent algebraic group is isomorphic to a group of upper
triangular matrices with ones on the diagonal.

A linear algebraic group is called solvable if it is solvable as an abstract
group, i.e., the derived series terminates, G = G(0) ⊃ G(1) ⊃ · · ·G(l) = {e}
for some l, where G(i) = [G(i−1), G(i−1)].
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It can be checked easily that the subgroup of GL(n,C) of upper triangular
matrices is solvable. Hence, the above discussions show that a unipotent
group is always solvable. On the other hand, for a solvable algebraic group G
defined over Q, let U be its normal subgroup consisting of all the unipotent
elements. Then there exists a maximal torus T defined over Q such that G
is the semi-direct product of T and U.

III.1.4 The radical R(G) of an algebraic group G is the maximal connected
normal solvable subgroup of G, and the unipotent radical RU(G) is the max-
imal connected unipotent normal subgroup of G. If G is defined over Q, then
R(G),RU(G) are also defined over Q. A linear algebraic group G is called
semisimple if the radical R(G) = {e}, and reductive if the unipotent radical
RU(G) = {e}.

Clearly, G/R(G) is semisimple and G/RU(G) is reductive. It is known
that if G is defined over Q, there exists a maximal reductive group H defined
over Q such that

G = H ·RU(G) = RU(G) ·H.

This is the so-called Levi decomposition, and H is called a Levi subgroup.
Though we are mainly interested in semisimple linear algebraic groups,

reductive groups occur naturally when we consider parabolic subgroups and
boundary components of compactifications of locally symmetric spaces. If G
is a connected reductive algebraic group, then the derived subgroup G′ =
G(1) = [G,G] is semisimple, and there exists a central torus T such that
G = T ·G′.

III.1.5 For an algebraic group defined over Q, an important notion is its
Q-rank, which plays a fundamental role in the geometry at infinity of locally
symmetric spaces and reduction theories of arithmetic subgroups.

Let G be a connected linear algebraic group. Then all the maximal tori
of G are conjugate, and this common dimension is called the absolute (or C)
rank of G, denoted by rkC(G). If G is defined over Q, then all the maximal
Q-split tori of G are conjugate over Q, i.e., by elements of G(Q), and the
common dimension is called the Q-rank of G, denoted by rkQ(G). If the
Q-rank of G is equal to 0, G is called an anisotropic group over Q.

Similarly, the common dimension of maximal R-split tori is called the R-
rank of G, denoted by rkR(G). The examples of tori in §III.1.2 show that
these ranks of the same group are in general not equal to each other.

If G = SL(n), then rkQ(G) = rkR(G) = rkC(G) = n − 1, and hence
SL(n) is an example of groups split over Q. In general, G is called split over
Q if the Q-rank of G is equal to the C-rank of G.

If F is a non-degenerate quadratic form on a Q-vector space V with coef-
ficients in Q, then G = O(F ), the orthogonal group of F , is a linear algebraic
group defined over Q. It can be shown (see [Bo3]) that rkQ(G) > 0 if and
only if F represents 0 over Q, i.e., F = 0 has a nontrivial solution over Q.
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III.1.6 Let G be a connected linear algebraic group. Then a closed subgroup
P of G is called a parabolic subgroup if G/P a projective variety, which is
equivalent to that P contains a maximal connected solvable subgroup, i.e., a
Borel subgroup. These conditions are also equivalent to that G/P is compact
as pointed out in §I.1.

III.1.7 Assume for the rest of this section that G is a connected reductive
linear algebraic group defined over Q such that its center is an anisotropic
subgroup over Q, i.e., of Q-rank 0. This condition is clearly satisfied if G is
semisimple.

The real locus G = G(R) is a reductive Lie group with finitely many
connected components and satisfies the condition (*) in §I.1.1.

If a parabolic subgroup P is defined over Q, it is called a rational parabolic
subgroup or Q-parabolic subgroup, and its real locus P = P(R) is a parabolic
subgroup of G in the sense of §I.1.

It is known that minimal rational parabolic subgroups of G are conju-
gate over Q, and rational parabolic subgroups containing a minimal rational
parabolic subgroup correspond to subsets of simple roots as in the real case
in §I.1.

Specifically, let S be a maximal Q-split torus in G. Then the adjoint
action of S on the Lie algebra g of G gives a a root space decomposition:

g = g0 +
∑

α∈Φ(G,S)

gα,

where
gα = {X ∈ g | Ad(s)X = sαX, s ∈ S},

and Φ(G,S) consists of those nontrivial characters α such that gα 6= 0. These
characters will also be viewed as linear functionals on the Lie algebra s of S.
It is known that Φ(G,S) is a root system and the Weyl group is isomorphic
to

QW (G,S) = N (S)/Z(S),

where N (S) is the normalizer of S in G, and Z(S) the centralizer of S in G.
Fix an order on Φ(G,S), and denote the corresponding set of positive

roots by Φ+(G,S). Define

n =
∑

α∈Φ+(G,S)

gα,

a subalgebra of g. Let N be the corresponding subgroup of n. Then N
is normalized by Z(S), and P = NZ(S) is a minimal rational parabolic
subgroup. Every minimal rational parabolic subgroup containing S is of this
form with respect to some order on Φ(G,S).
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The set of simple roots in Φ+(G,S) is denoted by ∆(G,S). Then the
rational parabolic subgroups Q containing the minimal parabolic subgroup
P correspond to proper subsets ∆(G,S) as in §I.1, i.e., Q = PI , where
I ⊂ ∆(G,S). These groups PI are called the standard rational parabolic
subgroups.

Explicitly, for any proper subset I ⊂ ∆(G,S), let SI be the identity
component of the subgroup {g ∈ S | gα = 1, α ∈ I} of S. Then SI is a Q-split
torus, and PI = NZ(SI) is a rational parabolic subgroup containing P; and
any rational parabolic subgroup containing P is of this form for a unique I.

Any rational parabolic subgroup is conjugate by some element of G(Q) to
a unique standard rational parabolic subgroup PI .

III.1.8 We recall the spherical Tits building ∆Q(G) associated with G over
Q [Ti1, Theorem 5.2] [Ti2]. It is similar to the Tits building ∆(G) of a
semisimple Lie group G in §I.2. Simplexes of ∆Q(G) correspond bijectively
to proper rational parabolic subgroups of G. Each proper maximal rational
parabolic subgroup Q corresponds to a vertex of ∆Q(G), denoted by Q. Let
Q0, · · · ,Qk be different maximal rational parabolic subgroups. Then they
form the vertices of a k-simplex if and only if Q0 ∩ · · · ∩ Qk is a rational
parabolic subgroup, and this simplex corresponds to the parabolic subgroup
Q0 ∩ · · · ∩Qk.

If G has Q-rank one, ∆Q(G) is a countable collection of points. Otherwise,
∆Q(G) is a connected infinite simplicial complex of dimension rkQ(G)−1. For
any maximal Q-split torus S, all the rational parabolic subgroups containing
S form an apartment in this building. This subcomplex gives a simplicial
triangulation of the sphere of dimension rQ(G) − 1. This is the reason why
∆Q(G) is called a spherical building.

The rational points G(Q) of G act on the set of rational parabolic sub-
groups by conjugation and hence on ∆Q(G): For any g ∈ G(Q) and any
rational parabolic subgroup P, the simplex of P is mapped to the simplex of
gPg−1.

III.1.9 For any rational parabolic subgroup P of G, let NP be the unipotent
radical of P, and LP = NP\P be the Levi quotient of P. Then both NP and
LP are rational algebraic groups. Let NP = NP(R), P = P(R), LP = LP(R)
be their real loci. Let SP be the split center of LP over Q, and AP the
connected component of the identity in SP(R). Let

MP = ∩χ∈X(LP)Kerχ2.

Then MP is a reductive algebraic group defined over Q whose center is
anisotropic over Q. Let MP = MP(R). Then LP admits a decomposition

LP = APMP
∼= AP ×MP. (III.1.1)
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To obtain the rational Langlands decomposition of P , we need to lift LP
and its subgroups into P . Let X be the symmetric space of maximal compact
subgroups of G = G(R). Let K be a maximal compact subgroup of G. Then
X ∼= G/K. Let x0 ∈ X be the basepoint corresponding to K. The Cartan
involution θ of G associated with K extends to an involution of G. It is shown
in [BS2, 1.9] (see also [GHM, pp. 149-151]) that there exists a unique Levi
subgroup LP,x0 of G which is stable under the extended Cartan involution.
The canonical projection πP : LP,x0 → P/NP yields an isomorphism of LP,x0

onto LP. We let ix0 be the inverse to the restriction of πP to LP,x0 . In
particular, it is an isomorphism of LP onto LP,x0 . We let AP,x0 and MP,x0

denote the images of AP and MP under ix0 .
Note that though LP, MP, SP are algebraic groups defined over Q, their

lifts LP,x0 , MP,x0 , SP,x0 are not necessarily defined over Q. Of course, they
are defined over R.

Lemma III.1.10 For any other basepoint x1 = px0 = pKp−1 ∈ X, where
p ∈ P , the Levi subgroup LP,x1 associated with the basepoint x1 is pLP,x0p

−1,
and AP,x1 = pAP,x0p

−1, MP,x1 = pMP,x0p
−1. If n is the NP -component of

p in P = NPAP,x0MP,x0 , then AP,x1 = nAP,x0n
−1, MP,x1 = nMP,x0n

−1.

Proof. Let θ be the Cartan involution for the basepoint x0. Then the Cartan
involution for x1 is given by Int(p) ◦ θ ◦ Int(p)−1. Since p ∈ P , pLP,x0p

−1

belongs to P and is invariant under Int(p)◦θ◦Int(p)−1. This implies pLP,x0p
−1

is the lift associated with x1. The rest is clear.

Proposition III.1.11 For any rational parabolic subgroup P, there exists a
basepoint x1 ∈ X and a lift map ix1 such that ix1 is rational in the sense that
the images ix1(LP), ix1(MP), ix1(SP) are algebraic subgroups defined over Q,
and the lift ix1 is a morphism defined over Q.

Proof. Since P is defined over Q, there is a Levi subgroup L′P defined over
Q. Since all the Levi subgroups of P are conjugate under NP , there exists
n ∈ NP such that L′P = nix0(LP)n−1. Let x1 = nx0. Then the proof of the
above lemma shows that ix1(LP) = L′P.

The lift ix0(LP ) splits the following exact sequence

{e} → NP → P → LP → {e}, (III.1.2)

and gives rise to the rational Langlands decomposition of P :

P = NPAP,x0 MP,x0
∼= NP ×AP,x0 ×MP,x0 , (III.1.3)

i.e., for any g ∈ P ,
g = n(g)a(g)m(g),
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where n(g) ∈ NP , a(g) ∈ AP,x0 , m(g) ∈ MP,x0 are uniquely determined by
g, and the map g → (n(g), a(g), m(g)) gives a real analytic diffeomorphism
between P and NP ×AP,x0 ×MP,x0 .

The map P → NP × AP,x0 × MP,x0 is equivariant with respect to the
P -action defined on the right by

n0a0m0(n, a,m) = (n0
a0m0n, a0a,m0m)

for p = n0a0m0 ∈ P . Since G = PK, the subgroup P acts transitively on
X = G/K, and the Langlands decomposition of P gives the following rational
horospherical decomposition of X:

X = NP ×AP,x0 ×XP,x0 , (III.1.4)

where
XP,x0 = MP,x0/K ∩MP,x0 (III.1.5)

is called the boundary symmetric space associated with P. The Langlands
decomposition of P also induces the following rational horospherical decom-
position of G:

G = NPAP,x0MP,x0K = NP ×AP,x0 ×MP,x0K, (III.1.6)

i.e., any element g ∈ G can be written uniquely in the form g = n(g)a(g)m(g),
where n(g) ∈ NP , a(g) ∈ AP,x0 , m(g) ∈MP,x0K, and

G→ NP ×AP,x0 ×MP,x0K, g 7→ (n(g), a(g), m(g)) (III.1.7)

gives a real analytic diffeomorphism.
To indicate the dependence on the basepoint x0 of the above horospherical

decompositions of X and G, these maps are also denoted by

νx0 : NP ×AP,x0 ×XP,x0 → X,

νx0 : NP ×AP,x0 ×MP,x0K → G.

In the following, νx0(n, a,m) is also denoted by (n, a,m) or nam for simplicity.

Remark III.1.12 The real locus P of a rational parabolic subgroup P is a
parabolic subgroup of G. Hence by §I.1, P also admits the (real) Langlands
decomposition with respect to the basepoint x0 = K ∈ G/K = X,

P = NPAPMP

and the induced horospherical decomposition

X ∼= NP ×AP ×XP ,



§III.1. Rational parabolic subgroups 297

where XP = MP /K∩MP . Note that AP and MP are stable under the Cartan
decomposition θ on G associated with K. Hence they are the Langlands
decomposition with respect to the basepoint x0 = K. These decompositions
are different from the above rational decompositions in Equations (III.1.3,
III.1.4). In fact, AP,x0 ⊆ AP , but the equality AP,x0 = AP does not hold
when the R-rank of P is strictly greater than the Q-rank of P. The subgroup
AP,x0 is called the rational split component with respect to the basepoint x0.
(Note if P is a minimal real parabolic subgroup, then aP is a maximal abelian
subspace of p, where g = k ⊕ p is the Cartan decomposition of g determined
by K, which corresponds to the base point x0.)

To distinguish it from the real split component AP , we used the subscript
P in AP instead of P . Let aP , aP be the Lie algebras of AP and AP,x0

respectively, and let a⊥P ⊂ aP be the orthogonal complement. Then

XP
∼= XP × exp a⊥P, AP = AP,x0 × exp a⊥P. (III.1.8)

Therefore, XP is different from XP in general. This explains the reason for
the subscript P in XP.

III.1.13 In the following, the reference to the basepoint x0 in various sub-
scripts will be omitted unless needed.

The unipotent subgroup NP is a normal in P and AP acts on it by conjuga-
tion and on its Lie algebra nP by the adjoint representation. We let Φ(P,AP)
be the set of characters of AP in nP , the “roots of P with respect to AP”.
The value of α ∈ Φ(P,AP) on a ∈ AP is denoted aα. The differential dα of
α, also denoted by α below, is a weight of aP in nP , and we have

aα = exp dα(log a).

There is a unique subset ∆(P,AP) of Φ(P,AP), consisting of dimAP linearly
independent roots, such that any element of Φ(P,AP) is a linear combination
with positive integral coefficients of elements of ∆(P,AP), to be called the
simple roots of P with respect to AP.

Remark III.1.14 We recall how Φ(P,AP) and ∆(P,AP) are related to Q-
roots. Fix a minimal parabolic Q-subgroup P0 and a maximal Q-split torus
S of P0. Let Φ(S,G) be the set of roots of G with respect to S (the Q-
roots) and ∆(S,G) be the set of Q-simple roots for the ordering of Φ defined
by P0 (see III.1.7). There is a unique subset I ⊂ ∆(S,G) such that P is
conjugate to the standard parabolic Q-subgroup P0,I , by a conjugation which
brings the Zariski-closure of SP of AP onto SI = (∩α∈I kerα)o. Then, up
to conjugation, the elements of Φ(P,AP) are the non-zero restrictions of the
elements in Φ+(S,G) and ∆(P,AP) is the set of restrictions of ∆(S,G)− I.
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III.1.15 For any rational parabolic subgroup P which is not necessarily
minimal, the set of rational parabolic subgroups Q containing P also corre-
sponds bijectively to the collection of proper subsets of ∆(P,AP) as in the
case of minimal rational parabolic subgroupsin III.1.7.

Specifically, for any proper subset I ⊂ ∆(P,AP), define

AP,I = {a ∈ AP | aα = 1, α ∈ I}.

Then there exists a unique rational parabolic subgroup Q containing P such
that

AQ = AP,I .

Denote this parabolic subgroup by PI . Any rational parabolic subgroup con-
taining P is of this form.

III.1.16 For any rational parabolic subgroup Q containing P, there is a
relative Langlands decomposition of Q with respect to P and the related horo-
spherical decomposition. Let Q = PI . Then

AQ = API = {eH ∈ AP | α(H) = 0, α ∈ I}.

Define
aQ
P = aIP = {H ∈ aP | H ⊥ aPI},

and
AQ

P = AIP = exp aIP.

Then
AP = AQA

Q
P
∼= AQ ×AQ

P . (III.1.9)

There is a related but different decomposition. Define

aP,Q = aP,PI = {eH | α(H) = 0, α ∈ ∆− I},

AP,Q = AP,PI = exp aP,PI . (III.1.10)

Then
AP = AQAP,Q = AQ ×AP,Q. (III.1.11)

Combined with the horospherical decomposition of X, X = NP × AP ×XP,
we get another decomposition of X:

X = NP ×XP ×AP,Q ×AQ. (III.1.12)

As in Equation (I.1.21), P determines a unique rational parabolic subgroup
P′ of MQ (see [HC, Lemma 2]).
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Identify MQ with a subgroup of Q under the canonical lift ix0 . Then
MQ ∩ P is the lift of P ′ under ix0 . Similarly, under the lift ix0 , AP′ and NP ′
can be identified with subgroups of P . Then P′ satisfies the properties:

MP′ = MP, AP = AQAP′ = AQ ×AP′ , NP = NQNP ′ = NQ oNP ′ .
(III.1.13)

The parabolic subgroup P ′ induces a Langlands decomposition of MQ:

MQ = NP ′ ×AP ′ × (MP ′KQ), (III.1.14)

and the horospherical decomposition of XQ:

XQ = NP ′ ×AP ′ ×XP′ = NP ′ ×AP ′ ×XP. (III.1.15)

III.1.17 For any t > 0, define

AP,t = {a ∈ AP | aα > t, α ∈ ∆(P,AP)}. (III.1.16)

For any bounded sets U ⊂ NP , V ⊂ XP, the subset

SP,U,t,V = U ×AP,t × V ⊂ NP ×AP ×XP = X (III.1.17)

is called a Siegel set in X associated to P. For the improper parabolic sub-
group P = G, the Siegel sets are bounded sets.

Due to the difference between the the rational and real Langlands decom-
positions of P and the induced horospherical decompositions pointed out in
Remark III.1.12, the Siegel sets defined here are different from the Siegel sets
associated to P in §I.9.1, if AP 6= AP .

To construct compactifications of arithmetic quotients of G later, we also
need Siegel sets in G.

For any bounded sets U ⊂ NP , W ⊂MPK, the subset

U ×AP,t ×W ⊂ NP ×AP × (MPK) = G (III.1.18)

is called a Siegel set in G associated to P and K, or the basepoint x0.
Clearly, any Siegel set U×AP,t×V in X lifts to a Siegel set U×AP,t×V K

in G; and any Siegel set U ×AP,t×W in G with a right K-invariant W gives
a Siegel set U ×AP,t ×W/K in X.

In general, a Siegel set in G is not necessarily a lift of a Siegel set in X.

III.1.18 Summary and comments. We recalled basic facts about linear
algebraic groups. We gave several examples of tori defined over Q to show
that the rank of an algebraic group depends on the field in question. The
Langlands decomposition associated with a parabolic subgroup also depends
on the field of definition of the parabolic subgroup.

For a more systematical summary of algebraic groups, see [Bo14]. For
thorough discussions, see [Bo9] and [Sp4].
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III.2 Arithmetic subgroups and reduction the-
ories

In this section we recall arithmetic groups and the reduction theories for them.
The basic references of this section are [Bo3] [Bo4] [Bo5] [PR] [OW1] [Sap1].

This section is organized as follows. In Definition III.2.1, we introduce
arithmetic subgroups. In Proposition III.2.2, we show that arithmetic sub-
groups are independent of the choice of a Q-basis of the vector space. Then
we discuss some important examples of arithmetic subgroups: the Hilbert
modular groups in III.2.7, arithmetic Fuchsian groups in III.2.8, the Bianchi
groups in III.2.9, and the Picard modular groups in III.2.10. Then we intro-
duce fundamental domains in Definition III.2.13, fundamental sets in III.2.14.
In Proposition III.2.15, we state conditions which are equivalent to that the
quotient Γ\G is compact. For example, when G is semisimple, one condition
is that the Q-rank of G is equal to 0. When the Q-rank of G is positive,
we state the classical reduction theory in Proposition III.2.16 which implies
finite generation of Γ in Corollary III.2.17. Separation of Siegel sets is given
in Proposition III.2.19. The precise reduction theory gives a fundamental
domain and is stated in Proposition III.2.21.

Let G ⊂ GL(n,C) be a linear algebraic group defined over Q, not neces-
sarily reductive. Let G(Q) ⊂ GL(n,Q) be the set of its rational points, and
G(Z) ⊂ GL(n,Z) the set of its elements with integral entries, which can be
identified with the stabilizer of the standard lattice Zn in Rn.

Definition III.2.1 A subgroup Γ ⊂ G(Q) is called an arithmetic subgroup if
it is commensurable with G(Z), i.e., Γ ∩G(Z) has finite index in both Γ and
G(Z).

As an abstract affine algebraic group defined over Q, G admits different
embeddings into GL(n′,C), where n′ might be different from n. The above
definition depends on the embedding G ⊂ GL(n,C) and the integral subgroup
GL(n,Z). If we choose a different embedding, for example using a basis
of Rn over Q different from the standard basis e1 = (1, 0, · · · , 0), · · · , en =
(0, · · · , 0, 1), then we will get a different integral subgroup G(Z) of GL(n,C)
defined with respect to this basis.

It turns out that these different embeddings G ⊂ GL(n′,C) and different
choices of integral structures lead to the same class of arithmetic groups (see
[PR] [Ji6]).

Proposition III.2.2 Let G,G′ be two linear algebraic groups defined over
Q, and ϕ : G → G′ an isomorphism defined over Q. Then ϕ(G(Z)) is
commensurable with G′(Z).
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Corollary III.2.3 If Γ is an arithmetic subgroup of G, then for any g ∈
G(Q), gΓg−1 is also an arithmetic subgroup of G.

Remark III.2.4 To discuss some important examples of arithmetic sub-
groups such as the Hilbert modular groups, the Bianchi groups and the Picard
modular groups below, we need a slightly more general set-up for arithmetic
groups. Let F be a number field, i.e., a finite extension of Q, and OF its
ring of integers. Let G ⊂ GL(n,C) be a linear algebraic group defined over
F . A subgroup Γ of G(F ) is called arithmetic if it is commensurable to
G(OF ) = G ∩ GL(n,OF ). It turns out that such an arithmetic subgroup is
also an arithmetic subgroup according to the previous definition and hence we
do not get more arithmetic subgroups by considering general number fields.
In fact, by the functor of restriction of scalars (see [PR] [Ji6]), there is an
algebraic group ResF/QG defined over Q such that ResK/QG(Q) = G(F ),
and G(OF ) is commensurable to ResK/QG(Z) under this identification.

On the other hand, it is often convenient to use some naturally occurring
number fields to define some arithmetic groups.

III.2.5 As in §III.1, we assume that G is a reductive linear algebraic group
defined over Q such that its center is an anisotropic subgroup defined over
Q, and its real locus G = G(R) is a reductive Lie group with finitely many
connected components. LetK ⊂ G be a maximal compact subgroup, andX =
G/K the associated symmetric space, which is the product of a symmetric
space of noncompact type and a possible Euclidean factor.

Let Γ ⊂ G(Q) an arithmetic subgroup. By a known result of Selberg (see
[Sel3], and also [Bo4] [Ji6]), Γ admits torsion free subgroups of finite index.
Hence, we can assume Γ is torsion free if necessary by passing to a subgroup
of finite index.

Since Γ is a discrete subgroup of G, Γ acts properly on X, and the quotient

Γ\X = Γ\G/K

is called a locally symmetric space, which is smooth if Γ is torsion free and has
at most finite quotient singularities in general, by the above result of Selberg.

To understand the geometry of Γ\X, we need the reduction theories for
Γ. First, we recall several important examples of arithmetic subgroups and
their associated locally symmetric spaces.

III.2.6 The best known and simplest arithmetic subgroups are

SL(n,Z) ⊂ SL(n,R),

and its congruence subgroups, where a subgroup of SL(n,Z) is called a con-
gruence subgroup if it contains a principal congruence subgroup Γ(N),

Γ(N) = {g ∈ SL(n,Z) | g ≡ Id mod N}.
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The group SL(n,Z) is not torsion free, but for any N ≥ 3, Γ(N) is torsion
free (see [Br2] for example). The quotient SL(n,Z)\SL(n,R) can be identified
with the moduli space of unimodular lattices in Rn. Since the lattices in Rn can
degenerate, for example, the minimum norm of lattice vectors can converge to
0, SL(n,Z)\SL(n,R) is non-compact, i.e., SL(n,Z) is not a uniform discrete
subgroup (or lattice).

III.2.7 Hilbert modular groups.
Let F be a real quadratic field, F = Q(

√
d), d is a square free positive

integer. Then F has two real embeddings and no complex embedding. The
group SL(2) is defined over Q and hence also over F . The group ResF/QSL(2)
is defined over Q and of Q-rank 1, and

ResF/QSL(2,R) = SL(2,R)× SL(2,R).

The arithmetic group Γ = SL(2,OF ) embeds into SL(2,R) × SL(2,R) as a
discrete subgroup, called the (principal) Hilbert modular group. Let H be the
upper half plane with the Poincaré metric. Then the Hilbert modular group
Γ acts on the product H ×H properly and the quotient Γ\H ×H has finite
volume, called the Hilbert modular surface associated with F . The geometry
of the Hilbert modular surface is closely related to the properties of the field
F . For example, the number of ends of Γ\H×H is equal to the class number
of F (see [Fr, 3.5]).

The Q-rank of ResF/QSL(2,R) is equal to 1, but the R-rank is equal to
2 and hence strictly greater than 1. Let P be a minimal rational parabolic
subgroup. Then

dimAP = 2, dimAP = 1,

and hence the real boundary space XP consists of one point, and the rational
boundary symmetric space

XP
∼= R.

More generally, we can consider a totally real number field F of degree d
over Q, i.e., F admits no complex embedding, s = d, t = 0. Then SL(2,OF )
is a discrete subgroup of SL(2,R)d and defines the Hilbert modular variety
Γ\Hd. If P is a minimal rational parabolic subgroup then XP consists of a
point and

XP
∼= R

d−1.

III.2.8 Arithmetic Fuchsian groups.
It is known that the subgroup SL(2,Z) and its subgroups of finite index

are not uniform lattices, i.e., SL(2,Z)\H is noncompact. To obtain uniform
arithmetic subgroups of SL(2,R), we can use quaternion algebras over Q.
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For any two non-zero elements a, b ∈ Q, there is a quaternion algebra
H(a, b) defined as the 4-dimensional vector space over Q with a basis 1, i, j, k
such that it is an algebra over Q with multiplication determined by

i2 = a, j2 = b, ij = −ji = k.

When a = b = −1, we get the usual quaternion algebra.
The algebra H(a, b) can be embedded into M2×2(Q(

√
a)) by

ρ : x = x0 + ix1 + jx2 + kx3 7→
(

x0 + x1
√
a x2 + x3

√
a

b(x2 − x3
√
a) x0 − x1

√
a

)
. (III.2.1)

It is known that H(a, b) is either a division algebra, i.e., every nonzero
element is divisible; or it is isomorphic to M2×2(Q) over Q, which is clearly
not a division algebra.

Assume that a, b are positive integers, and H(a, b) is a division algebra.
Define a norm on H(a, b) by

Nr(x0 + ix1 + jx2 + kx3) = x2
0 − ax2

1 − bx2
2 + abx2

3.

Define

Γ = {x = x0 + ix1 + jx2 + kx3 | x0, x1, x2, x3 ∈ Z, Nr(x) = 1},

the norm 1 subgroup of the order

O = {x = x0 + ix1 + jx2 + kx3 | x0, x1, x2, x3 ∈ Z}

in H(a, b). Since a > 0, a is the square of a real number, and hence

H(a, b)⊗ R = M2×2(R).

In other words, H(a, b) gives a rational structure on M2×2(R) different from
the standard one M2×2(Q). Since

det
(

x0 + x1
√
a x2 + x3

√
a

b(x2 − x3
√
a) x0 − x1

√
a

)
= Nr(h),

the image ρ(Γ) under the embedding ρ in Equation (III.2.1) belongs to SL(2,R).
It is known that Γ ∼= ρ(Γ) is a discrete subgroup of SL(2,R) with compact

quotient Γ\SL(2,R) (see [Kat] [Ji6]).

III.2.9 Bianchi groups.
Let F = Q(

√
−d) be an imaginary quadratic field, where d is a positive

square-free integer. Then ResF/QSL(2) is defined over Q of Q-rank 1 and

ResF/Q(R) = SL(2,C).
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The arithmetic subgroup SL(2,OF ) is a discrete subgroup of SL(2,C) and
called the Bianchi group associated with the field F . The symmetric space
X = G/K for G = SL(2,C) is the real hyperbolic space H3 of dimensional
3, i.e., the simply connected Riemannian manifold with constant curvature
equal to −1. As discussed in I.4.2, H3 can be realized as

H3 = {(x, y, t) | x, y ∈ R, t > 0}, ds2 =
dx2 + dy2 + dt2

t2
.

Let OF be the ring of integers in F . The quotient SL(2,OF )\H3 is a typi-
cal noncompact arithmetic 3-dimensional hyperbolic manifold of finite volume
and has been extensively studied in topology (see [EGM] and [MR]). There are
also co-compact arithmetic subgroups of SL(2,C) constructed via quaternion
algebras over F (see [MR]).

III.2.10 Picard modular groups.
Let 〈·, ·〉 be the Hermitian form on C3 defined by

〈z, w〉 = z̄1w1 + z̄2w2 − z̄3w3, z = (z1, z2, z3), w = (w1, w2, w3).

Let SU(2, 1) be the associated special unitary group

SU(2, 1) = {g ∈ SL(3,C) | 〈gz, gw〉 = 〈z, w〉}.

Clearly SU(2, 1) is defined over Q and hence also defined over any imaginary
quadratic field F = Q(

√
−d), where d is a positive square free positive integer.

ResF/QSU(2, 1) is defined over Q and of Q-rank 1, and

ResF/QSU(2, 1)(R) = SU(2, 1;C),

which is often denoted by SU(2, 1) as above. The arithmetic subgroup SU(2, 1;OF )
is a discrete subgroup of SU(2, 1) and called the Picard modular group associ-
ated with F , where OF is the ring of integers in F as above. The symmetric
space X = G/K for G = SU(2, 1) is the unit ball in C2,

SU(2, 1)/S(U(2)× U(1)) ∼= B2
C

= {(z1, z2) ∈ C2 | |z1|2 + |z2|2 < 1},

and the quotient SU(2, 1;OF )\B2
C

is called the Picard modular surface asso-
ciated with the field F .

III.2.11 Siegel modular groups.
Except for the example of SL(n,Z), all other examples of arithmetic

groups mentioned above are of Q-rank 1. The Siegel modular group is one of
the most important arithmetic groups of higher Q-rank.

For any n ≥ 1, define

Sp(n,Z) = {γ =
(
A B
C D

)
| A,B,C,D ∈Mn(Z), tγJnγ = Jn}, (III.2.2)
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where

Jn =
(

0 In
−In 0

)
.

Let
Hn = {Z ∈Mn(C) | tZ = Z, Im Z > 0}

be the Siegel upper half space of degree n. When n = 1, it reduces to the
usual upper half plane H = H1. Then Sp(n,Z) acts on Hn by

γ · Z = (AZ +B)(CZ +D)−1,

where γ is given in Equation (III.2.2).
The quotient Sp(n,Z)\Hn is the moduli space of principally polarized

abelian varieties of dimension n (see [Mum2, Theorem 4.7]). When n = 1,
abelian varieties become elliptic curves and each elliptic curve has a canonical
principal polarization; furthermore, Sp(1,Z) = SL(2,Z).

III.2.12 The above short list gives some typical examples of arithmetic sub-
groups. To study the quotient Γ\X, we introduce the notions of fundamental
domains and fundamental sets.

Definition III.2.13 A fundamental domain for the arithmetic subgroup Γ
acting on X is an open subset Ω ⊂ X such that

1. Each coset Γ·x contains at least one point in the closure Ω, i.e., X = ΓΩ.

2. No two interior points of Ω lie in one Γ-orbit, i.e., the translates γΩ for
γ ∈ Γ are disjoint open subsets.

By definition, Ω is mapped injectively into Γ\X, and its closure Ω is
mapped surjectively onto Γ\X.

A general geometric method to construct fundamental domains for a dis-
crete group acting isometrically and properly on a metric space uses the
Dirichlet domain. Specifically, let x1 ∈ X be any basepoint which is not
a fixed point of Γ. Let d be the distance function. Then

D(Γ, x1) = {x ∈ X | d(x, x1) < d(γx, x1), γ ∈ Γ, γ 6= e}

is the Dirichlet domain for Γ with center x1. It can be seen that D(Γ, x1) is a
fundamental domain for Γ acting on X. In fact, for any x ∈ X, since Γ acts
properly, inf{d(γx, x1) | γ ∈ Γ} is achieved, say by γ0. Then γ0x ∈ D(Γ, x1).

If X is not a symmetric space of constant curvature and Γ\X is noncom-
pact, the shape of D(Γ, x1) near infinity is complicated and its relation to
parabolic subgroups are not clear. For this reason, we introduce the notion
of fundamental sets.
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Definition III.2.14 A subset S of X is called a fundamental set if

1. ΓS = X.

2. For any g ∈ G(Q), the set {γ ∈ Γ | gS ∩ γS 6= ∅} is finite.

To define the fundamental sets of a fixed arithmetic group Γ, we can replace
(2) above by a weaker condition:

(2’) The set {γ ∈ Γ | S ∩ γS 6= ∅} is finite.

But we need condition (2) to relate fundamental sets of different arithmetic
subgroups and different algebraic groups, for example, to derive fundamental
sets of general Γ from the special case G = SL(n),Γ = SL(n,Z).

This condition (2) is called the Siegel finiteness property and also plays
an important role in defining the topology of compactifications of Γ\X and
showing that it is Hausdorff.

The first result concerning the quotient Γ\X is the following compactness
criterion, which was conjectured by Godement and proved by Borel & Harish-
Chandra [BHC], and Mostow & Tamagawa [MT].

Proposition III.2.15 Let G be a connected reductive linear algebraic group
defined over Q whose center is an anisotropic subgroup defined over Q, and
Γ ⊂ G(Q) an arithmetic subgroup. Then the following conditions are equiva-
lent:

1. The locally symmetric space Γ\X is compact.

2. G(Q) does not contain any nontrivial unipotent element.

3. The Q-rank of G is equal to 0.

For the rest of this section, we assume that G is a connected reductive
linear algebraic group defined over Q whose Q-rank is positive and whose
center is an anisotropic subgroup. The positivity of the Q-rank of G implies
that there are proper rational parabolic subgroups of G. The reduction the-
ory gives fundamental sets for Γ in terms of Siegel sets of rational parabolic
subgroups.

Proposition III.2.16 Let G be a reductive linear algebraic group defined
over Q, and Γ an arithmetic subgroup. If P is a minimal rational parabolic
subgroup of G, then Γ\G(Q)/P(Q) is finite, i.e., there are only finitely many
Γ-conjugacy classes of minimal rational parabolic subgroups. Furthermore,
there exists a Siegel set S = U × AP,t × V associated with P and a finite
subset C ⊂ G(Q) such that CS is a fundamental set for Γ.

Together with the Siegel finiteness of the Siegel sets, the above proposition
immediately imply the following results.
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Corollary III.2.17 Any arithmetic subgroup Γ is finitely generated.

Corollary III.2.18 Under the further assumption that the center of G is an
anisotropic subgroup, i.e., of Q-rank equal to 0, the volume of Γ\G is finite.
In particular, if G is semisimple, Γ\G has finite volume.

For the proof of these results, see [Bo4] and [PR]. To relate the geometry
of Γ\X at infinity to all rational parabolic subgroups rather than only the
minimal ones, we need more refined versions of the reduction theory and
some separation properties of Siegel sets.

Proposition III.2.19 1. There are only finitely many Γ-conjugacy classes
of rational parabolic subgroups. Let P1, · · · ,Pk be a set of representa-
tives of the Γ-conjugacy classes of rational parabolic subgroups. There
exist Siegel sets Ui×APi,ti×Wi in G associated to Pi (1 ≤ i ≤ k) whose
images in Γ\G cover the whole space.

2. For any two rational parabolic subgroups Pi, i = 1, 2 and Siegel sets
Ui ×APi,ti ×Wi associated to Pi, the set

{γ ∈ Γ | γ(U1 ×AP1,t1 ×W1) ∩ U2 ×AP2,t2 ×W2} 6= ∅

is finite.

3. Suppose that P1 is not Γ-conjugate to P2. Fix Ui, Wi, i = 1, 2. Then

γ(U1 ×AP1,t1 ×W1) ∩ U2 ×AP2,t2 ×W2 = ∅

for all γ ∈ Γ, if t1, t2 � 0.

4. For any fixed U,W , when t� 0,

γ(U ×AP,t ×W ) ∩ U ×AP,t ×W = ∅

for all γ ∈ Γ− ΓP .

5. For any two different parabolic subgroups P1,P2, when t1, t2 � 0,

U1 ×AP1,t1 ×W1 ∩ U2 ×AP2,t2 ×W2 = ∅.

6. The analogous properties in (1)-(5) hold for Siegel sets Ui × APi,t × Vi
in X.

These results are not stated in exactly the same form in [Bo4] but parts
(1) to (4) follow from Theorem 15.5, Proposition 15.6 and Proposition 12.6
there, and part (5) follows from part (3) and the fact that for any two different
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parabolic subgroups P1,P2, there exists an arithmetic subgroup Γ such that
P1 is not Γ-conjugate to P2. These results except part (5) are also stated in
[OW, Theorem 2.11] for slightly more general discrete subgroups Γ.

III.2.20 The reduction theory above only gives a fundamental set for Γ.
There is a refined version which allows one to get a fundamental domain, or
an exact fundamental set without overlap under Γ-translates. Such a theory is
called the precise reduction theory. To state this theory, we need to introduce
a variant of Siegel sets. For any T ∈ AP, define

AP,T = {a ∈ AP | aα > Tα for all α ∈ Φ(P,AP)}. (III.2.3)

When T = e, the identify element, AP,e is the positive chamber A+
P associated

with P; in general, AP,T is the translate of the positive chamber A+
P under

T . (Note this shifted chamber is similar to the shifted chamber AP,T in the
real split component AP in §I.9.6.) Then we can define Siegel sets

U ×AP,T × V

in X and U ×AP,T ×W in G.

Proposition III.2.21 Let P1 · · · ,Pk be representatives of Γ-conjugacy classes
of all proper rational parabolic subgroups of G. There exist a bounded set Ω0

in X and Siegel sets Ui ×APi,Ti × Vi, i = 1, · · · , k, such that

1. each Ui×APi,Ti×Vi is mapped injectively into Γ\X under the projection
π : X → Γ\X,

2. The image of Ui×Vi in Γ∩Pi\NPiMPi/(K ∩MPi) ∼= Γ∩Pi\NPi×XPi

is compact,

3. and Γ\X admits the following disjoint decomposition

Γ\X = Ω0 ∪
k∐
i=1

π(Ui ×APi,T × Vi). (III.2.4)

In the above, we have used the fact that Γ ∩ Pi is contained in NPiMPi .
The elements of Ti ∈ APi are related and should be chosen in a compatible
way. For more detailed discussions of the precise reduction theory, see [OW,
Theorem 3.4], [Sap1] and also [JM, §4.5].

Remark III.2.22 The formulation in [Sap1] is different and given by Γ-
equivariant decomposition of X, called Γ-equivariant tiling. Briefly, the dis-
joint decomposition in Equation (III.2.4) can be lifted to a Γ-equivariant dis-
joint decomposition of X. The connected components of this decomposition,
i.e., the connected components of π−1(π(Ui × APi,Ti × Vi)), are called tiles
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in [Sap1], and they are parametrized by rational parabolic subgroups. Of
course, we can reverse the process. Starting from a Γ-equivariant tiling, take
the tiles of the representatives P1, · · · ,Pk together with the central tile as-
sociated with G. For each tile, take a fundamental domain given by a Siegel
set Ui × APi,T × Vi for the discrete subgroup Γ ∩ Pi. They give the disjoint
decomposition of Γ\X as in Equation (III.2.4).

III.2.23 Summary and comments. Two versions of reduction theory for
arithmetic subgroups of linear reductive algebraic groups are stated. When
X is a linear symmetric space, i.e., it is either a symmetric cone, for example
X = GL(n,R)/O(n), or a homothety section of a symmetric cone, for exam-
ple, X = SL(n,R)/SO(n), there is another version of reduction theory. In
this case, the reduction theory is closely related to the geometry of number,
and a fundamental domain is given by a union of polyhedral cones or their
homothety sections. See [AMRT] [As1]–[As4] and the references there. For
the geometry of numbers, see [Cass1-2] [Con] [CoS] [Gru] [GruL] [MM1-2]
[MR] [Ma] [PR] [So1] [Si3].

III.3 Satake compactifications of locally sym-
metric spaces

In this section, we recall the procedure in [Sat2] of constructing the Satake
compactifications of Γ\X from the Satake compactifications of X. The basic
idea is to obtain a partial compactification of X from a compactification X of
X by adding only rational boundary components of X and to endow the partial
compactification with the Satake topology on which the arithmetic subgroup
Γ acts continuously with a compact Hausdorff quotient. In this construction,
the notion of rational boundary components is important and depends on the
closure or compactifications of fundamental sets.

This section is organized as follows. First, we recall a general result on
defining the Satake topology on a Γ-space which contains X if a fundamental
set has a Hausdorff compactification in Proposition III.3.2. Then we intro-
duce three different notions of rational boundary components: Siegel rational,
weakly rational and rational boundary components, and the notion of (geo-
metrically) rational compactifications of X in III.3.3, III.3.6–III.3.8. After
showing that rational compactifications of X induce Hausdorff compactifi-
cations of locally symmetric spaces in III.3.5 and III.3.9, we discuss several
examples of rational compactifications of symmetric spaces in III.3.10, III.3.13
and III.3.14. Finally, we comment informally how compactifications of fun-
damental sets could lead directly to compactifications of locally symmetric
spaces and difficulties of this approach in III.3.17.



310 Part III. Compactifications of locally symmetric spaces

In this section, we assume that G is a connected semisimple linear algebraic
group defined over Q, and X = G/K the associated symmetric space of
noncompact type, and Γ ⊂ G(Q) an arithmetic subgroup.

III.3.1 In [Sat2], Satake gave a general procedure of compactifying Γ\X us-
ing a compactification of a fundamental domain. In fact, the compactification
of the fundamental domain is used to construct a Γ-equivariant partial com-
pactification of X. Since compactifications of the symmetric space X induce
compactifications of the fundamental domain, this connects the compactifica-
tions of the symmetric spaces X and locally symmetric spaces Γ\X.

Proposition III.3.2 Let Γ be an arithmetic subgroup acting on the symmet-
ric space X as above. Let

X∗ = X ∪ ∂∗X

be a Γ-space without topology containing X and extending the canonical action
of Γ on X. Suppose there exists a subset Σ of X∗ satisfying the following
conditions:

1. X∗ = ΓΣ.

2. The space Σ admits a compact Hausdorff topology such that its induced
subset topology on Σ ∩ X gives the induced topology from X, and the
Γ-action on Σ is continuous in the sense: for any x ∈ Σ and γ ∈ Γ,
(a) if γx ∈ Σ, then for any neighborhood U ′ of γx in Σ, there exists a
neighborhood U of x in Σ such that γU ∩ Σ ⊂ U ′; (b) if γx 6∈ Σ, then
there exists a neighborhood U of x in Σ such that γU ∩ Σ = ∅.

3. There exists finitely many γi, i ∈ I, such that, if γΣ ∩ Σ 6= ∅ for some
γ ∈ Γ, then for some γi,

γ|Σ∩γ−1Σ = γi|Σ∩γ−1Σ. (III.3.1)

Then there exists one and only one topology on X∗, called the Satake topology,
satisfying the following conditions:

1. it induces the original topology on Σ and on X,

2. the Γ-action on X∗ is continuous,

3. for every point x ∈ X∗, there exists a fundamental system of neighbor-
hoods {U} of x such that

γU = U, γ ∈ Γx; γU ∩ U = ∅, γ 6∈ Γx,

where Γx = {γ ∈ Γ | γx = x} is the stabilizer of x in Γ,
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4. if x, x′ ∈ X∗ are not in one Γ-orbit, then there exist neighborhoods U of
x and U ′ of x′ such that

ΓU ∩ U ′ = ∅.

The quotient Γ\X∗ is a compact, Hausdorff space containing Γ\X and induces
the canonical topology on the latter. If Σ ∩ X is open and dense in Σ, then
Γ\X∗ contains Γ\X as a dense, open subset and is hence a compactification
of Γ\X.

The basic idea of the proof is as follows. Since X∗ = ΓΣ, we define
neighborhoods of points in X∗ by saturating neighborhoods of points in Σ
under the action of the stabilizer Γx. The finiteness in Equation (III.3.1)
allows us to show that the topology is Hausdorff. The compactness follows
from the fact that Σ is compact and mapped surjectively to Γ\X∗. Details of
the proof are given in [Sat2, pp. 561-563].

III.3.3 It is reasonable to expect that in the above approach, Σ = Σ ∩ X
is a fundamental set for the Γ-action on X. To apply this approach, we
need a choice of the boundary ∂∗X of X and a suitable compactification of a
fundamental set Σ compatible with the structure of X∗ = X ∪ ∂∗X. This is
achieved by the so-called rational boundary components of compactifications
of X.

Let X
S

τ be the Satake compactification of X associated with a faithful
projective representation τ of the adjoint group G/Z(G) of G in §I.4. let µτ
be the highest weight of τ with respect to a fixed order on Φ(g, a). Recall
from Proposition I.4.38 and discussions before it that for each µτ -saturated
parabolic subgroup Q, its boundary component

e(Q) = XP (Q),

where P (Q) is a µτ -reduction of Q. Then

X
S

τ = X ∪
∐

µτ -saturated Q

e(Q) = X ∪
∐

µτ -saturated Q

XP (Q).

Let Σ be a fundamental set for Γ constructed from Siegel sets of rational
parabolic subgroups in Propositions III.2.16 and III.2.19. Let Σ be the closure
of Σ in X

S

τ . Clearly, the Γ-action on Σ in the sense of Proposition III.3.2 is
continuous.

Assume that Σ satisfies the following conditions:

III.3.4 Condition.

1. There exist only finitely many boundary components XP (Q) of X
S

τ meet-
ing Σ. Let XP (Q1), · · · , XP (Qm) be a maximal set of Γ-nonconjugate
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boundary components among them. For each i, let Ii ⊂ Γ be the finite
subset such that when i = 1, · · · ,m and γ ∈ Ii, XP (γQi), exhaust all the
boundary components in the orbit ΓXP (Qi) which meet Σ.

2. For each i, the action of the subgroup Γ∩Qi on XP (Qi) induces a discrete
group ΓXP (Qi)

in the automorphism of XP (Qi), and the subset

∪γ∈IiΣ ∩ γ−1XP (γQi) ⊂ XP (Qi)

is a fundamental set for the ΓXP (Qi)
-action on XP (Qi).

The first condition (1) is automatically satisfied (see the proof of Proposi-
tion III.3.9 below), and the nontrivial part is condition (2). Under the above
assumption, put

∂∗X = ∪mi=1ΓXP (Qi) (III.3.2)

Proposition III.3.5 Assume the compactification X
S

τ satisfies Condition III.3.4
above. For the choice of ∂∗X in Equation (III.3.2) and Σ above, the conditions
in Proposition III.3.2 are satisfied, and hence the quotient

Γ\X ∪ ∂∗X = Γ\X ∪
k∐
i=1

ΓXP (Qi)
\XP (Qi)

defines a compactification of Γ\X.

The basic point is to check that the finiteness condition in Equation
(III.3.1) in Proposition III.3.2 is satisfied. This follows from (2) in Condi-
tion III.3.4. See [Sat2, p. 562] for details.

Definition III.3.6 A boundary component XP (Q) of X
S

τ is called Siegel ra-
tional if ΓXP (Q) meets the closure of some Siegel sets of rational parabolic

subgroups of G, or equivalently the closure Σ of a fundamental set Σ in X
S

τ

given in the above proposition.

Since all arithmetic subgroups of G(Q) are commensurable with each
other, the above definition does not depend on the choice of Γ, and the Siegel
rational boundary components only depend on the rational structure of G
given by G and the compactification X

S

τ .
Therefore, the boundary ∂∗X is the union of Siegel rational boundary

components of X
S

τ . Certainly it is natural to expect that rational bound-
ary components are given by those for which Q is the real locus of rational
parabolic subgroups. To be precise, we need the following notion.
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Definition III.3.7 1. A boundary componentXP (Q) ofX
S

τ is called weakly
rational if its stabilizer (or normalizer) N (XP (Q)) = Q is the real locus
of a rational parabolic subgroup Q of G, which is equivalent to that
Γ ∩NQ is a cocompact lattice in NQ;

2. A boundary component XP (Q) of X
S

τ is called rational if it is weakly
rational and the centralizer Z(XP (Q)) contains a cocompact closed sub-
group Z which is a normal subgroup of Q and is the real locus of an
algebraic group Z defined over Q.

The second condition for the rational boundary components implies that
the Γ∩Q-action on XP (Q) induces a discrete subgroup ΓXP (Q) , or equivalently
the image of Γ∩Q in Q/Z(XP (Q)) is discrete, since the action of Q on XP (Q)

factors through
Q→ Q/Z → Q/Z(XP (Q)).

Definition III.3.8 A Satake compactification X
S

τ is called geometrically ra-
tional, or simply rational, if every Siegel rational boundary component is
rational.

Proposition III.3.9 If a Satake compactification X
S

τ is geometrically ratio-
nal, then the construction in Proposition III.3.5 gives a Hausdorff compacti-
fication of Γ\X,

Γ\X
S

τ = Γ\X ∪ ∂∗X = Γ\X ∪
m∐
i=1

ΓXP (Qi)
\XP (Qi),

where Q1, · · · ,Qm are representatives of Γ-conjugacy classes of µτ -saturated
rational parabolic subgroups of G.

Proof. We need to check that the conditions in III.3.4 are satisfied. Let P
be a minimal rational parabolic subgroup of G, and let P0 be a minimal real
parabolic subgroup of G contained in the real locus P = P(R). Then a Siegel
set U×AP,t×V for the rational parabolic subgroup P is contained in a Siegel
set U0 × AP0,t0 × V0 of the real parabolic subgroup P0 for suitable U0, V0, t0.
Clearly, only the boundary components of the standard parabolic subgroups
containing P0 can meet the closure of U0 × AP0,t0 × V0, and hence of the
closure of U ×AP,t × V . Since a fundamental set Σ consists of finitely many
Siegel sets, the condition (1) in III.3.4 is satisfied. By the assumption, these
finitely many rational boundary components are geometrically rational. Then
the condition (2) follows from the observation that for any such boundary
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component XP (Q), the intersection with the closure of U0 × AP0,t0 × V0 is
contained in a Siegel set.

III.3.10 To show that a compactification X
S

τ is geometrically rational, we
need to carry out two steps:

1. Understand the closure of Siegel sets in X
S

τ and show that Siegel rational
boundary components are weakly rational.

2. Show that weakly rational boundary components are rational.

To carry out step (1), we need to understand how the rational split compo-
nent AP is embedded into the real split component AP of a rational parabolic
subgroup P, since the convergence of interior points to boundary points in
the Satake compactification X

S

τ is described in terms of the real split compo-
nent AP . To carry out step (2), we need to determine the normalizer and the
centralizer of each boundary component.

In all the known examples of Satake compactifications, weakly rational
boundary components coincide with rational boundary components.

Lemma III.3.11 In the maximal Satake compactification X
S

max, any weakly
rational boundary component is rational.

Proof. In this case, the centralizer of the boundary component XP contains
the normal cocompact subgroup NPAP , which is the radical of P and is hence
rational, i.e., the real locus of an algebraic group defined over Q if P is the
real locus of a rational parabolic subgroup P, i.e., XP is weakly rational.

It is not known whether this is true in general, or equivalently, the second
condition in rational boundary components is necessary.

III.3.12 We consider some examples of geometrically rational Satake com-
pactifications. The first example is given by G = SL(n) and the standard
representation. In this case, G = SL(n,R), and

X = SL(n,R)/SO(n)

is the space of positively definite (real) symmetric matrices (or quadratic
forms) of determinant one. Denote this symmetric space by Xn. Let τ :
SL(n,R) → SL(n,R) ⊂ SL(n,C) be the standard representation. Then the

Satake compactification (Xn)
S

τ = X
S

τ is similar to the standard compactifica-
tion Pn

S
studied in §I.4, and denoted by Xn

S
.

For any k ≤ n, Xk is contained in Xn
S

as a boundary component as
follows:

A ∈ Xk 7→ [
(
A 0
0 0

)
] ∈ P (Hn).
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By computations similar to those in §I.4.1, we can show that the Siegel rational
boundary components of Xn

S
are SL(n,Q)-conjugates of Xk, k = 1, · · · , n−1.

Their centralizers and normalizers can be determined as in Propositions
I.4.6 and I.4.7 and can be seen to be the real locus of algebraic groups de-
fined over Q, and hence the Siegel rational boundary components are rational.
Therefore, the standard compactification Xn

S
is geometrically rational and

induces the standard Satake compactification Γ\Xn
S

of Γ\Xn. See [GT2] for
interpretations of this compactification.

A generalization of this example is given by the following result.

Proposition III.3.13 If the representation τ of G is defined over Q, then
the Satake compactification X

S

τ is geometrically rational, and hence induces

a compactification Γ\X
S

τ of Γ\X.

The original proof was given in [Bo13], and an alternative proof is given
in [Sap2].

When G splits over Q, i.e., the Q-rank of G is equal to its C-rank, ev-
ery Satake compactification X

S

τ is G-isomorphic to a Satake compactification
associated with a representation defined over Q and is hence geometrically
rational.

Proposition III.3.14 Let P be a minimal rational parabolic subgroup of G.
Suppose no root of Φ(P,AP ) restricts trivially on AP. Then the maximal
Satake X

S

max is geometrically rational, and the associated compactification
of Γ\X is also called the maximal Satake compactification and denoted by

Γ\X
S

max, which admits the following disjoint decomposition

Γ\X
S

max = Γ\X ∪
∐
P

ΓXP \XP .

(It should be emphasized that XP is the real boundary symmetric space.)

Proof. As pointed out earlier in Lemma III.3.11, it suffices to show that every
Siegel rational boundary component is weakly rational. Let P be a minimal
rational parabolic subgroup of G, and U × AP,t × V a Siegel set. It suffices
to show that if a boundary component XQ meets the closure of U ×AP,t×V
in X

S

max, then Q is the real locus of a rational parabolic subgroup Q.
Let yj = (nj , eHj ,mj) ∈ U × AP,t × V converging to m∞ ∈ XQ. By

passing to a subsequence, we can assume

1. nj → n∞ in NQ, and mj → m′∞ in XP,
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2. and there exists a subset I ⊂ ∆(P,AP) such that for α ∈ ∆−I, α(Hj)→
+∞; and for α ∈ I, α(Hj) converges to a finite number.

We claim that Q = PI(R). In fact, API ⊂ API . By assumption, none of the
real roots in Φ(P,AP ) restricts to zero on the rational split component AP.
This implies that

A+
P ⊂ A

+
P , A+

PI
⊂ A+

PI(R).

Since eHj goes to infinity and away from the walls of A+
PI

, it also goes to
infinity of A+

PI
and away from its walls. This implies that yj converges to the

image of m′j ∈ XPI in XPI(R) in X
S

max. Since the boundary components of

X
S

max are disjoint, XQ = XPI(R), and hence Q = PI(R).

III.3.15 The condition in the above proposition is satisfied when G is quasi-
split over Q, i.e., when G has a Borel subgroup defined over Q. In this case,
there exist generic representations of G which are defined over Q, and the
proposition follows from the earlier one as well.

There are some important examples of geometrically rational Satake com-
pactifications which are not defined by rational representations. One such
example is the Baily-Borel compactification of Hermitian symmetric spaces.
In fact, by §I.5, the Baily-Borel compactification X

BB
is isomorphic to a min-

imal Satake compactification. It will be shown in the next section that X
BB

is a geometrically rational compactification.

III.3.16 The construction of compactifications of locally symmetric spaces
in this section can be summarized as follows.

1. Choose the collection of rational boundary components of X
S

τ .

2. Attach these rational boundary components at infinity to form a par-
tial compactification X ∪ ∂∗X which has a Satake topology so that its
quotient Γ\X ∪ ∂∗X is a compact Hausdorff space.

Step (1) depends on the G-action on the compactification X
S

τ , and the at-
taching of the rational boundary components and the Satake topology in Step
(2) depends on the topology of the compactification X

S

τ as well. Since the
G-action and the compactification X

S

τ are real structures, the passage to the
rational structures causes difficulties. In this sense, this process is not natural.
It would be desirable to carry out all these steps using only the rational struc-
tures of G and X. In §III.11, we will discuss such an alternative construction
of the maximal Satake compactification.

Remark III.3.17 In the above passage from a compactification of the sym-
metric space X to a compactification of the locally symmetric space Γ\X,
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the fundamental set Σ of Γ in X played an essential role. Here we explain
this approach in a slightly different, informal way to emphasize the difference
between compactifications of a fundamental set or domain (but without using
compactifications of X) and compactifications of Γ\X and to point out the
difficulties in passing from the former to the latter.

By definition, X = ΓΣ, and hence Σ projects surjectively to Γ\X. If Σ
admits a Hausdorff compactification Σ which is equivariant in a suitable sense,
then it is reasonable to expect that Σ is mapped onto a compactification of
Γ\X. As will seen, the problem is to show the Hausdorff property.

For simplicity, we assume that Σ is a closed subset of X. The equivariant
condition on Σ can be formulated as follows: For any sequence xj in Σ, let

Γ′ = {γ ∈ Γ | γxj ∈ Σ eventually},

which is a finite set. Then we require that xj converges in Σ if and only if for
every γ ∈ Γ′, γxj converges in Σ. If X is a G-compactification of X, then the
closure of Σ in X is clearly such an equivariant compactification Σ.

To obtain a compactification of Γ\X as a quotient of Σ, we need an equiv-
alence on Σ. Two points x∞, x′∞ in Σ are defined to be related if there exists
a sequence xj in Σ such that xj → x∞ and an element γ ∈ Γ with γxj ∈ Σ
eventually and γxj → x′∞. If this were an equivalence relation, the finiteness
of the subset Γ′ of Γ implies that the quotient of Σ is a compact, Hausdorff
space containing X as an open dense subset. But this relation is not neces-
sarily an equivalence relation. In fact, it is not clear that it is transitive. We
need to extend it to an equivalence. Once extended, it is not clear anymore
that the induced quotient of Σ is Hausdorff.

In a certain sense, Proposition III.3.2 gives the precise conditions on Σ
if Γ-translates of Σ can be defined. If X has a compactification X and Σ is
the closure of Σ in X, then we can certainly define Γ-translates of Σ via the
Γ-action on X.

III.3.18 Summary and comments.
We followed the method in [Sat2] to construct compactifications of Γ\X

from certain compactifications of X. The key point is a suitable notion of
rational boundary components. In the case of G = SL(2) and X = H, the
definition is simple. But it is not so simple already in the case of Hilbert
modular group Γ = SL(2,OF ). In this case, X = H × H. Let i∞ be the
distinguished boundary point in the boundary R∪{i∞} of H. Then the point
(i∞, i∞) is a rational boundary point for the Hilbert modular group Γ. The
other rational boundary points are points in the orbit SL(2,OF ) · (i∞, i∞),
most of which do not belong to Q ∪ {i∞} × Q ∪ {i∞}, the product of the
rational points of H.
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III.4 Baily-Borel compactification

In this section, we discuss the Baily-Borel compactification Γ\X
BB

of Hermi-
tian locally symmetric spaces. As a topological compactification of Γ\X, it is
a Satake compactification. The Satake compactifications are only topological
spaces, but the Baily-Borel compactification is a normal projective variety.
Due to this property, the Baily-Borel compactification is one of the most im-
portant among the finitely many Satake compactifications. In this section,
we will mainly discuss the structures of the Baily-Borel compactification as a
topological and analytic compactification.

To construct Γ\X
BB

as a topological space, we apply the general proce-
dure in the previous section. To do this, we need to show that the Baily-Borel
compactification X

BB
is (geometrically) rational. The first part of this sec-

tion is concerned with this. In the second part, we put the structure of a
normal analytic space on Γ\X

BB
. Finally we briefly comment on more re-

fined structures such as the projective embedding of Γ\X
BB

, its models over
number fields and applications to L2-cohomology.

More precisely, this section is organized as follows. In III.4.1, we discussed
the original motivation of the Baily-Borel compactification. To determine
the Siegel rational boundary components, we need to understand the root
structure (III.4.3, III.4.4). The Siegel rational boundary components are given
in III.4.5, which are shown to be rational in III.4.6. Hence X

BB
is shown to

be geometrically rational in III.4.7. A general procedure of putting a sheaf
of analytic functions on a union of normal analytic spaces is given in III.4.9,
which is applied in III.4.10 to show that Γ\X

BB
is a normal analytic space

(III.4.12). In general, the compactification Γ\X
BB

is singular (III.4.14).

III.4.1 We start with the original motivation of the Baily-Borel compacti-
fication. For the rest of this section, X is a Hermitian symmetric space, and
Γ\X is a noncompact Hermitian locally symmetric space.

Let M(Γ\X) be the field of meromorphic functions on Γ\X. If f, g are
two holomorphic modular forms on X with respect to Γ of the same weight,
then f/g belongs to M(Γ\X). Siegel raised the question whether the tran-
scendental degree of M(Γ\X) is equal to dimC Γ\X. This question is related
to the growth of the dimension of the space of modular forms when the weight
goes to infinity. If Γ\X admits a compactification Γ\X which is a normal pro-
jective variety such that the boundary Γ\X − Γ\X is of codimension at least
2, then by the Riemannian extension theorem, every function inM(Γ\X) ex-
tends to a rational function on Γ\X. Since the field of rational functions of the
projective variety Γ\X clearly has transcendental degree equal to dimC Γ\X,
it answers the Siegel question positively.

When X is the Siegel upper space Hn in §III.2.11 and Γ the Siegel mod-
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ular group Sp(n,Z), such a compactification was first constructed in [Sat3]
as an analytic space. It was proved later by Baily in [Ba1] that it is a nor-
mal projective variety. When X is a general Hermitian symmetric space of
noncompact type, such a compactification of Γ\X was constructed in [BB1]
(when X is a classical domain, a related compactification was also constructed
in [PS] using different methods). The compactification is usually called as the
Baily-Borel compactification in the literature.

III.4.2 As proved in §I.5, the Baily-Borel compactification X
BB

is isomor-
phic to a minimal Satake compactification as a G-space. To determine the
Siegel rational boundary components, we need to compare the rational roots
with the real roots, since the Siegel sets are defined in terms of rational roots,
while the convergence of a sequence of points in X

BB
is determined in terms

of the real roots.
Recall that X = G/K, where G is the real locus of a semisimple linear

algebraic group G defined over Q. Without loss of generality, we can assume
that the center of G is trivial. Then G is the direct product of its normal
Q-simple subgroups Gi, 1 ≤ i ≤ m. Let

Γi = Γ ∩G(R), Xi = Gi(R)/K ∩Gi(R).

Then the subgroup

Γ′ = Γ1 · · ·Γm ∼= Γ1 × · · · × Γm

is commensurable to Γ, and X admits a product decomposition X = X1 ×
· · · ×Xm, and hence

Γ′\X = Γ1\X1 × · · · × Γm\Xm. (III.4.1)

Since the collection of rational boundary components and the Satake topology
on the partial compactification X ∪ ∂∗X in the previous section only depend
on the commensurable class of the arithmetic subgroups, we can assume that
Γ = Γ′. By Equation (III.4.1), it suffices to consider the case that G is
Q-simple, which will be assumed for the rest of this section.

Proposition III.4.3 Under the above assumption on G and X, there exist a
totally real number field k and a connected, absolutely simple linear algebraic
group G′ defined over k such that

G = Resk/QG′.

Under the additional assumption that Γ\X is noncompact, G has no normal
compact subgroup of positive dimension.
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A special case of this proposition is that of Hilbert modular surfaces. See
[BB1, p. 469] for a proof.

Let ν1, · · · , νp be all the normalized archimedean valuations of k, and
σ1, · · · , σp be the corresponding embeddings of k into R (note that k is totally
real and hence every embedding is real). Let kνi be the completion of k with
respect to νi. Then kνi

∼= R and is equal to the closure of σi(k) in R.
Under the embedding σi : k → R, G can be looked upon as an algebraic

group defined over σ(k), which is denoted by σiG′. Let σiG′(R) be the real
locus of the linear algebraic group σiG′.

Then

G = G(R) =
p∏
i=1

σiG′(R),

and hence

X =
p∏
i=1

Xi,

where Xi = σiG′(R)/Ki, Ki = K ∩ σiG′(R) is a maximal compact subgroup
of σiG′(R).

Let S′ be a maximal k-split torus of G′. Under the embedding σi : k →
R, S′ is mapped isomorphically to a maximal σi(k)-split torus σiS′ of the
algebraic group σiG′ defined over σi(k). The maximal Q-split subtorus S of
Resk/QS′ is canonically isomorphic S′ and diagonally embedded in Resk/QS′,
and gives a maximal Q-split torus of G.

In each group σiG′, we choose a maximal R-split torus Tσi ⊇ σS′, which
is contained in a maximal torus defined over σi(k). Then

Tσ1(R)0 × · · ·Tσp(R)0

is the R-split component AP of a minimal real parabolic subgroup P of G.
Since the identity component of the real locus S(R) is the Q-split component
AP0 of the real locus of a minimal rational parabolic subgroup P0 of G,
we need to study the restriction of the roots in Φ(σiG′, T 0

σi) to σiS,0, where
σiG′ = σiG′(R), and T 0

σi is the identity component of Tσi(R), and σiS′
,0 is

the identity component of σiS′(R).
For each i, Xi is an irreducible Hermitian symmetric space, and hence the

root system Φ(σiG′, T 0
σi) is either of type Bt or BCt, by Proposition I.5.18 in

§I.5. Let
r : Φ(σiG′, T 0

σi)→ {0} ∪ Φ(σG′, σiS′,0)

be the restriction map. For each ordering on the latter, we can choose a
compatible ordering such that for every α ∈ Φ+(σiG′, T 0

σi), if r(α) 6= 0, then
r(α) > 0.

Let ∆(σiG′, T 0
σi), ∆(σG′, σiS′,0) be the simple roots for the compatible

ordering.



§III.4. Baily-Borel compactification 321

Proposition III.4.4 The root system Φ(σG′, σiS′,0) is of type BCs if either
Φ(σiG′, T 0

σi) is of type BCt or if Φ(σiG′, T 0
σi) is of type Ct and r(αt) = 0, and

is of type Cs otherwise. Each simple β in ∆(σG′, σiS′,0) is the restriction of
a unique simple root α in ∆(σiG′, T 0

σi).

A simple root in ∆(σiG′, T 0
σi) which does not restrict trivially to σiS′

,0 is
called critical.

Let β1, · · · , βs be the set of simple roots in ∆(G,S0), where S0 = S(R)0.
Since S ∼= σiS′, under the map S → σiS′, we choose the ordering on Φ(σiG′, σiS′,0)
so that β1, · · · , βs are mapped to simple roots in ∆(σG′, σiS′,0). Let αi,1, · · · , αi,t
be the simple roots in ∆(σiG′, T 0

σi). For each βj , let c(σi, j) be the unique
integer such that αc(σi,j) restricts to βj . We can choose the numbering such
that for each σi, c(σi, j) is an increasing function in j. This numbering is
called the canonical numbering.

Let σiP be the minimal real parabolic subgroup of σiG′ corresponding to
the simple roots αi,1, · · · , αi,t. For each j, let

Xσi,j = XσiPI , where I = {αj+1, · · · , αt}.

Let P0 be the minimal rational parabolic subgroup of G corresponding to the
simple roots β1, · · · , βs. For each b ∈ {1, · · · , s}, then

XP0,{βb+1,··· ,βs}
=

p∏
i=1

Xσi,j

is the boundary symmetric space of the real locus of the standard rational
parabolic subgroup P0,{βb+1,··· ,βs}. Since each Xσi,j is a Hermitian symmet-
ric space, XP0,{βb+1,··· ,βs}

is a Hermitian symmetric space. In fact, it is a

boundary component of X
BB

and its normalizer is the real locus of the max-
imal rational parabolic subgroup P0,∆−{βb}, and hence is a weakly rational
boundary component. The conjugates under G(Q) of these weakly rational
standard boundary components give all the weakly rational boundary com-
ponents.

Proposition III.4.5 Every Siegel rational boundary component of X
BB

is
a G(Q)-conjugate of the standard boundary components and hence weakly
rational.

The idea of the proof is as follows.

X
BB

= X1
BB × · · · ×Xk

BB
.

Recall from Part I, Proposition I.5.18, that the roots in Φ(σiG′, T 0
σi) are given

by

±γσi,m ± γσi,n
2

.
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The convergence of a sequence eHjx0 ∈ σiS′
,0
x0 in Xi

BB
are determined by

the limits of γσi,m(Hj). Note that AP0 is embedded diagonally into the prod-
uct T 0

σ1
× · · ·T 0

σk
, a 7→ (aσ1 , · · · , aσp), and the image satisfies the equations:

γσi,m(log aσi) = γσi,m+1(log aσi)

when m is not a critical index, where γσi,t+1 = 0. Using this, the above
proposition follows easily. See [BB1, p. 480] for details.

Proposition III.4.6 Every weakly rational boundary component of the Baily-
Borel compactification is rational.

The idea of the proof is to compute explicitly the centralizer of the stan-
dard boundary component and show that it contains a cocompact normal
subgroup defined over Q. For details, see [BB1, Theorem 3.7].

By combining the above results and the general procedure in §III.3, we
obtain the following result.

Proposition III.4.7 The Baily-Borel compactification X
BB

is geometrically
rational, and hence induces a Hausdorff compactification of Γ\X, called the

Baily-Borel compactification and denoted by Γ\X
BB

.

Let P1, · · · ,Pm be a set of representatives of Γ-conjugacy classes of max-
imal rational parabolic subgroups of G. Let XP1,h, · · · , XPm,h be the bound-
ary components in X

BB
associated with them. As pointed out earlier, each

XPi,h is a Hermitian symmetric space. Let ΓXPi,h be the induced arithmetic
subgroup acting on XPi,h. Then

Γ\X
BB

= Γ\X ∪
m∐
i=1

ΓXPi,h\XPi,h. (III.4.2)

In the above decomposition, each piece is a normal analytic space. It is
natural to expect that Γ\X

BB
is a compact normal analytic space.

For this purpose, we need a general criterion on how to patch up finitely
many analytic spaces into an analytic space.

III.4.8 Let V be a second countable compact Hausdorff space. Suppose V
is the disjoint union of finitely many subspaces

V = V0

∐
V1

∐
· · ·
∐

Vm, (III.4.3)

where each Vi is an irreducible normal analytic space.
Define a sheaf of A-functions on V as follows. For any open subset U ⊂ V ,

a complex valued continuous function on U is an A-function if its restriction
to each U ∩ Vi, 0 ≤ i ≤ m, is analytic. In other words, it is patched up
continuously from analytic functions on the subsets U ∩ Vi.
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Proposition III.4.9 Assume that V and the sheaf of A-functions satisfy the
following conditions:

1. For each positive integer d, the union V(d) of Vi with dimC Vi ≤ d is
closed; for any i > 0, dimC Vi < dimC V0; and V0 is open and dense in
V .

2. Each point v ∈ V has a fundamental set of open neighborhoods {Uj}
such that Uj ∩ V0 is connected for every j.

3. The restrictions to Vi of local A-functions define the structure sheaf of
Vi.

4. Each point v ∈ V has a neighborhood Uv whose points are separated by
the A-functions defined on U .

Then V with the sheaf of A-functions is an irreducible normal analytic
space and for each d ≤ dimC V0, the union V(d) defined earlier is an analytic
subspace of V with dimension equal to max{dimC Vi | Vi ⊂ V(d)}.

We will apply this criterion to Γ\X
BB

and prove the following result.

Proposition III.4.10 The compactification Γ\X
BB

is a normal analytic space
which induces the natural analytic structure on Γ\X and the boundary com-
ponents.

We will briefly outline the proof. Clearly, the decomposition in Equation
(III.4.2) satisfies the conditions in Equation (III.4.3).

Since Γ\X is open and dense in Γ\X
BB

, the condition (1) in Proposition
III.4.9 is satisfied with V0 = Γ\X. Basis of neighborhoods of boundary points

in Γ\X
BB

are given by the closure of the image of truncated Siegel sets, and
suitable ones are shown to be connected in [BB1, Proposition 4.15]. Hence
(2) is connected.

The idea to check the condition (3) is to push analytic functions on the
boundary into the interior. Roughly, if for any pair of boundary components
Vi, Vj with Vi ⊂ Vj , there is a (local) holomorphic map from a neighborhood
of Vi into Vj such that these maps are compatible for all such pairs, then any
analytic functions near a point v in Vi can be extended to a A-function on a
neighborhood of v in V . Since the problem is local, for simplicity, we consider
the lift to the universal covering. By the horopsherical decomposition of X,

X = NPi ×APi ×XPi,l ×XPi,h,

where XPi,l, XPi,h are two factors of XPi , XPi = XPi,l ×XPi,h, we have the
projection map

X → XPj ,h.
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Though the horospherical decomposition of X is not holomorphic, this pro-
jection map is holomorphic. The relative horospherical decomposition shows
that if XPi,h is contained in the closure of XPj ,h, there is an analogous holo-
morphic map from XPj ,h to XPi,h. These maps are compatible in the sense
that the map X → XPi,h is the composition of the two maps X → XPj ,h and
XPj ,h → XPi,h.

Condition (4) is the most difficult to check. Clearly, the analytic functions
obtained by pushing in from the boundary in the previous paragraph do not
separate points in the neighborhoods in V . To obtain the desired functions,
we have to realize X as a Siegel domain of the third kind over XPi,h, and
define the Poincaré-Eisenstein series adapted to this realization. Briefly, a
Siegel domain of the third kind is a holomorphic family of Siegel domains of
the second kind over XPi,h, where a Siegel domain of the second kind is a
holomorphic family of tube domains, i.e., Siegel domains of the first kind,
over a complex vector space. In this realization, the base XPi,h is realized
as a bounded symmetric domain, and hence it supports (holomorphic) poly-
nomial functions which separate the points on XPi,h. The construction of
the Poincaré-Eisenstein series allows one to lift these functions to automor-
phic forms on X with respect to Γ. Once their boundary behaviors near the
rational boundary components are understood, it can be shown that they
give rise to A-functions which separate points in neighborhoods of bound-
ary points in Γ\X

BB
. For details, see [BB1, 8.6, 8.8, 8.9]. Specifically, The

Poincaré-Eisenstein series are defined in [BB1, 7.1, Equation 1], their bound-
ary behaviors are given in [BB1, 8.6], separation of points in [BB1, 8.8, 8.9],
and the condition (4) is checked in [BB1, 10.4]

Remarks III.4.11 (1) In [BB1, 10.3, 1.7], the projection map X → XPi,h is
defined in terms of the realization of X as a Siegel domain of the third kind
over XPi,h. To see that it agrees with the definition given here, we check that
they agree on a flat (or a polydisc) passing through the basepoint x0. Then
apply the polydisc theorem to globalize the map.

(2) The construction of Γ\X
BB

in [PS] is slightly different. Instead of the
Satake topology on the partial compactification

X
∐
∪QXQ,h,

where Q runs over the real locus of maximal rational parabolic subgroups,
a cylindrical topology based on the realization of X as Siegel domains of the
third kind is used. For the equivalence of these two topologies on Γ\X, see
[Ki] and [KK1].

Proposition III.4.12 The space Γ\X
BB

is a normal projective variety which
induces the analytic structure above.
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In fact, using suitable Poincaré series, which correspond to cusp forms,
and Poincaré-Eisenstein series, we can embed Γ\X

BB
as a normal projective

subvariety of a projective space. See [BB1, 10.10, 10.11] for details.

A stronger result that Γ\X
BB

is defined over a number field, or even over
its ring of integers also holds. See [Mi1] [Mi2] [Ch1] [Ch2] [FC] for precise
statements and applications to number theory.

III.4.13 When Γ\X is a Riemann surface, Γ\X
BB

is obtained by adding a
point to each cusp neighborhood, and is a compact smooth Riemann surface.
In general, Γ\X

BB
is a singular variety. In fact, in the example of Hilbert

modular surfaces, Γ\X
BB

is also obtained by adding a point to each end and
the link of such a point is a ΓNP \NP -bundle over ΓMP

\XP, which is clearly

not a sphere; and hence Γ\X
BB

is not smooth. It is reasonable to expect that

for general Γ\X, the links of boundary points in Γ\X
BB

are complicated.

Proposition III.4.14 The compactification Γ\X
BB

is a singular variety when
Γ\X is not a product of Riemann surfaces, and the singularities consist of the

boundary Γ\X
BB
− Γ\X.

It was basically proved in [Ig3], and the idea is to construct a holomorphic
form on Γ\X which does not extend to a holomorphic form on a smooth

compactification. On the other hand, it extends holomorphically to Γ\X
BB

.

This implies that Γ\X
BB

has no finite cover which is a smooth variety, and
hence it is singular.

III.4.15 The singular projective variety Γ\X
BB

has the natural (middle
perversity) intersection cohomology groups, which have the important prop-
erty of Poincaré duality. An important conjecture of Zucker states that this
intersection cohomology is naturally isomorphic to the L2-cohomology of Γ\X.
This conjecture has been proved independently by Saper-Stern [SaS] and Looi-
jenga [Lo6]. See [Zu4] for survey of this conjecture.

III.4.16 Summary and comments. We showed that X
BB

is geometri-
cally rational and hence Γ\X

BB
is defined. Then we outlined the steps of

showing that Γ\X
BB

is a normal projective variety. In fact, it is defined over
a number field (see [Mi1] [Mi2]). This property is important in applications
to number theory and the Langlands program.
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III.5 Borel-Serre compactification

In this section, we assume that G is a connected reductive linear algebraic
group defined over Q whose center is anisotropic over Q. This condition
is satisfied if G is semisimple. We recall the Borel-Serre compactification
Γ\X

BS
of a locally symmetric space [BS2], which has important applications

to the cohomology of arithmetic groups and automorphic forms. A variant
of the construction of this compactification gives the uniform method for
compactifying symmetric spaces in §I.8 and locally symmetric spaces in §III.8.

More specifically, this section is organized as follows. We first motivate
the Borel-Serre compactification Γ\X

BS
by the problem of finding a finite

classifying space of Γ in topology (III.5.1). Its applications to cohomology
groups of Γ are briefly discussed in III.5.2. The geodesic action is given
in III.5.3 and used in III.5.4 to construct a real analytic corner X(P) for
each rational parabolic subgroup P, which is a partial compactification of X
along the direction of P. Then we show that the real analytic structures of
these corners are compatible (III.5.5–III.5.7), and hence they glue into a real
analytic manifold with corners, the partial Borel-Serre compactification X

BS

(III.5.11),4 whose quotient by Γ gives Γ\X
BS

= Γ\QX
BS

(III.5.14). The
construction is illustrated in III.5.15 through the example G = SL(2).

III.5.1 Let Γ be an arithmetic subgroup as above. Recall that a topological
space B is a K(Γ, 1)-space if

π1(B) = Γ, πi(B) = {1}, i ≥ 2.

An important problem in topology to find a finiteK(Γ, 1)-space, i.e., aK(Γ, 1)-
space which is homotopic to a finite CW-complex.

It is known that a necessary condition for the existence of a finite K(Γ, 1)-
space is that Γ is torsion free (see [Br2]).

Assume that Γ is a torsion free arithmetic subgroup. Note X is simply
connected and nonpositively curved, and hence contractible. Since Γ acts
fixed-point freely on X, Γ\X is a K(Γ, 1)-space. If Γ\X is compact, then
it is a closed smooth manifold, which has a finite triangulation and hence is
a finite K(Γ, 1)-space. Otherwise, we need a compact space which supports
the structure of a finite CW-complex and is homotopic to Γ\X. One natural
method is to construct a compactification Γ\X of Γ\X which is homotopic to
the interior Γ\X and is a manifold with boundary (or corners).

The Satake compactifications Γ\X
S

are not homotopic to the interior.
In fact, when X is the upper half plane H, Γ\H is a Riemann surface with

4In §III.9 below, the partial Borel-Serre compactification is denoted by QX
BS

. The

reason is that X
BS

is basically the notation in [BS2], and we want to use QX
BS

below to
show that it is constructed differently. For example, the topologies on them look different.
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finitely many cusp neighborhoods. There exists only one Satake compactifi-
cation Γ\H

S
which is obtained by adding one point to each cusp. Clearly, the

inclusion Γ\H→ Γ\H
S

is not a homotopy equivalence, since the induced map

Γ = π1(Γ\H)→ π1(Γ\H
S

) has a large kernel containing subgroups generated
by loops around the cusps, i.e., the subgroups Γ ∩ NPi , where P1, · · · ,Pm

are the set of representatives of Γ-conjugacy classes of rational parabolic sub-
groups of G corresponding to the cusps of Γ\H.

In this case, if we compactify each cusp end of Γ\H by adding a circle,

which is the Borel-Serre compactification Γ\H
BS

, then the inclusion Γ\H→
Γ\H

BS
is a homotopic equivalence. Since Γ\H

BS
is a compact manifold with

boundary, it has a finite triangulation, and hence is a desired finite K(Γ, 1)-
space.

In general, the Borel-Serre compactification Γ\XBS
is a compact manifold

with corners, which is homotopic to Γ\X and also admits a finite triangula-
tion, and hence is a finite K(Γ, 1)-space when Γ is torsion free. The easiest
way to see how the corner structures arise is to consider Γ\X = Γ1\H×Γ2\H.

Then Γ\X
BS

= Γ1\H
BS
×Γ2\H

BS
is a product of two manifolds with bound-

ary, and hence a manifold with corners of codimension 2.

III.5.2 The homotopic equivalence between Γ\X and Γ\XBS
allows us to

identify H∗(Γ) with H∗(Γ\XBS
) when Γ is torsion free, and this identification

allows us to use the compact space to study H∗(Γ).

For example, we have the long exact sequence for the pair Γ\XBS
, ∂Γ\XBS

=
Γ\XBS − Γ\X,

→ H∗(Γ\XBS
, ∂Γ\XBS

) α→ H∗(Γ\XBS
)
β→ H∗(∂Γ\XBS

)→ .

The image of α in H∗(Γ\XBS
) is called the interior cohomology, and the

image of β are called the boundary cohomology. The cohomology H∗(Γ\X,C)
can be studied using automorphic forms, and the division of H∗(Γ\XBS

) into
the interior and boundary cohomologies correspond to different behaviors of
automorphic forms at infinity, i.e., near the boundary of Γ\XBS

. It is through
the above identifications that one can use the theory of automorphic forms
and automorphic representation to study H∗(Γ,C). See [BW] [Shw] [JS] for
details.

III.5.3 A basic step in the construction of Γ\XBS
is the geodesic action on

X associated with every rational parabolic subgroup P.
Let

X = NP ×AP,x0 ×XP (III.5.1)
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be the horoshperical decomposition of X in Equation (III.1.4) in §III.1 with
respect to the basepoint x0 = K ∈ X = G/K. Define the geodesic action of
AP on X as follows. Identify AP with AP,x0 under the lift ix0 in §III.1.9. For
any b ∈ AP,x0 , and (n, a, z) ∈ NP ×AP,x0 ×XP,

b · (n, a, z) = (n, ba, z). (III.5.2)

Clearly, this action is equivariant with respect to the P -action on X: for any
p ∈ P and x = (n, a, z) ∈ X,

p(b · x) = b · px.

In fact, write p = n′a′m′, where n′ ∈ NP , a′ ∈ AP,x0 , z ∈MP,x0 . Then

p(b · x) = n′a′m′(n, ba, z) = (n′ a
′m′n, a′ba,m′z),

b · px = b · (n′ a
′m′n, a′a,m′z) = (n′ a

′m′n, ba′a,m′z) = (n′ a
′m′n, a′ba,m′z).

It should be emphasized that AP could be the split component of several
rational parabolic subgroups, but the geodesic action depends crucially on
the choice of the parabolic subgroup P. For example, when G = SL(2),
X = H, let P be the parabolic subgroup of upper triangular matrices. Then
AP is the subgroup of diagonal matrices. The orbits of the geodesic action of
AP are vertical lines. On the other hand, let P− be the opposite parabolic
subgroup of the lower triangular matrices. Then AP− = AP, and the orbits
of the geodesic action of AP− are half circles with one end point at 0 in the
boundary of H.

On the other hand, it can be shown that this geodesic action is independent
of the choice of the basepoint point. Hence, the basepoint x0 in the subscript
will be dropped.

III.5.4 Let α1, · · · , αr be the simple roots in ∆(P,AP). Then

AP
∼= (R+)R, a 7→ (a−α1 , · · · , a−αr ).

The closure of AP in Rr is equal to the corner Rr≥0. Denote it by AP.
The multiplication of AP on AP extends to an action on Rr by

a · (t1, · · · , tr) = (a−α1t1, · · · , a−αr tr).

Clearly, AP preserves the closure AP and hence acts on it.
By the horospherical decomposition of X in Equation (III.5.1), X is a

principal AP-bundle over NP ×XP
∼= X/AP under the geodesic action of AP.

Define the corner X(P) associated with P by

X(P) = X ×AP
AP. (III.5.3)
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Clearly, the corner X(P) can be identified as follows:

X(P) = NP ×XP ×AP. (III.5.4)

Since NP and XP are real analytic manifolds, and AP is a real analytic corner,
X(P) has a structure of a real analytic manifold with corners. Clearly, X(P)
contains X as an open dense subset. Since the horospherical decomposition
of X = NP × AP × XP is real analytic, the real analytic structure of X(P)
restricts to the canonical one on X.

An analytic submanifold S of X is called an analytic cross-section of the
AP-principal bundle X if the map

S ×AP → X, (z, a) 7→ a · z

is an analytic diffeomorphism. Clearly, NPMPx0
∼= NP ×XP is an analytic

section, called the canonical cross-section. But other cross-sections occur
naturally when corners of different rational parabolic subgroups are compared.

For any such analytic cross-section S, the corner X(P) can also be iden-
tified with

X(P) = S ×AP. (III.5.5)

This possibly gives another different structure of real analytic manifold with
corners on X(P), which also restricts to the canonical real analytic structure
on X.

Proposition III.5.5 Any two analytic cross-sections S1, S2 induce, by Equa-
tion (III.5.5), the same real analytic structure on X(P). Hence, the real an-
alytic structure on X(P) is canonical in the sense that it only depends on the
geodesic action of AP on X.

Proof. Let
X → Si ×AP, x 7→ (si(x), a(x))

be the coordinates in the trivialization induced by the section Si, i = 1, 2. For
any s1 ∈ S1, there exists a unique point s2(s1) ∈ S2 and a2(s1) ∈ AP such
that

s1 = s2(s1)a2(s1) = (s2(s1), a2(s1)).

Since S1 is a real analytic submanifold, s2(s1), a2(s1) are real analytic in s1.
Then the coordinates of x ∈ X with respect to the trivializations induced

by S1, S2 are related by

s2(x) = s2(s1(x)), a2(x) = a2(s1(x))a1(x).

In fact,

x = s1(x)a1(x) = s2(s1(x))a2(s1(x))a1(x) = (s2(s1(x)), a2(s1(x))a1(x)).
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Hence, the transition function from X = S1×AP to X = S2×AP is given by

(s1, a1)→ (s2(s1), a2(s1)a1).

Under the identifications X(P) = Si × AP
∼= S1 × (R≥0)r, i = 1, 2, the

transition function is given by

(s1; t1, · · · , tr)→ (s2(s1); a2(s1)−α1t1, · · · , a2(s)−αr tr).

Since s2(s1), a2(s1) are real analytic functions in s1, the above transition
function from the coordinates with respect to S1 to those with respect to
S2 is real analytic. By swapping S1 and S2, we can show that the other
transition function is also real analytic. This proves that two trivializations
give the same real analytic structure.

Let oP be the (corner) point in AP corresponding to the origin in Rr under
the embedding AP → R

r. Then the corner

X ×AP
{oP } ⊂ X(P)

can be identified with X/AP
∼= NP ×XP. Define

e(P) = NP ×XP (III.5.6)

and call it the Borel-Serre boundary component of P. Then e(P) can be
identified with the corner of X(P)

Proposition III.5.6 For any parabolic subgroup P, the corner X(P) can be
canonically decomposed as follows

X(P) = X ∪
∐

Q⊇P

e(Q).

Proof. For any subset I ⊂ {α1, · · · , αr}, let oI = (t1, · · · , tr) be the point
in AP = (R≥0)r with coordinates: ti = 1 for αi ∈ I, and ti = 0 for αi 6∈ I.
Then the AP-orbit through oI can be identified with AP/API . In fact, since
the simple roots in Φ(PI , API ) are the restriction of {α1, · · · , αr} − I, API is
the stabilizer oI . Then

X ×AP
{oI} ∼= X/API

∼= e(PI).

Since every face of AP is of the form AP · oI , the disjoint decomposition of
X(P) follows.

Proposition III.5.7 For any pair of rational parabolic subgroups P1, P2

with P1 ⊂ P2, the identify map on X extends to an embedding of X(P2)
into X(P1) as real analytic manifolds with corners, and the image is an open
submanifold.
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Proof. Since P1 ⊂ P2, by Equation (III.1.11),

AP1 = AP1,P2AP2 = AP1,P2 ×AP2 .

It is clear from the definition that AP1,P2×AP2 is contained in AP1 as a face,
and is stable under the action of AP1 . Hence

X(P1) = X ×AP1
AP1 ⊃ X ×AP1

AP1,P2 ×AP2 = X ×AP2
AP2 = X(P2).

To show that the analytic structures are compatible, we note that Equation
(III.1.12) implies that NP1 ×XP1 ×AP1,P2 is also an analytic cross-section of
the AP2-action on X, and hence by Proposition III.5.5,

X(P2) = NP1 ×XP1 ×AP1,P2 ×AP2 ,

as analytic manifolds. Since the decomposition AP1 = AP1,P2 × AP2 corre-
sponds to the standard coordinate decomposition of Rr under the embedding
AP1 → R

r above, NP1 ×XP1 ×AP1,P2 ×AP2 is an open analytic submanifold
of NP1 × XP1 × AP1 , which is equal to X(P1) as analytic manifolds with
corners. This proves that X(P2) is an analytic manifold in X(P1).

III.5.8 Now we are ready to define the Borel-Serre partial compactification
X
BS

. Define
X
BS

= X ∪
∐
P

X(P)/ ∼, (III.5.7)

where the equivalence relation ∼ is defined as follows. For any pair of rational
parabolic subgroups P and Q, let R be the smallest rational parabolic sub-
group containing both P and Q. Such R exists and could be equal to the im-
proper parabolic subgroup G. Let i1 : X(R)→ X(P) and i2 : X(R)→ X(Q)
be the natural embedding in Proposition III.5.7. Then for any x ∈ X(R),
points i1(x) ∈ X(P) and i2(x) ∈ X(Q) are defined to be equivalent. It
defines an equivalence relation.

Clearly, we only need to check the transitivity. Suppose x1 ∈ X(P1), x2 ∈
X(P2), x3 ∈ X(P3), and x1 ∼ x2, x2 ∼ x3. Then there exist rational
parabolic subgroups Q1,Q2 and points y1 ∈ X(Q1), y2 ∈ X(Q2) such that
X(Q1) ⊆ X(P1), X(Q1) ⊆ X(P2), and y1 is mapped to x1, x2, and y2 is sim-
ilarly mapped to x2, x3 in the inclusions X(Q2) ⊆ X(P2), X(Q2) ⊆ X(P3).
Let R the largest rational parabolic subgroup containing Q1,Q2. When con-
sidered as subsets of X(P2), X(Q1)∩X(Q2) = X(R), and y1 = y2 since they
are both mapped to x2, and hence y1 = y2 ∈ X(R). Denote this point inX(R)
by y. Then it is mapped to x1 through the composition X(R) ⊆ X(Q1) ⊆
X(P1), and to x3 through the composition X(R) ⊆ X(Q2) ⊆ X(P3). Hence
x1 ∼ x3.
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Using the decomposition in Proposition III.5.6, we obtain from the proof
of Proposition III.5.7 that each point in e(P) determines an equivalence class
and each equivalence class is of this form for some P. Hence as a set,

X
BS

= X ∪
∐
P

e(P). (III.5.8)

Since the natural topologies of the corners X(P) are compatible on the in-
tersection, they define a sum topology on X ∪

∐
PX(P). Let the topology of

X
BS

be the quotient topology of the sum topology.

Proposition III.5.9 For any rational parabolic subgroup P, the natural pro-
jection X(P)→ X

BS
is an embedding onto an open subset, and the topology

on X
BS

is Hausdorff.

Proof. We will only prove the first statement. Since we will give an alterna-
tive, simpler construction of X

BS
in §III.9 below, we refer the reader to [BS2,

Theorem 7.8] for the original proof (see also Remark III.5.10 below).
For any rational parabolic subgroup P, there are only finitely many ra-

tional parabolic subgroups Q containing P. Clearly, for any such Q and the
embedding X(Q) ⊆ X(P), no two points in X(P) can be identified. This
shows that the map X(P) → X

BS
is injective. It can also be shown that it

is an open map, and hence it is a homeomorphism.

Remark III.5.10 The proof of this proposition in [BS2, Theorem 7.8] is
inductive and depends on spaces of S-type, a generalization of symmetric
spaces, and compactifications of spaces of S-type. In fact, the proof involves
reduction to the compactifications of the boundary components e(P). Clearly

e(P) = P/NPAPMP.

So e(P) is a homogeneous space of a non-reductive group with noncompact
stabilizer, and hence is not a symmetric space. The spaces of S-type are
introduced right from the beginning of [BS2] and the geodesic action on them
is used repeatedly in various proofs. Since we will not introduce such spaces
of S-type, and alternative proofs of the structures of X

BS
will be given in

§III.9 below, we will state several results from [BS2] without proof as in the
above Proposition III.5.9.

Proposition III.5.11 The space X
BS

has a natural structure of analytic
manifolds with corners.



§III.5. Borel-Serre compactification 333

Proof. By Proposition III.5.9, for any rational parabolic subgroup P, the cor-
ner X(P) is embedded into X

BS
as an open subset. Clearly, they cover X

BS

and form coordinate charts. By Proposition III.5.7, the analytic structures
of the corners X(P) are compatible, and hence X

BS
has a natural structure

of real analytic manifold with corners induced from the analytic structures of
the corners X(P).

Proposition III.5.12 For any two rational parabolic subgroups P1,P2, P1 ⊆
P2 if and only if e(P1) ⊆ e(P2), where e(P2) is the closure of e(P2) in X

BS
.

The proof uses the Borel-Serre compactification of e(P2) as a space of
S-type and its identification with the closure e(P2). See [BS2, 7.5] for details.

Proposition III.5.13 The natural action of the group of rational points G(Q)
on X extends to X

BS
. The extended action preserves the structure of real an-

alytic manifold with corners and permutes the faces by

g · e(P) = e(gP),

where g ∈ G(Q), and hence the stabilizer of e(P) in Γ is equal to Γ ∩ P .

Proof. The basic point is to prove that for any element g ∈ G(Q), the action
of g on X extends to a map g : X(P) → X(Pg) and show that this map is
real analytic. Specifically, write g = km0a0n0, where k ∈ K and n0 ∈ NP ,
a0 ∈ AP and m0 ∈MP. For any point x = (n, a,mKP) ∈ NP×AP×XP = X,
where KP = K ∩MP,

m0a0m0x = (a0m0(n0n), a0a,m0mKP).

From the analytic structure of X(P) given by X(P) = NP ×XP × AP, it is
clear that this action x 7→ n0a0m0x extends to an analytic diffeomorphism of
X(P) to itself. Since kP = gP, the action by k transfers the horospherical
coordinates of (n, a,m) with respect to P to those of kP = gP, i.e.,

gx = (ka0m0(n0n), ka0a,
km0m

kKP) ∈ NgP ×XgP ×AkP.

Though the components k,m0 are not uniquely determined by g, km0 is, and
hence the action is well-defined. Clearly, the action x 7→ kx extends to an
analytic diffeomorphism between X(P) and X(gP). By combining these two
analytic diffeomorphisms, we obtain that the action x 7→ gx extends to an
analytic diffeomorphism between the corners X(P) → X(Pg) and hence to
X
BS

. Under this map, clearly, the face e(P) is mapped to e(gP). The last
sentence follows from the fact that P is equal to its normalizer.
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Proposition III.5.14 Assume that the Q-rank r of G is positive. Let Γ be
an arithmetic subgroup of G(Q) above. Then Γ acts properly with a compact
Hausdorff space Γ\XBS

. If Γ is torsion free, Γ\XBS
is a compact real analytic

manifold with corners, called the Borel-Serre compactification of Γ\X, also

denoted by Γ\X
BS

. The highest codimension of the corners of Γ\X
BS

is
equal to the Q-rank r.

The idea of the proof is to show that the closure of a Siegel set in X
BS

is
compact. Then by the reduction theory, a compact subset is mapped surjec-
tively onto Γ\XBS

, and hence the latter is compact. See [BS2, Theorem 9.3]
(or Theorem III.9.18 below).

III.5.15 We consider the simplest example when G = SL(2). In this case,
X = H, the upper halfplane. For any (proper) rational parabolic subgroup
P, the boundary component

e(P) = NP ∼= R.

The natural boundary of H in C ∪ {∞} consists of R ∪ {∞}. Then H is
obtained by adding one copy of R to every boundary point in Q∪ {∞}. This
copy of R is the parameter space of all geodesics converging to the boundary
point. The space Γ\H has finitely many cusp neighborhoods, and Γ\H

BS
is

obtained by adding a circle at infinity of each cusp neighborhood, which is
the quotient Γ ∩ NP \NP . Clearly, Γ\H

BS
is a manifold with boundary and

homeomorphic to Γ\HBS .

III.5.16 By Proposition III.5.12, the boundary ∂X
BS

= X
BS − X is a

cell complex dual to the rational Tits building ∆Q(G) of G. In fact, it has
the same homotopy type as the Tits building [BS2, 8.4.2]. This relation to
the Tits building has important applications to the cohomology groups of
Γ in [BS2, §, §11], for example, the cohomology dimension of Γ is equal to
dim Γ\X − rkQ(G).

III.5.17 Summary and comments. We recalled the construction in [BS2]

of the Borel-Serre compactification Γ\X
BS

. Contrary to the Baily-Borel com-

pactification Γ\X
BB

, this compactification is large and no topology of Γ\X
is collapsed at infinity, hence the inclusion Γ\X ⊂ Γ\X

BS
is a homotopy

equivalence. This is important to applications in topology. Another way
to obtain a compact manifold homeomorphic to Γ\X is to remove a suitable
neighborhood of the infinity of Γ\X to obtain a compact submanifold in Γ\X.

When the Q-rank of G is equal to 1, for example, G = SL(2), each
end of Γ\X is a topological cylinder. By cutting off each end suitable, we
obtain a compact submanifold with boundary which is clearly homeomorphic
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to Γ\X. When the rank is greater than 1, we obtain a manifold with corners
in general. See [Sap1] [Leu2] [Leu5] [Ra2] [Gra1] [Gra2] for the constructions
and applications.

III.6 Reductive Borel-Serre compactification

In this section, we study the reductive Borel-Serre compactification Γ\X
RBS

,

which is closely related to the Borel-Serre compactification Γ\X
BS

and is
motivated by problems in analysis [Zu1] and has found natural, important
applications in cohomology groups of arithmetic groups in [GHM] and [Zu3].

This section is organized as follows. First, we explain in III.6.1 that the
compactification Γ\X

BS
is too large to support partitions of unity which are

needed to show that the L2-complex of sheaves of differential forms is fine.
Then we explain how to blow down the boundary of Γ\X

BS
to obtain the

smaller compactification Γ\X
RBS

(III.6.2, III.6.4). We show by examples

that Γ\X
RBS

is different from the Satake compactifications (III.6.5), though

it dominates Γ\X
S

max (III.6.6). Finally we mention several applications of

Γ\X
RBS

to cohomology groups of Γ\X (III.6.6, III.6.7).

III.6.1 On any compactification Γ\X of Γ\X, the L2-complex of sheaves
L(2)(Γ\X) in [Zu1, p. 175] are defined as follows: for any open subset U ⊂
Γ\X,

Li(2)(U) = Li(2)(U ∩ Γ\X),

where Li(2)(U ∩ Γ\X) is the space of forms of degree i on U ∩ Γ\X which
together with their differentials are L2-integrable.

To study the induced cohomology groups, it is important to know when
these sheaves are fine. It is well-known (see [GH, pp. 41-44]) that for a
compact manifold M , the complex of sheaves of differential forms M is fine,
which follows from the fact that for any locally finite covering of M , there is
a partition of unity of the sheaves subordinate to it; and this fact plays an
important role in proving the De Rham theorem.

The L2-complex of sheaves on Γ\XBS
do not admit such partition of unity.

The reason is that for any rational parabolic subgroup P, in the horospherical
decomposition X = NP ×AP×XP, the differential in the NP variable at the
height a ∈ AP is not bounded as a→ +∞ in AP in the sense α(log a)→ +∞
for all α ∈ Φ(P,AP).

Specifically, consider the example of X = H, G = SL(2), and P the
parabolic subgroup of upper triangular matrices. Then the NP orbits corre-
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spond to the y-coordinates in H. Since the metric of H is given by

ds2 =
dx2 + dy2

y2
,

the norm square of the differential dy is equal to y2. Hence, dy is not L2-
integrable on a Siegel set associated with P. For any locally finite covering
{Ui} of Γ\H

BS
, let {ϕi} be a partition of unity subordinate to it. Choose

a boundary point b ∈ ∂Γ\H
BS

such that there exists a function ϕi which
satisfies two conditions: (1) b ∈ Supp(ϕi), (2) ∂

∂yϕi does not vanish at b. Such
a boundary point exists when the boundary component ΓNP \NP , a circle, is
not contained in a single Ui. Then the above discussions show that dϕi is not
square integrable, and hence the L2-complexes of sheaves on Γ\H

BS
do not

admit partition of unity.
On the other hand, if we collapse each boundary circle to a point, each

sufficiently small cusp neighborhood is covered by a single open set Ui in any
locally finite covering {Ui}, and we can choose the corresponding function ϕi
to be NP -invariant, i.e., independent of y when the cusp is mapped to the
standard cusp at infinity. Then the above difficulty can be avoided.

The compactification of Γ\H obtained from Γ\H
BS

by collapsing the

boundary circles to points is the reductive Borel-Serre compactification Γ\H
RBS

.
In general, we can also blow down boundary nilmanifolds, i.e., manifolds

diffeomorphic to quotients of NP , in the boundary Γ\XBS
to obtain the

reductive Borel-Serre compactification Γ\X
RBS

. Then the L2-complex of

sheaves on Γ\X
RBS

is fine [Zu1, Proposition 4.4],

III.6.2 We now recall the construction of the reductive Borel-Serre com-
pactification Γ\X

RBS
in [Zu1, p. 190].

For each rational parabolic subgroup P, let ΓP = Γ ∩ P , ΓNP = Γ ∩NP .
Then ΓP is an arithmetic subgroup of P, and ΓNP is an arithmetic subgroup
of NP and hence ΓNP \NP is compact. By [BS2, Proposition 1.2], the image
of ΓP in LP under the projection P → NP \P is contained in MP and is an
arithmetic subgroup of MP, to be denoted by ΓMP

. By definition, we have
an exact sequence

0→ ΓNP → ΓP → ΓMP
→ 0. (III.6.1)

To understand the action of ΓP on X in terms of the horospherical de-
composition and the structure of the boundary components of Γ\XBS

, we
lift ΓMP

into P by the canonical lift ix0 associated with the basepoint x0 in
§III.1.9. The subgroup ix0(ΓMP

) in MP,x0 is denoted by ΓMP,x0
, where the

subscript x0 will be dropped once the basepoint is fixed and the dependence
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on it is clear. It should be emphasized that this lift ix0 does not split the
above exact sequence. Since the symmetric space associated with MP is the
boundary symmetric space XP, ΓMP

acts properly on XP, and the quotient

ΓMP
\XP

is a locally symmetric space, called the boundary locally symmetric space for
P. Because of this, ΓMP

is also denoted by ΓXP
similar to the notation ΓXP

§III.3.
The group ΓMP

can also be defined as the image of ΓP under the Langlands
projection

P = NPAPMP →MP, ΓMP
= π(ΓP ) (III.6.2)

(see [BJ2, Proposition 2.6]).

III.6.3 Now we analyze the structure of the boundary components of Γ\X
BS

.
Since NP is a normal subgroup of NPMP, using the exact sequence in Equa-
tion (III.6.1), we obtain that ΓP \NPMP is a fiber bundle over ΓMP

\MP with
fiber a nilmanifold ΓNP \NP , and hence ΓP \e(P) is also a fiber bundle over
ΓMP
\XP with the fiber equal to the nilmanifold.

By Proposition III.5.13, the stabilizer in Γ of the boundary component
e(P) in X

BS
is equal to ΓP . Hence ΓP\e(P) belongs to the boundary of

Γ\XBS
, called the boundary component of Γ\X

BS
associated to P, or rather

the Γ-conjugacy class of P.
Let P1, · · · ,Pm be a set of representatives of Γ-conjugacy classes of ratio-

nal parabolic subgroups of G. Then

Γ\XBS
= Γ\X ∪

m∐
i=1

ΓPi\e(Pi). (III.6.3)

Define a space

Γ\X
RBS

= Γ\X ∪
m∐
i=1

ΓMPi
\XPi . (III.6.4)

Then there is a canonical surjective map from Γ\XBS
to Γ\X

RBS
which

is equal to the identity map on Γ\X, and on each boundary component
ΓPi\e(Pi), it is the projection to the base ΓMPi

\XPi when ΓPi\e(Pi) is con-

sidered as a fiber bundle over the latter as above. In other words, Γ\X
RBS

is
the quotient of Γ\XBS

when the nilmanifolds ΓNPi\NPi in the boundary of

Γ\XBS
are collapsed to points.

Endow the space Γ\X
RBS

with the quotient topology induced from Γ\XBS
,

and call it the reductive Borel-Serre compactification of Γ\X, in view of the
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following result. See §III.10 below for a construction of Γ\X
RBS

independent

of Γ\X
BS

.

Proposition III.6.4 The topological space Γ\X
RBS

is compact, Hausdorff,
and contains Γ\X as an open dense subset.

Proof. By definition, the projection map from Γ\XBS
to Γ\X

RBS
is contin-

uous. Since Γ\XBS
is compact, Γ\X

RBS
is also compact. Since the inverse

image of the boundary Γ\X
RBS

− Γ\X is the boundary Γ\XBS − Γ\X, and

Γ\X is open and dense in Γ\XBS
, Γ\X is also open and dense in Γ\X

RBS
.

It remains to prove the Hausdorff property.
Let ∼ be the equivalence relation defining the quotient Γ\X

RBS
. Since

Γ\XBS
is a manifold with corners, it is a normal space. By [ FR, p. 33], it suf-

fices to prove that the ∼-saturation of closed subsets of Γ\XBS
are also closed.

By definition, the ∼-equivalence classes consist of single points in X, and of
nilmanifolds ΓNPi\NPi in the boundary component ΓPi\e(Pi). By Proposi-
tion III.5.12, for any two rational parabolic subgroups P,Q, e(P) ⊆ e(Q) if
and only if Q ⊇ P, which is in turn equivalent to NP ⊇ NQ. Intuitively, this
immediately implies that the ∼-saturation of any closed subset in Γ\XBS

is
closed, since when we move to smaller boundary components in the boundary,
the saturation process is increasing.

More precisely, let C ⊂ Γ\XBS
be a closed subset. Let C∼ be its ∼-

saturation. Suppose that yj ∈ C∼ is a sequence converging to y∞ ∈ Γ\XBS
.

We need to prove that y∞ ∈ C∼. Let y′j ∈ C such that y′j ∼ yj . Since Γ\XBS

is compact, C is also compact. By passing to a subsequence if necessary, we
assume that y′j → y′∞ for some y′∞ ∈ C. Assume that y′∞ ∈ ΓP \e(P) for some
rational parabolic subgroup P. Since each rational parabolic subgroup P is
contained in only finitely many rational parabolic subgroups Q, Proposition
III.5.12 implies that the boundary component e(P) is contained in the closure
of these finitely many boundary components e(Q) in X

BS
. By passing to a

further subsequence if necessary, we can assume that there exists a rational
parabolic subgroup Q containing P such that all y′j ∈ ΓQ\e(Q). Since NP ⊃
NQ, yj → y∞, y′j → y′∞, and y′j ∼ yj , it follows that y∞ ∼ y′∞, and hence
y∞ ∈ C∼.

III.6.5 We use the example of Hilbert modular surfaces to show that the
reductive Borel-Serre compactification is different from all the previous com-
pactifications. In this case, for any rational parabolic subgroup P, NP ∼=
R

2, ΓNP \NP is a two dimensional torus; XP
∼= R, since dimAP = 2, but
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dimAP = 1, and the real boundary symmetric space XP consists of one
point, and hence ΓMP

\XP is a circle. Therefore, the Borel-Serre boundary
component ΓP \e(P) is a torus bundle over the circle ΓP \XP.

Since the Q-rank is equal to 1, there is a one-to-one correspondence be-
tween the ends of Γ\X and the Γ-conjugacy classes of rational parabolic sub-

groups, and Γ\X
RBS

is obtained by adding a circle ΓMP
\XP to each end.

Hence it is different from the Baily-Borel compactification Γ\X
BB

and other

Satake compactifications Γ\X
S

, which all agree in this case and are obtained
by adding one point to each end.

In fact, since X = H ×H, all the Satake compactifications of X is equal
to H × H, where H = H ∪ R ∪ {∞}. Since it can either be considered as
the Baily-Borel compactification or as the maximal Satake compactification
satisfying the conditions in Proposition III.3.14, it is geometrically rational,
and hence Γ\H×H

S
is defined. For any rational parabolic subgroup P, its

real locus P is of the form P1×P2, where P1, P2 are real parabolic subgroups
in SL(2,R), and hence the real boundary symmetric space XP consists of only

one point, which implies that Γ\H×H
S

is obtained by adding one point to
each end.

III.6.6 In general, suppose that the maximal Satake compactification of X
is geometrically rational. If the Q-rank of G is strictly less than the R-rank
of G, then the induced maximal Satake compactification Γ\X

S

max is different

from Γ\X
RBS

. In fact, a⊥P 6= 0, by Equation (III.1.8) in §III.1,

XP = XP × exp a⊥P 6= XP .

The subgroup ΓMP
acting on XP preserves the product, and induces the

subgroup ΓXP , and hence ΓMP
\XP is a fiber bundle over ΓXP \XP . Denote

the projection ΓMP
\XP → ΓXP \XP by π. Let P1, · · · ,Pm be the set of

representatives of Γ-conjugacy classes of rational parabolic subgroups of G as
above. Then

Γ\X
S

max = Γ\X ∪
m∐
i=1

ΓXPi\XPi .

Combining the projection maps on the boundary components of Γ\X
RBS

with
the identity map on Γ\X, we obtain a surjective map

Γ\X
RBS

→ Γ\X
S

max, (III.6.5)

which is shown to be continuous in [Zu2].

III.6.7 As mentioned earlier, the original motivation for Γ\X
RBS

is to
study the L2-cohomology groups of Γ\X. Similarly, one can define the Lp-
cohomology groups of Γ\X for all p > 1. In [Zu3], Zucker proved that when
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p � 1, the Lp-cohomology groups of Γ\X are canonically isomorphic to the

usual (singular) cohomology groups of Γ\X
RBS

. This result gives a natural

explanation for Γ\X
RBS

.

III.6.8 In [GHM], the reductive Borel-Serre compactification Γ\X
RBS

is
used to define the weighted cohomology groups, which play an important role
in understanding the action of the Hecke operators on cohomology groups of
Hermitian locally symmetric spaces.

By Proposition III.4.14, Γ\X
BB

is a singular variety when Γ\X is not a
product of Riemann surfaces. On the other hand, by Proposition III.5.14,
Γ\XBS

is a real analytic manifold with corners. Zucker proved in [Zu2] (see

also §III.15 below) that Γ\XBS
dominates Γ\X

BB
, i.e., the identity map on

Γ\X extends to a continuous map Γ\XBS → Γ\X
BB

. Hence Γ\XBS
is a

resolution of Γ\XBS
in a topological sense. The above discussions show that

Γ\XBS
is too large in studying the L2-cohomology groups, and the reductive

Borel-Serre compactification Γ\X
RBS

is an intermediate resolution. Though

Γ\X
RBS

is still singular, the structure of its singularities, for example, the
links of the singular strata, can be described explicitly, which permits one
to compute the stalk cohomology of various sheaves along the boundary of
Γ\X

RBS
. For the sheaf of L2-differential forms, the stalk cohomology groups

at the boundary points might be infinite dimensional. This problem is solved
by picking out certain summands in the stalk cohomology according to the
weights of the geodesic action of the split components of rational parabolic
subgroups, which explains the name of weighted cohomology. See [Go] for an
introduction to the weighted cohomology groups and a survey of applications
and other related topics.

III.6.9 Summary and comments. The reductive Borel-Serre compacti-
fication is defined as a quotient of the Borel-Serre compactification Γ\X

BS
.

The collapsing of the boundary of Γ\X
BS

was motivated by application to L2-
cohomology group. This compactification is also natural for other purposes.
For example, its cohomology group is naturally isomorphic to Lp-cohomology
group of Γ\X when p� 0.

III.7 Toroidal compactifications

Assume that Γ\X is a noncompact, Hermitian locally symmetric space. In
this section, we briefly discuss the toroidal compactifications Γ\X

tor

Σ . They
are defined quite differently from all the previous compactifications, and there
are infinitely many of them, depending on some combinatorial data Σ. Since
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there are several books [AMRT] [Nam1] devoted entirely to them, we will only
recall the main steps. There is an alternative construction of the toroidal
compactifications using the uniform method in §III.8, which will be outlined
here but treated in detail elsewhere.

In this section, we try to explain how torus embeddings arise and are used
to compactify Γ\X. In the construction, realization of X as Siegel domains
of the third kind is crucial. We also explain how to relate this realization to
the easier and more geometric horospherical decomposition of X. Finally, we
outline an alternative construction of Γ\X

tor

Σ using the uniform method in
§III.8 to avoid partial compactifications of coverings of Γ\X in the original
definition in [AMRT].

More precisely, we discuss the original motivation of finding explicit reso-
lution of the singularities of Γ\X

BB
in III.7.1. In III.7.3, we explain how tori

and torus bundles are related to Hermitian locally symmetric spaces. Some
informal explanations are given in III.7.4. Realization of a Hermitian sym-
metric space X as Siegel domains of various kinds is given in III.7.6-III.7.12.
The relation between the horospherical decomposition and the decomposition
induced from the realization as Siegel domains is given in III.17.13. The no-
tions of admissible polyhedral cone decompositions are introduced in III.7.16
and III.7.17. They are used to define partial compactifications of coverings of
Γ\X in III.7.18. Suitable quotients of these partial compactifications can be
fitted together into the toroidal compactifications Γ\X

tor

Σ in III. 7. 20.

III.7.1 By Proposition III.4.14, Γ\X
BB

is a singular normal projective va-
riety unless Γ\X is a product of Riemann surfaces. If Γ is torsion free, then

the singularities of Γ\X
BB

are contained in the boundary. By the Hironaka’s
resolution theorem, there exists a smooth projective variety Y together with
a morphism π : Y → Γ\X

BB
which is proper and birational, and one-to-one

on Γ\X. Identify Γ\X with an open dense subset of Y . Then Y can be re-
garded as a smooth compactification of Γ\X. Since Γ\X arises from the pair
(G,Γ), it is a natural problem to construct explicitly such resolutions and to
understand how such smooth compactifications depend on data related to the
pair (G,Γ).

Such compactifications were first constructed for Hilbert modular surfaces
by Hirzebruch [Hi1] and for quotients of tube domains by Satake [Sat5]. In
[Ig2], Igusa constructed a partial desingularization when Γ\X is a Siegel mod-
ular variety. The general case was solved completely in [AMRT] using the the-
ory of torus embeddings in [KKMS]. In fact, the theory of torus embeddings
or toric varieties was partly motivated by this problem of obtaining smooth
compactifications of Γ\X, hence the name torus embeddings.

III.7.2 Let T = (C×)r be the r-dimensional complex torus. A torus embed-
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ding is a variety Y containing some torus T such that the T -action on itself
extends to Y . The variety Y is not required to be compact.

Let N be a lattice in Rr. Then N\Cr ∼= (C×)r, and its torus embeddings
which are normal varieties are parametrized by polyhedral cone decompositions
of Rn which are rational with respect to the integral structure given by N .
For details about torus embeddings, see [Nam1, §6], [KKMS], [Oda] and [Ful].

An important example is Cr = a∗⊗C, and the root lattice, i.e., the lattice
spanned by roots Φ(g, a). Then the polyhedral cone decomposition given by
the Weyl chamber decomposition is rational.

III.7.3 To motivate how torus embeddings are related to compactifications
of Γ\X, we first consider the example of Γ\X = Γ\H. Assume that the verti-
cal strip {z = x+ iy ∈ H | − 1

2 ≤ x ≤
1
2 , y > t0}, t0 � 1, is mapped to a cusp

neighborhood. Under the exponential map z 7→ e2πiz, this cusp neighborhood
is mapped to a punctured neighborhood of the origin in the torus C×. Clearly,
the torus C× admits a torus embedding C, which gives a smooth compactifi-
cation of the cusp neighborhood by adding in the origin. By compactifying all
cusp neighborhoods in this way, we obtain a compactification of Γ\H which
is a smooth projective curve.

In this construction, the crucial step is to identify a cusp neighborhood, or
rather ΓNP \H, with a subset of the torus C×. For general Γ\X, the first step
is to embed suitable neighborhoods near infinity into suitable torus bundles.

III.7.4 A rather informal explanation why the torus embeddings are needed
is as follows. By the reduction theory, Γ\X are images of finitely many Siegel
sets U × AP,t × V , where U ⊂ NP , V ⊂ XP can be taken to compact sub-
sets. To compactify Γ\X, it is important to compactify the split part AP,t, or
equivalently to partially compactify AP in the positive direction of the cham-
ber corresponding to P. An obvious problem with this approach is that the
Siegel sets are given by the horospherical decomposition X = NP ×AP×XP,
which is not a holomorphic decomposition. In fact, none of the factors, in
particular AP, is a complex manifold.

Let α1, · · · , αr be the set of simple roots in ∆(P,AP). Then we have the
following identification

AP
∼= (R×)r, a 7→ (a−α1 , · · · , a−αr ).

Naturally one tries to complexify AP into

AP ⊗ C = (R×)r ⊗ C ∼= (C×)r,

and hence the complex torus occurs naturally. Ideally, the next step is to
obtain a decomposition of X which are holomorphic and the factor which
causes the noncompactness is contained in the complex torus AP ⊗ C as in
the example of Γ\H. But this does not happen for several reasons.
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One reason is that since X is simply connected, it can not contain any
torus in such a decomposition. To overcome this difficulty, the idea is to show
that some partial quotients Γ′\X for suitable subgroups Γ′ ⊂ Γ are naturally
embedded into some torus bundles. In the case of the example X = H, the
partial quotient ΓNP \H is mapped into the unit disc in the complex torus
AP ⊗ C = C. In general, for such partial quotients Γ′\X, only parts of the
complex tori appear.

III.7.5 The holomorphic decomposition of X mentioned in the previous
paragraph is given by the realization of X as a Siegel domain of the third
kind.

Assume that G is Q-simple. Recall from §III.4 that the Baily-Borel com-
pactification Γ\X

BB
is constructed as follows. For any maximal rational

parabolic subgroup P of G, its boundary component XP,h is a Hermitian
symmetric space of lower dimension. Then

Γ\X
BB

= Γ\(X ∪
∐
P

XP,h),

where P runs over all maximal parabolic subgroups of G.
Since the toroidal compactifications Γ\X

tor

Σ are blow-ups of Γ\X
BB

, it is
reasonable that we need to use some refined holomorphic decomposition of X
based on each XP,h.

In fact, for any such maximal rational parabolic subgroup P, there is
an unbounded realization of X as a Siegel domain of the third kind over
XP,h. Briefly, a Siegel domain of the first kind is a tube domain, and a Siegel
domain of the second kind is a family of Siegel domain of the first kind over
a complex vector space, and a Siegel domain of the third kind is a family of
Siegel domain of the second kind over the bounded symmetric domain XP,h.
For convenience, we consider Siegel domains of the first and second kinds as
special Siegel domains of the third kind.

III.7.6 Next we recall some of the basics of the realization of X as Siegel
domains of the third kind and show how to compare it with and visualize it
from the more geometric horospherical decomposition.

Assume that G is Q-simple. In the notation of §III.4, let S be a maximal
Q-split torus in G. Let S = S(R) be the real locus and S0 the identity
component. Let β1, · · · , βs be the ordered simple roots in Φ(G,S0), which
determines a positive chamber. Let P0 be the minimal rational parabolic
subgroup corresponding to the positive chamber. In particular, AP0 = S0.
Then any rational parabolic subgroup containing P0 is of the form P0,I , for
some I ⊂ {β1, · · · , βs}.

For any such I, let ∆I,h be the connected component of I containing the
distinguished root βs. If I does not contain βs, ∆I,h is defined to be empty.
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Identify the simple roots β1, · · · , βs with simple roots ∆(G,S) in Φ(G,S)
(see Remark III.1.14).

Then ∆I,h spans a subroot system in Φ(G,S), whose root spaces generate a
semisimple algebraic subgroup GI,h of G. Let GI,l be the normal Q-subgroup
in the Levi group LPI (x0) complementary to GI,h, i.e., LPI (x0) = GI,hGI,l

is an almost direct product. Define KI,h = K ∩ GI,h, and KI,l = K ∩ GI,l,
where GI,h = GI,h(R), GI,l = GP,l(R).

Lemma III.7.7 The space XI,h = GI,h/KI,h is a Hermitian symmetric
space of noncompact type. And XI,l = GI,l/KI,lAPI is a symmetric space
of noncompact type. If PI is a maximal rational parabolic subgroup, then
CPI = GI,l/KI,l is a symmetric cone in the center of the nilpotent radical of
PI .

Proof. The first statement follows from the fact that ∆I,h spans a root system
of type either BC or C. If PI is maximal, the second and the third statements
follow from [AMRT, Theorem 1, p.227]; and the nonmaximal cases are similar.

Lemma III.7.8 The boundary symmetric space XP0,I can be decomposed as
a Riemannian product XP0,I = XI,h ×XI,l.

Proof. Since MP0,I = GI,hGI,l/API and GI,h commutes with GI,l, the lemma
follows from the definition of XI,h and XI,l.

Since every rational parabolic subgroup Q is conjugate to a standard
parabolic subgroup PI , we also get subgroups GQ,h, GQ,l of MQ, and the
boundary spaces XQ,h, XQ,l.

Lemma III.7.9 With the above notation, the space X has the following re-
fined horospherical decomposition with respect to the parabolic subgroup Q:

X = NQ ×XQ,h ×XQ,l ×AQ.

Proof. It follows from the horospherical decomposition X = NQ ×XQ × AQ

Equation (III.1.4) and the decompositionXQ = XQ,h×XQ,l in Lemma III.7.8.

For every maximal rational parabolic subgroup Q, let UQ be the center
of the nilpotent radical NQ of Q, and let VQ = NQ/UQ. Then VQ is a
vector group, i.e., abelian and diffeomorphic to its Lie algebra vQ. Since
NQ is a UQ-principal bundle over VQ, we get that, as differential manifolds,
NQ = UQ × VQ.
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Lemma III.7.10 The Lie algebra vQ of the quotient group VQ = NQ/UQ can
be identified with a subspace of the algebra nQ of NQ which is complementary
to the Lie algebra uQ of UQ. Denote this subspace by vQ. The adjoint action
of GQ,l on nQ preserves vQ.

Proof. By [BB1, Corollary 2.10], Q is also a maximal real parabolic subgroup.
For simplicity, we assume that Q is the normalizer of a standard boundary
component Fs in the notation of [AMRT, §4.1]. Then the third equation on
[AMRT, p. 224] shows that the Lie algebra uQ is the direct sum of some of the
root spaces which appear in nQ, and hence vQ can naturally identified with
the direct sum of the other root spaces in nQ, given by the second equation on
[AMRT, p. 224]. This equation also shows that this complementary subspace
of uQ in nQ is an abelian subalgebra. The root space decomposition of the
Lie algebra gQ,l of GQ,l on [AMRT, p. 226] shows that the adjoint action of
GQ,l on nQ leaves both subspaces uQ and vQ invariant. This completes the
proof.

Remark III.7.11 This lemma shows that the adjoint action of GQ,l on the
quotient group VQ and its Lie algebra vQ can be studied by the restriction
of the adjoint action of GQ,l on nQ to the invariant subspace vQ. In fact,
it is shown in [Ji3] that when ΓQ,l is infinite, or equivalently dimXP,l > 0,
the adjoint (or holonomy) action of ΓQ,l on the compact nilmanifold ΓVQ\VQ
is ergodic, where ΓVQ = ΓNQ/ΓUQ , ΓNQ = Γ ∩ NQ, ΓUQ = Γ ∩ UQ. This
ergodicity result plays an important role in comparing the two compactifica-
tions Γ\X

BS
and Γ\X

tor

Σ , i.e., the Harris-Zucker conjecture in §III.15.6 (or
Proposition III.15.4.4).

After these preparations, we have the following realization of X as a Siegel
domain of the third kind over XQ,h

Proposition III.7.12 [WK, Theorem 7.7] [AMRT, §3.4, pp. 238-239] [Nam1,
§5] With the above notation, there exists an injective holomorphic map π :
X → XQ,h × Cn × (UQ ⊗ C) such that

π(X) = {(z, v, u1 + iu2) | z ∈ XQ,h, v ∈ Cn, u1 ∈ UQ, u2 ∈ hz(v, v) + CQ},

where n = 1
2 dimVQ and hz(v, v) ∈ CQ is a quadratic form in v depending

holomorphically on z.

This realization represents X as a family of tube domains UQ + iCQ over
XQ,h × Cn and hence as a family of Siegel domains of the second kind over
XQ,h. Hence X has been realized as a Siegel domain of the third kind. Since
the ambient space containing the image of the map has a product structure,
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this realization induces a decomposition of X, which is closely related to the
refined horospherical decomposition in Lemma III.7.9.

Using the decomposition NQ = UQ × VQ explained above, we can write
the refined horospherical decomposition of X in Lemma III.7.9 as follows:

X = UQ × VQ ×XQ,h ×XQ,l ×AQ. (1)

Then the relation between the horospherical decomposition and the real-
ization as a Siegel domain of the third kind is as follows.

Lemma III.7.13 For any x = (u, v, z, xl, a) ∈ UQ×VQ×XQ,h×XQ,l×AQ =
X, denote the image π(x) of x under the map π in Proposition III.7.12 by
(z′, v′, u′1 + iu′2) ∈ XQ,h × Cn × (UQ ⊗ C). Then z′ = z, the map v → v′

defines a R–linear isomorphism from VQ to Cn, the map u→ u′1 is a R–linear
transformation on UQ, and u′2 ∈ hz(v′, v′) + CQ. Furthermore, for any u ∈
UQ, v ∈ VQ, and z ∈ XQ,h, the image of {u}×{v}×{z}×XQ,l×AQ is exactly
the shifted cone u′1 + i(hz(v′, v′) + CQ) over the point (z, v′) ∈ XQ,h × Cn.

Proof. It follows from the discussions in [AMRT, pp. 235-238]; in particular,
the linear isomorphisms v → v′ and u → u′ come from trivialization of the
two principal bundles.

Since the horospherical decomposition of X describes the structure of
geodesics in X, it is helpful in understanding its relation with the realiza-
tion of X as a Siegel domain of the third kind in the above proposition by
discussing how geodesics behave in the latter.

Lemma III.7.14 For any u ∈ UQ, v ∈ VQ, z ∈ XQ,h, xl ∈ XQ,l, and
H ∈ a+

Q, |H| = 1, the curve c(t) = (u, v, z, xl, exp(tH)), t ∈ R, is a geodesic
in X. In the realization of X as a Siegel domain of the third kind above, c(t)
becomes a ray in the tube domain UQ + i(hz(v′, v′) + CQ) whose imaginary
part is a ray starting from the vertex hz(v′, v′).

Proof. By Lemma I.2.9, c(t) is a geodesic in X. By Lemma III.7.13, the
geodesic c(t), t ∈ R, is mapped into the cone u′1 + i(hz(v′, v′) + CQ) over the
point (z, v′) ∈ XQ,h×Cn. Since XQ,h is a section of the symmetric cone CQ,
any geodesic in the cone u′1 + i(hz(v′, v′) +CQ) with respect to the invariant
metric is a ray from the vertex.

This lemma shows that when xl varies in XQ,l, the family of parallel
geodesics (u, v, z, xl, exp(tH)) in X are mapped to a family of rays in the
cone hz(v′, v′) + CQ issued from the vertex.

III.7.15 As in the case of toroidal embeddings or toric varieties, the toroidal
compactifications Γ\X

Tor

Σ of Γ\X depend on polyhedral decompositions Σ.
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For any maximal rational parabolic subgroup Q, let ΓQ,l be the image of
ΓQ in GQ,l under the projection Q = NQGQ,hGQ,lAQ → GQ,l. Then ΓQ,l is a
torsion free lattice subgroup acting on XQ,l. Denote the intersection ΓQ∩UQ
by ΓUQ . Then ΓUQ is a torsion free lattice in the vector group UQ.

Definition III.7.16 [AMRT, p. 117, 252] [Nam1, p. 59-60] A ΓQ,l–admissible
polyhedral decomposition of CQ is a collection ΣQ of polyhedral cones satis-
fying the following conditions:

1. Each cone in ΣQ is a strongly convex rational polyhedral cone in CQ ⊂
UQ with respect to the rational structure on UQ induced by the lattice
ΓUQ .

2. Every face of any σ ∈ ΣQ is also an element in ΣQ.

3. For any σ, σ′ ∈ ΣQ, the intersection σ ∩ σ′ is a face of both σ and σ′.

4. For any γ ∈ ΓQ,l and σ ∈ ΣQ, γσ is also a cone in ΣQ.

5. There are only finitely many classes of cones in ΣQ modulo ΓQ,l.

6. CQ ⊂ ∪σ∈ΣQσ, and hence CQ = ∪σ∈ΣQCQ ∩ σ.

Definition III.7.17 A Γ–admissible family of polyhedral cone decomposi-
tion Σ = {ΣQ} is a union of ΓQ,l–admissible polyhedral cone decompositions
ΣQ of CQ over all maximal rational parabolic subgroups satisfying the follow-
ing compatibility conditions:

1. If Q1 = γQ2γ
−1, then γΣQ1 = ΣQ2 .

2. If CQ1 is contained in the boundary of CQ2 , then ΣQ1 = {σ ∩CQ1 | σ ∈
ΣQ2}.

III.7.18 For any maximal rational parabolic subgroup Q, ΓUQ is a lattice in
UQ, and ΓUQ\UQ⊗C is a complex torus. Using Proposition III.7.12, identify
X with the subset π(X) in XQ,h×Cn× (UQ⊗C). Then ΓUQ\X is contained
in a bundle ΓUQ\XQ,h×Cn×(UQ⊗C) over XQ,h×Cn with fiber ΓUQ\UQ⊗C,
which is denoted by ΓUQ\B(Q). This is the torus bundle we mentioned earlier.
It contains the partial quotient ΓUQ\X as a proper subset.

A ΓQ,l–admissible polyhedral decomposition ΣQ of CQ ⊂ UQ defines a
partial compactification (a toroidal embedding ) ΓUQ\UQ ⊗ CΣQ

of every
fiber ΓUQ\UQ ⊗ C in ΓUQ\B(Q). Putting all these partial compactifications
together, we get a partial compactification ΓUQ\B(Q)

ΣQ
of the torus bun-

dle ΓUQ\B(Q). The interior of the closure of ΓUQ\X in ΓUQ\B(Q)
ΣQ

de-

fines a partial compactification ΓUQ\XΣQ
of ΓUQ\X, which is a bundle over

XQ,h × Cn [AMRT, pp. 249–250].
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III.7.19 For every Γ–admissible family of polyhedral cone decomposition
Σ = {ΣQ}, we get a family of partially compactified spaces ΓUQ\XΣQ

of
coverings ΓUQ\X of Γ\X.

Proposition III.7.20 [AMRT, Main Theorem I, p. 252] [Nam1, Main The-
orem 7.10] For any Γ–admissible family of polyhedral cone decomposition Σ,
there exists a unique compact Hausdorff analytic compactification Γ\X

tor

Σ sat-
isfying the following conditions:

1. For every maximal rational parabolic subgroup Q, the projection map
πQ : ΓUQ\X → Γ\X extends to an open holomorphic map πQ : ΓUQ\XΣQ

→

Γ\X
tor

Σ .

2. The images πQ(ΓUQ\XΣQ
) for all maximal rational parabolic subgroup

Q cover Γ\X
tor

Σ .

3. The compactification Γ\X
tor

Σ dominates Γ\X
BB

.

This compactification Γ\X
tor

Σ is called the toroidal compactification of Γ\X
associated with the polyhedral cone decomposition Σ. For any such Σ, there
always exists a refinement Σ′ of Σ such that the corresponding toroidal com-
pactification Γ\X

tor

Σ′ is a smooth projective variety. This solves the problem
mentioned in §III.7.1, i.e., gives explicit resolutions of the singularities of
Γ\X

BB
. Though they are not unique and hence canonical in general, they

have exploited and depend on the underlying group theoretical structures of
Γ\X.

III.7.21 Though the above discussions only summarize the main steps in
the construction of the toroidal compactifications Γ\X

tor

Σ , details of the many

steps are difficult. The space Γ\X
tor

Σ is defined as a suitable quotient of the
union

∐
Q ΓUQ\XΣQ

. Since they are partial compactifications of different
covering spaces ΓUQ\X of Γ\X, the equivalence relation is complicated and

makes substantial use of Γ\X
BB

. In fact, there are a lot of overlaps between
the images πQ(ΓUQ\XΣQ

). On the other hand, the procedures to construct

Γ\X
BS

and Γ\X
BB

are different: Start with a partial compactification of X,
then take the quotient by Γ only once to get the compactification of Γ\X.

It is certainly desirable to construct Γ\X
tor

Σ in this way in order to un-

derstand Γ\X
tor

Σ better (see Satake’s long review [Sat7] of [AMRT] in Math.
Review.)

At first sight, such an approach seems impossible. The reason is that to
get torus bundles and apply the techniques of torus embeddings, we need to
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divide the contractible X by some discrete subgroups such as ΓUQ to start
with, and the passage to intermediate quotients ΓUQ\X seems to be necessary.
It turns out that this difficulty can be overcome by observing that the torus
embeddings of a torus N\Cn can be constructed differently from the usual
procedure. Specifically, for a polyhedral cone decomposition Σ of Rn, one can
construct a partial compactification CnΣ such that the quotient N\CnΣ is the
torus embedding associated with Σ. Using this observation, one can construct
Γ\X

tor

Σ by methods similar to the construction of Γ\X
BS

, or by the general
method in §III.8 below. Specifically, given a Γ-admissible family Σ = {ΣQ}
of polyhedral cone decompositions, one proceeds in two steps:

1. For each maximal rational parabolic subgroup Q, attach a boundary
component eΣ(Q) to the infinity of X using the realization of X as a
Siegel domain of the third kind to get a partial compactification X

tor

Σ =
X ∪

∐
Q eΣ(Q).

2. Show that Γ acts continuously on X
tor

Σ with a compact quotient, which
is equal to the toroidal compactification Γ\X

tor

Σ .

Details of this construction are under preparation and will appear else-
where.

III.7.22 Summary and comments. In this section, we outlined the con-
struction of toroidal compactifications Γ\X

tor

Σ in [AMRT] and mentioned an
alternative approach using the uniform method in the book. The latter con-
struction is independent of the Baily-Borel compactification and allows one
to understand the boundary structure of Γ\X

tor

Σ better.
There are natural realizations of the toroidal compactifications of special

locally symmetric spaces in terms of degenerations of varieties. See [Nam2]
[Nam3] [Ale] [HKW] [Sha] for details. There are also other complex compacti-
fications which lie between the Baily-Borel and the toroidal compactifications
in [Lo1] [Lo2].

The toroidal compactifications have some important applications. One is
to the generalization by Mumford [Mum3] of the Hirzebruch proportional-
ity principle. Some toroidal compactifications also have models over number
fields and their rings of integers [FC] [Ch1] [Ch2], which are important to
applications in number theory.
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Chapter 10

Uniform construction of
compactifications of locally
symmetric spaces

In the previous chapter, we have recalled most of the known compactifications
of locally symmetric spaces and their motivations. In this chapter, we modify
the approach in [BS2] to propose a general uniform method to compactify
locally symmetric spaces and construct all the previous compactifications of
Γ\X and some new compactifications of Γ\G in a uniform way. As mentioned
in Part I, this method motivated the uniform approach to compactifications of
symmetric spaces §I.8. Besides allowing easier comparison between different
compactifications, this approach also avoids some of the steps in [BS2] such as
the introduction of spaces of S-type which are needed in the inductive proofs,
and the issues around the geometric rationality of the Satake compactifications
in §III.3.

In §III.8, we formulate precisely this uniform approach. In §III.9, we apply
this method to give a uniform construction of the Borel-Serre compactification
Γ\X

BS
and prove several results on Γ\X

BS
stated in §III.5. In §III.10, we use

this uniform method to give a direct construction of the reductive Borel-Serre
compactification Γ\X

RBS
independent of the Borel-Serre compactification

Γ\X
BS

, which was used crucially to define Γ\X
RBS

in §III.6. In §III.11,

we construct the maximal Satake compactification Γ\X
S

max without using
the maximal Satake compactification X

S

max and hence avoid the difficulties
about the geometric rationality of X

S

max. Therefore, the maximal Satake

compactification Γ\X
S

max of Γ\X is always defined. In §III.12, we construct

a compactification Γ\X
T

by using the Tits building ∆Q(G) as the boundary,

351
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which is shown to be related to certain geodesics going out to infinity and
other geometric compactifications such as the geodesic compactification Γ\X∪
Γ\X(∞) and the Gromov compactification Γ\X

G
in §III.20. In §III.13 and

§III.14, we apply the uniform method to construct compactifications Γ\G
BS

and Γ\G
RBS

of the homogeneous space Γ\G and related spaces Γ\G/H, where
H is a non-maximal compact subgroup of G.

III.8 Formulation of the uniform construction

In this section we formulate a uniform approach to compactifications of locally
symmetric spaces. It is suggested by [BS2]. The basic difference from [BS2]
is that the geodesic action and the induced corners do not play a prominent
role. In fact, many compactifications do not have corner structure; and the
homogeneous space G does not admit canonical geodesic action unlike the
symmetric space X, and hence the geodesic action needs to be avoided for
compactifications of the homogeneous space Γ\G.

As discussed in §III.3, to pass from the Satake compactifications X
S

τ to the
Satake compactifications of Γ\X, an important step is the question of geomet-
ric rationality of X

S

τ . The basic point of this chapter is that compactifications
of Γ\X should be constructed directly, independently of compactifications of
X.

III.8.1 A general uniform method in [BJ3], suggested by [BS2], to construct
compactifications of Γ\X is as follows:

1. For every rational parabolic subgroup P of G, define a boundary com-
ponent e(P) using the Langlands decomposition of P .

2. Form a partial compactification ofX by attaching all the rational bound-
ary components

QX = X ∪
∐
P

e(P),

using the rational horospherical coordinate decomposition of X with
respect to P .

3. Show that Γ acts continuously on the partial compactification QX with
a compact Hausdorff quotient, which is a compactification of Γ\X.

Different choices of the boundary component e(P) lead to different com-
pactifications, and they are often constructed from the factors of the rational
horospherical decomposition of X with respect to P . The boundary compo-
nents e(P) are also glued at the infinity of X using the horospherical decom-
position. If the boundary components e(P) are sufficiently large, for example,
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as large as the Borel-Serre boundary components, the arithmetic subgroup
Γ acts properly on QX, otherwise the action is not proper. It is reasonable
to expect that infinite stabilizers, which is the case when the Γ-action is not
proper, prevent any chances for the quotient to have differentiable structures.

The reduction theories for arithmetic groups in §III.2 play an important
role in proving that the quotient is Hausdorff and compact. In fact, the
compactness is often proved by showing that the closure of a Siegel set, and
hence a fundamental set, is compact. The Hausdorff property is often proved
with the help of Siegel finiteness property (of Siegel sets). If the action is
proper, its proof also uses the Siegel finiteness property.

III.8.2 In all the examples discussed in this chapter, the boundary compo-
nents satisfy one and only one of the following conditions:

1. for every pair of rational parabolic subgroup P,Q, e(P) is contained in
the closure of e(Q) if and only if P ⊇ Q.

2. for every pair of rational parabolic subgroups P,Q, e(P) is contained
in the closure of e(Q) if and only if P ⊆ Q,

Usually, each boundary component e(P) is a cell. In case (1), the boundary∐
P e(P) of QX is a cell complex parametrized by the set of rational parabolic

subgroup and the incidence relation between the cells is the same as in the
rational Tits building of G.

In case (2), the boundary
∐

P e(P) is a cell complex over all the rational
parabolic subgroups whose incidence relation is dual to the incidence relation
in the rational Tits building of G, and is hence a cell complex dual to the
Tits building.

Though we can obtain boundary components which are of mixed type as
in the case of the Martin compactification of symmetric spaces, the result-
ing compactifications do not seem to occur naturally, and hence we will not
construct them.

III.8.3 The above method by gluing on the boundary components of all ra-
tional parabolic subgroups can be used to construct the Borel-Serre compacti-
fication Γ\XBS

, the reductive Borel-Serre compactification Γ\X
RBS

, and the

maximal Satake compactification Γ\X
S

max. In order to construct the non-
maximal Satake compactifications such as the Baily-Borel compactification
and the toroidal compactifications, we need to modify the method as follows:

1. Choose a Γ-invariant collection P of rational parabolic subgroups of G.

2. For every rational parabolic subgroup P in the collection P, define a
boundary component e(P) using the Langlands decomposition of P or
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other decompositions and data, for example, the realization of a Her-
mitian symmetric space as a Siegel domain of the third kind and the
Γ-admissible polyhedral cone decompositions.

3. Form a partial compactification ofX by attaching all the rational bound-
ary components

QX = X ∪
∐
P∈P

e(P),

using the rational horospherical coordinate decomposition of X with
respect to P or other decompositions and data as above.

4. Show that Γ acts continuously on the partial compactification QX with
a compact Hausdorff quotient, which is a compactification of Γ\X.

For the Baily-Borel compactification Γ\X
BB

, the collection Pmax of max-
imal rational parabolic subgroups is used. For other Satake compactifications
of Γ\X, we need to pick this collection suitably. For the toroidal compactifi-
cations, the collection Pmax is also used.

III.8.4 There are several general features of this uniform approach.

1. Since the compactifications of Γ\X can be constructed by the same
procedure by varying the choices of the boundary components, relations
between them can be easily determined by comparing their boundary
components.

2. Both the topology, in particular neighborhoods of boundary points, of
the partial compactification QX and the quotient Γ\QX can be described
explicitly. Such explicit descriptions are useful for many applications
(see [Zu2] [GHMN]).

3. Since the uniform construction of compactifications of symmetric spaces
was motivated by the approach here, it suggests a close analogue be-
tween the compactifications of symmetric spaces and compactifications
of locally symmetric spaces.

4. The combinatorial structure of the boundary of the compactifications is
described by the rational Tits building.

5. Avoid the issue of geometrical rationality of compactifications of X,
which has been an important step in constructing compactifications of
Γ\X (see [Sat2] [BB1] [Ca2] and [Sap2]).

III.8.5 As in the case of compactifications of symmetric spaces, in applying
this method to construct compactifications of Γ\X, it is often more conve-
nient to describe a topology in terms of convergent sequences. Such explicit
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convergent sequences allow us to compare the topologies of different compact-
ifications more easily.

III.8.6 Summary and comments. The uniform method to construct
compactifications of locally symmetric spaces is similar to the method for
compactifications of symmetric spaces in §I.8, but there are several differences:

1. For symmetric spaces, we use R-parabolic subgroups; while for locally
symmetric spaces, we use Q-parabolic subgroups.

2. For symmetric spaces, the real Langlands decomposition is used; while
for locally symmetric spaces, the rational Langlands decomposition of
the real locus of Q-parabolic subgroups is used.

III.9 Uniform construction of the Borel-Serre
compactification

In this section, we apply the uniform method in the previous section to give an
alternative construction of Γ\XBS

. This construction avoids the introduction
of spaces of S-type which are used in the original construction in [BS2]. Details
of the general method in §III.8 will be explained through this construction.
We also show explicitly that Γ\X

BS
is a real analytic manifold with corners

and prove several statements in §III.5.
This section is organized as follows. The Borel-Serre boundary compo-

nent of Q-parabolic subgroups is defined in III.9.1. The topology of the par-
tial Borel-Serre compactification QX

BS
is defined in III.9.2 using convergent

sequences. Explicit neighborhoods of boundary points are given in III.9.4.
Corners associated to Q-parabolic subgroups are assembled from the bound-
ary components in Proposition III.9.5. The Hausdorff property of the partial
compactification QX

BS
is proved in III.9.14. The G(Q)-action on X is shown

to extend to a continuous action on QX
BS

(III.9.15). This action is shown to
be real analytic with respect to the canonical real analytic structure on QX

BS

in III.9.16. The action on Γ on QX
BS

is shown to be proper in III.9.17. Fi-

nally, the compactification Γ\X
BS

is constructed in III.9.18. Its boundary
components are listed in III.9.20.

III.9.1 For any rational parabolic subgroup P, let

X = NP ×AP ×XP (III.9.1)

be the rational Langlands decomposition of X with respect to P and the
basepoint x0 = K ∈ X = G/K in §III.1. Define the boundary component
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e(P) by
e(P) = NP ×XP. (III.9.2)

Since XP = MP/KP, where KP = K ∩MP, e(P) can also be written as
a homogeneous space of P ,

e(P) ∼= P/APKP, (n,mKP) 7→ nmAPKP.

Since NP is a normal subgroup of P , P/APKP is a NP -principal bundle
over P/NPAPKP, which can be identified with the rational boundary sym-
metric space XP. Hence, the boundary component e(P) is a principal bundle
over XP with fiber NP .

Define
QX

BS
= X ∪

∐
P

e(P) = X ∪
∐
P

NP ×XP, (III.9.3)

where P runs over all rational parabolic subgroups of G.

III.9.2 The topology of QX
BS

is defined as follows. Clearly, X and the
boundary components e(P) have the natural topology. We need to define
convergence of sequences of interior points in X to the boundary points in

QX
BS

and convergence of boundary points.
To describe the convergence of boundary points, we need the relative horo-

spherical decomposition for a pair of rational parabolic subgroups P, Q with
P ⊂ Q. Let P′ be the rational parabolic subgroup in MQ corresponding to
P by Equation (III.1.13) in §III.1, and let

XQ = NP ′ ×AP′ ×XP′

be the rational horospherical decomposition of XQ with respect to P′ in Equa-
tion (III.1.15) in §III.1. Since

NP = NQNP ′ , XP′ = XP,

we have a decomposition of the boundary component e(Q) with respect to P,

e(Q) = NQ ×XQ
∼= NP ×AP′ ×XP. (III.9.4)

1. An unbounded sequence yj inX converges to a boundary point (n∞, z∞) ∈
e(P) if and only if in terms of the rational horospherical decomposition
of X with respect to P in Equation (III.9.1), yj = (nj , aj , zj), nj ∈
NP , aj ∈ AP, zj ∈ XP, the components nj , aj , zj satisfy the condi-
tions:

(a) For every α ∈ Φ(P,AP), (aj)α → +∞,

(b) nj → n∞ in NP ,
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(c) and zj → z∞ ∈ XP.

2. For every pair of rational parabolic subgroups P,Q with P ⊂ Q, P 6= Q,
e(P) is contained in the boundary of e(Q). Specifically, a sequence yj in
e(Q) converges to a point (n∞, z∞) ∈ e(P) if and only if the coordinates
of yj with respect to the decomposition in Equation (III.9.4),

y = (nj , a′j , zj) ∈ NP ×AP′ ×XP = e(Q),

satisfy the conditions:

(a) For every α ∈ Φ(P ′, AP′), aαj → +∞,

(b) nj → n∞ in NP ,

(c) zj → z∞ in XP.

The above two types of convergent sequences are special, and their combi-
nations give the general convergent sequences. It can be seen that they form
a convergence class of sequences in the sense of Definition I.8.7 and hence
defines a topology on QX

BS
. The space QX

BS
with the above topology is

called the Borel-Serre partial compactification.

Remark III.9.3 There does not seem to be a fixed name for such a noncom-
pact space QX

BS
containing X as a dense, open subset. The term partial

compactification is used here to emphasize the fact that it is obtained by
compactifying X only along certain directions, i.e., only along those of ra-
tional parabolic subgroups. Some other common names are bordifications,
enlargements, or completion.

III.9.4 Neighborhoods of boundary points in QX
BS

can be described ex-
plicitly. For (n,m) ∈ e(P), let U, V be neighborhoods of n,m in NP , XP

respectively. For any parabolic subgroup Q = PI containing P, let P′I be
the parabolic subgroup of MPI corresponding to P in Equation (III.1.13) in
§III.1, and A′PI its split component. Then∐

I

U ×AP ′I ,t × V (III.9.5)

is a neighborhood of (n,m) in QX
BS

. It can be checked that they define the
same topology as one above defined by the convergent sequences. For any se-
quence tj → +∞ and base of neighborhoods Uj , Vj , the above neighborhoods
in Equation (III.9.5) form a countable base for the point (n,m) in QX

BS
.

To understand more directly neighborhoods of the boundary points and
to show that QX

BS
is a manifold with corners, we need to identify the closure

of a Siegel set in QX
BS

.
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For any rational parabolic subgroup P, let ∆ = {α1, · · · , αr} be the set
of simple roots in Φ(P,AP). Then AP can be identified with Rr>0 under the
map

a ∈ AP 7→ (a−α1 , · · · , a−αr ) ∈ (R>0)r ⊂ Rr. (III.9.6)

The closure of AP in Rr under this embedding is denoted by AP.

Proposition III.9.5 The embedding NP × AP ×XP ↪→ X ⊂ QX
BS

can be
naturally extended to an embedding NP × AP ×XP ↪→ QX

BS
. The image of

NP ×AP×XP in QX
BS

is denoted by X(P) and called the corner associated
with P. Furthermore, X(P) is equal to the subset X ∪

∐
Q⊇P e(Q) in QX

BS
.

To prove this proposition, we need to decompose AP according to rational
parabolic subgroups containing P. Let ∆(P,AP) be the set of simple roots
in Φ(P,AP). By §III.1.15, there is an one-to-one correspondence between the
rational parabolic subgroups containing P and the subsets in ∆(P,AP). For
any I ⊂ ∆(P,AP), the decomposition

AP = AP,PI ×API

in Equation (III.1.11) corresponds to the standard coordinate decomposi-
tion under the identification in Equation (III.9.6). Since the simple roots
in ∆(PI , API ) are restrictions of the simple roots in ∆(P,AP), it implies that
the inclusion

AP,PI ×API ⊂ AP

extends to an inclusion
AP,PI ×API ⊂ AP.

Let oPI be the origin of AP. Then AP,PI × oPI is a face of the coordinate
quadrant AP

∼= (R≥0)∆.

Lemma III.9.6 The corner AP admits a disjoint decomposition

AP = AP ∪
∐

Q⊇P

AP,Q × oQ.

In this decomposition, a sequence aj ∈ AP converges to (a∞, oQ) ∈ AP,Q×oQ

if and only if in the decomposition a = (a′j , a
′′
j ) ∈ AP,Q ×AQ, a′j → a∞ and

a′′j → oQ in AQ.

Proof. The disjoint decomposition follows from the identification AP =
R

∆
≥0 and the one-to-one correspondence between proper subsets of ∆ and

the (proper) rational parabolic subgroups Q containing P, and the second
statement is also clear.
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Lemma III.9.7 For two rational parabolic subgroups P,Q, P ⊂ Q, as above,
let P′ be the unique rational parabolic subgroup of MQ corresponding to P in
Equation (III.1.13). Then

e(Q) = NQ ×XQ
∼= NP ×AP′ ×XP

using the rational horopsherical decomposition of XQ with respect to P′. Fur-
thermore, e(Q) ∼= NP × AP′ × XP can be identified with NP × AP,Q × XP

through the map

NP ×AP,Q ×XP → NP ×AP′ ×XP : (n, expH, m) 7→ (n, expHP′ , m),

where HP′ is the component of H in aP′ in the decomposition aP = aP′ ⊕ aQ.

Proof. The first statement follows from

NP = NQNP ′ , XP = XP′

and the horospherical decomposition

XQ = NP ′ ×AP′ ×XP ′ .

Since aP = aP,Q ⊕ aQ and aP = aP′ ⊕ aQ, the map H ∈ aP,Q 7→ HP′ ∈ aP′

is a linear isomorphism, and the second statement follows.

Lemma III.9.8 For any rational parabolic subgroup Q containing P, under
the identification e(Q) = NP × AP,Q × XP, a sequence of points yj in X
converges to a boundary point in e(Q) if and only if in the decomposition

X = NP ×AP,Q ×AQ ×XP,

the coordinates of yj = (nj , a′′j , aj , zj) satisfy

1. nj → n∞ in NP ,

2. a′′j → a′′∞ in AP,Q,

3. for all α ∈ Φ(Q,AQ), aαj → +∞,

4. zj → z∞ in XP,

and the limit of yj is equal to (n∞, a′′∞, z∞) ∈ e(Q).

Proof. Since the convergence of points in X to limits e(Q) is defined through
the horospherical decomposition of X with respect to Q, we need to relate
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the above decomposition of X to the horospherical decomposition associated
with Q:

X = NQ ×AQ ×XQ.

Let P′ be the rational parabolic subgroup of MQ corresponding to P as above.
Then this horospherical decomposition can be refined as follows.

X = NQ ×AQ ×XQ = NQ ×AQ × (NP ′ ×AP′ ×XP)
= NP ×AP′ ×AQ ×XQ,

(III.9.7)

where we have used the fact that AQ commutes with NP ′ and AP′ .
As in the previous lemma, for any H ∈ aP,Q, write

H = HP′ +HQ,

where HP′ ∈ aP′ and HQ ∈ aQ. Then the map

NP ×AP,Q ×AQ ×XP → NP ×AP′ ×AQ ×XQ (III.9.8)

is given by

(n, expH, expV, z) 7→ (n, expHP′ , exp(HQ + V ), z). (III.9.9)

Similarly, for any H ∈ aP′ , write H = HP,Q + HQ, where HP,Q ∈ aP,Q,
HQ ∈ aQ. Then the transformation

NP ×AP′ ×AQ ×XQ → NP ×AP,Q ×AQ ×XP (III.9.10)

is given by

(n, expH, expV, m) 7→ (n, expHP, Q, exp(HQ + V ), m). (III.9.11)

These two formulae of coordinate changes imply the lemma.

Lemma III.9.9 For a pair of parabolic subgroups P ⊂ Q, let I ⊂ ∆(P,AP)
be the subset such that Q = PI . Then under the identification

e(Q) ∼= NP ×AP,Q ×XP

in Lemma III.9.7, a sequence yj = (nj , aj , zj) in e(Q) converges to a point
(n∞, z∞) ∈ e(P) = NP×XP if and only if for all β ∈ ∆(P,AP)\I, aβj → +∞,
and nj → n∞, zj → z∞.

Proof. For all H ∈ aQ and β ∈ ∆(P,AP) \ I, β(H) = 0. This implies that
that for all β ∈ ∆(P,AP) \ I and H ∈ aP,Q, β(HP ′) = β(H), where HP ′ is
the component of H in aP′ under the direct sum aP = aP ′ ⊕ aQ. Since the
simple roots in Φ(P ′, AP′) are restrictions of ∆(P,AP ) \ I to aP ′ , the lemma
is clear.

More generally, the following lemma is true.
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Lemma III.9.10 Let Q1,Q2 be two rational parabolic subgroups containing
P. Suppose that Q1 ⊂ Q2. Let Ij be the subset of the simple roots in ∆(P,AP)
such that Qi = PIi , i = 1, 2. Under the identifications

e(Q1) ∼= NP ×AP,Q1 ×XP,

e(Q2) ∼= NP ×AP,Q1 ×AQ1,Q2 ×XP,

a sequence of points yj = (nj , aP,Q1,j , aQ1,Q2,j , mj) in e(Q2) converges
in QX to a point (n∞, aP,Q1,∞, m∞) ∈ e(Q1) if and only if nj → n∞,
aP,Q1,j → aP,Q1,∞, mj → m∞, and for all α ∈ I2 \ I1, (aQ1,Q2,j)

α → +∞.

III.9.11 Proof of Proposition III.9.5.
By Lemmas III.9.7 and III.9.8, the subset NP × AP,Q × oQ × XP in

NP × AP × XP can be identified with e(Q), and under this identification,
convergence of sequences of interior points to points in e(Q) in the topology
of NP ×AP×XP is the same as in the topology of QX

BS
. By Lemma III.9.9,

under this identification, the convergence of sequences of points in e(Q) to
points in e(P) in the topology of NP×AP×XP is the same as the convergence
in the topology of QX

BS
. Similarly, by Lemma III.9.10, for any two boundary

faces e(Q1), e(Q2) with Q1 ⊂ Q2, the convergence of sequences of points in
e(Q2) to points in e(Q1) is the same in both topologies.

This implies that the embedding NP×AP×XP ↪→ QX
BS

can be extended
to an embedding

NP ×AP ×XP ↪→ QX
BS
,

and the image of NP ×AP ×XP in QX
BS

is equal to X ∪
∐

Q⊇P e(Q).

Remark III.9.12 Proposition III.9.5 says that for any rational parabolic
subgroup P, all the boundary faces e(Q) for Q containing P form a corner
X(P) in QX

BS
. This implies that each corner X(P) is an open subset, and

the corner X(Q) for any Q ⊃ P is contained in X(P) as an open subset. On
the other hand, the boundary component e(P) is contained in the closure of
e(Q).

Recall from Equation (III.1.16) in §III.1 that for any t > 0, AP,t is defined
by

AP,t = {a ∈ AP | aα > t, α ∈ ∆(P,AP)}.

Define
AP,t = {a ∈ AP | aα > t, α ∈ ∆(P,AP)},

where aα could be equal to +∞. The space AP,t is a partial compactification
of AP,t in the direction of P, and is equal to the interior of the closure of AP,t

in AP.
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Lemma III.9.13 For any point (n, z) ∈ NP × XP = e(P), a neighborhood
system of (n, z) in QX is given by U × AP,t ×W , where n ∈ U, z ∈ W are
basis of neighborhoods in n ∈ NP , z ∈ XP respectively, and t > 0.

Proof. Let t be any sufficiently large number. For any interior sequence
yj converging to (n,m) ∈ e(P), it follows from the definition that yj ∈ U ×
AP,t ×W eventually. For any rational parabolic subgroup Q ⊃ P and any
sequence yj in e(Q) converging to (n,m) ∈ e(P), yj belongs to U ×AP′,t×W
eventually, where P′ is the unique parabolic subgroup of MQ corresponding
to P as in Equation (III.1.13). By Lemmas III.9.7, III.9.8 and the proof of
Lemma III.9.9, U×AP′,t×W can be identified with U× (AP,Q,t×{oQ})×W
in X(P) = NP ×AP ×XP, where

AP,Q,t = {a ∈ AP,Q | aβ > t, β ∈ ∆(P,AP) \ I},

I being the subset of simple roots PI = Q. By Lemma III.9.7, AP,t =

AP,t ∪
∐

Q⊇PAP,Q,t, which implies that every sequence in QX
BS

converging
to (n,m) belongs to U × AP,t ×W eventually. This shows that when U, W

shrink to n, m respectively and t → +∞, U × AP,t ×W forms a basis of

neighborhoods of (n, m) in QX
BS

and hence completes the proof.

Proposition III.9.14 The partial compactification QX
BS

is a Hausdorff space.

Proof. It suffices to show that any two distinct boundary points y1, y2 ∈
QX

BS − X have disjoint neighborhoods. Let Pi be the rational parabolic
subgroup such that yi ∈ e(Pi). By Lemma III.9.13, for any neighborhood
Ui ×Wi of yi in e(Pi) and any t > 0, Ui × APi ,t ×Wi is a neighborhood of

yi in QX
BS

. There are two cases to consider. Suppose first that P1 6= P2. By
Proposition III.2.19, when Ui ×Wi are bounded and t � 0, the Siegel sets
Ui×APi,t×Wi, i = 1, 2, are disjoint. Hence the sets Ui×APi,t×Wi are also
disjoint, since Ui×APi,t×Wi is an open dense subset of Ui×APi,t×Wi. On
the other hand, suppose that P1 = P2. Then y1, y2 are two distinct points on
the same boundary face e(P1) and hence have disjoint neighborhoods U1×W1,
U2 ×W2. In particular, U1 × AP1,t ×W1 and U2 × AP2,t ×W2 are disjoint.
As in the previous case, this implies that Ui ×APi ,t ×Wi are also disjoint.

Proposition III.9.15 The G(Q)-action on X extends to a continuous ac-
tion on QX

BS
. In particular, the arithmetic subgroup Γ acts continuously on

QX
BS

.
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Proof. There are two steps in the proof. The first step is to extend the G(Q)-
action onX to QX

BS
, and the second step is to prove that this extended action

is continuous.
For any rational parabolic subgroupP, and g ∈ G(Q), write g = kp =

kman, where k ∈ K, p ∈ P , n ∈ NP , a ∈ AP, m ∈ MP. Then kP = gP, and
k defines a canonical identification

k · e(P) = e(kP), (n,mKP) 7→ (kn, kmKkP).

For any boundary point (n′, z′) ∈ e(P), define

g · (n′, z′) = k · (am(nn′),mz′) ∈ e(kP) = e(gP).

Note that a, n are uniquely determined by g. Though each of k and m is not
uniquely determined by g, the product km is, and hence the above action is
well-defined.

To prove that this map is continuous, we first show that if a sequence yj in
X converges to (n∞, z∞) ∈ e(P), then gyj converges to g ·(n∞, z∞) ∈ e(gP).
Write yj = (nj , aj , zj) ∈ NP ×AP ×XP. Then

gyj = kmannjajzj = kma(nnj) · kma · ajzj
= kma(nnj) · k(aaj) · (k ·mzj)

(III.9.12)

with kma(nnj) ∈ NkP , k(aaj) ∈ AkP, k · mzj ∈ XkP . Since nj → n∞,
zj → z∞, and (aaj)α → +∞ for all α ∈ Φ(P,AP), it is clear that gyj
converges to the point g(kma(nn∞), k ·mz∞) = g · (n∞, z∞) ∈ e(kP) = e(gP).

Suppose that yj is a sequence in the boundary of QX
BS

converging y∞ ∈
e(P) for some rational parabolic subgroup P. By passing to a subsequence,
we can assume that there exists a rational parabolic subgroup Q containing
P such that yj ∈ e(Q).

Write
yj = (nj , zj) ∈ NQ ×XQ = e(Q),

zj = (n′j , a
′
j , z
′
j) ∈ NP ′ ×AP′ ×XP′ .

By definition, the convergence of yj means that nj , n′j , z
′
j all converge with

limits n∞, n′∞ and z′∞ respectively, and for all α ∈ Φ(P ′, AP′), (a′j)
α → +∞.

Then the limit y∞ is given by

y∞ = (n∞n′∞, z
′
∞).

For g ∈ G(Q) as above, write g = kman where k ∈ K,m ∈ MQ, a ∈
AQ, n ∈ NQ. Then

gyj = g · (nj ,mj) = (kma(nnj), k(mmj) · k) ∈ e(gQ).
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To compute the limit of gyj in e(gQ), we decompose m = k′m′a′n′ where
k′ ∈ K ∩MQ, m′ ∈MP′ , a

′ ∈ AP′ , n ∈ NP ′ . By computations similar to the
above, the limit of gyj in e(gQ) is equal to

(kma(nn∞)kk
′m′a′(n′n′∞), kk′ · (m′m′∞)) ∈ e(gP).

By a direct computation, this limit is equal to

(kk
′m′a′(n′)kk

′m′a′a(nn∞n′∞), kk′·(m′m′∞)) = (kk
′m′a′a(n′ann∞n′∞), kk′·(m′m′∞)).

We claim that this limit is equal to gy∞. In fact, from g = kman and
m = k′m′a′n′, we obtain

g = kk′ ·m′ · a′a · n′an

with kk′ ∈ K, m′ ∈ MP, a′a ∈ AP and n′
a
n ∈ NP . Then the claim follows

from the equality y∞ = (n∞n′∞, z
′
∞) and the definition of the G(Q)-action

on the boundary.

Proposition III.9.16 The Borel-Serre partial compactification QX
BS

has a
canonical structure of real analytic manifolds with corners, and the G(Q)-
action on QX

BS
is given by real analytic diffeomorphisms.

Proof. It was proved in Proposition III.5.7. Here is a more explicit proof. For
any rational parabolic subgroup P, by Proposition III.9.5, the corner X(P) in

QX
BS

is an open dense subset, and has a canonical structure of real analytic
manifold with corners given by

X(P) ∼= NP ×AP ×XP
∼= NP × (R≥0)∆ ×XP, (III.9.13)

where ∆ = ∆(P,AP). These corners cover QX
BS

, and we need to show
that their analytic structures are compatible. For any two rational parabolic
subgroups P1,P2, X(P1) ⊂ X(P2) if and only if P1 ⊃ P2. This implies that
in general

X(P1) ∩X(P2) = X(Q),

where Q is the least group among all the parabolic subgroups containing both
P1,P2 and is set to be equal to G if there is no proper rational parabolic
subgroup containing P1,P2. Hence to show the compatibility of the analytic
structures of the corners, it suffices to show that for any pair of not necessarily
proper rational parabolic subgroups P,Q, P ⊂ Q, the cornerX(Q) is included
into X(P) as an open analytic submanifold with corners.

When Q = G, X(Q) = X. Since the horospherical decomposition X =
NP×AP×XP is real analytic, and the real analytic structure of X(P) restricts
to the analytic structure of X.
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Assume that both P, Q are proper rational parabolic subgroup. Under the
inclusion X(Q) ⊂ X(P) and the identification of X(P) in Equation (III.9.13),
X(Q) can be identified with the following subset

X(Q) = NP ×AP,Q ×AQ ×XP = NP ×AP,Q × (R≥0)r ×XP,

where r = dimAQ, α1, · · · , αr are simple roots in ∆(Q,AQ). On the other
hand, the canonical analytic structure of X(Q) is given by

X(Q) = NQ ×AQ ×XQ
∼= NP ×AP′ × (R≥0)r ×XP,

where P′ is the rational parabolic subgroup in MQ corresponding to P in
Equation (III.1.13), and the second identification is real analytic since it is
obtained from the horospherical decomposition of XQ with respect to P′. By
the formulas of the transformation between the two decompositions of X given
in Equations (III.9.9, III.9.11), it follows that these two analytic structures
are compatible. In fact, the transformation

NP ×AP,Q × (R≥0)r ×XP → NP ×AP′ × (R≥0)r ×XP

is given by

(n, expH, (t1, · · · , tr), z) 7→ (n, expHP′ , (e−α1(HQ)t1, · · · , e−αr(HQ)tr), z),

where H = HP′ +HQ, HP′ ∈ aP′ , HQ ∈ aQ. Since HP′ ,HQ are real analytic
in expH, this transformation is real analytic. Similarly, the transformation
in the other direction is also real analytic. This proves that QX

BS
has a

canonical real analytic structure.
To show that G(Q) acts real analytically on QX

BS
, we note that for any

g ∈ G(Q) and any rational parabolic subgroup P, g ·X(P) = X(gP). Write
g = kman, where k ∈ K, m ∈ MP, a ∈ AP and n ∈ NP above above. Then
for x = (n′, a′, z′) ∈ NP ×AP ×XP,

gx = k · (ma(nn′), aa′,mz′) = (kma(nn′), k(aa′), k ·mz′) ∈ NkP ×AkP ×XkP.

This implies that the induced map from the corner X(P) to X(gP) is real
analytic.

Proposition III.9.17 The arithmetic group Γ acts properly on QX
BS

.

Proof. Since Γ acts properly on X, there remains to show that a point z on
the boundary of QX

BS
has an open neighborhood V such that

{γ ∈ Γ | γ(V ) ∩ V 6= ∅}
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is finite. By Lemma III.9.13, we may take V = U × AP,t ×W , where V ′ =
U ×AP,t×W is a Siegel set in X. In view of the finiteness property of Siegel
sets in Proposition III.2.19, it suffices to show that

γ(V ) ∩ V 6= ∅ (γ ∈ Γ) (III.9.14)

implies
γ(V ′) ∩ V ′ 6= ∅. (III.9.15)

Let y be a point in the set in Equation (III.9.14). Since V is open in QX
BS

and
Γ acts continuously, by the previous proposition, this intersection contains an
open neighborhood of y. The relation in Equation (III.9.15) now follows from
the fact that V ′ is open dense in V .

Theorem III.9.18 The quotient Γ\QX
BS

is a compact, Hausdorff space.
Furthermore, it has a canonical structure of real analytic manifold with cor-
ners.

Proof. Since Γ acts properly on QX
BS

and QX
BS

is Hausdorff, the quo-
tient Γ\XBS

is also Hausdorff. To prove that it is compact, we note that by
the reduction theory in Proposition III.2.19, there are finitely many rational
parabolic subgroups P1, · · · , Pk and Siegel sets U1×AP1,t1 ×W1, · · · , Uk×
APk,tk ×Wk such that the images of these Siegel sets in Γ\X cover the whole
space Γ\X. Clearly we can assume that Ui, Wi are compact. Since the
closure of APi,ti in APi is compact, by Proposition III.9.5, the closure of
Ui × APi,ti ×Wi is equal to Ui × APi,ti ×Wi in QX

BS
and hence is com-

pact. Since X is dense in QX
BS

, the Γ-translates of these compact subsets
Ui × APi,ti ×Wi cover QX

BS
. Hence, the projections of Ui × APi,ti ×Wi,

i = 1, · · · , k, project to compact subsets and cover Γ\QX
BS

, which im-
plies that Γ\QX

BS
is compact. The last statement follows from Proposition

III.9.16.

Proposition III.9.19 The compactification Γ\QX
BS

constructed in the above
theorem is isomorphic to the original compactification Γ\XBS

in §III.5.

Proof. Since
X
BS

= X ∪
∐
P

NP ×XP = QX
BS
,

they are the same as sets. We need to show that this identity map is a home-
omorphism. Since both Γ\QX

BS
and Γ\XBS

are compact and Hausdorff, by
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[GJT, Lemma 3.28], it suffices to show that if a unbounded sequence yj in
Γ\X converges to y∞ in Γ\QX

BS
, then it also converges to y∞ in Γ\XBS

.
Suppose that y∞ ∈ ΓP \e(P). Let (n∞, z∞) ∈ NP ×XP be an inverse image of
y∞ in e(P). Then there there exists a lift ỹj in X such that the horospherical
coordinates of ỹj = (nj , aj , zj) ∈ NP ×AP ×XP satisfy

1. nj → n∞, zj → z∞,

2. and for all α ∈ Φ(P,AP), aαj → +∞.

Clearly ỹj converges to y∞ in the corner X(P) = X ×AP
AP, and hence its

projection yj converges to y∞ in Γ\XBS
.

Proposition III.9.20 Let P1, · · · ,Pm be a set of representatives of Γ-conjugacy
classes of rational parabolic subgroups G. Then

Γ\X
BS

= Γ\X ∪
m∐
i=1

ΓPi\e(Pi) = Γ\X ∪
m∐
i=1

ΓPi\NPi ×XPi .

Proof. By the definition of the G(Q)-action on QX
BS

in Proposition III.9.15,
it is clear that for any g ∈ G(Q) and any rational parabolic subgroup P, if
g ∈ P , then ge(P) = e(P), otherwise g 6∈ P , and ge(P) ∩ e(P) = ∅. In
other words, ΓP is the stabilizer of e(P) in Γ. Then the proposition follows
immediately.

III.9.21 Summary and comments.
We applied the uniform method to construct Γ\X

BS
. In [BS2], the geodesic

action and corners X(P) are basic objects. In this approach, the boundary
components are the basic ingredients, and the corners are assembled out of
them; and the geodesic action is not used. We also gave an explicit proof that
Γ\X

BS
is a real analytic manifold with corners.

III.10 Uniform construction of the reductive
Borel-Serre compactification

In §III.6, the reductive Borel-Serre compactification Γ\X
RBS

was defined as

a quotient of the Borel-Serre compactification Γ\X
BS

. In this section, using
the uniform method in §III.8, we give a direct construction of the reductive
Borel-Serre compactification Γ\X

RBS
independently of the Borel-Serre com-

pactification Γ\X
BS

.
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This section is organized as follows. The reductive Borel-Serre boundary
component of Q-parabolic subgroups is defined in III.10.1, and the topol-
ogy of the reductive Borel-Serre partial compactification QX

RBS
is defined in

terms of convergent sequences in III.10.2. Explicit neighborhoods of bound-
ary points are given in terms of Siegel sets in III.10.3, and their separation
property in III.10.4. The Hausdorff property of QX

RBS
is proved in III.10.5,

and the action of G(Q) on X is extended continuously to QX
RBS

in III.10.6.
Relation between QX

BS
and QX

RBS
is clarified in III.10.6. The compactifi-

cation Γ\X
RBS

is constructed in III.10.9, and its boundary components are

listed in III.10.10. From this, it is clear that Γ\X
RBS

is a quotient of Γ\X
BS

.

III.10.1 For any rational parabolic subgroup P, define the reductive Borel-
Serre boundary component e(P) by

e(P) = XP. (III.10.1)

Clearly, it is obtained from the Borel-Serre boundary component NP × XP

by collapsing the unipotent factor NP . Note that e(P) can also be written as
a homogeneous space of P as follows:

e(P) = P/NPAPKP,

where KP = K ∩MP.
Define

QX
RBS

= X ∪
∐
P

e(P),

where P runs over all rational parabolic subgroups of G. This space with
the topology described next is called the reductive Borel-Serre partial com-
pactification of X.

III.10.2 The topology of QX
RBS

is given in terms of convergent sequences
as follows:

1. For any rational parabolic subgroup P, an unbounded sequence yj =
(nj , aj , zj) ∈ NP×AP×XP = X converges to a point z∞ ∈ XP = e(P)
if and only if the following two conditions are satisfied:

(a) For all α ∈ Φ(P,AP), aαj → +∞.

(b) zj → z∞ in XP.

We note that unlike the case of QX
BS

, there is no requirement on the
NP -component nj .
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2. For any two rational parabolic subgroups P ⊂ Q, the boundary face
e(P) is attached at infinity of e(Q). Let P′ be the rational parabolic
subgroup of MQ corresponding to P as in Equation (III.1.13), and

e(Q) = XQ = NP ′AP′XP

be the rational horospherical decomposition of XQ with respect to P′.
In this decomposition of e(Q), a sequence yj = (nj , aj , zj) in e(Q)
converges to a point z∞ ∈ e(P) if and only if the following two conditions
are satisfied:

(a) For all α ∈ Φ(P ′, AP′), aαj → +∞.

(b) zj → z∞ in e(P).

These are special convergent sequences, and their combinations give the gen-
eral convergent sequences, which form a convergence class of sequences and
hence defines a topology on QX

RBS
.

III.10.3 Neighborhoods of boundary points can also be given explicitly. For
a rational parabolic subgroup P and a point z ∈ e(P), let PI , I ⊂ ∆(P,AP),
be all the rational parabolic subgroups containing P. For each PI , let P′I be
the unique parabolic subgroup in MPI

corresponding to P as above. Let W
be a neighborhood of z in e(P) = XP′I

= XP. Then NP ′I ×AP′I ,t
×W defines

a subset in e(PI). The union

NP ×AP,t ×W ∪
∐
I⊂∆

NP ′I ×AP′I ,t
×W (III.10.2)

is a neighborhood of z in QX
RBS

. For sequences tj → +∞ and Wj shrinking
to z, the above sequence of neighborhoods forms a countable basis at z.

To show that the above topology on QX
RBS

is Hausdorff, i.e., every se-
quence has a unique limit, we need the following separation property of gen-
eralized Siegel sets.

Proposition III.10.4 1. For any bounded set W ⊂ XP, when t� 0, for
any γ ∈ Γ− ΓP ,

γ(NP ×AP,t ×W ) ∩ (NP ×AP,t ×W ) = ∅.

2. Let ΓMP
be the arithmetic subgroup in MP induced from Γ in Equation

(III.6.2). Suppose W satisfies the condition that for any nontrivial γ ∈
ΓMP

, γW ∩W = ∅. Then for any γ ∈ Γ− ΓNP ,

γ(NP ×AP,t ×W ) ∩ (NP ×AP,t ×W ) = ∅.
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3. For any two rational parabolic subgroups P1, P2 which are not conjugate
under Γ, when t� 0,

γ(NP1 ×AP1,t ×W1) ∩ (NP2 ×AP2,t ×W2) = ∅

for all γ ∈ Γ.

Proof. These separation properties are generalizations of those stated in
Proposition III.2.19, where the results are stated for Siegel sets U×AP,t×W ,
where U is a bounded set instead of the whole NP .

Since ΓNP acts cocompactly on NP and the condition γ ∈ Γ − ΓP is
preserved under multiplication by elements of ΓNP , (1) and (3) follow imme-
diately from Proposition III.2.19.

To prove (2), we need to show that the separation holds for γ ∈ ΓP −ΓNP .
We note that for any γ ∈ ΓP , γ(NP ×AP,t×W ) = NP ×AP,t×γMW , where
γM is the image of γ under the projection

ΓP ⊂ P = NP ×AP ×MP → ΓMP
⊂MP.

(See Equation III.6.2). If γ ∈ Γ − ΓNP , then γM is nontrivial, and by the
assumption on W , γMW ∩W 6= ∅, and hence

γ(NP ×AP,t×W )∩NP ×AP,t×W = NP ×AP,t×γMW ∩NP ×AP,t×W = ∅.

Proposition III.10.5 Every convergent sequence in QX
RBS

has a unique
limit, and hence the topology on QX

RBS
defined above is Hausdorff.

Proof. Since every boundary face e(P) is contained in the closure of only
finitely many boundary faces e(Q), it suffices to consider unbounded sequences
in a fixed boundary face e(Q). Let yj be a unbounded sequence in e(Q) con-
verging to a limit y∞ ∈ e(P1) for a rational parabolic subgroup P1 contained
in Q. Suppose yj converges to another limit y′∞ ∈ e(P2), where P2 is a
rational parabolic subgroup contained in Q. We claim that P2 = P1.

Denote the rational parabolic subgroups of MQ corresponding to P1 and
P2 by P′1 and P′2 respectively as in Equation (III.1.13). By definition, for any
bounded neighborhood W1 of y∞ in e(P1) and t > 0, when j � 0,

yj ∈ NP ′1 ×AP′1,t
×W1.

Similarly, for such a neighborhood W2 of y′∞ in e(P2), when j � 0,

yj ∈ NP′2
×AP′2,t

×W2.
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If the claim is not true, i.e., P′2 6= P′1, then Proposition III.10.4, applied to
MQ and the pair of parabolic subgroups P′1,P

′
2, shows that NP ′1×AP′1,t

×W1

is disjoint from NP ′2 ×AP′2,t
×W2. This contradiction proves the claim.

Now y∞, y
′
∞ ∈ e(P1). Since the coordinates of yj = (nj , aj , zj) in

NP1 × AP1 ×XP1 = e(Q) are uniquely determined by yj , limj→+∞ zj has a
unique limit if exists. This implies that y∞ = y′∞ = limj→+∞ zj , and hence
the sequence yj has a unique limit.

Proposition III.10.6 The G(Q)-action on X extends to a continuous action
on QX

RBS
, in particular, Γ acts continuously on QX

RBS
.

Proof. First we define the extended action. For any g ∈ G(Q), and z ∈
e(P) = XP, write g = kman, where k ∈ K, m ∈ MP, a ∈ AP, n ∈ NP .
Define

g · z = k · (mz) ∈ XkP = e(gP).

We note km is uniquely determined by g, and this action is well-defined. The
continuity of this extended action can be proved similarly as in Proposition
III.9.15.

Proposition III.10.7 The identity map on X extends to a continuous, sur-
jective G(Q)-equivariant map QX

BS → QX
RBS

.

Proof. For every rational parabolic subgroup P, define a projection

π : NP ×XP → XP, (n, z) 7→ z.

This projection is clearly P -equivariant. Extending the identity map on X by
the map π on the boundary components, we get a G(Q)-equivariant surjective
map

π : QX
BS → QX

RBS
.

We claim that this map π is continuous. Let yj → y∞ be a convergent
sequence in QX

BS
. We need to show that π(yj) → π(y∞) in QX

RBS
. It

suffices to consider two cases:

1. y∞ ∈ NP ×XP for some P, and yj ∈ X.

2. y∞ ∈ NP ×XP, and yj ∈ NQ ×XQ, where Q ⊃ P.

Write y∞ = (n∞, z∞). In the first case, yj = (nj , aj , zj) ∈ NP×AP×XP =
X, and the coordinates satisfy

1. nj → n∞,
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2. for all α ∈ Φ(P,AP), aαj → +∞,

3. zj → z∞.

They clearly imply that yj → z∞ ∈ XP = e(P) in QX
RBS

. The second case
can proved similarly.

To prove that the quotient Γ\QX
RBS

is Hausdorff, we need to identify
neighborhoods of boundary points in QX

RBS
.

Lemma III.10.8 For every point z ∈ e(P) = XP, a basis of neighborhood
system of z in QX

RBS
is given by

NP ×AP,t ×W ∪
∐

Q⊇P

NP ′ ×AP′,t ×W,

where P′ is the parabolic subgroup in MQ corresponding to P in Equation
(III.1.13), W is a neighborhood of z in e(P) = XP, t > 0, and e(Q) = XQ is
identified with NP ′ ×AP′ ×XP. Furthermore, if W is open, then

NP ×AP,t ×W ∪
∐

Q⊇P

NP ′ ×AP′,t ×W = Int(cl(NP ×AP,t ×W )),

the interior of the closure of NP ×AP,t×W in QX
RBS

. In particular, NP ×
AP,t×W is an open dense subset of the open neighborhood Int(cl(NP ×AP,t×
W )) of z in QX

RBS
.

Proof. The first statement was mentioned earlier in Equation (III.10.2).
In fact, for any t > 0 and any neighborhood W of z, if a sequence yj in
X converges to z in QX

RBS
, then yj ∈ NP × AP,t ×W . Similarly, for any

Q ⊃ P, if a sequence yj ∈ e(Q) = XQ converges to z in QX
RBS

, then
yj ∈ NP ′ ×AP′,t×W . This implies that any sequence yj in G

RBS
converging

to z belongs to NP ×AP,t ×W ∪
∐
Q⊇P NP ′ ×AP ′,t ×W eventually.

To prove the second statement, we note that XQ = NP ′ × AP′ ×XP can
be identified with NP ′ ×AP,Q×XP as in Lemma III.9.8. Let cl(NP ×AP,t×
W ) be the closure in QX

RBS
. Then the proof of Lemma III.9.9 shows that

cl(NP ×AP,t ×W )∩ e(Q) contains NP ′ ×AP,Q,t ×W ∼= NP ′ ×AP′,t ×W as
a dense open set. This proves the second statement.

Theorem III.10.9 The quotient Γ\QX
RBS

is a compact Hausdorff space
containing Γ\X as an open dense subset. This compactification is also de-

noted by Γ\X
RBS

.



§III.10. Uniform construction of reductive Borel-Serre compactification 373

Proof. Since Γ does not act properly on QX
RBS

, it is not automatic that the
Hausdorff topology of QX

RBS
induces a Hausdorff topology on the quotient

Γ\QX
RBS

. Both the Hausdorff property and compactness of the quotient
topology on Γ\GRBS follows from the reduction theory for Γ. We first prove
the Hausdorff property.

Let φ : QX
RBS → Γ\QX

RBS
be the quotient map. For a point z ∈

e(P) ⊂ QX
RBS

, let W be an open neighborhood of z in e(P) = XP. Let
Int(cl(NP × AP,t ×W )) be the interior of the closure cl(NP × AP,t ×W ) in

QX
RBS

, which is an open neighborhood of z by Lemma III.10.8. We claim
that the image φ(Int(cl(NP ×AP,t×W ))) is an open neighborhood of φ(z) in
Γ\QX

RBS
. In fact, the inverse image of φ(Int(cl(NP ×AP,t×W ))) in QX

RBS

is equal to
∪γ∈Γ γ(Int(cl(NP ×AP,t ×W ))),

which is a union of open sets since the Γ-action is continuous, and hence open.
For two different boundary points of QX

RBS
, we need to find two disjoint

neighborhoods of them. For any z ∈ QX
RBS

and a neighborhood U of φ(z) in
Γ\QX

RBS
, the inverse image φ−1(U) in QX

RBS
is a Γ-invariant neighborhood

of Γz. Therefore, it is equivalent to prove that for any two boundary points
z1, z2 in QX

RBS
with Γz1 ∩ Γz2 = ∅, there exist Γ-invariant neighborhoods

of Γz1, Γz2 which are disjoint.
Let P1, P2 be parabolic subgroups such that z1 ∈ e(P1), z2 ∈ e(P2).

There are two cases to consider depending on whether P1 is Γ-conjugate to
P2 or not.

In the latter case, let Wi be a neighborhood of zi in e(Pi). By the above
discussion,

∪γ∈Γ γInt(cl(NPi ×APi,t ×Wi))

is a Γ-invariant neighborhood of Γzi, i = 1, 2. We claim that when t � 0,
they are disjoint. If not, there exist γ1, γ2 ∈ Γ such that

γ1Int(cl(NP1 ×AP1,t ×W1)) ∩ γ2Int(cl(NP2 ×AP2,t ×W2)) 6= ∅.

Let γ = γ−1
2 γ1. Then

γInt(cl(NP1 ×AP1,t ×W1)) ∩ Int(cl(NP2 ×AP2,t ×W2)) 6= ∅.

By Lemma III.10.8, γInt(cl(NP1×AP1,t×W1)) and Int(cl(NP2×AP2,t×W2))
are open in QX

RBS
and contain open dense subsets γ(NP1 ×AP1,t×W1) and

NP2 ×AP2,t ×W2 respectively. It follows that the intersection

γInt(cl(NP1 ×AP1,t ×W1)) ∩ Int(cl(NP2 ×AP2,t ×W2))
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is open, and hence

γ(NP1 ×AP1,t ×W1) ∩NP2 ×AP2,t ×W2 6= ∅.

But this contradicts Proposition III.10.4.3 and hence proves the claim.
In the former case, assume that P1 = P2 for simplicity. Choose neigh-

borhoods W1, W2 of z1, z2 such that for all γ ∈ ΓMP1
, γW1 ∩W2 = ∅, in

particular, W1 ∩W2 = ∅. Let t � 0. If ∪γ∈Γ γInt(cl(NPi × APi,t ×Wi)),
i = 1, 2, are not disjoint, then as in the above paragraph, there exists an
element γ ∈ Γ such that

γ(NP1 ×AP1,t ×W1) ∩ (NP2 ×AP2,t ×W2) 6= ∅.

We claim that this contradicts Proposition III.10.4.(2). In fact, by Proposition
III.10.4.(2), this is impossible if γ 6∈ ΓNP1

. On the other hand, if γ ∈ ΓNP1
,

γ(NP1 ×AP1,t ×W1) = NP1 ×AP1,t ×W1,

which is disjoint from NP2 ×AP2,t ×W2 since W1 ∩W2 = ∅.
To prove the compactness of Γ\QX

RBS
, we note that for every rational

parabolic subgroup P and a compact subset U ⊂ NP , the closure of U×AP,t×
XP in QX

RBS
is compact. This can either be seen from Lemma III.10.8 or

from the fact that the closure of U × AP,t ×XP in QX
BS

is compact and is
mapped continuously onto the closure in QX

RBS
. Then the reduction theory

in Proposition III.2.19 implies that Γ\QX
RBS

is covered by finitely many
compact subsets and hence is compact.

Proposition III.10.10 Let P1, · · · ,Pm be a set of representatives of Γ-conjugacy
classes of rational parabolic subgroups G. Then

Γ\X
RBS

= Γ\X ∪
m∐
i=1

ΓMPi
\XPi .

Proof. By the definition of the G(Q)-action on QX
RBS

in Proposition
III.10.6, it is clear that for any g ∈ G(Q) and any rational parabolic subgroup
P, if g ∈ P , then gXP = XP, otherwise g 6∈ P , and gXP ∩XP = ∅. Further-
more, the quotient ΓP \XP is equal to ΓMP

\XP. Then the proposition follows
immediately.

Proposition III.10.11 The identity map on Γ\X extends to a continuous

map Γ\X
BS
→ Γ\X

RBS
.
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Proof. It follows from Proposition III.10.7.

III.10.12 Summary and comments. The uniform construction of the
reductive Borel-Serre compactification Γ\X

RBS
in this section is independent

of the Borel-Serre compactification Γ\X
BS

. This is different from the original

definition of Γ\X
RBS

in [Zu1], where Γ\X
RBS

was defined as a quotient of

Γ\X
BS

. Since Γ\X
RBS

has played an important role in many problems and is

more natural than Γ\X
BS

in some ways, it is desirable to give an independent

construction. Unlike Γ\X
BS

, Γ\X
RBS

is not a manifold with corners. Hence,
various notions of crumpled corners were introduced in [Zu2].

III.11 Uniform construction of the maximal
Satake compactification

In this section we apply the uniform method in §III.8 to construct the maxi-
mal Satake compactification of the locally symmetric space Γ\X. When the
maximal Satake compactification X

S

max of the symmetric space is geometri-

cally rational, it is the same as the maximal Satake compactification Γ\X
S

max

defined in §III.3. As discussed in §III.3, X
S

max is not necessarily always ge-
ometrically rational and hence it may not induce a compactification of Γ\X
by the procedure there. On the other hand, the construction in this sec-
tion always works. This is one of the major differences between these two
approaches.

In this section, we assume that G is semisimple and henceX is a symmetric
space of noncompact type.

The boundary component of Q-parabolic subgroups is given in III.11.1,
and the topology of the partial compactification QX

S

max is given in III.11.2.
The Hausdorff property is proved in III.11.6, and the continuous extension
of the G(Q)-action on X to the partial compactification QX

S

max is proved in

III.11.7. The induced compactification Γ\X
S

max of Γ\X is given in III.11.10,
which is shown to be isomorphic to the maximal Satake compactification
constructed earlier if X

S

max is geometrically rational. It is shown in III.11.12

that Γ\X
S

max is a quotient of Γ\X
RBS

(see also III.11.8).

III.11.1 For any rational parabolic subgroup P, define its maximal Satake
boundary component by

e(P) = XP ,

where XP is the boundary symmetric space associated with the real locus P of
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P and is hence a symmetric space of noncompact type when G is semisimple.
In general, it is different from the reductive Borel-Serre boundary component
XP unless AP = AP. In fact, by Equation (III.1.8), we have

XP = XP × exp a⊥P. (III.11.1)

Define
QX

S

max = X ∪
∐
P

e(P) = X ∪
∐
P

XP,

where P runs over all proper rational parabolic subgroupsof G. The space

QX
S

max with the topology described below is called the maximal Satake partial
compactification.

III.11.2 For any rational parabolic subgroup of G, the rational horospher-
ical decomposition of X with respect to P can be refined as

X = NP ×AP ×XP × exp a⊥P. (III.11.2)

For any pair of rational parabolic subgroups P,Q, P ( Q, let P′ be the
rational parabolic subgroup of MQ corresponding to P in Equation (III.1.13).
Let A′P be the Q-split component of the rational Langlands decomposition of
P′(R). On the other hand, when considered as real parabolic subgroups,
P corresponds to a real parabolic subgroup P ′′ of MQ. In general P ′′ is
different from the real locus P′(R). In fact, the rational and real Langlands
decompositions

Q = NQAQMQ, Q = NQAQMQ

are related by
AQ = AQ exp a⊥Q, MQ = MQ exp a⊥Q,

and hence
P′(R) = P ′′ exp a⊥Q.

This implies that

NP ′ = NP ′′ , AP′ ⊂ AP ′′ , XP ′′ = XP .

Let aP′

P ′′ be the orthogonal complement of aP′ in aP ′′ . From the real horo-
spherical coordinate decomposition XQ = NP ′′ ×AP ′′ ×XP ′′ , It follows that
XQ admits the following decomposition:

XQ = NP ′ ×AP′ ×XP × aP′

P ′′ . (III.11.3)

The topology on QX
S

max is given in terms of convergent sequences as fol-
lows.
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1. For any rational parabolic subgroup P, a unbounded sequence yj in
X converges to z∞ ∈ XP = e(P ) if and only if in the decomposition
yj = (nj , aj , zj , a⊥j ) ∈ NP × AP ×XP × exp a⊥P , the coordinates satisfy
the following conditions:

(a) zj → z∞ in XP ,

(b) for all α ∈ Φ(P,AP), aαj → +∞.

(Note that there is no condition on nj and a⊥j ).

2. For any pair of rational parabolic subgroups P,Q, P ⊂ Q, a sequence
of points yj in e(Q) = XQ converges to a point z∞ ∈ e(P) = XP if and
only if the coordinates of yj in the decomposition in Equation (III.11.3),
yj = (nj , a′j , zj , a

′′
j ), satisfy the conditions:

(a) zj → z∞ in XP ,

(b) for all α(P ′, AP′), (a′j)
α → +∞.

These are special convergent sequences, and their combinations give the gen-
eral convergent sequences. It can be seen that they form a convergence class
of sequences and hence define a topology on QX

S

max.

III.11.3 Neighborhoods of boundary points in QX
S

max can also be given
explicitly. For a rational parabolic subgroup P, let PI , I ⊂ ∆(P,AP), be all
the rational parabolic subgroups containing P. For each PI , let P′I be the
unique parabolic subgroup in MPI

corresponding to P as above. Let W be a
neighborhood of z in e(P) = XP . Then NP ′I ×AP′I ,t

×W × exp a
P′I
P ′′I

defines a
subset in e(PI). The union

NP ×AP,t ×W × exp a⊥P ∪
∐
I⊂∆

NP ′I ×AP′I ,t
×W × exp a

P′I
P ′′I

(III.11.4)

is a neighborhood of z in QX
RBS

. For sequences tj → +∞ and Wj shrinking
to z, the above sequence of neighborhoods forms a countable basis at z.

III.11.4 Once the partial compactification QX
S

max has been defined, the rest

of the construction is similar to that of Γ\X
RBS

.
To show that the above topology onG

RBS
is Hausdorff, i.e., every sequence

has a unique limit, we need the following separation property of generalized
Siegel sets, which is a generalization of Proposition III.10.4.

For any rational parabolic subgroup P,

XP = XP × exp a⊥P.
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The subgroup MP acts on XP and preserves this product. Denote the induced
action of MP on XP by m · z, for m ∈ MP, z ∈ XP . The image of ΓMP

in
Isom(XP ) is denoted by ΓXP . Since exp a⊥P is the real locus of an anisotropic
torus defined over Q, ΓXP is a discrete subgroup and acts properly on XP . In
fact, ΓXP is the same as the subgroup defined in §3 whenX

S

max is geometrically
rational, and XP is a rational boundary component.

Proposition III.11.5 1. For any bounded set W ⊂ XP , when t� 0, for
any γ ∈ Γ− ΓP ,

γ(NP ×AP,t ×W × exp aP′

P ′′) ∩ (NP ×AP,t ×W × exp aP′

P ′′) = ∅.

2. Suppose W satisfies the condition that for any nontrivial γ ∈ Γ(XP ),
γW ∩W = ∅. Then for any γ ∈ Γ− ΓNP ,

γ(NP ×AP,t ×W × exp aP′

P ′′) ∩ (NP ×AP,t ×W × exp aP′

P ′′) = ∅.

3. For any two rational parabolic subgroups P1, P2 which are not conjugate
under Γ, when t� 0,

γ(NP1 ×AP1,t ×W1 × exp a
P′1
P ′′1

) ∩ (NP2 ×AP2,t ×W2 × exp a
P′2
P ′′2

) = ∅

for all γ ∈ Γ.

Proof. The proof is the same as the proof of Proposition III.10.5 by observing
that ΓMP

induces a cocompact action on the factor exp aP′

P ′′ .

Proposition III.11.6 Every convergent sequence in QX
S

max has a unique
limit, and hence the topology on QX

S

max defined above is Hausdorff.

Proof. The proof is similar to the proof of Proposition III.10.5 by using
Proposition III.11.5 instead of Proposition III.10.4.

Proposition III.11.7 The G(Q)-action on X extends to a continuous action
on QX

S

max, in particular, Γ acts continuously on QX
S

max.

Proof. First we define the extended action, then show it is continuous. As
noted before, for any rational parabolic subgroup P,

XP = XP × exp a⊥P,
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and the subgroup MP acts on XP and preserves this product. Denote the
induced action of MP on XP by m · z, for m ∈MP, z ∈ XP .

For any g ∈ G(Q), and z ∈ e(P) = XP, write g = kman, where k ∈ K,
m ∈MP, a ∈ AP, n ∈ NP . Define

g · z = k · (mz) ∈ XkP = e(gP).

We note km is uniquely determined by g, and this action is well-defined.
The continuity of this extended action can be proved as in Proposition

III.9.15.

Proposition III.11.8 The identity map on X extends to a continuous, sur-
jective G(Q)-equivariant map QX

RBS → QX
S

max.

Proof. For every rational parabolic subgroup P, define a projection

π : XP = XP × exp a⊥P → XP , (n, z)) 7→ m.

Extending the identity map on X by the map π on the boundary components,
we get a G(Q)-equivariant surjective map

π : QX
RBS → QX

S

max.

We claim that this map π is continuous. Let yj → y∞ be a convergent
sequence in QX

RBS
. We need to show that π(yj) → π(y∞) in QX

RBS
. It

suffices to consider two cases:

1. y∞ ∈ XP for some P, and yj ∈ X.

2. y∞ ∈ XP , and yj ∈ XQ, where Q ⊃ P.

Write y∞ = z∞. In the first case, write yj = (nj , aj , zj , a⊥j ) ∈ NP ×AP ×
XP × exp a⊥P = X, and the coordinates satisfy

1. for all α ∈ Φ(P,AP), aαj → +∞,

2. a⊥j converges to some a⊥∞ in exp a⊥P, and zj → z∞.

They clearly imply that yj → z∞ ∈ XP = e(P) in QX
S

max. The second case
can proved similarly.

By using similar arguments to those in the proof of Theorem III.10.9, we
can prove the following result.

Theorem III.11.9 The quotient Γ\QX
S

max is a compact Hausdorff space con-
taining Γ\X as an open dense subset. This compactification is also denoted

by Γ\X
S

max, called the maximal Satake compactification.
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Proposition III.11.10 Let X
S

τ be a maximal Satake compactification. If X
S

τ

is geometrically rational, the induced compactification Γ\X
S

τ is isomorphic to
the compactification Γ\QX

S

max defined in the previous theorem.

Proof. If X
S

τ is geometrically rational, then

X ∪ ∂∗X = X ∪
∐
P

XP = QX
S

max.

It follows that Γ\QX
S

can be identified with Γ\X
S

τ . By [GJT, Lemma 3.28],
it suffices to prove that if an unbounded sequence yj in Γ\X converges to a

boundary point z∞ in Γ\QX
S

, it also converges to z∞ in Γ\X
S

τ .
Let P be the rational parabolic subgroup such that z∞ belongs to the

image of XP . Let z̃∞ ∈ XP be a lift of z∞. Then there exists a lift ỹj in X
such that the coordinates of ỹj = (nj , aj , zj , a⊥j ) ∈ NP × AP ×XP × exp a⊥P
satisfy the conditions:

1. nj , a⊥j are bounded,

2. zj → z̃∞,

3. for all α ∈ Φ(P,AP), aαj → +∞.

In particular, ỹj belongs to a Siegel set associated with P. Since X
S

τ is
geometrically rational, it is Siegel rational, and the limit of this sequence ỹj
in the closure of the Siegel set (or in X

S

τ ) is equal to z̃∞ ∈ XP . This shows

that the projection yj of ỹj converges to z∞ in Γ\X
S

τ .

Proposition III.11.11 Let P1, · · · ,Pm be a set of Γ-conjugacy classes of
rational parabolic subgroups of G. Then

Γ\X
S

max = Γ\X ∪
m∐
i=1

ΓXP \XP ,

where ΓXP is the image of ΓMP
under the projection MP = MP × exp a⊥P →

MP , and hence also the image of ΓP under the composed projection

π : P = NPAPMP →MP →MP .

Proof. It follows from the definition of the G(Q)-action in Proposition
III.11.7 that for any g ∈ Γ and rational parabolic subgroup P, if g ∈ P ,
gXP = XP , and the action of g on XP factors through the projection π(γ);
hence, the quotient ΓP \XP is equal to ΓXP \XP . On the other hand, if g 6∈ P ,
then gXP ∩XP = ∅. Then the rest of the proposition is clear.
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Proposition III.11.12 The identity map on Γ\X extends to a continuous
map

Γ\X
RBS

→ Γ\X
S

max.

Proof. It follows from Proposition III.11.8, and the map can be seen easily
from the decompositions of Γ\X

RBS
and Γ\X

S

max in Propositions III.10.10
and III.11.11

III.11.13 Summary and comments. We applied the uniform method
to construct the maximal Satake compactification of Γ\X. In contrast with
the original construction in [Sat2], the issue of the geometrically rationality
of X

S

max is avoided.

III.12 Tits compactification

In this section, we use the uniform method in §III.8 to construct a compacti-
fication Γ\X

T
, called the Tits compactification in [JM]. The reason why it is

called the Tits compactification is that its boundary is the quotient Γ\∆Q(G)
of the Tits building ∆Q(G) of G. The basic reference of this section is [JM,
§8].

The Tits compactification is complementary to the Borel-Serre compact-
ification Γ\X

BS
. As shown in Proposition III.11.12, Γ\X

RBS
dominates

Γ\X
S

max, and hence both the reductive Borel-Serre compactification Γ\X
RBS

and the maximal Satake compactification Γ\X
S

max are quotients of the Borel-

Serre compactification Γ\X
BS

. On the other hand, if the Q-rank is greater

than or equal to 2, Γ\X
T

is not a quotient of Γ\X
BS

. In fact, in this case,

the greatest common quotient of Γ\X
T

and Γ\X
BS

is the one point compact-

ification. In the case of Q-rank 1, the greatest common quotient of Γ\X
T

and

Γ\X
BS

is the end compactification, which is obtained by adding one point to
each end.

The Tits compactification Γ\X
T

is isomorphic to the geodesic compact-
ification Γ\X ∪ Γ\X(∞) in §III.20, a natural generalization of the geodesic
compactification X ∪ X(∞) of the symmetric space to the non-simply con-
nected case, and is useful in understanding the geometry of Γ\X at infinity
and analysis on Γ\X.

This section is organized as follows. A concrete realization of the Tits
building ∆Q(G) of G is given in III.12.1, which is used to give a topology on
the boundary of the partial compactification QX

T
of X in III.12.2, where the

boundary component of Q-parabolic subgroupsis also defined. The topology



382 Part III. Compactifications of locally symmetric spaces

of QX
T

is defined in III.12.3 in terms of convergent sequences. Its Haus-
dorff property is proved in III.12.4, and the continuous extension of G(Q) in

III.12.5. The Tits compactification Γ\X
T

is constructed in III.12.6. Unlike
the Satake compactifications and the reductive Borel-Serre compactification,
the compactification Γ\X

T
is not a quotient of Γ\X

BS
in general.

III.12.1 For any rational parabolic subgroup P, define the positive chamber

a+
P = {H ∈ aP | α(H) > 0, α ∈ Φ(P,AP)},

and
a+
P(∞) = {H ∈ a+

P |< H,H >= 1}, (III.12.1)

where < ·, · > is the Killing form, and

a+
P(∞) = {H ∈ aP | α(H) ≥ 0, α ∈ Φ(P,AP)},

a closed simplex.
Clearly, for any pair of rational parabolic subgroups P,Q, P ⊂ Q if and

only if a+
Q(∞) is a face of a+

P(∞). When P is a maximal rational parabolic

subgroup, a+
P(∞) consists of one point. This implies that a+

P(∞) is a realiza-
tion of the simplex corresponding to P in the rational Tits building ∆Q(G)
in §III.1.

Define a complex
∆Q(X) = ∪Pa+

P(∞)/ ∼,
where P runs over all the rational parabolic subgroups of G, and the equiv-
alence relation is given by the inclusion above a+

Q(∞) ⊂ a+
P(∞) for any pair

of rational parabolic subgroups Q ⊃ P. As commented earlier, this simplicial
complex is a realization of the spherical Tits building for G:

∆Q(G) ∼= ∆Q(X) = ∪Pa+
P(∞)/ ∼ . (III.12.2)

Since the inclusion a+
Q(∞) ⊂ a+

P(∞) is an embedding, the quotient ∆Q(X)
has a well-defined quotient topology. As a set ∆Q(X) is a disjoint union of
the open simplexes

∆Q(X) =
∐
P

a+
P(∞).

III.12.2 For any rational parabolic subgroup P, define its Tits boundary
component e(P) by

e(P) = a+
P(∞), (III.12.3)

an open simplex. Define

QX
T

= X ∪
∐
P

a+
P(∞), (III.12.4)
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which can be identified with

X ∪∆Q(X) = X ∪∆Q(G).

The space QX
T

with the topology described below is called the Tits partial
compactification, since the boundary is the Tits building ∆Q(G).

III.12.3 The topology on QX
T

is described in terms of convergent sequences
as follows.

1. For any rational parabolic subgroup P, a unbounded sequence yj in X
converges to a point H∞ ∈ a+

P(∞) if and only if in the horospherical
coordinate decomposition yj = (nj , expHj ,mjKP), where nj ∈ NP ,
Hj ∈ aP, mj ∈MP, the coordinates satisfy

(a) Hj/||Hj || → H∞ in aP,

(b) d(njmjx0, x0)/||Hj || → 0.

2. For any sequence yj in the boundary
∐

P a+
P(∞) = ∆Q(X), it converges

to a point y∞ ∈ a+
P (∞) if and only if it converges to y∞ with respect to

the quotient topology in Equation (III.12.2).

These are special convergent sequences, and their combinations give general
convergent sequences. It can be shown that they form a convergence class of
sequences (see [JG, Lemma 8.4]) and hence defines a topology on QX

T
.

Proposition III.12.4 The Tits partial compactification QX
T

is a Hausdorff
space.

Proof. We claim that for any unbounded sequence {yn} in X, there is at
most one rational parabolic subgroup P such that yj converges to a point in
a+
P(∞).

To prove this claim, we recall the geodesic compactification X ∪ X(∞)
in §I.2. The boundary X(∞) has a simplicial structure ∆(G), called the
spherical Tits building of X (see Propositions I.2.19 and I.2.16). The rational
Tits building ∆Q(G) = ∆Q(X) is embedded in ∆(G) as follows. For each real
parabolic subgroup P of G, let AP be the maximal real split torus in P . Then

a+
P (∞) = {H ∈ aP | α(H) > 0, α ∈ Φ(P,AP )}

can be identified with a subset of X(∞), and X(∞) =
∐
P A

+
P (∞). For any

rational parabolic subgroup P of G, P = P(R) is a real parabolic subgroup
of G. The maximal real split torus AP of P contains the maximal rational
split torus AP, and a+

P ⊆ a+
P . Therefore, a+

P(∞) ⊆ a+
P (∞) ⊂ X(∞).
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We can check easily that if a sequence yj converges to H∞ ∈ a+
P(∞) in

QX
T

, then it converges to H∞ in the geodesic compactification X ∪ X(∞).
Since the compactification X ∪X(∞) is Hausdorff and a+

P′(∞) ∩ a+
P(∞) = ∅

for two different rational parabolic subgroups P′ and P, the claim is proved.
Using the claim and the Hausdorff property of X and ∆Q(X), we can

prove easily that every convergent sequence in QX
T

has a unique limit.

Proposition III.12.5 The G(Q)-action on X extends to a continuous action
on QX

T
.

Proof. First we define the action on QX
T

. Then show that it is continuous.
For any rational parabolic subgroup P, g ∈ G(Q), write g = kp, where k ∈ K
and p ∈ P . Then Ad(k) gives a canonical identification between a+

P(∞) and
a+
kP

(∞) = agP. For any H ∈ a+
P(∞), define the action by

g ·H = Ad(k)H ∈ akP.

Note that k is determined by g up to an element in KP, and hence this action
is well-defined.

Since G(Q) acts simplicially on the Tits building ∆Q(G) and hence by
homeomorphisms, it suffices to prove that if yj is a unbounded sequence in X
converging to H∞ ∈ a+

P(∞) for some P, then gyj converges to g ·H∞ for any
g ∈ G(Q). Write yj = (nj , expHj ,mjKP) ∈ NP × AP × XP, and g = kp,
p = man, where k ∈ K,m ∈MP, a ∈ AP, n ∈ NP. Then

pyj = (ma(nnj), a expHj ,mmjKP).

It can be checked easily that pyj converges to H∞ in QX
T

. Since the con-
jugation by k transfers the horopsherical decomposition with respect to P to
that of kP, it follows that gyj = k(pyj) converges to g ·H∞ = k ·H∞ in QX

T
.

Proposition III.12.6 The arithmetic subgroup Γ acts continuously on QX
T

with a Hausdorff compact quotient, which contains Γ\X as an open dense
subspace. The compactification Γ\QX

T
is called the Tits compactification and

is also denoted by Γ\X
T

.

Proof. By Proposition III.3.2, it suffices to construct a subset Σ ⊂ QX
T

satisfying the conditions there.
Let P be a minimal rational parabolic subgroup of G, and Σ be the finite

union CS of the Siegel sets in Proposition III.2.16, where S = U ×AP,t × V .
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We can assume that U ⊂ NP , V ⊂ XP are compact. Let Σ be the closure
of Σ in the partial compactification QX

T
. We claim that Σ satisfies all three

conditions in Proposition III.3.2.
Let S be the closure of S in X ∪ ∆Q(X). Then S ⊃ a+

P(∞), because
the sequence exp(nH), n ≥ 1, converges to H ∈ a+

P(∞). For any element
g ∈ G(Q), by the proof of the previous lemma, there exists a Siegel domain
S ′ associated with the minimal rational parabolic subgroup gPg−1 such that
gS ⊃ S ′, and hence gS ⊃ a+

gPg−1(∞). Since any minimal rational parabolic
subgroup is Γ conjugate to one of the groups gPg−1, g ∈ C, it follows that
ΓΣ = X ∪∆Q(X), and hence condition (1) is satisfied.

To show that Σ is compact, it suffices to show that S is compact. From (3)
of the definition of the topology in (III.12.3), it follows that S = U × AP,t ×
V ∪ a+

P(∞), where AP,t is the closure of AP,t in AP. Since U, V are compact,
S is compact.

To check the condition (3), we note that if for some γ ∈ Γ, γΣ ∩ Σ 6= ∅,
then for some g1, g2 ∈ C, γg1S ∩ g2S 6= ∅. Thus it suffices to show that
there exist finitely many γi ∈ Γ such that if γ ∈ Γ and γg1S ∩ g2S 6= ∅,
then γ|g1S∩γ−1g2S = γi|g1S∩γ−1g2S for some γi. Assume γg1S ∩ g2S 6= ∅. If
γg1S ∩ g2S 6= ∅, then by Proposition III.2.16, there are only finitely many
such γ in Γ. Otherwise, by the previous paragraph, γg1S ∩ g2S = a+

P′I (∞)
for some rational parabolic subgroup P′I containing the minimal rational
parabolic subgroup P′ = g2Pg−1

2 . Since

γg1g
−1
2 a+

P′(∞) ∩ a+
P′(∞) = (γg1g

−1
2 )g2S ∩ g2S ∩∆Q(X),

and (γg1g
−1
2 )g2S∩g2S = a+

P′I (∞), it follows that γg1g
−1
2 a+

P′(∞)∩a+
P′(∞) =

a+
P′I (∞), and hence γg1g

−1
2 leaves a+

P′I (∞) invariant, which in turn implies
that γg1g

−1
2 ∈ P′I . By the definition of the G(Q)-action on ∆Q(X), γg1g

−1
2

acts as identity on a+
P′I

(∞), and hence γ acts as g2g
−1
1 on γ−1a+

P′I
(∞) =

g1S∩γ−1g2S. Therefore the condition (3) is satisfied, and hence Γ\X∪∆Q(X)
is compact and Hausdorff.

As in §I.16, given any two compactifications Γ\X
1
, Γ\X

2
of Γ\X, there

is a unique greatest common quotient (GCQ) Γ\X
1
∧ Γ\X

2
.

Proposition III.12.7 If the Q-rank of G is greater than or equal to 2, then
the GCQ Γ\X

T
∧Γ\X

BS
is equal to the one point compactification; if the Q-

rank of G is equal to 1, Γ\X
T

is the end compactification, which is obtained by

adding one point to each end, and Γ\X
BS

dominates Γ\X
T

, i.e., the identity
map on Γ\X extends to a continuous map.

Proof. Assume that the Q-rank of G is greater than or equal to 2, then the
Tits building ∆Q(G) is connected, and the infinity of Γ\X is also connected,
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i.e., Γ\X has only one end. To show that Γ\X
T
∧ Γ\X

BS
is the one point

compactification, it suffices to show that for any rational parabolic subgroup
P and any two boundary points H1,H2 ∈ a+

P(∞), there exist two sequences

yj,1, yj,2 such that yj,1 → H1, yj,2 → H2 in Γ\X
T

, but yj,1, yj,2 converge to

the same boundary point in Γ\X
BS

. In fact, take yj,1 to be the image of
ejH1x0, and yj,2 the image of ejH2x0. They satisfy the above properties.

If the Q-rank of G is equal to 1, every rational parabolic subgroup P is
minimal and dimAP = 1. Hence Γ\X has finitely many ends corresponding

to Γ-conjugacy classes of rational parabolic subgroups, and Γ\X
T

is the end

compactification. Clearly Γ\X
BS

dominates Γ\X
T

and the GCQ is the end
compactification.

III.12.8 Summary and comments. Boundaries of compactifications of
locally symmetric spaces Γ\X are often related to the spherical Tits building

∆Q(G). The compactification Γ\X
T

is special in the sense that its boundary
is exactly the quotient of ∆Q(G) by Γ, or equivalently, the boundary of the
partial compactification of X is equal to ∆Q(G). Later, in §III.20, the com-

pactification Γ\X
T

and in particular its boundary will be realized naturally
in terms of certain geodesics in Γ\X, so-called EDM-geodesics, which go to
infinity.

III.13 Borel-Serre compactification of homo-
geneous spaces Γ\G

In the earlier sections, we have recalled and constructed many compactifi-
cations of locally symmetric spaces Γ\X. In this section, we construct the

Borel-Serre compactification Γ\G
BS

of Γ\G corresponding to Γ\X
BS

in the

sense that the quotient of Γ\G
BS

by K on the right gives Γ\X
BS

. In the next

section, the reductive Borel-Serre compactification Γ\G
RBS

corresponding to

Γ\X
RBS

will be constructed.
This section is organized as follows. Some motivations of studying the ho-

mogeneous space Γ\X and its compactifications are discussed in III.13.1. The

construction is very similar to Γ\X
BS

in §III.9. Specifically, the boundary
components are defined in III.13.2, and the topology of the partial compact-
ification in III.13.3. The compactification Γ\G

BS
is defined in III.13.7. An

application to the extension of homogeneous bundles on Γ\X to Γ\X
BS

is
discussed in III.13.9, using the fact that the right K-action on Γ\G extends

to Γ\G
BS

. On the other hand, the right G-action on Γ\G does not extend to
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Γ\G
BS

(III.13.10).

III.13.1 There are several reasons to study Γ\G and its compactifications.
First, Γ\G is a homogeneous space, while Γ\X is not. This fact is quite
important. In fact, understanding the regular representation of G on L2(Γ\G)
is a central problem in automorphic representations.

The locally symmetric space Γ\X is an important quotient of Γ\G, but
there are natural homogeneous bundles over Γ\X and it is fruitful to study
them as well, for example, in decomposing the regular representation of G in
L2(Γ\G) (see [Ji2]).

In fact, for any finite dimensional representation σ : K → GL(n,C), we
can define a bundle Eσ over Γ\X by

Eσ = Γ\G⊗K Cn.

For some applications, it is useful to extend this bundle to compactifications
of Γ\X (see [Zu3]). If Γ\G has a compactification Γ\G such that the right K-
multiplication on Γ\G extends, then Γ\G⊗K Cn gives a bundle over Γ\G/K,
which is a compactification of Γ\X. Hence the homogeneous bundle Eσ on
Γ\X can be extended to the compactification of Γ\X.

Another motivation comes from the theory of variation of Hodge struc-
tures. The target of the period map for variation of Hodge structures is of
the form Γ\G/H, where H is a compact subgroup, which is not necessarily
a maximal compact subgroup and hence contained in K (or some conjugate
of K). Compactifications of such period manifolds were sought after in [Gri].
Clearly compactifications of Γ\G admitting a right K-action give compacti-
fications of Γ\G/H. In §III.17–§III.19, we will see that compactifications of
Γ\G can be constructed by embedding Γ\G into compact G-spaces and taking
the closure, which lead to new, natural constructions of compactifications of
Γ\X.

III.13.2 For each rational parabolic subgroup P, the rational Langlands
decomposition of P = NPAPMP induces the horospherical decomposition

G = NPAPMPK = NP ×AP × (MPK) (III.13.1)

as in §III.1.
By replacing the horospherical decomposition of X, X = NP ×AP ×XP,

in §III.9 by the above decomposition of G, the construction of the Borel-Serre
compactification of Γ\G is similar to the construction of Γ\QX

BS
in §9. In

the following, we outline the main steps and basic results and refer to [BJ3,
§3] for details of the proofs.

Define its Borel-Serre compactification e(P) by

e(P) = NP × (MPK).
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Define the Borel-Serre partial compactification QG
BS

to be

QG
BS

= G ∪
∐
P

e(P) = G ∪
∐
P

MPK, (III.13.2)

where P runs over all rational parabolic subgroups of G, with a topology
described below.

III.13.3 The topology of QG
BS

is described in terms of convergent sequences
as follows.

1. For any rational parabolic subgroup P, an unbounded sequence yj in
G converges to a point (n∞, m∞) ∈ e(P) if and only if in terms of
the above horospherical decomposition of G, yj = (nj , aj , mj), nj ∈
NP , aj ∈ AP, mj ∈ MPK, the components nj , aj , mj satisfy the
conditions:

(a) For any α ∈ Φ(P,AP), (aj)α → +∞,

(b) nj → n∞ in NP , and mj → m∞ ∈MPK.

2. For two rational parabolic subgroups P ⊂ Q, P 6= Q, let P′ be the
rational parabolic subgroup in MQ corresponding to P as in Equation
(III.1.13). The parabolic subgroup P′ induces a Langlands decomposi-
tion of MQ:

MQ = NP ′ ×AP′ × (MP′KQ),

and hence a decomposition of e(Q):

e(Q) = NQ × (MQK) = (NQNP′)×AP′ × (MPK)
= NP ×AP′ × (MPK).

(III.13.3)

Then a sequence yj in e(Q) converges to a point (n∞, m∞) ∈ e(P) if
and only if in the decomposition

yj = (nj , a′j , mj) ∈ NP ×AP′ × (MPK) = e(Q),

the coordinates satisfy the conditions:

(a) nj → n∞ in NP , mj → m∞ in MP,

(b) for all roots α ∈ Φ(P ′, AP′), (a′j)
α → +∞.

These are special convergent sequences, and their combinations give the gen-
eral convergent sequences. It can be seen that they form a convergence class
of sequences in the sense of §I.8, and hence defines a topology on QG

BS
.

Neighborhoods of boundary points can be given explicitly.
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For any rational parabolic subgroup P, let AP be the partial compactifi-
cation defined in Equation (III.9.6).

By arguments similar to the proof of Proposition III.9.5, we can prove the
existence of corners in QG

BS
.

Proposition III.13.4 The embedding NP × AP ×MPK ↪→ G ⊂ QG
BS

can
be naturally extended to an embedding NP × AP × MPK ↪→ QG

BS
. The

image of NP ×AP×MPK in QG
BS

is denoted by G(P) and called the corner
associated with P. Furthermore, G(P) is equal to G ∪

∐
Q⊇P e(Q).

These corners allow us to write explicitly neighborhoods of boundary
points. By the reduction theory in Proposition III.2.19, we can prove as
in Proposition III.9.15 the following result.

Proposition III.13.5 The partial compactification QG
BS

is a Hausdorff space.

Proposition III.13.6 The left multiplication of G(Q)-action on G extends
to a continuous action on QG

BS
.

Proof. For any rational parabolic subgroup P and g ∈ G(Q), write g =
kman, where k ∈ K, m ∈ MP, a ∈ AP, n ∈ NP . For any boundary point
(n′,m′) ∈ NP ×XP, define the action

g · (n′,m′) = (kma(nn′), k(mm′)k) ∈ NkP ×MkP = e(gP).

Since km is uniquely determined by g, this action is well-defined. This define
an action of G(Q) on QG

BS
. By arguments similar to the proof of Proposition

III.9.15, we can prove that this extended action is continuous.

By the reduction theory and the explicit description of neighborhoods of
boundary points, we can prove as in Proposition III.9.17 the following result.

Proposition III.13.7 The arithmetic subgroup Γ acts properly on QG
BS

with a compact, Hausdorff quotient Γ\QG
BS

, which is a Hausdorff compacti-

fication of Γ\G and also denoted by Γ\G
BS

.

Proposition III.13.8 The right K-multiplication on G extends to a contin-
uous action on QG

BS
. Similarly, the right K-multiplication on Γ\G extends

to a continuous action on Γ\G
BS

. The quotient Γ\G
BS
/K is isomorphic to

Γ\X
BS

.
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Proof. Since the right multiplication by elements in K preserves the con-
ditions on convergent sequences in QG

BS
, it is clear that it extends to a

continuous action on QG
BS

. Since the left action of Γ on QG
BS

commutes
with the right K-multiplication, the right K-action also extends continuously
to Γ\G

BS
. The third second statement is clear from the definitions of the

boundary components of QX
BS

, QG
BS

.

Corollary III.13.9 Any homogeneous bundle Eσ = Γ\G ⊗K Cn on Γ\X
extends to a bundle Γ\G

BS
⊗K Cn over Γ\X

BS
, where σ : K → GL(n,C) is

a finite dimensional representation of K.

Proposition III.13.10 The right G-action on G does not extend to the Borel-
Serre partial compactification QG

BS
. Similarly, the right G-action does not

extend to Γ\QG
BS

.

Proof. It suffices to exhibit a convergent sequence yj in QG
BS

and an element
g ∈ G such that yjg are not convergent in QG

BS
.

Let P be a rational parabolic subgroup. Choose H ∈ aP such that for all
α ∈ Φ(P,AP), α(H) > 0. Let yj = exp tjH for a sequence tj → +∞. Clearly,
yj is convergent in G

BS
. Let g = n ∈ NP , n 6= e. We claim that yjg is not

convergent in QG
BS

, and its image in Γ\QG
BS

does not converge either for
suitably chosen tj .

In fact,

yjg = (exp tjH)n = Ad(exp tjH)(n) · exp tjH
= (Ad(exp tjH)(n), exp tjH, 1) ∈ NP ×AP × (MPK).

The component Ad(exp tjH)(n) in NP is not bounded, and hence the sequence
yjg does not converge to any point in QG

BS
. When tj is suitably chosen, the

image of this unbounded sequence Ad(exp tjH)(n) in ΓNP \NP does not con-
verge either. In fact, when t→ +∞, the image of Ad(exp tH)(n) in ΓNP \NP
traces out a non-constant continuous path, wrapping around the “cusp” of
P and hence we can pick a sequence tj such that the image Ad(exp tjH)(n)
in ΓNP \NP does not converge. Then the image of yjg in Γ\QG

BS
does not

converge to any point either.

Proposition III.13.11 The partial compactification QG
BS

has a canonical
structure of real analytic manifold with corners. The Γ-action on QG

BS
is

real analytic with respect to this structure, and hence Γ\G
BS

is a compact
real analytic manifold with corners.



§III.14. Reductive Borel-Serre compactification of homogeneous space Γ\G391

Proof. For each rational parabolic subgroup P , the corner G(P) has a
canonical analytic structure under the identification:

G(P) = NP ×AP ×XP.

As in Proposition III.9.16, we can show that the real analytic structures of
these corners are compatible. They form an open covering of QG

BS
and define

a real analytic structure on it. By the method in Proposition III.9.16 again,
we can prove that Γ acts real analytically on QG

BS
.

III.13.12 Summary and comments. Though the space Γ\G is homoge-
neous and important for many purposes, its compactifications have not been
studied much. The construction of Γ\G

BS
is almost identical to the compact-

ification Γ\X
BS

in §III.9. On the other hand, unlike the symmetric space X,
the Lie group G does not have the canonical geodesic action of AP for each
parabolic subgroup P. So the method in [BS2] can not be applied directly to

construct Γ\G
BS

.

III.14 Reductive Borel-Serre compactification
of homogeneous spaces Γ\G

In this section, we follow the uniform method in §III.8 to define the reduc-
tive compactification Γ\G

RBS
. An important difference from the Borel-Serre

compactification Γ\G
BS

is that the right G-multiplication on Γ\G extends

to a continuous action on Γ\G
RBS

, which is not the case for Γ\X
BS

(see
Proposition III.13.10).

The rest of the construction is similar to that of Γ\X
RBS

. Specifically,
the boundary component of Q-parabolic subgroupsare defined in OOO.14.1,
and the topology of the partial compactification is described in terms of con-
vergent sequences in III.14.2. The Hausdorff property is given in III.14.3,
and the extension of the G(Q)-action is given in III.14.4. The compactifica-

tion Γ\G
RBS

is constructed in III.14.5. The right G-multiplication on Γ\G is
shown to extend continuously to the compactification in III.14.6. Extension
of homogeneous vector bundles on Γ\X to Γ\X

RBS
is proved in III.14.7. The

G-orbits of the right action on Γ\G
RBS

are given in III.14.8. For details of
some proofs, see [BJ3].

An important difference from Γ\G
BS

is that the right G-action on Γ\G
extends continuously to Γ\G

RBS
.
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III.14.1 For any rational parabolic subgroup P, define its boundary face
e(P) by

e(P) = MPK ∼= NPAP\G.

Notice that e(P) is obtained from the Borel-Serre boundary component NP ×
(MPK) by collapsing the unipotent radical NP , and is hence called the re-
ductive Borel-Serre boundary component. The identification with NPAP\G
shows that it is a homogeneous space of G.

Define the reductive Borel-Serre partial compactification QG
RBS

to be

QG
RBS

= G ∪
∐
P

e(P) = G ∪
∐
P

MPK

with a topology described below, where P runs over all rational parabolic
subgroups.

III.14.2 The topology on QG
RBS

is described in terms of convergent se-
quences as follows.

1. For any rational parabolic subgroup P, a unbounded sequence yj =
(nj , aj , mj) ∈ NP ×AP×(MPK) = G converges to a point m∞ ∈ e(P)
if and only if the following two conditions are satisfied:

(a) For all α ∈ Φ(P,AP), aαj → +∞.

(b) mj → m∞ in MPK.

2. For any two rational parabolic subgroups P ⊆ Q, P 6= Q, let P′ be
the rational parabolic subgroup of MQ corresponding to P as in Equa-
tion (III.1.13). The group P′ gives a Langlands decomposition MQ =
NP ′AP′(MP′KQ) and hence a decomposition ofMQK = NP ′AP′MP′K,
i.e.,

e(Q) = NP ′ ×AP′ × e(P).

In this decomposition of e(Q), a sequence yj = (nj , aj , mj) in e(Q)
converges to a point m∞ ∈ e(P) if and only if the following two condi-
tions are satisfied:

(a) For all α ∈ Φ(P ′, AP′), aαj → +∞.

(b) mj → m∞ in e(P).

These are special convergent sequences, and their combinations give the
general convergent sequences. It can be shown that they form a convergence
class of sequences and hence define a topology on QG

RBS
.

As in the case of QX
RBS

, neighborhoods of boundary points can be given
explicitly.
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Using explicit description of neighborhoods of boundary points in terms
of generalized Siegel sets, we can prove the following result, as in Proposition
III.10.5.

Proposition III.14.3 Every convergent sequence in QG
RBS

has a unique
limit, and hence the topology on QG

RBS
defined above is Hausdorff.

Proposition III.14.4 The left G(Q)-multiplication on G extends to a con-
tinuous action on QG

RBS
. In particular, Γ acts continuously on QG

RBS
on

the left.

Proof. For any rational parabolic subgroup P and g ∈ G(Q), write g =
kman, where k ∈ K, m ∈MP, a ∈ AP, n ∈ NP . For any m′ ∈MPK = e(P),
define the action

g ·m′ = k(mm′) · k ∈MkPK = e(kP).

Since km is uniquely determined by g, this action is well-defined. The conti-
nuity of the action is proved as in Proposition III.10.6.

By using the reduction theory and explicit description of neighborhoods
of the boundary points, we can prove as in Theorem III.10.9 the following
result.

Proposition III.14.5 The quotient Γ\QG
RBS

is a compact Hausdorff space
containing Γ\G as an open dense subset. This compactification is also denoted

by Γ\G
RBS

, called the reductive Borel-Serre compactification.

Proposition III.14.6 The right G-multiplication on G extends to a contin-
uous action on QG

RBS
, and hence the right G-multiplication on Γ\G extends

to a continuous G-action on Γ\QG
RBS

.

Proof. First we define the action, then show that it is continuous. For
any boundary point m ∈ e(P) = MPK, and an element g ∈ G, write mg =
(n′, a′, m′) ∈ NP ×AP ×MPK. Then define

m · g = m′ ∈ e(P).

Combined with the right multiplication on G, this gives a right action of G
on QG

RBS
. When e(P) = MPK is identified with NPAP \G, this action of G

is given by the right multiplication. Then it is clear that each boundary face
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e(P) is preserved by the G-action and acted upon transitively by G, and the
decomposition

QG
RBS

= G ∪
∐
P

e(P)

is the orbit decomposition of QG
RBS

under this G-action.
To show that this extended action is continuous, let yj be any sequence

converging to a point m∞ ∈ e(P). Write yj = (nj , aj , mj) ∈ NP × AP ×
(MPK). Then mj → m∞ in MPK, and for all α ∈ Φ(P, AP), (aj)α → +∞,
but there is no condition on nj .

Write

mjg = n′ja
′
jm
′
j = (n′j , a

′
j , m

′
j) ∈ NP ×AP × (MPK).

Since mjg → m∞g, the components n′j , a
′
j , m

′
j all converge. Let m′∞ =

limj→∞m′j . Now

yjg = njajmjg = njajn
′
ja
′
jm
′
j

= njajn
′
ja
−1
j aja

′
jm
′
j

= (njajn′ja
−1
j , aja

′
j , m

′
j).

For all α ∈ Φ(P,AP), (aja′j)
α = (aj)α(a′j)

α → +∞, since a′j is bounded.

This implies that yjg converges in QG
RBS

to m′∞ ∈ e(P). We note that the
NP -component njajn′ja

−1
j is unbounded in general (see the proof of Proposi-

tion III.13.10), but this does not affect the convergence in QG
RBS

, since there
is no condition on the NP -component for the convergent sequences.

We note that the limit m′∞ = limj→+∞m′j is equal to the MPK compo-
nent of m∞g in the decomposition G = NP ×AP ×MPK, which nis equal to
m∞ · g.

We can show similarly that the same conclusion holds when yj is a sequence
of points in e(Q) converging to m∞ ∈ e(P) in QG

RBS
, where Q ⊃ P.

Corollary III.14.7 The right K-multiplication on G, Γ\G extends to QG
RBS

and Γ\G
RBS

respectively. The quotient Γ\G
RBS

/K is isomorphic to Γ\X
RBS

,
and hence every homogeneous bundle Eσ = Γ\G ⊗K Cn extends to a bundle

Γ\G
RBS

⊗K Cn over Γ\X
BS

.

Proof. The first statement is a special case of the above proposition. The
second statement follows from the definitions of the boundary components
and the topologies on QX

RBS
, QG

RBS
.
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Proposition III.14.8 Let P1, · · · ,Pm be a set of representatives of Γ-conjugacy
classes of rational parabolic subgroups of G. Then the G-orbits of the right
action on Γ\G

RBS
are given by

Γ\G
RBS

= Γ\G ∪
m∐
i=1

ΓMPi
\MPiK = Γ\G ∪

m∐
i=1

ΓMPi
NPiAPi\G.

Proof. It follows from the definition that under the left multiplication, for
any rational parabolic subgroup P, the stabilizer of the boundary component
e(P) in Γ is equal to ΓP , and the action factors through the map ΓP →
ΓMP

. Then the first decomposition in the proposition is clear, and the second
decomposition follows from the identification MPK = NPAP\G.

Proposition III.14.9 The identity map on G extends to a continuous map

QG
BS → QG

RBS
, and hence Γ\G

BS
dominates the compactification Γ\G

RBS
.

Proof. By [GJT, Lemma 3.28], it suffices to show that if an unbounded
sequence yj in G converges in QG

BS
, then it also converges in QG

RBS
. This

is clear from the definitions of the topologies of QG
BS

and QG
RBS

.

III.14.10 Summary and comments. The construction of the reductive
Borel-Serre compactification Γ\G

RBS
is similar to Γ\G

BS
and Γ\X

RBS
. But

an important difference between Γ\G
RBS

and Γ\G
BS

is that the right G-
action on Γ\G extends continuously to the former but not the latter. This

can be naturally explained by the relation between Γ\G
RBS

and the sub-

group compactification Γ\G
sb

in §III.18. As in the case of Γ\G
BS

, the com-

pactification Γ\G
RBS

also gives a compactification of Γ\G/H, where H is a
non-maximal compact subgroup of G.
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Chapter 11

Properties of
compactifications of locally
symmetric spaces

In this chapter, we study relations between the many compactifications of
locally symmetric spaces studied in the previous chapters and structures of
the corners of the Borel-Serre compactification Γ\X

BS
.

For a not necessarily Hermitian locally symmetric space Γ\X, we have
studied the following compactifications: the Satake compactifications, the
Borel-Serre compactification, the reductive Borel-Serre compactification, the
Tits compactification. The relations between these compactifications are easy
to determine. Basically, the Borel-Serre compactification and the Tits com-
pactification use complementary factors of the Langlands decomposition of
parabolic subgroups, and hence are complementary to each other, while the
Borel-Serre compactification dominates the reductive Borel-Serre compactifi-
cation, which in turn dominates all the Satake compactifications.

On the other hand, when Γ\X is a Hermitian locally symmetric space,
there are two more compactifications: the Baily-Borel compactification, and
the toroidal compactifications. Since both the Borel-Serre compactification
and the toroidal compactifications resolve the singularities of the Baily-Borel
compactification in different senses, it is natural and important to compare
these two compactifications. Though they are very different, they have non-
tivial common quotients, for example, the Baily-Borel compactification. It
turned out that the greatest common quotient is a new compactification which
is often different from the Baily-Borel compactification. All these relations will
be studied in §III.15.

As mentioned earlier in §I.18 and Part II, the Oshima compactification was
introduced to study structures of eigenfunctions of all invariant differential

397
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operators through their boundary values, and the Oshima compactification
can be self-glued from the maximal Satake compactification. In §III.16, we
self-glue the Borel-Serre compactification into a closed real analytic manifold,
called the Borel-Serre-Oshima compactification. Both the real analytic struc-
ture of the Borel-Serre compactification and the fact that it can be embedded
into a closed analytic manifold might be useful to a similar approach to study
automorphic forms, for example, the meromorphic continuation of Eisenstein
series. The Borel-Serre-Oshima compactification Γ\X

BSO
has been used in

[Wes1] [Wes2] to study cohomology groups of the arithmetic subgroup Γ.

III.15 Relations between the compactifica-
tions

In this section, we examine relations between the compactifications of locally
symmetric spaces studied earlier.

Let G be a semisimple linear algebraic group defined over Q of positive
Q-rank, and Γ an arithmetic subgroup. Then Γ\X is a noncompact locally
symmetric space. Since X is a symmetric space of noncompact type, all the
compactifications in Proposition III.15.2 are defined. It should be pointed out
that the Borel-Serre compactification Γ\X

BS
and the reductive Borel-Serre

compactification Γ\X
RBS

can be defined for more general class of reductive

groups G. In fact, the Borel-Serre compactification Γ\X
BS

can be defined
for even larger class of spaces of S-type (see [BS2]).

This section is organized as follows. First, we assume that Γ\X is not
necessarily Hermitian and summarize relations between all the compactifica-
tions discussed earlier in Proposition III.15.2. Relations between compacti-
fications of Γ\G are discussed in Proposition III.15.3. Then we consider the
case when Γ\X is Hermitian. There are two more compactifications, and
relations between all compactifications are stated in Proposition III.15.4. A
relation between the Borel-Serre compactification Γ\X

BS
and the toroidal

compactifications Γ\X
tor

Σ was given by the Harris-Zucker conjecture. Some
details about the proof of this conjecture are given in III.15.6 and III.15.7. A
relation between the reductive Borel-Serre compactification and the toroidal
compactifications is briefly described in III.15.8.

III.15.1 Recall that given two compactifications Γ\X
1
, Γ\X

2
, if the identity

map on Γ\X extends to a continuous map Γ\X
1
→ Γ\X

2
, then Γ\X

1
is said

to dominates Γ\X
2
, and this extended map is called the dominating map. If

the dominating map is bijective, the compactifications are called isomorphic.
Otherwise, Γ\X

1
is said to strictly dominate Γ\X

2
.
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A compactification Γ\X
3

dominated by both Γ\X
1

and Γ\X
2

is called
a common quotient (CQ) of Γ\X

1
and Γ\X

2
. There always exists a great-

est common quotient (GCQ) of any two compactifications Γ\X
1

and Γ\X
2
,

denoted by Γ\X
1
∧ Γ\X

2
.

Proposition III.15.2 The compactifications of Γ\X satisfy the following re-
lations:

1. The Borel-Serre compactification Γ\X
BS

dominates the reductive Borel-

Serre compactification Γ\X
RBS

, and the inverse images of the dominat-
ing map over boundary points are nilmanifolds ΓNP \NP .

2. The reductive Borel-Serre compactification Γ\X
RBS

dominates the max-

imal Satake compactification Γ\X
S

max, and the inverse image of the dom-
inating map over the boundary points are quotients of Euclidean spaces.
They are isomorphic if and only if the Q-rank of G is equal to its R-rank.

3. The maximal Satake compactification Γ\X
S

max dominates all other Sa-

take compactifications Γ\X
S

τ , if X
S

τ is rational and Γ\X
S

τ is defined.
And the inverse images of the dominating maps are Satake compactifica-
tions of lower dimensional locally symmetric spaces. There are finitely
many non-isomorphic Satake compactifications, and they are partially
ordered with respect to the domination relation. In general, the minimal
Satake compactifications are not unique.

4. Hence, both the Borel-Serre compactification Γ\X
BS

and the reductive

Borel-Serre compactification Γ\X
RBS

dominate all the Satake compact-

ifications Γ\X
S

max, Γ\X
S

τ .

5. When the Q-rank of G is greater than or equal to 2, the GCQ

Γ\X
BS
∧ Γ\X

T
= Γ\X ∪ {∞},

the one point compactification, and hence

Γ\X
RBS

∧ Γ\X
T

= Γ\X ∪ {∞}, Γ\X
S

τ ∧ Γ\X
T

= Γ\X ∪ {∞}.

On the other hand, when the Q-rank of G is equal to 1,

Γ\X
T

= Γ\X
RBS

= Γ\X
S

τ ,

and they are all equal to the end compactification, which is obtained by
adding one point to each end of Γ\X.
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Proof. (1) follows from the original definition of Γ\X
RBS

or Proposition
III.10.7. (2) follows from Proposition III.11.12 and the description of the
dominating map QX

RBS → QX
S

max in Proposition III.11.8.
All statements in (3) except the inverse images of the boundary points are

contained in Proposition I.4.35 and the general procedure in §III.3 on how to
pass from the geometrically rational Satake compactification X

S

τ to Γ\X
S

τ . To

show that the inverse images of Γ\X
S

τ1
→ Γ\X

S

τ2
are Satake compactifications,

we note that the inverse images of the map X
S

τ1 → X
S

τ2 over the boundary
are Satake compactifications of symmetric spaces of lower dimension. In fact,
for any boundary component XP in X

S

τ2 , the inverse image of XP splits as

a product XP ×XP ′
S

, where XP ×XP ′ is the largest boundary component
of X

S

τ1 which is mapped into XP (see the discussions of the dominating map

X
S

τ1 → X
S

τ2 in Proposition I.4.35). Since Γ induces discrete subgroups acting
on XP and XP ′ , it defines a locally symmetric space ΓXP ′\XP ′ , whose Satake

compactification induced from XP ′
S

is the inverse image over the points in
ΓXP \XP ⊂ Γ\X

S

τ2
.

(4) follows from Proposition III.11.12 and (3). (5) follows from Proposition
III.12.7.

Proposition III.15.3 Compactifications of Γ\G and Γ\X are related as fol-
lows.

1. The Borel-Serre compactification Γ\G
BS

dominates the reductive Borel-

Serre compactification Γ\G
RBS

, and the inverse images of the dominat-
ing maps over the boundary points are nilmanifolds ΓNP \NP , where P
are rational parabolic subgroups.

2. The right K-action on Γ\G extends to a continuous action on Γ\G
BS

,

and the quotient Γ\G
BS
/K is isomorphic to Γ\X

BS
.

3. The right K-action on Γ\G extends to a continuous action on Γ\G
RBS

,

and the quotient Γ\G
RBS

/K is isomorphic to Γ\X
RBS

.

Proof. (1) follows from Proposition III.14.9, (2) is given in Proposition
III.13.8, and (3) is given in Corollary III.14.7.

Proposition III.15.4 Suppose that Γ\X is a Hermitian locally symmetric
space. Its compactifications satisfy the following relations.
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1. The Baily-Borel compactification Γ\X
BB

is isomorphic, as a topological

compactification, a minimal Satake compactification Γ\X
S

τ in the par-
tially ordered set of Satake compactifications, where the highest weight
µτ is only connected to the last distinguished root in the sense of Propo-
sition I.5.18.

2. Therefore, the Borel-Serre compactification Γ\X
BS

and the reductive

Borel-Serre compactification Γ\X
RBS

dominate the Baily-Borel com-

pactification Γ\X
BB

.

3. Every toroidal compactification Γ\X
tor

Σ dominates the Baily-Borel com-
pactification, and the dominating map is a complex analytic map. When
the toroidal compactification Γ\X

tor

Σ is a projective variety, the domi-

nating map Γ\X
tor

Σ → Γ\X
BB

is an algebraic map (i.e., a morphism
between algebraic varieties).

4. For any toroidal compactification Γ\X
tor

Σ , the GCQ Γ\X
tor

Σ ∧ Γ\X
BS

is a compactification called the intermediate compactification and de-
noted by Γ\X

int
which always dominates Γ\X

BB
but is not necessarily

isomorphic to it.

5. For any toroidal compactification Γ\X
tor

Σ , the GCQ Γ\X
tor

Σ ∧ Γ\X
RBS

is isomorphic to the Baily-Borel compactification Γ\X
BB

.

Proof. (1) follows from Corollary I.5.29. (2) follows from (1) and Proposition
III.15.3. (3) follows from the construction of Γ\X

tor

Σ outlined in §III.7. (4) is
proved in [Ji3] and an outline is given in III.15.6 below. (5) is also given in
[Ji3]

In Proposition III.15.4.4, precise conditions are given in [Ji3] when the

greatest common quotient Γ\X
tor

Σ ∧ Γ\X
BS

, or the intermediate compactifi-

cation Γ\X
int

, is equal to Γ\X
BB

.

Remark III.15.5 In this book, we have not discussed functorial properties
of compactifications of Γ\X, i.e., if i : Γ1\X1 → Γ2\X2 is an embedding
and Γ2\X2 is a compactification of Γ2\X2, then the closure of i(Γ1\X1) is a
compactification. The question is what this induced compactification is. A
similar question concerns the compactifications of products of Γ\X.

III.15.6 It was conjectured by Harris and Zucker in [HZ, Conjecture 1.5.8]

that the GCQ Γ\X
tor

Σ ∧ Γ\X
BS

is always equal to Γ\X
BB

. The above



402 Part III. Compactifications of locally symmetric spaces

result shows that this conjecture is not true, and the GCQ is given by the
intermediate compactification Γ\X

int
which is often different from Γ\X

BB
.

If Γ\X is a Hilbert modular surface, then the boundary ∂Γ\X
BS

is a union
of rank two torus bundles over a circle, one bundle for each end of Γ\X; while
∂Γ\X

tor

Σ is a union of cycles of rational curves CP 1, one cycle for each end

of Γ\X, whose length depends on Σ. Then it is conceivable that Γ\X
BS

is

completely incompatible with Γ\X
tor

Σ at each end, and hence Γ\X
BS
∧Γ\X

tor

Σ

is the compactification obtained by adding one point to every end of Γ\X,

which is exactly Γ\X
BB

. Therefore, the conjecture is true in this case.
On the other hand, for a Picard modular surface Γ\X = Γ\B2, where B2

is the unit ball in C2, Γ\X
tor

Σ is unique and ∂Γ\X
tor

Σ is a union of elliptic

curves, one for each end of Γ\X, while ∂Γ\X
BS

is a union of circle bundles

over the elliptic curves which appear in ∂Γ\X
tor

Σ . Since Γ\X
BB

is obtained
by adding one point to each end of Γ\X, these three compactifications fit into
a tower

Γ\X
BS
−→
6=

Γ\X
tor
−→
6=

Γ\X
BB

.

So the GCQ Γ\X
BS
∧ Γ\X

tor

Σ is equal to Γ\X
tor

Σ , which strictly dominates

Γ\X
BB

, and the conjecture is false in this case.
In every case where the conjecture fails, this phenomenon in the Picard

modular surface is present, i.e., Γ\X
BS

dominates Γ\X
tor

Σ near some bound-

ary components of Γ\X
tor

Σ , but Γ\X
tor

Σ is strictly bigger than Γ\X
BB

.

Besides this partial dominance of Γ\X
BS

over Γ\X
tor

Σ possibly near some

boundary components and the fact that they both are bigger than Γ\X
BB

,

the compactifications Γ\X
BS

and Γ\X
tor

Σ are incompatible.

III.15.7 To prove this incompatibility, we proceed in two steps. The fibers
(or inverse images) in Γ\X

BS
over boundary points in Γ\X

BB
are families

of nilmanifolds over lower dimensional locally symmetric spaces. Fix a fiber
and assume that the base has positive dimension. In the first step, we use the
incompatibility between the geodesic action in Γ\X

BS
and the torus action in

Γ\X
tor

Σ to show that every horizontal section of this bundle collapses to a point

in any common quotient of Γ\X
BS

and Γ\X
tor

Σ . In this step, the relation in
Proposition III.7.13 between the refined horospherical decomposition and the
realization of the Siegel domain of the third kind plays an essential role in
both the proof and understanding the proof.

In the second step, we show that the fundamental group of the base man-
ifold acts ergodically on the fibers of the bundle (see Remark III.7.11), and
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hence the fibers have to collapse also in any common quotient because of the
Hausdorff property. In this argument, the fact that the base locally symmetric
space has positive dimension is crucial in order to get the nontrivial discrete
subgroup which acts ergodically.

Remark III.15.8 By Proposition III.15.4.5, the identify map on Γ\X can

not be extended to a continuous map from Γ\X
RBS

to Γ\X
tor

Σ . On the other
hand, it is shown in [GT1] that for any compact subset C of Γ\X, there is a

continuous map from Γ\X
RBS

to Γ\X
tor

Σ which is equal to the identity on C.

III.16 Self-gluing of Borel-Serre compactifica-
tion into Borel-Serre-Oshima compacti-
fication

In this section, we study structure of the boundary faces of Γ\X
BS

and show

that 2r copies of Γ\X
BS

can be self-glued into a closed real analytic manifold
by the method of §II.1, where r is the Q-rank of G, which is equal to the
maximum of dimAP for all rational parabolic subgroups P of G. By Remark
II.1.3, this is the least number of copies of Γ\X

BS
needed to glue into a closed

manifold.
Since this space is similar to the Oshima compactification of X, it is called

the Borel-Serre-Oshima compactification of Γ\X and denoted by Γ\X
BSO

.

Since Γ\X
BSO

admits a (Z/2Z)r-action and the quotient is Γ\X
BS

, functions

on Γ\X
BS

can be lifted to (Z/2Z)r-invariant functions on the closed manifold

Γ\X
BSO

. This point of view has been used to study the trace formula for
Hecke operators on the cohomology groups of Γ in [Wes2].

This section is organized as follows. The closure of each boundary face is a
real analytic manifold with corners (III.16.2), which is used to show that the
rank of QX

BS
as a manifold with corners is equal to the Q-rank of G (III.16.3).

The boundary hypersurfaces are shown to be embedded in (III.16.4). To self-
glue QX

BS
into a smooth manifold without corners, we need a partition of the

set of its boundary hypersurfaces, which is given in (III.16.7). The self-gluing

of QX
BS

is given in (III.16.8), and of Γ\X
BS

in III.16.9. An application of

Γ\X
BSO

is briefly mentioned in III.16.11.

III.16.1 We start by determining the corners and boundary faces of QX
BS

.
Then we show that the boundary faces satisfy the general conditions in §II.1
for self-gluing.
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Lemma III.16.2 For every rational parabolic subgroup Q, the closure e(Q)
of the boundary face e(Q) = NQ ×XQ in QX

BS
is a (closed) boundary face

of codimension dimAQ and is hence a real analytic submanifold with corners.

Proof. From the definition of convergence of sequences of boundary points
in QX

BS
,

e(Q) = e(Q) ∪
∐

P⊂Q

e(P ).

Therefore, e(Q) is covered by the corners X(P) for all P ⊆ Q. In each corner
X(P),

e(Q) ∩X(P) =
∐

P⊆R⊆Q

e(R) ⊂ X ∪
∐

P⊆R

e(R).

By Lemmas III.9.8 and III.9.9, in the decomposition

X(P) = NP ×AP,Q ×AQ ×XP,

the intersection e(Q) ∩X(P) is given by

e(Q) ∩X(P) = NP ×AP,Q × {oQ} ×XP,

which is clearly a real analytic submanifold with corners in X(P) of codi-
mension dimAQ. This implies that e(Q) is a real analytic submanifold with
corners in QX

BS
of codimension dimAQ.

Corollary III.16.3 The rank of QX
BS

as a manifold with corners is equal
to the Q-rank of the algebraic group G.

Proof. Recall from §II.1 that the rank of a manifold with corners is the maxi-
mal codimension of boundary faces, which is equal to rkQ(G) = max{dimAP |
P runs over rational parabolic subgroup} by the above lemma.

Lemma III.16.4 The boundary hypersurfaces of QX
BS

are the closures e(Q),
where Q are rational parabolic subgroups of rank 1, dimAQ = 1, i.e., Q are
proper maximal rational parabolic subgroups, and they are embedded in the
sense defined in §II.1.

Proof. The first statement clearly follows from Lemma III.16.2. To prove
the second statement, we note that for every rational parabolic subgroup P of
rank i, i.e, dimAP = i, there are exactly i maximal proper rational parabolic
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subgroups containing P. In fact, this fact follows from the one-to-one corre-
spondence between subsets of the set of simple roots ∆(P,AP) and rational
parabolic subgroups containing P. This implies that every point in e(P),
which has rank i by Lemma III.16.2, is contained in exactly i different bound-
ary hypersurfaces. This proves the all boundary hypersurfaces are embedded.

Lemma III.16.5 Let Q1,Q2 be two rational parabolic subgroups and P =
Q1 ∩Q2. If P is not a rational parabolic subgroup, the boundary faces e(Q1),
e(Q2) are disjoint. Otherwise,

e(Q1) ∩ e(Q2) = e(P ).

Proof. This follows from the equation

e(Qi) =
∐

P⊆Qi

e(P ).

Lemma III.16.6 The boundary faces of QX
BS

are locally finite.

Proof. For any rational parabolic subgroup P and its corner X(P), there are
only finitely many boundary faces e(Q) with

X(P) ∩ e(Q) 6= ∅.

In fact, let Q1, · · ·Qn be the finitely many rational parabolic subgroups
containing P. Since

X(P) = X ∪
n∐
j=1

e(Qj)

and
e(Q) =

∐
R⊆Q

e(R),

it is clear that e(Q) has nonempty intersection with X(P) if and only if Q
contains one of Q1, · · · ,Qn and hence is one of them. Since X(P) is an open
subset and QX

BS
is covered by these corners, every point has a neighborhood

which meets only finitely many boundary faces.
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Lemma III.16.7 Let r be the Q-rank of G. Then there exists a partition of
the set H

QX
BS of boundary hypersurfaces of QX

BS
into r parts,

H
QX

BS =
r∐
j=1

Hj ,

such that for every j, the hypersurfaces in Hj are disjoint.

Proof. Fix a minimal rational parabolic subgroup P of G. Then dimAP =
r. By the one-to-one correspondence between subsets of the simple roots
∆(P,AP) and parabolic subgroups containing P, there are exactly r maximal
rational parabolic subgroups containing P.

Denote the maximal rational parabolic subgroups containing P by Q1, · · · ,Qr.
For any other minimal rational parabolic subgroup P′, it is known that there
exists an element g ∈ G(Q) such that P′ = gPg−1. Under this conjugation,
the maximal parabolic subgroups containing P are mapped to the maximal
parabolic subgroups containing P′. Denote them by Q′1 = gQ1g

−1, · · · ,Q′r =
gQrg

−1. We claim that this numbering of the maximal parabolic subgroups
containing P′ is independent of the choice of the element g ∈ G(Q). In fact,
g is unique up to an element of P(Q). Since the conjugation by an element
of P(Q) leaves all Q1, · · · ,Qr stable, the claim is proved.

Now define Hj to be the set of the boundary hypersurfaces e(Q′j) for
all minimal rational parabolic subgroups P′. Since every maximal rational
parabolic subgroup contains a minimal rational parabolic subgroup,H1, · · · , Hr
forms a partition of the set of boundary hypersurfaces of QX

BS
.

By Lemma III.16.5, the hypersurfaces in each Hj are disjoint, since no two
Q′j contain a rational parabolic subgroup.

The manifold QX
BS

has infinitely many boundary faces, since there are
infinitely many rational parabolic subgroups of G. On the other hand, the
following is true.

Theorem III.16.8 Let r be the Q-rank of G as above. Then 2r copies of the
Borel-Serre partial compactification QX

BS
can be glued into a closed analytic

manifold by the methods in §II.1. This closed analytic manifold is denoted by

QX
BSO

and admits a (Z/2Z)r-action whose quotient is equal to QX
BS

.

Proof. By Lemma III.16.7, the set of boundary hypersurfaces H
QX

BS admits
a partition H1, · · · , Hr such that the hypersurfaces in each Hj are disjoint.
Proposition 2.1.2 or 2.1.9 shows that 2r copies of QX

BS
can be glued into a

closed analytic manifold. Since QX
BS

is a real analytic manifold with corners
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by Proposition 6.3, it follows from Proposition 2.1.4 that QX
BSO

is an analytic
manifold. Proposition 2.1.5 gives the action of (Z/2Z)r.

Corollary III.16.9 When Γ is a neat arithmetic subgroup, 2r copies of Γ\X
BS

can be glued into a closed analytic manifold, denoted by Γ\X
BSO

, which ad-

mits a (Z/2Z)r-action whose quotient is equal to Γ\X
BS

.

Proof. By Proposition III.9.16, Γ acts on QX
BS

by real analytic diffeo-
morphism. By Proposition 2.1.4, this Γ-action extends to QX

BSO
. Then the

quotient of QX
BSO

by Γ is a compact closed analytic manifold consisting of

2r copies of Γ\X
BS

. By Proposition 2.1.5, the (Z/2Z)r-action on QX
BSO

commutes with Γ and hence descend to the quotient by Γ, which is clearly the
union of 2r-copies of Γ\X

BS
with the real analytic structure given in Theorem

III.9.18.

Remark III.16.10 The above corollary can also be proved directly without
using QX

BSO
. In fact, under the Γ-action, the partition H1, · · · , Hr of

H
QX

BS is preserved and hence induces a partition into r parts of the collec-

tion of the hypersurfaces of Γ\X
BS

. Since Γ\X
BS

is a compact real ana-
lytic manifold with corners and hence has only finitely many boundary faces,
Proposition 2.1.2 or 2.1.9 shows that 2r-copies of Γ\X

BS
can be glued into a

compact closed analytic manifold.

Remarks III.16.11 (1). A different construction of Γ\X
BSO

as a C∞-
manifold has been independently given by Weselmann in [Wes1] in the adelic
case and has been used by him in [Wes2] to compute the trace of the Hecke

operators on cohomology groups of Γ. Briefly, since (Z/2Z)r acts on Γ\X
BSO

with quotient equal to Γ\X
BS

, differential forms on Γ\XBS
can be identified

with (Z/2Z)r-invariant differential forms on the closed manifold Γ\X
BSO

.

(2). By similar methods, we can show that 2r-copies of Γ\G
BS

can be

self-glued into a closed analytic manifold Γ\G
BSO

. See [BJ3] for details.

III.16.12 Summary and comments. The compactification Γ\X
BSO

was
motivated by the Oshima compactification X

O
. Since X

O
has be used to

study eigenfunctions of invariant different operators through the theory of
differential equations with regular singularities, it is reasonable to expect that
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Γ\X
BSO

might be useful to study Eisenstein series, which are joint eigenfunc-
tions on Γ\X of all invariant operators. For such a purpose, the property that

Γ\X
BSO

is a closed real analytic manifold is important.



Chapter 12

Subgroup
compactifications of Γ\G

To construct compactifications of a symmetric space X, a natural method
is to find a compact G-space and a G-equivariant embedding i : X → Z so
that the closure of i(X) in Z is a G-compactification of X. For example,
the Satake compactifications X

S

τ and the Furstenberg compactifications X
F

P

are all defined this way. On the other hand, none of the compactifications of
a locally symmetric space Γ\X has been constructed this way in the earlier
chapters. One basic point of this chapter is that compactifications of Γ\X can
also be studied via compactifications of the homogeneous space Γ\G which
can be obtained by embeddings into compact spaces. On the other hand,
as pointed out in §III.13.1, compactifications of Γ\G are also important in
themselves.

In the first part of this chapter, we construct a compactification of Γ\G by
embedding Γ\G into a compact G-space when Γ is equal to its own normalizer.
In fact, the compact ambient G-space is the space S(G) of closed subgroups
of G, and the compactification of Γ\G is called the subgroup compactifica-

tion and denoted by Γ\G
sb

. A slight modification also applies to Γ\X and

gives a corresponding subgroup compactification Γ\X
sb

. The subgroup com-

pactifications Γ\G
sb

and Γ\X
sb

are dominated by the reductive Borel-Serre

compactifications Γ\G
RBS

and Γ\X
RBS

respectively, and they are isomorphic

to each other under certain conditions. Therefore, this reconstructs Γ\X
RBS

via an embedding into a compact space and taking the closure.
In the study of reduction theories of arithmetic groups, the identification of

SL(n,Z)\SL(n,R) with the space L(Rn) of unimodular lattices in Rn plays an
important role. In the second part of this chapter, we use the space of lattices
in Rn together with generalizations such as the space of closed subgroups in

409
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R
n and lattices in flags in Rn to study compactifications of SL(n,Z)\SL(n,R)

and SL(n,Z)\SL(n,R)/SO(n). It turns out that we can get several Satake
compactifications by scaling differently the lattices in Rn and making use of
lattices in flags of subspaces in Rn.

More specifically, in §III.17, we introduce maximal discrete subgroups of
G, which form an important class of discrete subgroups which are equal to
their own normalizers. Then we define a compactification of the correspond-
ing homogeneous space Γ\G using the space S(G) of closed subgroups of G.

In §III.18, we identify the boundary limit groups of Γ\G
sb

and relate it to

Γ\G
RSB

. In §III.19, we first use the space of closed subgroups S(Rn) of Rn

to compactify SL(n,Z)\SL(n,R) and hence SL(n,Z)\SL(n,R)/SO(n). The
resulting compactification is not isomorphic to any Satake compactification.
In order to obtain Satake compactifications of SL(n,Z)\SL(n,R)/SO(n), we
need to scale the lattices and to introduce lattices in flags, which correspond
to different scales of layers of lattices.

III.17 Maximal discrete subgroups and space
of subgroups

In this section, we recall definition and properties of maximal discrete sub-
groups of the Lie group G, and the space S(G) of closed subgroups of G,

which will be used to construct the subgroup compactification Γ\G
sb

in the
next section.

More specifically, in III.17.1, we introduce a more general notion of arith-
metic subgroups for the purpose of considering maximal discrete subgroups.
Maximal discrete subgroups are introduced in III.17.2. Existence of maxi-
mal arithmetic subgroups is proved in III.17.3. Several examples are given in
III.17.4. Self-normalizing subgroups are defined in III.17.5. Maximal arith-
metic subgroups are shown to be self-normalizing in III.17.7. This property
is important for defining the subgroup compactification in the next section.
A map iΓ from Γ\G to the space S(G) of closed subgroups is defined in
III.17.8. This map is shown to be proper in III.17.9. For a self-normalizing
arithmetic group, iΓ is a proper embedding (III.17.12). The closure of Γ\G
under this embedding defines the subgroup compactification (III.17.13). A
more precise version of Proposition III.17.9 is given in Proposition III.17.11,
which determines the limit subgroups or the boundary points of the subgroup
compactification. Proposition III.17.11 is proved in two steps: the first step
is given by Proposition III.17.15, and the second step in III.17.16, which is
illustrated through the example G = SL(2).

III.17.1 In the previous sections, we always assume that the arithmetic
subgroup to be a subgroup of G(Q). In this chapter, we will call any dis-
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crete subgroup Γ of G arithmetic if it is commensurable with an arithmetic
subgroup of G(Q). Clearly, such a Γ acts properly on X, and Γ\X has finite
volume. A fundamental set for Γ can also be constructed by Siegel sets as in
Proposition III.2.19. If G is of adjoint type, then there is no difference since
any discrete subgroup commensurable with an arithmetic subgroup in G(Q)
is automatically contained in G(Q) (see [Bo2]).

We will also assume in this chapter that all normal Q-subgroups of G have
strictly positive Q-rank. Then G has no compact factor of strictly positive
dimension.

Definition III.17.2 A discrete subgroup Γ is called a maximal if it is not
properly contained in any discrete subgroup. If Γ is also arithmetic, Γ is
called a maximal arithmetic subgroup.

Lemma III.17.3 Under the above assumption on G, any arithmetic sub-
group Γ of G is contained in a maximal arithmetic subgroup.

Proof. It is shown in [KM] (see also [Bo5]) that the volume of Γ′\X has a
strictly positive uniform lower bound for all discrete subgroups Γ′ of G. This
implies that the length of any chain Γ0 ⊂ Γ1 ⊂ · · · of discrete subgroups
starting with Γ0 = Γ has a uniform upper bound. Hence Γ is contained in
some maximal discrete subgroup, which is clearly also arithmetic.

Note that in the above lemma, the maximal arithmetic subgroups con-
taining Γ may not be unique. The point of this lemma is that it implies the
existence of maximal arithmetic subgroups.

III.17.4 Examples of maximal arithmetic subgroups are given in [Bo3] and
[Al1] [Al2]. In particular, SLn(Z) and Sp2n(Z) are maximal in SLn(R) and
Sp2n(R) respectively. More generally, if G is split over Q, then an arithmetic
subgroup associated to an admissible Chevalley lattice is maximal ([Bo3, The-
orem 7]). Such examples can also be defined in a split k-group if k is a num-
ber field with class number one (loc.cit.). For other examples, see [Al1] [Al2]
[Bon1]–[Bon4].

Definition III.17.5 A subgroup Γ of G is called self-normalizing if it is equal
to its own normalizer N (Γ) = {g ∈ G | gΓ = Γ}..

Lemma III.17.6 Let Γ ⊂ G be discrete, of finite covolume. Then the nor-
malizer N (Γ) in G is discrete, and hence Γ is of finite index in N (Γ).

Proof. Let M be the (ordinary) closure of N (Γ). It is the real locus of an
algebraic subgroup M of G. Its identity component M0 centralizes Γ. But Γ
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is Zariski dense in G [Bo2], hence M0 is reduced to the identity, and hence
M = N (Γ) is discrete.

Corollary III.17.7 If Γ is a maximal arithmetic subgroup, then it is self-
normalizing.

Proof. By the above lemma, N (Γ) is a discrete subgroup. Since it contains
Γ, it is equal to Γ by the assumption that Γ is maximal.

III.17.8 Let S(G) be the space of closed subgroups of G. Clearly G acts on
S(G) by conjugation. Recall from Proposition I.17.2 that the space S(G) may
be endowed with a topology under which it is a compact, Hausdorff G-space,
i.e., the G-action is continuous.

Let Γ ⊂ G be a discrete subgroup. Define

iΓ : Γ\G→ S(G), Γg → Γg = g−1Γg.

Since the right multiplication on Γ\G corresponds to the conjugation on S(G),
this map is G-equivariant.

If Γ = N (Γ), it is clearly injective. If moreover Γ is arithmetic, then we
shall show that iΓ is a homeomorphism of Γ\G onto its image. The proof
uses the reduction theory in Proposition III.2.19, and the main point is the
following proposition.

Proposition III.17.9 Assume that Γ is arithmetic. Let gj be a divergent
sequence in Γ\G. Assume that the sequence Γgj converges in S(G) to a closed
subgroup Γ∞, then Γ∞ is not discrete. In other words, the map iΓ is proper.

We can of course replace gj by any element of Γgj . Combining this ob-
servation with Proposition III.2.19 and passing to a subsequence if necessary,
we can assume

Assumption III.17.10 For some Pi, gj can be written as gj = njajmj,
where nj ∈ NPi , aj ∈ APi , mj ∈MPiK such that

1. nj → n∞ in NPi ,

2. mj → m∞ in MPiK,

3. aαj → +∞ for all α ∈ Φ(Pi, APi).

This assumption implies that gj converges to (n∞,m∞) in QX
BS

. Under
these assumptions, Proposition III.17.9 follows from the following more precise
result.
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Proposition III.17.11 Under the assumption in Assumption III.17.10, the
sequence of subgroups Γgj converges in S(G) to the group m−1

∞ NPΓPm∞.

Before proving this proposition, we draw the following conclusion.

Corollary III.17.12 Assume Γ = N (Γ) and Γ is arithmetic. Then iΓ :
Γ\G → S(G) is a homeomorphism of Γ\G onto the image iΓ(Γ\G). In par-
ticular, when Γ is a maximal arithmetic subgroup, iΓ is an embedding.

Proof. We need to prove that Γgj converges to Γg if and only if Γgj converges
to Γg.

Assume that Γgj → Γg. Since G→ Γ\G is a covering map, we can choose
gj such that gj → g, whence Γgj → Γg.

On the other hand, suppose that Γgj → Γg. It follows from Proposition
III.17.11 that we can assume gj to be bounded. Passing to a subsequence,
if necessary, we may assume that gj → g′ ∈ G. Then Γgj → Γg

′
, therefore

Γg = Γg
′
, hence g′g−1 ∈ N (Γ) = Γ and Γgj → Γg.

Definition III.17.13 Assume that Γ is arithmetic and equal to its own nor-
malizer N (Γ). We denote the closure Γ\G in S(G) under the embedding iΓ
by Γ\G

sb
and call it the subgroup compactification of Γ\G.

Remark III.17.14 If Γ is not a maximal arithmetic subgroup, choose a max-
imal arithmetic subgroup containing Γmax. Then Γ is of finite index in Γmax,
and the composition of the covering Γ\X → Γmax\X and of the embedding
Γmax\X ↪→ S(G) gives a map Γ\G → S(G) which is a finite covering map
onto its image of degree [Γmax : Γ]. To use S(G) to define a compactification,
consider the diagonal map

Γ\G→ (Γ\G ∪ {∞})× S(G), Γg 7→ (Γg, g−1Γmaxg),

where Γ\G ∪ {∞} is the one point compactification. Clearly this is an em-
bedding of Γ\G into a compact G-space.

The first step in proving Proposition III.17.11 is the following proposition
concerning the subgroup ΓP of Γ. The second part deals with the complement
Γ− ΓP .

Proposition III.17.15 For a rational parabolic subgroup P and a sequence
gj in G satisfying Assumption III.17.10, the sequence of subgroups g−1

j ΓP gj →
m−1
∞ NPΓMP

m∞ in S(G).
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Proof. The proof consists of two steps. The first step is to show that if the
limit exists, it must be contained in m−1

∞ NPΓMP
m∞. The second step shows

that the limit exists.
Since ΓP is contained in NPMP and ΓMP

is the image of ΓP under
the projection P = NPAPMP → MP, ΓP ⊆ NPΓMP

. This implies that
g−1
j ΓP gj ⊂ g−1

j NPΓMP
gj . Since gj = njajmj , we have

g−1
j NPΓMP

gj = m−1
j a−1

j NPΓMP
njajmj

= m−1
j NPΓMP

(a−1
j njaj)mj .

(III.17.1)

Since nj is bounded, a−1
j njaj → id. This implies that g−1

j NPΓMP
gj converges

to m−1
∞ NPΓMP

m∞ and hence limj→+∞ g−1
j ΓP gj ⊂ m−1

∞ NPΓMP
m∞.

We next show that all elements of m−1
∞ NPΓMP

m∞ are limits of sequences
of points in g−1

j ΓP gj . For any γ ∈ ΓMP
, we claim that m−1

∞ NP γm∞ is
contained in limj→+∞ g−1

j ΓP gj . Since γ ∈ ΓMP
is arbitrary, this claim implies

that limj→+∞ g−1
j ΓP gj ⊇ m−1

∞ NPΓMP
m∞ and completes the proof of the

proposition.
To prove the claim, we note that for every γ ∈ ΓMP

, there exists an element
n ∈ NP such that nγ ∈ ΓP , where n is not necessarily in ΓNP . This implies
that ΓNP nγ ⊂ ΓP . Using gj = njajmj again, we have

g−1
j ΓNP nγgj = m−1

j a−1
j n−1

j ΓNP nγnjajmj

= m−1
j (a−1

j n−1
j aj)(a−1

j ΓNP aj)(a
−1
j naj)γ(a−1

j njaj)mj .

(III.17.2)

Since nj is bounded, a−1
j njaj and a−1

j n−1
j aj → id. Similarly, a−1

j naj → id.
Since ΓNP is a cocompact lattice in NP , the exists a relatively compact open
neighborhood G of 1 in NP such that NP = C · ΓNP , whence also

(a−1
j · C · aj) · (a

−1
j · ΓNP · aj) = NP .

But the a−1
j ·C · aj form a fundamental set of neighborhoods of 1, hence any

n ∈ NP is a limit of a sequence a−1
j · γj · aj (γj ∈ ΓNP ).

III.17.16 Proof of Proposition III.17.11
Write Γ =

⋃
γ∈Γ/ΓP

γΓP , where γ runs over a set of representatives of Γ/ΓP .

Then

g−1
j Γgj =

⋃
γ∈Γ/ΓP

g−1
j γΓP gj = g−1

j ΓP gj ∪
⋃

γ∈Γ/ΓP ,γ /∈ΓP

g−1
j γΓP gj .

In view of Proposition III.17.15, it suffices to prove that the sequence of
subsets ⋃

γ∈Γ/ΓP ,γ /∈ΓP

g−1
j γΓP gj (III.17.3)
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in G goes to infinity. By assumption, nj → n∞ and mj → m∞. For simplicity,
we assume that nj = id,mj = id, and hence gj = aj .

Let
G = KP = KMPAPNP ∼= KMP ×AP ×NP

be the decomposition of G induced from the Langlands decomposition of P .
For any g ∈ G, write g = (mP (g), aP (g), nP (g)) ∈ KMP×AP×NP , and call
aP (g) the AP-component of g. The idea is to show that the AP-component of
the elements of the set in Equation (III.17.3) uniformly goes to infinity. We
will use the fundamental representations of G defined over Q [Bo4, §14] [BT,
§12] to prove this.

Let P0 be a minimal rational parabolic subgroup of G contained in P. For
any simple Q-root α ∈ ∆(AP0 , P0), there is a strongly rational representation
(πα,Vα) of G whose highest weight λα is orthogonal to ∆(AP0 , P0) − {α},
and 〈λα, α〉 > 0. Then the weight space of λα is invariant under the maximal
parabolic subgroup P0,∆−{α} [BT, §12.2]. Fix an inner product || || on Vα(R)
which is invariant under K, and with respect to which AP0 is represented by
self-adjoint operators. Let e0 be a unit vector in the weight space of λα. Let
P0,∆−{α} = M0,∆−{α}A0,∆−{α}N0,∆−{α} be the Langlands decomposition of
P0,∆−{α}. Then for any p ∈M0,∆−{α}N0,∆−{α},

πα(p)e0 = ±e0.

The Langlands decomposition P0,∆−{α} = MP0,∆−{α}AP0,∆−{α}NP0,∆−{α} in-
duces the decomposition of G:

G = KMP0,∆−{α}AP0,∆−{α}NP0,∆−{α}
∼= KMP0,∆−{α}×AP0,∆−{α}×NP0,∆−{α} .

For any g ∈ G, denote the AP0,∆−{α} -component by a∆−{α}(g). Then

||πα(g)e0|| = a∆−{α}(g)λα ,

where λα is restricted to the subgroup AP0,∆−{α} ⊆ AP0 . If the Q-parabolic
subgroup P is contained in P0,∆−{α}, then MPNP ⊆ MP0,∆−{α}NP0,∆−{α} ,
and hence

||πα(g)e0|| = aP (g)λα .

Now we follow the computations in [JM, pp. 505-506] [Bo6, pp. 550-551].
For any p ∈ ΓP , let

g = a−1
j γpaj .

Since P0 be a minimal Q-parabolic subgroup contained in P, we can write
P = P0,I , where I ⊆ ∆ = ∆(P0, AP0). For any α ∈ ∆ − I, there are two
cases: (1) γ ∈ P0,∆−{α}, (2) γ 6∈ P0,∆−{α}.

In case (1), g ∈ P0,∆−{α}, and hence by [BS2, Prop. 1.2], g ∈MP0,∆−{α}NP0,∆−{α} ,
and hence

aP (g)λα = 1.
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In case (2), using the Bruhat decomposition of G over Q [Bo4, §11.4] [JM,
Lemma 10.11], write γ−1 = uwtmv, where u ∈ N ′w, t ∈ AP0 ,m ∈ MP0 , v ∈
NP0 , and w is from a set of fixed representatives of the Q-Weyl group of
G. Consider the element w−1g and its AP-component aP (w−1g). Then the
computations in [JM, pp. 505-506] (also [Bo6, p. 551]) show that there
exists a positive constant δ which only depends on Γ and the fundamental
representation πα such that

aP (w−1g)λα ≥ aαj δ.

This implies that when j → +∞, w−1g and hence g goes to infinity uniformly
with respect to an arbitrary choice of p ∈ ΓP .

Note that P = P0,I = ∩αP0,∆−{α}, where α ∈ ∆ − I. Hence for any
γ 6∈ ΓP , there exists at least one α ∈ ∆ − I such that γ 6∈ P0,∆−{α}. Since
the set of w is a fixed finite set, this implies that when j → +∞, the subset
of G defined in Equation (III.17.3) goes to infinity. This completes the proof
of the proposition.

Remarks III.17.17 (1) When G = SL2(R) and Γ is of finite index in
SL2(Z), the second part of the proof showing the divergence to infinity can
also be seen as follows. In this case X is equal to the upper half plane
{x + iy | y > 0}. For any z ∈ X, Im γz is uniformly bounded from above,
when γ runs over Γ−Γ∞. This is related to the fact that the Eisenstein series

E∞(z, s) =
∑

γ∈Γ∞\Γ

(Im γz)s

converges uniformly for s with Re s > 1.
(2) Besides the fact that the proof of the above proposition is related to

the convergence of Eisenstein series, the limit subgroups NPΓMP
are exactly

the subgroups which leave invariant the constant term of the Eisenstein series
along the parabolic subgroup P . These connections together with its natural
definition make Γ\G

sb
an interesting compactification.

III.17.18 Summary and comments. The subgroup compactification
Γ\G

sb
was motivated by the fact that lattices in Rn have been used in study-

ing the space SL(n,Z)\SL(n,R), the reduction theory of SL(n,Z), and the
reduction theory of general arithmetic subgroups. In fact, SL(n,Z)\SL(n,R)
can be identified with the moduli space of unimodular lattices in Rn. For
example, Mahler’s compactness criterion for subsets of the space of lattices in
R
n played an important role in compactness of Γ\G or equivalently Γ\G. In

this section, instead of abelian lattices in Rn, we mapped Γ\G into the space
of (non-abelian) lattices in G. In §III.19, we will use (abelian) lattices in Rn

to study compactifications of SL(n,Z)\SL(n,R).
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III.18 Subgroup compactification of Γ\G and
Γ\X

In the previous section, we have defined the subgroup compactification Γ\G
sb

for any maximal arithmetic subgroup Γ. In this section, we determine the
limit subgroups on the boundary of Γ\G

sb
and relate the compactification

Γ\G
sb

to the reductive Borel-Serre compactification Γ\G
RBS

. By considering
the space of K-orbits in S(G), we obtain a subgroup compactification of Γ\X
and relate it to the reductive Borel-Serre compactification Γ\X

RBS
of Γ\G/K.

This gives a construction of Γ\G/K via the embedding method.
This section is organized as follows. We first show that the reductive

Borel-Serre compactification Γ\G
RBS

dominates the subgroup compactifica-

tion Γ\G
sb

in III.18.1. To determine G-orbits in Γ\G
sb

, we introduce a ΓM -
equivalence relation on Q-parabolic subgroups in III.18.2. The G-orbits are
determined in III.18.4. Under some conditions on G and Γ, Γ\G

sb
is shown

to be isomorphic to Γ\G
RBS

in III.18.6. Examples where all these conditions
are satisfied are given in III.18.7. The above discussions concern Γ\G. To
get a compactification of Γ\X using an embedding into a compact space, we
need to divide S(G) by K (III.18.9). The induced compactification of Γ\X is
given in III.18.10.

Proposition III.18.1 Assume that Γ is a maximal arithmetic subgroup. Then
the identity map on Γ\G extends to a continuous map from Γ\GRBS to Γ\G

sb

which is surjective and equivariant with respect to the right G-action.

Proof. Let P be a rational parabolic subgroup. Let gj be an unbounded
sequence in Γ\G converging to m∞ ∈ ΓMP

\XP in Γ\GRBS . Since ΓNP is
a cocompact lattice in NP , we can choose a lift g̃j in G such that in the
decomposition g̃j = (nj , aj , mj) ∈ NP × AP × (MPK), the component
nj is bounded, and the component mj converges to a lift m̃∞ of m∞ in
MPK = ê(P ).

By the definition of the convergence in Γ\GRBS , we know that for all α ∈
Φ(P,AP), (aj)α → +∞. Then by Proposition III.17.15, g̃j converges in Γ\G

sb

to m̃−1
∞ NPΓMP

m̃∞, i.e., the subgroup g̃−1
j Γg̃j converges to m̃−1

∞ NPΓMP
m̃∞.

Since g−1
j Γgj = g̃−1

j Γg̃j and the limit m̃−1
∞ NPΓMP

m̃∞ = m−1
∞ NPΓMP

m∞

does not depend on the choice of the lift m̃∞ in G, gj converges in Γ\G
sb

.
This shows that every unbounded sequence in Γ\G which is convergent in

Γ\GRBS also converges in Γ\G
sb

. Since both Γ\GRBS and Γ\G
sb

are metriz-
able compactifications of Γ\G, by [GJT, Lemma 3.28], the identity map on
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Γ\G extends to a continuous map from Γ\GRBS to Γ\G
sb

, which is automat-
ically surjective, and the extended map is G-equivariant with respect to the
right G-action.

Definition III.18.2 Two rational parabolic subgroups P1, P2 are called
ΓM -equivalent if there exists g ∈ G such that

g−1NP1ΓMP1
g = NP2ΓMP2

.

Since NPi is the identity component of NPi ·ΓMPi
, the normalizer of NPi ·

ΓMPi
is contained in the normalizer of NPi , hence in Pi by [BT, Proposition

3.1]. This implies that if P1, P2 are ΓM -equivalent, P1, P2 are conjugate
under G and hence also under G(Q). On the other hand, if P1, P2 are
Γ-conjugate, they are clearly ΓM -equivalent. Let P1, · · · , Pk be a set of
representatives of the Γ-conjugacy classes of rational parabolic subgroups.
Then there exists a subset of P1, · · · , Pk which are representatives of the
ΓM -equivalent classes of rational parabolic subgroups. For simplicity, assume
that they are given by P1, · · · , Pl for some l ≤ k.

Lemma III.18.3 For every i, the normalizer N (NPiΓMPi
) of NPiΓMPi

in
MPiK is equal to the normalizer N (ΓMPi

) of ΓMPi
in MPi .

Proof. If an element normalizes NPiΓMPi
, then it normalizes its identity

component NPi . It follows from [BT, Proposition 3.1] that the normalizer of
NPi in G is equal to Pi. In fact, Proposition 3.1 in [BT] shows that there
is a rational parabolic subgroup P which contains the normalizer of NPi and
whose unipotent radical is equal to NPi . Clearly, such a parabolic subgroup
has to be exactly equal to Pi. Then it is clear that the normalizer of NPiΓMPi

in MPiK is contained in MPi and hence is equal to the normalizer N (ΓPi) of
ΓMPi

in MPi .

Theorem III.18.4 Assume Γ to be a maximal arithmetic subgroup. Then

Γ\G
sb

= Γ\G ∪
l∐
i=1

N (ΓMPi
) \MPiK

is the decomposition of Γ\G
sb

into G-orbits.

Proof. It follows from Propositions III.17.15 and III.18.1 that under the map

Γ\GRBS → Γ\G
sb
,
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the image, denoted by b(Pi), of the boundary component ΓMPi
\MPiK of

Γ\GRBS consists of subgroups of the formm−1NPiΓMPi
m, wherem ∈MPiK, i =

1, · · · , k. By Lemma III.17.5, the normalizer of NPiΓMPi
in MPiK is

equal to the normalizer N (ΓMPi
) of ΓMPi

in MPi , and hence we obtain that
the image b(Pi) can be identified with N (ΓMPi

)\MPiK through the map
m→ m−1NPiΓMPi

m.

Since each boundary component ΓMPi
\MPiK of Γ\GRBS is a G-orbit

(Proposition III.14.8) and the map Γ\GRBS → Γ\G
sb

isG-equivariant (Propo-
sition III.18.1), the image b(Pi) is also a G-orbit. In fact, for m−1NPiΓMPi

m ∈
b(Pi), and g ∈ G,

g ◦m−1NPiΓMPi
m = g−1m−1NPiΓMPi

mg.

From this, it is clear that two image sets b(Pi), b(Pj) are equal if and only if Pi
and Pj are ΓM -equivalent. This gives the disjoint decomposition of Γ\G

sb
in

the theorem, and shows that the decomposition is exactly the decomposition
into the disjoint G-orbits on Γ\G

sb
.

Proposition III.18.5 For any arithmetic subgroup Γ, let Γ′ be a maximal
discrete group containing Γ. Then the projection map Γ\G → Γ′\G extends

to a continuous map Γ\GRBS → Γ′\G
sb

.

Proof. We note that the quotient map Γ\G→ Γ′\G extends to a continuous
map Γ\GRBS → Γ′\GRBS . Then the proposition follows from Proposition
5.12.

Proposition III.18.6 Suppose that G is a semisimple algebraic group de-
fined over Q, Γ ⊂ G(Q) is a maximal arithmetic subgroup, and the Γ-conjugacy
relation on the set of all rational parabolic subgroups induces the same rela-
tion as the ΓM -equivalence relation in Definition III.18.2. If for every ra-
tional parabolic subgroup P, MP is semisimple and has no compact factor
of positive dimension, and its subgroup ΓMP

is also maximal, then Γ\G
sb

is G-equivariantly isomorphic to the reductive Borel-Serre compactification
Γ\GRBS.

Proof. Let P1, · · · ,Pk be a set of representatives of Γ-conjugacy classes of
proper rational parabolic subgroups. By assumption, they are also represen-
tatives of the ΓM -relation. Since N (ΓMPi

) = ΓMPi
, by Theorem III.18.4, the

boundary of Γ\G
sb

is equal to
⋃k
i=1 ΓMPi

\MPiK, which is also the boundary
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of Γ\GRBS . This implies that the continuous map from Γ\GRBS to Γ\G
sb

in
Proposition III.18.1 is bijective. Since both compactifications are Hausdorff,
they are homeomorphic, and the homeomorphism is equivariant with respect
to the right G-action.

Remark III.18.7 Examples where all the conditions in the above theorem
are satisfied include G = SL(n,R), Sp(n,R), Γ = SL(n,Z), Sp(n,Z).

Remark III.18.8 If Γ is maximal, but other conditions are not satisfied,
then MPi is in general only reductive. Let M ′Pi be the derived group of
MPi , and C(MPi) the center of MPi . Then N (ΓMPi

) contains C(MPi), and
C(MPi)\N (ΓMPi

) is a discrete subgroup of M ′Pi , and N (ΓMPi
)\MPiK is

equal to (C(MPi))\N (ΓMPi
)\M ′PiK. This shows that the boundary faces of

Γ\G
sb

are analogous to the boundary faces in the maximal Satake compacti-

fication Γ\X
S

max in §III.11.

III.18.9 Since the group G acts continuously on S(G) by conjugation, the
maximal compact subgroup K acts continuously on S(G), and the quotient
S(G)/K by K is a compact Hausdorff.

Assume that Γ is a maximal arithmetic subgroup, the embedding iΓ :
Γ\G→ S(G) induces an embedding

iΓ : Γ\X = Γ\G/K → S(G)/K, ΓgK 7→ Kg−1Γg−1K.

The closure of iΓ(Γ\X) in (G)/K is called the subgroup compactification of

Γ\X and denoted by Γ\X
sb

.

Proposition III.18.10 Assume that Γ is a maximal arithmetic subgroup.
Then the reductive Borel-Serre compactification Γ\X

RBS
dominates the sub-

group compactification Γ\X
sb

. If G is semisimple, then the maximal Satake

compactification Γ\X
S

max also dominates Γ\X
sb

. Furthermore, if all the ra-
tional parabolic subgroups of G of the same type, i.e., conjugate under G(Q),

are Γ-conjugate, then Γ\X
S

max is isomorphic to Γ\X
sb

.

Proof. The first statement follows from the corresponding result for Γ\G
in Proposition III.18.1. The second statement follows from Theorem III.18.4.
By assumption, all rational parabolic subgroups of G of the same type are
Γ-conjugate. This implies that two rational parabolic subgroups are ΓM -
equivalent if and only if they are Γ-conjugate. Then the last statement follows
from the equality

N (ΓP )MP/KP = XP
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for any rational parabolic subgroup P.

III.18.11 Summary and Comments. The relations between the sub-
group compactification Γ\G

sb
and other comactifications such as the reductive

Borel-Serre compactifications and the Satake compactifications and the form
of the limit subgroups in the boundary of Γ\G

sb
indicate that this compactifi-

cation is natural. As mentioned earlier, the left-G multiplication on Γ\G does

not extend continuously to Γ\G
BS

, but does extend continuously to Γ\G
RBS

.

A natural explanation is given by the relation between Γ\G
RBS

and Γ\G
sb

,

since the left-G multiplication on Γ\G clearly extends continuously to Γ\G
sb

.

III.19 Spaces of flags in Rn, flag lattices and
compactifications of SL(n,Z)\SL(n,R)

In the reduction theory of arithmetic groups, the space L(Rn) of lattices in
R
n was used crucially in Mahler’s compactness criterion (see [Bo4]). Since

SL(n,Z)\SL(n,R) can be identified with the space L(Rn) of lattices in Rn of
covolume 1, it is natural to study compactification of this homogeneous space
by embedding it into the compact space S(Rn) which consists of closed sub-
groups of Rn. By dividing out by K on the right, we obtain a compactification
of Γ\X = SL(n,Z)\SL(n,R)/SO(n). It turns out that this compactification
is not a Satake compactification or other familiar one.

To obtain Satake compactifications of Γ\X using the identification with
the space L(Rn), we need to scale the lattices and use groups which do not be-
long to the space S(Rn). To obtain the maximal Satake compactification, we
need to scale successively at different rates and consider spaces of flags in Rn

and lattices in these flags. These give explicit examples of the decomposition of
the Satake compactifications of SL(n,Z)\SL(n,R) into G = SL(n,R)-orbits
and the fibration of each orbit over the flag variety.

As mentioned in the preface, this chapter, in particular this section, was
motivated by [Mac], where attempts were outlined to describe the reductive
Borel-Serre and the Borel-Serre compactifications of SL(n,Z)\SL(n,R)/SO(n)
and more generally Γ\SL(n,R)/SO(n), Γ ⊂ SL(n,Z), in terms of lattices in
R
n.

This section is organized as follows. The spaces S(Rn), L(Rn) of closed
subgroups and lattices in Rn are introduced in III.19.1. Then SL(n,Z)\SL(n,R)
is identified with L(Rn) in III.19.2. The embedding of SL(n,Z)\SL(n,R) in
S(Rn) gives the lattice compactification (III.19.3). When n ≥ 3, this compact-
ification is not isomorphic to any of the earlier compactifications (III.19.5).
(See III.19.6 for some informal explanations). To realize some Satake compact-
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ifications using lattices in Rn, we need to scale the lattices suitably. Different
scalings lead to the sub-lattice compactification in III.19.9 and the sup-lattice
compactification in III.19.11. They are isomorphic to non-maximal Satake
compactifications. To obtain the maximal Satake compactification, we need
to introduce flags of vector subspaces and flag lattices (III.19.13). Basics
of the space FL(Rn) of flag lattices are studied in III.19.15-III.19.18. The
flag-lattice compactification is defined in III.19.19, which is shown to be iso-
morphic to the reductive Borel-Serre compactification of SL(n,Z)\SL(n,R) in
III.19.20. The maximal Satake compactification of SL(n,Z)\SL(n,R)/SO(n)
is identified with a flag-lattice compactification in III.19.22.

III.19.1 Let S(Rn) be the space of closed subgroups of Rn. As Proposition
I.17.2 in §I.16, it is a compact Hausdorff space. The group SL(n,R) acts on
S(Rn) by the right multiplication: for any g ∈ SL(n,R) and H ∈ S(Rn),

H · g = Hg,

where g acts as a linear transform and Hg is clearly an (additive) abelian
subgroup.

Let Zn be the standard lattice in Rn. Then for any g ∈ SL(n,R), Zng is
a unimodular lattice in Rn, and the stabilizer of Zn is SL(n,Z). Let L(Rn)
be the space of unimodular lattices in Rn. Then we have the following result.

Proposition III.19.2 The homogeneous space SL(n,Z)\SL(n,R) can be canon-
ically identified with L(Rn) under the map

SL(n,Z)g 7→ Z
ng.

Since L(Rn) is naturally contained in S(Rn), we obtain the following result.

Proposition III.19.3 The map

i : SL(n,Z)\SL(n,R)→ S(Rn), SL(n,Z)g 7→ Z
ng,

is a SL(n,R)-equivariant embedding with respect to the right SL(n,R)-action,
and the closure of i(SL(n,Z)\SL(n,R)) is a SL(n,R)-Hausdorff compactifi-

cation, denoted by SL(n,Z)\SL(n,R)
la

and called the lattice compactification.

Proof. We first show that the map i is an embedding. For sequence
SL(n,Z)gj in SL(n,Z)\SL(n,R) converging to SL(n,Z)g∞ for some g∞ ∈
SL(n,R), we can choose suitable representatives gj , g∞ such that gj → g∞.
This clearly implies that Zngj → Z

ng∞ in S(Rn).
On the other hand, we need to show that if Zngj converges to Zng∞, then

SL(n,Z)gj converges to SL(n,Z)g∞ in SL(n,Z)\SL(n,R). In fact, we claim
that gj is bounded. Assume the claim first. By passing to a subsequence, we
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can assume that gj → g′∞ for some g′∞ ∈ SL(n,R). By the continuity of the
map i in the previous paragraph, Zngj → Z

ng′∞. Hence Zng∞ = Z
ng′∞, which

implies that SL(n,Z)g∞ = SL(n,Z)g′∞, and hence SL(n,Z)gj converges to
SL(n,Z)g∞ in SL(n,Z)\SL(n,R).

To prove the claim, let P be the minimal rational parabolic subgroup
of SL(n) consisting of upper triangular matrices. Since there is only one
SL(n,Z)-conjugacy class of minimal rational parabolic subgroups of SL(n), a
Siegel set associated with P projects surjectively to Γ\G. If gj is not bounded,
then a suitable representative of gj has the horospherical coordinates with
respect to P,

gj = (nj , aj ,mj) ∈ NP ×AP ×MPK (III.19.1)

satisfying the conditions:

1. nj , mj are bounded,

2. aj = diag(dj,1, · · · , dj,n) is unbounded.

It is clear that Znaj does not converges to a discrete subgroup in Rn, and it
follows Zngj does not converge to any discrete subgroup either, in particular,
not to Zng∞. This contradiction proves the claim.

Remark III.19.4 The action of SL(n,R) on S(R) is a right action instead
of the usual (left) group action in order to be consistent with the left action
to define the quotient Γ\G = SL(n,Z)\SL(n,R) used in this book. If we use
the quotient SL(n,R)/SL(n,Z), then the action of SL(n,R) on S(Rn) is the
left action and SL(n,R)/SL(n,Z) ∼= L(Rn).

Since the embedding i : SL(n,Z)\SL(n,R)→ (Rn) is equivariant with re-

spect to the right K-action, the lattice compactification SL(n,Z)\SL(n,R)
la

admits the right action of K and the quotient by K defines a compactifi-
cation of SL(n,Z)\SL(n,R)/SO(n), also called the lattice compactification
of the locally symmetric space SL(n,Z)\SL(n,R)/SO(n), and denoted by

SL(n,Z)\SL(n,R)/SO(n)
la

.

Proposition III.19.5 If n ≥ 3, the compactification of SL(n,Z)\SL(n,R)/SO(n)
la

is not isomorphic to any Satake compactification, the Borel-Serre compactifi-
cation, or the reductive Borel-Serre compactification of SL(n,Z)\SL(n,R)/SO(n).
If n = 2, it is isomorphic to the Satake compactifications and the reductive
Borel-Serre compactification of SL(n,Z)\SL(n,R)/SO(n).

Proof. Let P be the minimal rational parabolic subgroup consisting of upper
triangular matrices as in the proof of the previous proposition. Then the
positive Weyl chamber A+

P is given by

A+
P = {a = diag(d1, · · · , dn) | d1 > d2 > · · · > dn, d1 · · · dn = 1}.
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Consider any sequence aj satisfying aαj → +∞, for all α ∈ Φ(P,AP). Clearly
the conditions are equivalent to the following:

1. aj = diag(dj,1, · · · , dj,n) is not bounded.

2. for any pair i ≤ n− 1, dj,i/dj,i+1 → +∞.

In any of the compactifications mentioned in the proposition, the image of
ajK in SL(n,Z)\SL(n,R)/SO(n) will converge to the same boundary point
for all sequences aj satisfying the above conditions. But this is not the case
with the lattice compactification of SL(n,Z)\SL(n,R)/SO(n). In fact, we
can find two such sequences aj such that Znaj converges to different limits in
S(Rn). For simplicity, assume n = 3. The first choice is aj = diag(j, 1, j−1),
and the lattice Z3aj converges to the subgroup {(0, x2, x3) | x2 ∈ Z, x3 ∈ R}.
The second choice is aj = diag(j, j−

1
3 , j−

2
3 ), and the lattice Z3aj to a different

subgroup {(0, x2, x3) | x2 ∈ R, x3 ∈ R}. This proves the first statement in the
proposition.

When n = 2, dimAP = 1, and a sequence aj = diag(aj,1, aj,2) goes to
infinity if and only if aj,1 → +∞, aj,2 = a−1

j,1 → 0, and the sequence of lattices
Z

2aj converges to {(0, x2) | x2 ∈ R}. In this case, all the Satake compactifi-
cations and the reductive Borel-Serre compactification are isomorphic to the
one point compactification.

To prove the second in the proposition, we note that XP consists of only
one point and any unbounded sequence yj in Γ\X converging in Γ\X

RBS

has a lift ỹj = (nj , aj) ∈ NP × AP such that (1) nj is bounded, (2) aj =
diag(aj,1, a−1

j,1), aj,1 → +∞. Since a−1
j njaj → e, it follows that

Z
2njaj = Z

2aj(a−1
j njaj)→ {(0, x2) | x2 ∈ R}

in S(R2). This implies that Γ\X
RBS

dominates Γ\X
sb

and hence they are
isomorphic.

III.19.6 One explanation for the difference between the lattice compact-
ification SL(n,Z)\SL(n,R)/SO(n) and the Satake compactifications in the
above proposition is that in the Satake compactifications, the limit of the
sequence ajK depends on the behaviors of the roots, while in the lattice
compactification, the limit depends on the values of the weights, which are
given by the diagonal elements dj,1, · · · , dj,n. In order to recover the Satake
compactifications from the spaces of lattices and closed subgroups, we need
to scale the lattices suitably so that the behaviors of the weights should not
affect the limits. It will turn out that two minimal Satake compactifications
of SL(n,Z)\SL(n,R)/SO(n) can be obtained this way. To obtain the maxi-
mal Satake compactification, we need to apply successive scaling and consider
lattices in flags.
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III.19.7 To discuss scaling of lattices, we recall some facts about the reduced
basis of lattices in Rn. The basic reference is [Si3, Chap. III, §5].

For any lattice Λ in Rn, we can choose a reduced basis of Λ as follows.
Recall that a set of vectors c(1), · · · , c(k) of Λ is called a primitive set if when-
ever any R-linear combination λ1c

(1) + · · ·+ λkc
(k) belongs to Λ, then all the

coefficients λi ∈ Z.
Consider all primitive sets of one vector b in Λ, and choose b(1) such

that the norm ||b(1)|| is minimal, which is denoted by λ1(Λ) and called the
first minimum. Suppose b(1), · · · , b(k) have been chosen. Consider the set of
b ∈ Λ such that b(1), · · · , b(k), b is primitive, and choose b(k+1) such that the
norm ||b(k+1)|| is minimal among this set. Denote this norm by λk+1(Λ). By
induction, we get a reduced basis b(1), · · · , b(n) of Λ.

It should be pointed out that the reduced basis is not necessarily unique,
but the first minimum λ1(Λ) only depends on Λ.

III.19.8 We we define a different embedding by scaling the lattice so that
the first minimum is equal to 1:

im : SL(n,Z)\SL(n,R)→ S(Rn), SL(n,Z)g 7→ λ1(Zng)−1
Z
ng.

It is clearly SL(n,R)-equivariant, and the closure of im(SL(n,Z)\SL(n,R))
in S(Rn) is a compactification of SL(n,Z)\SL(n,R), called the sub-lattice

compactification, denoted by SL(n,Z)\SL(n,R)
sub−la

. The quotient by K =
SO(n) on the right gives a compactification of SL(n,Z)\SL(n,R)/K, also
called the sub-lattice compactification and denoted by

SL(n,Z)\SL(n,R)/SO(n)
sub−la

.

Let P be the minimal parabolic subgroup of SL(n,R) consisting of upper
triangular matrices, and

a+
P = {H = (t1, · · · , tn) | t1 + · · ·+ tn = 0, t1 > t2 > · · · > tn}

the positive Weyl chamber above. Then the simple roots are α1, · · · , αn−1

given by
α1(H) = t1 − t2, · · · , αn−1(H) = tn−1 − tn.

Let τ be an irreducible, faithful representation such that its highest weight
µτ is only connected to αn−1. Since SL(n) splits over Q, the associated Satake

compactificationX
S

τ is geometrically rational. Let SL(n,Z)\SL(n,R)/SO(n)
S

τ

be the induced Satake compactification.

Proposition III.19.9 With the above notation, the sub-lattice compactifica-
tion of SL(n,Z)\SL(n,R)/SO(n)

sub−la
is isomorphic to the minimal Satake

compactification SL(n,Z)\SL(n,R)/SO(n)
S

τ
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Proof. Let P be the minimal rational parabolic subgroup of SL(n,C) con-
sisting of upper triangular matrices. Then any standard rational parabolic
subgroup containing P is a subgroup of block upper triangular matrices of
block sizes ni − ni−1, where n0 = 0 < n1 < · · · < nk = n is an increas-
ing sequence between 0 and n. Denote the sequence by Π and the parabolic
subgroup by PΠ. Then the Langlands decomposition of PΠ is given by

APΠ = {a = diag(d1, · · · , dn) | dni−1+1 = · · · = dni , i = 1, · · · , k},
(III.19.2)

MPΠ = {D = diag(D1, · · · , Dk) | Di ∈ ±SL(ni−ni−1,R),detD1 · · ·detDk = 1},
i.e., MPΠ consists of block diagonal matrices of sizes ni − ni−1. Hence there
is a projection

π− : MPΠ → SL(nk − nk−1,R), diag(D1, · · · , Dk) 7→ ±Dk, (III.19.3)

where the sign ± is chosen so that ±Dk ∈ SL(nk − nk−1,R).
The minimal Satake compactification

SL(n,Z)\SL(n,R)/SO(n)
S

τ =SL(n,Z)\SL(n,R)/SO(n)

∪
n−1∐
i=1

SL(i,Z)\SL(i,R)/SO(i).
(III.19.4)

Since every rational parabolic subgroup is SL(n,Z)-conjugate to a standard
parabolic subgroup above, the reduction theory for SL(n,Z) implies that for
any sequence yj in SL(n,Z)\SL(n,R)/SO(n) going to infinity, by passing to
a subsequence, we can assume that there exist a standard parabolic subgroup
PΠ and a suitable lift ỹj such that in the horospherical

ỹj = (nj , aj ,mjKPΠ) ∈ NPΠ ×APΠ ×XPΠ ,

the coordinates satisfy

1. nj is bounded.

2. mj → m∞ in MPΠ .

3. For every i = 2, · · · , k, dj,ni−1/dni → +∞, where aj = (dj,1, · · · , dj,n).

Clearly, λ1(Znaj)−1
Z
naj converges to the discrete subgroup Zenk−1+1 +

· · ·+Zen, denoted by Λ′∞, where e1, · · · , en is the standard basis of Rn. Since
njajmj = ajn

aj
j mj and n

aj
j → e, it follows

λ1(Znỹj)−1
Z
nỹj → Λ′∞m∞.

Let π− be the projection in Equation (III.19.3). Then

Λ′∞m∞ = Λ′∞π−(m∞).
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This implies that the sequence yj converges to the K-orbit Λ′∞π−(m∞)K in

the compactification SL(n,Z)\SL(n,R)/K
sub−la

, and the limit only depends
on π−(m∞)K and the integer nk−1 in Π.

But the sequence yj also converges in SL(n,Z)\SL(n,R)/K
S

τ and the limit
is equal to the image of π−(m∞)SO(nk−nk−1) in SL(nk−nk−1,Z)\SL(nk−
nk−1,R)/SO(nk − nk−1) in Equation (III.19.4). Since every sequence in
SL(n,Z)\SL(n,R)/K which converges to a point SL(nk−nk−1,Z)m′SO(nk−
nk−1) in SL(n,Z)\SL(n,R)/K

S

τ is a combination of finite sequences of the
the form above satisfying

SL(nk−nk−1,Z)π−(m∞)SO(nk−nk−1) = SL(nk−nk−1,Z)m′SO(nk−nk−1),

it implies that the two compactifications in the proposition are isomorphic.

III.19.10 The Satake compactification in the above proposition is not the
Satake compactification associated with the standard representation, since the
highest weight of the standard representation is only connected to α1 instead
of αn−1.

To realize the minimal Satake compactification of SL(n,Z)\SL(n,R)/K
associated with the standard representation, we need a different scaling on
the lattices.

For any lattice Λ, consider all basis v1, · · · , vn such that

||v1|| ≤ · · · ≤ ||vn||. (III.19.5)

Define
νi(Λ) = min

v1,··· ,vn
||vi||, i = 1, · · · , n,

where v1, · · · , vn ranges over all the basis satisfying the condition in Equation
(III.19.5). Clearly, for any i = 1, · · · , n,

λi(Λ) ≥ νi(Λ) ≥ λ1(Λ) > 0,

and νi(Λ) is realized by some basis. It is known that νi(Λ) and λi(Λ) are
uniformly bounded in terms of each other [Si3, Lemma 2, p. 98].

By definition, νn(Λ) only depends on Λ. By scaling using νn(Λ), we get a
different embedding

im : SL(n,Z)\SL(n,R)→ S(Rn), SL(n,Z)g → (νn(Zg))−1
Z
ng.

The closure of im(SL(n,Z)\SL(n,R)) in S(Rn) is called the sup-lattice

compactification, denoted by SL(n,Z)\SL(n,R)
sup−la

, and its quotient by
K = SO(n) on the right gives a compactification of SL(n,Z)\SL(n,R)/SO(n),
also called the sup-lattice compactification and denoted by

SL(n,Z)\SL(n,R)/SO(n)
sup−la

.



428 Part III. Compactifications of locally symmetric spaces

Proposition III.19.11 The compactification SL(n,Z)\SL(n,R)/SO(n)
sup−la

is isomorphic to the standard Satake compactification of the locally symmetric
space SL(n,Z)\SL(n,R)/SO(n), which is the minimal Satake compactifica-
tion associated with the standard representation of SL(n,R), i.e., the identity
representation SL(n,R)→ SL(n,R).

Proof. We use the notation of the proof of Proposition III.19.9. Consider
a sequence yj in SL(n,Z)\SL(n,R)/SO(n) and its lift ỹj such that in the
horopsherical decomposition with respect to a standard parabolic subgroup
PΠ, the coordinates satisfy

ỹj = (nj , aj ,mjKPΠ) ∈ NPΠ ×APΠ ×XPΠ ,

the coordinates satisfy the conditions:

1. nj is bounded.

2. mj → m∞ in MPΠ .

3. For every i = 2, · · · , k, dj,ni−1/dni → +∞, where aj = (dj,1, · · · , dj,n).

Clearly, νn(Znaj)−1
Z
naj converges to the closed subgroup Ze1+· · ·Zen1 +

Ren1+1 + · · ·+Ren), denoted by Λ′′∞. As in the proof of Proposition III.19.9,
νn(Znỹj)−1

Z
nỹj converges to Λ′′∞m∞.

Let π+ be the projection of MPΠ to the first factor SL(n1,R) as in Equa-
tion (III.19.3). Then

Λ′′∞m∞ = Λ′′∞π
+(m∞).

This implies that the sequence yj converges to Λ′′∞π
+(m∞)K in the compacti-

fication SL(n,Z)\SL(n,R)/K
sup−la

, and the limit only depends on π+(m∞)K
and the integer n1 in Π.

As in the proof of Proposition III.19.9 again, this implies that the standard
Satake compactification of SL(n,Z)\SL(n,R)/SO(n) is isomorphic to the
sup-lattice compactification.

III.19.12 After realizing these two minimal Satake compactifications, a nat-
ural question is how to use some scaling to realize the maximal Satake com-
pactification of SL(n,Z)\SL(n,R)/SO(n). The above results suggest that we
need to do scalings at different levels. This will lead us out of the space S(Rn).
In fact, we need to introduce flags of linear subspaces in Rn and lattices in
them.

Definition III.19.13 1. A flag in Rn is a strictly increasing sequence of
linear subspaces F : V0 = {0} ⊂ V1 ⊂ · · · ⊂ Vk = R

n.
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2. A lattice Λ in a flag F is a collection Λ1, · · · ,Λk such that Λi is a lattice
in the quotient Vi/Vi−1. Such a lattice is also called a flag lattice. The
lattice Λ is called a unimodular lattice if each Λi is a unimodular lattice.

The flag with k = 1 is trivial and consists of only {0} ⊂ Rn, and a lattice
in the flag is a lattice in Rn. On the other hand, when k = n, the flag is full,
and each quotient Vi/Vi−1 is of dimension 1, and there is only one unimodular
lattice in this full flag.

For any flag F, its stabilizer in SL(n,R) is defined to be

{g ∈ SL(n,R) | gVi = Vi, i = 1, · · · , k}.

Proposition III.19.14 The stabilizer of any nontrivial flag F is a (proper)
parabolic subgroup of SL(n,R), denoted by PF.

Proof. Let e1 = (1, 0, · · · , 0), · · · , en = (0, · · · , 0, 1) be the standard basis
of Rn. For any sequence n1 < n2 < · · · < nk = n, let Vi be the subspace
spanned by e1, · · · , eni . Then {0} ⊂ V1 ⊂ · · · ⊂ Vk = R

n is called a standard
flag. Clearly, the stabilizer of this standard flag is the subgroup of upper
block triangular matrices with block sizes given by n1, n2−n1, · · · , nk−nk−1,
which is a standard parabolic subgroup of SL(n,R). Since any two bases
can be mapped to each other up to suitable scalar multiples by an element
in SL(n,R), any flag is the image under some element of SL(n,R) of some
standard flag and the above result implies that its stabilizer is conjugate to a
standard parabolic subgroup.

Lemma III.19.15 For any flag F, let PF = NPF
APF

MPF
be the Langlands

decomposition with respect to the maximal compact subgroup K = SO(n).
Then MPF

acts transitively on the set of lattices in the flag F of any fixed
covolume, where by the fixed covolume, we mean the covolume of each lattice
Λi is fixed.

Proof. It suffices to consider the case when F is a standard flag as in the
proof of the previous proposition. Then the elements of MPF

consists of block
diagonal matrices, each of which is a square matrix of size ni − ni−1 and
determinant ±1, and proposition is clear in this case.

Define

FL(Rn) = {(F,Λ) | F is a flag ,Λ is a unimodular lattice in F}. (III.19.6)

Since the lattice Λ uniquely determines the flag F, we will often identify
the pair (F,Λ) with Λ for convenience. The right action of SL(n,R) on Rn

extends to a right action on flags and lattices, and hence to the space FL(Rn).
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Clearly SL(n,Z)\SL(n,R) ∼= L(Rn) is included in FL(Rn) as the subset
when the flag F is trivial. We are going to define a topology on FL(Rn)
to make it into a compact Hausdorff space and hence a compactification
of SL(n,Z)\SL(n,R), which will be shown to be isomorphic to the reduc-

tive Borel-Serre compactification SL(n,Z)\SL(n,R)
RBS

, whose quotient by
SO(n) on the right gives a compactification of SL(n,Z)\SL(n,R)/SO(n)
which is isomorphic to the maximal Satake compactification.

III.19.16 The topology of FL(Rn) is defined in terms of convergent se-
quences as follows.

Given two flags F1 : V0 = {0} ⊂ V1 ⊂ · · ·Vk = R
n and F2 : W0 = {0} ⊂

W1 ⊂ W2 ⊂ · · · ⊂ Wl = R
n, we say that F2 is a refinement of F1 if every

linear subspace Vi of F1 appears in F2, i.e., there exist ni, i = 1, · · · , k such
that

Vi = Wni , i = 1, · · · , k.

Then

{0} = Vi−1/Wni−1 ⊂Wni−1+1/Wni−1 ⊂ · · · ⊂ Vi/Wni−1 = Vi/Vi−1

(III.19.7)
is a flag in Vi/Vi−1 induced from F2. Since for every j = ni−1, ni−1+1, · · · , ni,

Wj+1/Wni−1

Wj/Wni−1

=
Wj+1

Wj
,

a lattice Λ in F2 defines a lattice in the induced flag in Vi/Vi−1.
Clearly, every flag is a refinement of the trivial flag, and the complete flags

have no refinements.
The idea of the topology is that for any sequence of lattices in a flag F, if

it is unbounded, it can only converge to a lattice in a refined flag.

III.19.17 First, we define how a unbounded sequence of lattices Λj in Rn

converges a lattice in a nontrivial flag F.
Given a flag F : {0} ⊂ V1 ⊂ · · · ⊂ Vk = R

n, let ni = dimVi, i =
1, · · · , k. Let Λ∞ : Λ1

∞, · · · ,Λk∞ be a unimodular lattice in the flag F. Then
the sequence Λj of lattices in Rn converges to (F,Λ∞) if and only if the
following conditions are satisfied:

1. νi+1(Λj)/νi(Λj) → +∞ if i = n1, · · · , nk, and converges to a finite
number otherwise.

2. For each i = n1, · · · , nk, νi(Λj)−1Λ converges to a closed subgroup of
R
n whose linear span is equal to Vi, and whose image in Vi/Vi−1 is a

lattice which is a multiple of the unimodular lattice Λi∞.
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Given a flag F1 : {0} ⊂ V1 ⊂ · · · ⊂ Vk = R
n, and a refinement F2 and a

lattice Λ∞ in it, and a sequence of lattices Λj in F1, then (F1,Λj) converges
to (F2,Λ∞), if and only if for any i = 1, · · · , k, the sequence of lattices Λij
in Vi/Vi−1 converges in the sense described in the previous paragraph to the
lattice in the flag in Vi/Vi−1 in Equation (III.19.7), which is induced from the
lattice Λ∞ in F2.

Proposition III.19.18 The space FL(Rn) with the above topology is a com-
pact Hausdorff space.

Proof. It suffices to show that every sequence in FL(Rn) has a convergent
subsequence. As in the definition of the topology of FL(Rn) above, it suffices
to show that every sequence of lattices Λj in Rn has a convergent subsequence
Λj′ in FL(Rn), i.e., there exist a flag F and a lattice Λ∞ in it such that Λj′
converges to (F,Λ∞).

Suppose the minimal norm ν1(Λj) is uniformly bounded away from zero,
then by the Mahler compactness criterion [Bo4, Corollary 1.9] that Λj is a rel-
atively compact family in the space L(Rn) of unimodular lattices, and hence a
subsequence converges to a lattice in Rn. If not, by passing to a subsequence,
we can assume that ν1(Λj) → 0. By passing to a further subsequence, we
can assume that for any i, νi(Λj)/ν1(Λj) either goes to +∞ or a finite pos-
itive number. Let i1 be the smallest integer such that the limit is equal to
+∞. Clearly, 1 < i1 ≤ n, since the lattice Λi is unimodular and hence
νn(Λj)/ν1(Λj) → +∞. Let b(1)

j , · · · , b(n)
j be a reduced basis of Λj . Then by

passing to a further subsequence, we obtain that

1. for any i ≤ i1 − 1, ν1(Λj)−1b(i) converges to a nonzero vector;

2. for any i ≥ i1, ||ν1(Λj)−1b(i)|| → +∞.

This implies that ν1(Λj)−1Λ converges to a discrete subgroup whose linear
span contains it as a lattice. Denote this linear subspace by V1, which has
dimension i1 − 1.

By passing to a further subsequence, we assume that for any i > i1,
νi(Λ)/νi1(Λ) either goes to +∞ or a finite positive number. Let i2 be the least
integer such that this limit is +∞. Next, consider the subgroups νi2(Λj)−1Λj .
Then as in the previous paragraph, after passing to a further subsequence, it
converges to a closed subgroup S which contains V1. Denote the linear span
of S by V2. Then the image of S in the quotient V2/V1 is a lattice, which
can be scaled to be unimodular. By induction, we get a flag F : {0} ⊂ V1 ⊂
V2 ⊂ · · · ⊂ Vk = R

n and a lattice Λ∞ in F such that a subsequence Λj′
converges to (F,Λ∞) in the topology of FL(Rn) defined above. This proves
the compactness.
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The uniqueness of the limit of a convergent sequence Λj is clear. In fact,
the limit has to be of the form constructed in the previous paragraph, and
the construction leads to a unique flag and the lattice in it.

III.19.19 Under the embedding

SL(n,Z)\SL(n,R) ∼= L(Rn)→ FL(Rn),

the proof of the above proposition shows that SL(n,Z)\SL(n,R) is an open
dense subset, and hence FL(Rn) is a compactification of SL(n,Z)\SL(n,R),

called the flag-lattice compactification, denoted by SL(n,Z)\SL(n,R)
fl

. The
right SL(n,R)-action clearly extends to the compactification.

Proposition III.19.20 The flag-lattice compactification SL(n,Z)\SL(n,R)
fl

is isomorphic to SL(n,Z)\SL(n,R)
RBS

, the reductive Borel-Serre compacti-
fication.

Proof. First we define a bijective map from SL(n,Z)\SL(n,R)
RBS

to

SL(n,Z)\SL(n,R)
fl

extending the identity map on SL(n,Z)\SL(n,R).
For each increasing sequence Π : n0 = 0 < n1 < n2 < · · · < nk = n,

we associate the standard rational parabolic subgroup PΠ of SL(n,C) block
upper triangular matrices of sizes ni − ni−1. Then

ΓMPΠ
\MPΠ =

k∏
i=1

SL(ni − ni−1,Z)\SL(ni − ni−1,R).

Let Vi be the linear span of e1, · · · , ei as above, and FΠ : {0} ⊂ V1 ⊂
· · · ⊂ Vk = R

n the flag associated with Π. The standard lattice Zn in Rn

induces a standard lattice ZnΠ in the flag FΠ. Since MPΠ acts transitively on
the set of unimodular lattices in FΠ and the stabilizer of ZnΠ in MPΠ is equal
to ΓMPΠ

, it follows that the set of unimodular lattices in FΠ can be identified
with ΓMPΠ

\MPΠ under the map

ΓMPΠ
m 7→ Z

n
Πm.

Note that any flag in F in Rn is equivalent to a standard one FΠ under
the right action of SL(n,R). This implies that each of the SL(n,R)-orbit in
FL(Rn) can be identified with NPΠAPΠΓMPΠ

\SL(n,R), which is a boundary

component of SL(n,Z)\SL(n,R)
RBS

. In fact, since every rational parabolic
subgroup of SL(n) is SL(n,Z)-conjugate to a standard rational parabolic
subgroup PΠ, we obtain that

SL(n,Z)\SL(n,R)
RBS

= SL(n,Z)\SL(n,R) ∪
∐
Π

ΓMPΠ
\MPΠSO(n)
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= SL(n,Z)\SL(n,R) ∪
∐
Π

NPΠAPΠΓMPΠ
\SL(n,R),

where Π runs over all the increasing sequences between 1 and n. Therefore
we have obtained the desired identification between

SL(n,Z)\SL(n,R)
RBS ∼= FL(Rn), ΓMPΠ

g 7→ Z
n
Πg.

By [GJT, Lemma 3.28], it suffices to show that if an unbounded sequence
yj in SL(n,Z)\SL(n,R) converges in the reductive Borel-Serre compactifica-

tion SL(n,Z)\SL(n,R)
RBS

, then it also converges to the same limit point in

SL(n,Z)\SL(n,R)
fl

.
By definition, there exists a standard rational parabolic subgroup PΠ such

that a suitable lift ỹj of yj has a horospherical decomposition

ỹj = (nj , aj ,mj) ∈ NPΠ ×APΠ ×MPΠK,

where the coordinates nj ∈ NPΠ , aj = diag(dj,1, · · · , dj,n) ∈ APΠ , mj ∈
MPΠK satisfy the following conditions:

1. nj is bounded.

2. mj → m∞ some element m∞ ∈MPΠK.

3. For any i = 1, · · · , k, s, t ∈ {ni−1+1, · · · , ni}, dj,s = dj,t, and dj,ni−1/dj,ni →
+∞.

It is clear that the sequence of lattices Znaj converges to the standard flag
lattice ZnΠ in the flag FΠ Write

njajmj = ajn
aj
j mj .

Since najj converges to the identify element, and mj → m∞, it follows that
Z
nỹj converges to the flag lattice ZnΠm∞, the boundary point in FL(Rn)

corresponding to m∞ in SL(n,Z)\SL(n,R)
RBS

.

III.19.21 We can use the flag-lattice compactification SL(n,Z)\SL(n,R)
fl

to get another realization of SL(n,Z)\SL(n,R)/SO(n)
S

max, the maximal Sa-

take compactification. In fact, SO(n) acts on the right of SL(n,Z)\SL(n,R)
fl

and the quotient contains SL(n,Z)\SL(n,R)/SO(n) as an open dense sub-

set. We call the resulting compactification SL(n,Z)\SL(n,R)
fl
/SO(n) also

the flag-lattice compactification of SL(n,Z)\SL(n,R)/SO(n) and denote it
by

SL(n,Z)\SL(n,R)/SO(n)
fl
.
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Proposition III.19.22 The compactification SL(n,Z)\SL(n,R)/SO(n)
fl

is

isomorphic to SL(n,Z)\SL(n,R)/SO(n)
S

max, the maximal Satake compactifi-
cation.

Proof. Since SL(n) splits over Q, by Proposition III.11.12, the maximal

Satake compactification SL(n,Z)\SL(n,R)/SO(n)
S

max is isomorphic to the

reductive Borel-Serre compactification SL(n,Z)\SL(n,R)/SO(n)
RBS

. By

Proposition III.14.7, the quotient SL(n,Z)\SL(n,R)
RBS

by SO(n) on the

right gives the compactification SL(n,Z)\SL(n,R)/SO(n)
RBS

. Hence, the
proposition follows from the previous one.

III.19.23 Summary and comments. For the special homogeneous space
SL(n,Z)\SL(n,R) of the form Γ\G, its compactifications via the space of
lattices L(Rn) and the space of flag-lattices FL(Rn) continue the method of
studying locally symmetric spaces via lattices in Rn, i.e., the geometry of num-
bers. The realizations of the Satake compactifications of SL(n,Z)\SL(n,R)
and SL(n,Z)\SL(n,R)/SO(n) in this section give natural explanations of the
boundary points. The orbits in the boundary of the Satake compactifications
of SL(n,Z)\SL(n,R) can also be identified via natural flag spaces. Using ad-
ditional structures on lattices in Rn and flag lattices, one can also compactify
Γ\SL(n,R), where Γ is a principal congruence subgroups, Sp(n,Z)\Sp(n,R),
and other related spaces.



Chapter 13

Metric properties of
compactifications of locally
symmetric spaces Γ\X

From the point of view of Riemannian geometry, locally symmetric spaces
form a very special and important class of Riemannian manifolds. They enjoy
some rigid and extremal properties such as those in the Mostow strong rigidity
[Mos], the Margulis superrigidity [Mag] [Zi], and the minimality of the entropy
[BCG]. In these studies, the large scale geometry and compactifications of X
play a crucial role.

In the earlier chapters, the metric aspects of the locally symmetric space
Γ\X did not play an important role in compactifications of Γ\X. In this
chapter, we study metric properties of the compactifications discussed earlier.
Besides the above motivations from the geometry, another important reason
for such studies comes from the question on extension of the period map for
degenerating families of algebraic varieties. Furthermore, geometry at infinity
and compactifications of Γ\X are important in understanding the spectral
analysis on Γ\X, in particular, the spectral theory of automorphic forms.

In §III.20, we study the class of eventually distance minimizing (EDM)
geodesics in Γ\X. They are clearly contained in the class of all geodesics going
to infinity of Γ\X, and the inclusion is strict unless rkQ(G) = rkR(G) = 1.
Then we use these EDM geodesics to define the geodesic compactification
Γ\X ∪ Γ\X(∞). After classifying the EDM geodesics, we show that the

geodesic compactification is isomorphic to the Tits compactification Γ\X
T

defined in §III.12. Then we define the Gromov compactification Γ\X
T

in

§III.20.16. and show it is also isomorphic to the Tits compactification Γ\X
T

and hence to Γ\X ∪ Γ\X(∞) as well.

435
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In §III.21, we study the rough geometry of Γ\X and show that it is up to
finite distance a metric cone over the quotient Γ\∆Q(G) of the Tits building

∆Q(G) by Γ, which is a finite complex and is the boundary of Γ\X
T

. Then
we prove the Siegel conjecture on comparison of the restriction of two metrics
on Siegel sets.

In §III.22, we introduce the notion of hyperbolic compactifications and
study the question when a holomorphic map from the punctured disc D× to
a Hermitian locally symmetric space Γ\X can be extended over the puncture
to a map from the disc D to compactifications of Γ\X.

In §III.23, we show how the boundaries of compactifications of Γ\X can
occur naturally as parameter spaces for the generalized eigenfunctions of the
continuous spectrum of Γ\X. When the Q-rank of G or Γ\X is equal to 1, we
introduce the notion of scattering geodesics and the sojourn times, and study
the Poisson relation which connects the sojourn times of scattering geodesics
and the frequencies of oscillation of the scattering matrices, which form an
important part of the continuous spectrum.

III.20 Eventually distance minimizing geodesics
and geodesic compactification of Γ\X

For a symmetric space of noncompact type X, we recall the geodesic compact-
ification in §I.2. In fact, the construction also works for any simply connected
nonpositively curved Riemannian manifold M , and this geodesic compacti-
fication plays an important role in the study of geometry and analysis on
M . A natural question is whether such a geodesic compactification can be
constructed for nonsimply connected Riemannian manifolds.

In this section, we recall a general method in [JM, §9] on constructing
such a geodesic compactification, and then apply it to the locally symmetric
space Γ\X to define the geodesic compactification Γ\X ∪ Γ\X(∞). We also

define the Gromov compactification Γ\X
G

. Then we show that the geodesic

compactification is isomorphic to the Tits compactification Γ\X
T

defined in

§III.12 and the Gromov compactification Γ\X
G

.
Specifically, for any Riemannian manifold M , EDM geodesics and rays,

and the set M(∞) of equivalence classes of EDM geodesics are defined in
III.20.1. If M is noncompact, then M(∞) is nonempty (III.20.2). In order
to use M(∞) to define a compactification of M (III.20.5), we introduce two
assumptions in III.20.3 and III.20.4. To apply this method to compactify Γ\X,
we classify EDM geodesics of Γ\X in III.20.8. The geodesic compactification
Γ\X ∪ Γ\X(∞) is defined in III.20.12, and is shown to be isomorphic to the

Tits compactification Γ\X
T

in Proposition III.20.15 and isomorphic to the
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Gromov compactification Γ\X
G

in III.20.17.
As mentioned earlier, all geodesics in this section are oriented and of unit

speed.

Definition III.20.1 Let M be a complete Riemannian manifold, and d the
Riemannian distance function. A geodesic γ : R → M is called eventually
distance minimizing (EDM) if there exists some t0 such that for all t1, t2 ≥ t0,

d(γ(t1), γ(t2)) = |t1 − t2|.

A half geodesic γ : [0,+∞) → M is called a distance minimizing ray (or
simply a ray) if for all t1, t2 ≥ 0,

d(γ(t1), γ(t2)) = |t1 − t2|.

Since M is complete, every ray extends to an EDM geodesic, and every
EDM geodesic gives a ray after a suitable shift in parameter.

Two EDM geodesics (or rays) γ1, γ2 in M are called equivalent if

lim sup
t→+∞

d(γ1(t), γ2(t)) < +∞.

Let M(∞) be the set of equivalence classes of geodesics in M .
If M is simply connected and negatively curved, then every geodesic in

M is distance minimizing, and M(∞) is equal to the earlier definition in §I.2,
the sphere at infinity.

Lemma III.20.2 A (complete) Riemannian manifold M is noncompact if
and only if M(∞) is nonempty.

Proof. If M(∞) is nonempty, let γ be a EDM geodesic. Clearly, the se-
quence of points γ(n) does not have a convergent subsequence, and hence
M is noncompact. On the other hand, if M is noncompact, let xj be a se-
quence in M going to infinity. Since M is complete, there exists a geodesic
γn with γj(0) = x0 and xj = γ(tj) for tj = d(x0, xj). After passing to a
subsequence, there exists a geodesic γ∞ such that γj(t) converges to γ∞(t)
uniformly for t in compact subsets. It can be checked easily that for all
t1, t2 ≥ 0, d(γ∞(t1), γ∞(t2)) = |t2 − t1|, i.e., γ∞ is EDM.

From now on, we assume that M is a noncompact complete Riemannian
manifold. To define a compactification of M by adding M(∞) at infinity, we
need to make two assumptions:

Assumption III.20.3 There exists a compact subset ω0 in M , called a base
compact subset, such that every point x in M is connected to ω0 by a ray, i.e.,
there exists a ray γ : [0,∞)→M such that γ(0) ∈ ω0, and x = γ(t) for some
t.
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Assumption III.20.4 Suppose Assumption III.20.3 holds. Let ω be any
compact subset containing ω0 and yj , y

′
j be any two sequences of points in

M going to infinity with d(yj , y′j) bounded. Let γj , γ′j be any two sequences
of rays connecting yj , y′j to ω respectively and γj(t) → γ∞(t), γ′j(t) → γ′∞(t)
uniformly for t in compact subsets, where γ∞, γ′∞ are some rays. Then γ∞
and γ′∞ are equivalent.

Both assumptions hold when M is simply connected and nonpositively
curved. In fact, the base compact subset ω0 can be chosen to consist of any
point x ∈ M , and the second assumption follows from the comparison with
the Euclidean space. On the other hand, it is easy to construct examples
of non-simply connected manifolds or manifolds which are not nonpositively
curved such that both assumptions are not satisfied [JM, 9.15].

Proposition III.20.5 Let M be a complete Riemannian manifold satisfying
Assumptions III.20.3 and III.20.4. Then there is a canonical topology on
M ∪M(∞) with respect to which it is a compact, Hausdorff compactification
of M , called the geodesic compactification of M .

Proof. We will only describe the topology in terms of convergent sequences
of unbounded sequences in M . For details and the proof for the compactness
and Hausdorff property of the topology, see [JM, §9]. Let ω be any compact
subset containing the base compact subset ω0 in Assumption III.20.3. For
any unbounded sequence yj ∈ M , let γj be an (DM) ray connecting yj to
ω, γj(tj) = xj . For an equivalence class of EDM geodesics [γ] ∈ M(∞), the
unbounded sequence yj ∈ M converges to [γ] if and only if for any sequence
of rays γj chosen above, there is a subsequence γj′ such that γj′(t) converges
to a geodesic γ∞(t) uniformly for t in compact subsets for some γ∞ ∈ [γ].
Convergence of sequences of points of M(∞) can also be described explicitly.

In the above proposition, Assumption III.20.3 is clearly needed to get the
rays γj , and Assumption III.20.4 is needed to show that the limit of yj is
independent of the choice of these rays γj . When M is simply connected
and nonpositively curved, M ∪M(∞) is the geodesic compactification defined
earlier in §I.2.

III.20.6 To apply the above general construction to M = Γ\X, we need to
determine all EDM geodesics in Γ\X.

For any rational parabolic subgroup P, a ∈ AP, H ∈ a+
P(∞), n ∈ NP ,

z ∈ XP, define
γ̃(t) = (n, a exp tH, z) = X. (III.20.1)

It follows from the formula for the invariant metric of X in the next lemma
that γ̃ is a geodesic in X (see [Bo6, Prop. 1.6, Cor. 1.7] [Bo7]).
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Lemma III.20.7 For any rational parabolicsubgroup P, let X = NP×AP×
XP be the rational horospherical decomposition associated with P in §III.1.

1. Let dx2, da2 and dz2 be the invariant metrics on X, AP and XP respec-
tively induced from the Killing form. Then at the point (n, z, a) ∈ X,

dx2 = dz2 + da2 +
∑

α∈Φ(P,AP)

a−2α 1
2
hα(z),

where hα(z) is a metric on the root space gα which depends smoothly on
z ∈ XP.

2. For any two points (n1, z1, a1), (n2, z2, a2) ∈ X,

dX((n1, z1, a1), (n2, z2, a2)) ≥ dA(a1, a2),

where dX(·, ·) and dA(·, ·) are the distance functions on X and AP re-
spectively.

The projection of these geodesics gives all EDM geodesics in Γ\X.

Proposition III.20.8 With the above notation, the projection in Γ\X of γ̃
in Equation (III.20.1) is an EDM geodesic, and every EDM geodesic in Γ\X
is of this form for some rational parabolic subgroup P.

To determine if a geodesic in X is projected to an EDM geodesic in Γ\X,
we use the following fact. Let D be the Dirichlet domain for Γ acting on X
with the center x1 ∈ X:

D = {x ∈ X | d(x, x1) < d(x, γx1) for all γ ∈ Γ, γ 6= e}.

Lemma III.20.9 1. The Dirichlet domain D is a fundamental domain
for the Γ-action and is star shaped, i.e., for any x ∈ D, the geodesic
from x1 to x belongs to D.

2. Let x′1 ∈ Γ\X be the projection of x1 ∈ X. A geodesic ray γ(t), t ≥ 0, in
Γ\X with γ(0) = x′1 is DM if and only if its lift γ̃(t) to X with γ̃(0) = x1

belongs to the Dirichlet domain D with center x1.

Proof. The basic point is the formula for the distance function dΓ\X in terms
of the distance function dX :

dΓ\X(π(p), π(q)) = inf
γ∈Γ

dX(p, γq),
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where π : X → Γ\X is the canonical projection.

To understand the shape of the Dirichlet fundamental domain in terms
of the horospherical decomposition, we need the following result (see [JM,
Proposition 10.8] for proof).

Proposition III.20.10 For any rational parabolic subgroup P and compact
subsets U ⊂ NP , V ⊂ XP, there exists a positive number t0 = t0(Γ, U, V ) such
that for any a0 ∈ AP,t0 , a1 ∈ AP + a0, n, n′ ∈ U , z, z′ ∈ V , and γ ∈ Γ− ΓP ,
the following inequality holds:

d((n, a1, z), (n′, a0, z
′)) < d((n, a1, z), γ · (n′, a0, z

′)).

Proposition III.20.11 Assume that Γ is a neat arithmetic subgroup. For
any (n0, z0) ∈ NP ×XP and any sequence yj = (nj , aj , zj) ∈ NP ×AP ×XP

with nj → n0, zj → z0, and aαj → +∞ for all α ∈ Φ(P,AP), there exist
compact neighborhoods U of n0 and V of z0, and j0 ≥ 1 such that when j ≥ j0,
the Dirichlet domain Dj for Γ with center (nj , aj , zj) contains U × {ak} × V
when k � j.

Using this proposition, Lemma III.20.9 and the classification of geodesics
in §I.2, we can prove Proposition III.20.8. See [JM, Theorem 10.18] for details.

Using the classification of EDM geodesics, we can show the following re-
sults. See [JM, §11] for details of their proofs.

Proposition III.20.12 Assume that Γ is a neat arithmetic subgroup. Then
Γ\X satisfies the assumptions in III.20.3 and III.20.4. Hence the geodesic
compactification Γ\X ∪ Γ\X(∞) is defined.

Remark III.20.13 One can also show directly that the projection of γ̃(t) =
n, a exp tH, z) is an EDM geodesic by using the precise reduction theory in
Proposition III.2.21 (see [JM, Proposition 10.5]). Then the validity of As-
sumption III.20.3 for Γ\X also follows from the precise reduction theory.

Proposition III.20.14 Let γ(t) be an EDM geodesic. Then as t→ +∞, γ(t)

converges to a point in the Tits compactification Γ\X
T

. Two EDM geodesics

in Γ\X converge to the same point in Γ\X
T

if and only if they are equivalent.
Hence, there is a bijection between Γ\X(∞) and Γ\∆Q(G).

The first statement is clear from the classification of EDM geodesics in
Proposition III.20.8 and the definition of Γ\X

T
. It is also clear every boundary

point of Γ\X
T

is the limit of an EDM geodesic. For the proof of the second
statement, see [JM, Proposition 11.3].

As a corollary of the above proposition, we obtain the following identifi-
cation.
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Proposition III.20.15 The identity map on Γ\X extends to a continuous

map Γ\X
T
→ Γ\X ∪ Γ\X(∞). Hence, by the previous proposition, Γ\X

T
is

isomorphic to Γ\X ∪ Γ\X(∞).

III.20.16 In §I.16, we introduced the Gromov compactification of X. In
fact, as pointed out there, the construction outlined there works for any com-
plete Riemannian manifold M (see [BGS]). Briefly, let C0(M) be the space
of continuous functions, and C̃(M) the quotient by constant functions. For
every point x ∈ M , d(·, x) is the distance measured from x. Let [d(·, x)] be
its image in C̃(M). Then the map

i : M → C̃(M), x 7→ [d(·, x)]

is an embedding, and the closure i(M) is a Hausdorff compactification of M ,

called the Gromov compactification and denoted by Γ\X
G

.

Proposition III.20.17 The Gromov compactification Γ\X
G

is isomorphic

to the Tits compactification Γ\X
T

, and hence also isomorphic to the geodesic
compactification Γ\X ∪ Γ\X(∞).

See [JM, §12] for details of the proof.

III.20.18 Summary and comments. The structure of geodesics in a
Riemannian manifold M is an important part of geometry of the Rieman-
nian manifold M . For a simply connected nonpositively curved Riemannian
manifold M , the geodesic compactification M ∪M(∞) is well-known and has
played an important role in understanding the geometry and analysis of M .
For a non-simply connected manifold, we could not consider all geodesics nor
all geodesics that go to infinity. It turns out that the right condition on
geodesics is the EDM condition. The identification of the set of equivalence
classes of such EDM geodesics with the quotient Γ\∆Q(G) is similar to the
relation between the sphere at infinity X(∞) and the spherical Tits building
∆(G) in §I.2.

III.21 Rough geometry of Γ\X and Siegel con-
jecture on metrics on Siegel sets

In this section, we first study locally symmetric spaces as metric spaces in the
category where we identify two metric spaces when the Hausdorff distance
between them is finite, then we prove a conjecture of Siegel on comparison of
two metrics on Siegel domains.
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Specifically, we first recall some general facts about Hausdorff distance
(III.21.1), the tangent cones at infinity of noncompact Riemannian manifolds
(III.21.3). Then we use the precise reduction theory for arithmetic groups to
determine the tangent cone at infinity of Γ\X (III.21.7), (III.21.14). A key
step is to understand a skeleton of Γ\X (III.21.10). The Siegel conjecture
on comparison of metrics on Siegel sets is stated in III.21.16, and proved in
III.21.17.

Definition III.21.1 If X,Y are two subsets of a metric space (Z, d), then
the Hausdorff distance dHZ (X,Y ) between X,Y in Z is defined as follows:

dHZ (X,Y ) = inf{ε | d(x, Y ), d(X, y) ≤ ε for all x ∈ X, y ∈ Y }.

If X,Y are any two metric spaces, then the Hausdorff distance dH(X,Y )
between them is defined by

dH(X,Y ) = inf
Z
dHZ (f(X), f(Y )),

where Z is a metric space, and f : X → Z, f : Y → Z are isometric
embeddings.

Definition III.21.2 Let (Mn, dn, xn), n ≥ 1, be a sequence of pointed met-
ric spaces, where dn is the distance function of Mn and xn is a basepoint
in Mn. Then (Mn, dn, xn) is defined to converge to a pointed metric space
(M∞, d∞, x∞) in the sense of Gromov-Hausdorff if for all R > 0, the Haus-
dorff distance between the metric ball B(xn, R) in Mn and the metric ball
B(x∞, R) in M∞ goes to zero as n→∞. .

Definition III.21.3 Let (M,d) be a metric space. For any t > 0, 1
t d defines

another metric on M . Let x0 ∈ M be a basepoint. If the Gromov-Hausdorff
limit limt→∞(M, 1

t d, x0) exists, then it is a metric cone and called the tangent
cone at infinity of M , denoted by T∞M . This limit is clearly independent of
the choice of the basepoint x0.

Definition III.21.4 A metric space (M,d) is called a length space if the
distance between any two points in M is equal to the minimum of the lengths
of all curves joining them.

If (M, g) is a complete Riemannian manifold and dg is the induced distance
function, then (M,dg) is a length space. If T∞M exists, it is also a length
space (see [Gro2, 3.8]).

Lemma III.21.5 Let M be a topological space with a distance function d de-
fined locally, i.e., when x, y belong to a small neighborhood, d(x, y) is defined.
Then there is a canonical length structure associated with d as in [Gro2, 1.4].
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Proof. It is shown in [Gro2, p. 1-2] that a distance function canonically
defines a length structure. Since the dilation is defined locally, the same
argument works for a locally defined distance function.

III.21.6 We will use these general results to determine the tangent cone at
infinity T∞Γ\X.

Let P1, · · · ,Pk be representatives of Γ-conjugacy classes of rational parabolic
subgroups of G. Recall the precise reduction theory in Proposition III.2.21.
For each Pi, let APi,T be the shifted cone as in Equation III.1.16. Fix a
T � 0 and identify

∐n
i=0APi,T with the subset

∐n
i=0APi,Tx0 in Γ\X. Then

the Riemannian distance function on Γ\X induces a distance function on the
subspace

∐k
i=1APi,T , denoted by dind. Note that we can not exclude right

away the possibility that some points x, y in one APi,T may be connected by
a distance minimizing curve not entirely contained in APi,T .

Lemma III.21.7 If the tangent cone at infinity T∞(
∐k
i=1APi,T , dind) of the

subspace (
∐k
i=1APi,T , dind) exists, then T∞Γ\X also exists and is equal to

T∞(
∐k
i=1APi,T , dind).

Proof. From the precise reduction reduction theory in Proposition III.2.21, it
is clear the Hausdorff distance between (

∐k
i=1APi,T , dind) and Γ\X is finite.

Then the lemma follows easily.

III.21.8 We define another length structure on
∐k
i=1APi,T in order to study

this induced distance function dind.
Identify APi,T with a cone in the Lie algebra aPi through the exponen-

tial map and endow it with the metric defined by the Killing form. Denote
this metric by dS , called the simplicial metric. Then (APi,T , dS) is a cone
over a+

Pi
(∞) = A+

Pi
(∞), where A+

Pi
(∞) is the open simplex in the Tits build-

ing ∆Q(G) associated with Pi. In fact, with a suitable simplicial metric on
A+

Pi
(∞), (APi,T , dS) is a metric cone over A+

Pi
(∞). 5

We now glue these metric cones (APi,T , dS) together to get a local distance
function on

∐k
i=1APi,T . Since APi,T is a translate of the positive chamber

A+
Pi

, (APi,T , dS) is isometric to (A+
Pi
, dS). Identify (APi,T , dS) with (A+

Pi
, dS).

Let (A+
Pi
, dS) be the closure of (A+

Pi
, dS) in (APi , dS). Any face F of the

polyhedral cone A+
Pi

is the chamber A+
PF

of a rational parabolic subgroup PF

containing Pi. The group PF is Γ-conjugate to a unique representative Pj

above. Identify A+
Pj

with the face F . Gluing all the spaces A+
Pi

together using
5The metric on A+

Pi
(∞) induced from the distance function of APi defined by the Killing

form is not a simplicial metric, since, by definition, A+
Pi

(∞) is a part of the unit sphere in

APi .
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this face relation gives a topological space ∪ki=1A
+
Pi
/ ∼. Suppose that A+

Pj
is

glued onto a face of A+
Pi

. Since both metrics on A+
Pi

and A+
Pj

are induced

from the Killing form, they coincide on A+
Pj

. Therefore, all the metric spaces

(A+
Pi
, dS) are compatible and can be glued together to give a locally defined

distance function on ∪ki=1A
+
Pi
/ ∼. By Lemma III.21.5, there is an induced

length function on ∪ki=1A
+
Pi
/ ∼, denoted by lS .

As a topological space, ∪ki=1A
+
Pi
/ ∼ is a cone over the finite complex

Γ\∆Q(G); and as a set, ∪ki=1A
+
Pi
/ ∼ has a disjoint decomposition

∐k
i=1A

+
Pi

that can be identified with
∐k
i=1APi,T . Therefore, the length space (∪ki=1A

+
Pi
/ ∼

, lS) defines a length structure on
∐k
i=1APi,T , denoted by (

∐k
i=1APi,T , lS).

An important property of this length space (
∐k
i=1APi,T , lS) is the follow-

ing lemma. The basic idea of the proof is that since all the minimal rational
parabolic subgroups P (and hence their positive chambers A+

P) are conjugate,
there is no shortcut in (

∐k
i=1APi,T , lS) connecting two points in one chamber

A+
P by going through other chambers.

Lemma III.21.9 For any i = 0, · · · , n, APi,T is a convex subspace of the
length space (

∐k
i=1APi,T , lS); in other words, for any two points in APi,T , any

curve that connects x, y and realizes the distance between them is contained
in APi,T and is hence a straight line segment contained entirely in APi,T . In
particular, on each APi,T , lS = dS, where dS is the simplicial distance on
APi,T defined by the Killing form.

Proposition III.21.10 There is a continuous map ϕ : Γ\X → (
∐k
i=1APi,T , lS)

which restricts to the identify map on the subset
∐n

0 APi,Tx0 when it is iden-
tified with

∐k
i=1APi,T .

The basic idea is to retract Γ\X to the skeleton
∐k
i=1APi,Tx0 which is

further identified with
∐k
i=1APi,T . For proofs of this and other statements,

see [JM, §5].

Lemma III.21.11 For any i = 1, · · · , n, the induced metric dind on APi,T =
APi,Tx0 is equal to the simplicial metric dS on APi,T . Hence, for any two
points x, y ∈

∐k
i=1APi,T ,

dind(x, y) ≥ lS(x, y).

Using the precise reduction in Proposition III.2.21, we obtain the bound
in the other direction.
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Lemma III.21.12 There exists a finite constant c such that for any x, y ∈∐k
i=1APi,T ,

dind(x, y) ≤ lS(x, y) + c.

Since the tangent cone at infinity of (
∐k
i=1APi,T , lS) exists and is equal

to itself, the above two lemmas imply the following results.

Lemma III.21.13 The tangent cone at infinity T∞(
∐k
i=1APi,T , dind) exists

and is equal to (
∐k
i=1APi,T , lS).

Proposition III.21.14 The tangent cone at infinity T∞(Γ\X) exists and is
equal to (

∐k
i=1APi,T , lS), and hence equal to a metric cone over the complex

Γ\∆Q(G).

Proof. Since the Hausdorff distance between Γ\X and (
∐k
i=1APi,T , dind) is

finite, it follows from the above lemma.

III.21.15 In the remainder of this section, we apply the above results to
prove the Siegel conjecture mentioned earlier. In [Si2, §10], Siegel stated the
following conjecture.

Conjecture III.21.16 For any rational parabolic subgroup P and a Siegel
set U × AP,t × V , where U ⊂ NP , V ⊂ XP are bounded subsets, there exists
a positive constant C such that for every pair of points p, q ∈ U × AP,t × V ,
and every γ ∈ Γ,

dX(p, γq) ≥ dX(p, q)− C,

where dX is the distance function of X; or equivalently,

dΓ\X(π(p), π(q)) ≤ dX(p, q) ≤ dΓ\X(p, q) + C,

where π : X → Γ\X is the canonical projection, dΓ\X is the distance function
of Γ\X.

Proposition III.21.17 The Siegel conjecture is true.

Proof. For any p, q ∈ X, dΓ\X(π(p), π(q)) = min{dX(p, γq) | γ ∈ Γ}. Hence
Γ\X(π(p), π(q)) ≤ dX(p, q).

To prove the other inequality, we can assume that P is equal to some
Pi, since it is conjugate to some, and any Siegel set associated with P
is also mapped to a Siegel set. Let Ui × APi,T × Vi be the Siegel set in
the disjoint decomposition in the precise reduction in Proposition III.2.21.
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Assume that p, q ∈ Ui × APi,T × Vi. Write the horospherical coordinates,
p = (np, expHp, zp), q = (nq, expHq, zq). Since Ui, Vi are bounded,

dX(p, q) = dAPi
(expHp, expHq) +O(1),

where O(1) denotes some uniform;y bounded quantity. Under the map φ in
Proposition III.21.10,

ϕ(p) = expHp, ϕ(q) = expHq.

By Lemmas III.21.11 and III.21.12,

dΓ\X(π(p), π(q)) = dlS (expHp, expHq)+O(1) = dAPi
(expHp, expHq)+O(1),

and hence
dΓ\X(π(p), π(q)) ≥ dX(p, q)− C

for some constant independent of p, q.
In general, for any p, q ∈ U ×APi,t×V , there exist p′, q′ ∈ Ui×APi,T ×Vi

such that
dX(p, p′) = O(1), dX(q, q′) = O(1),

which implies that

dΓ\X(π(p), π(p′)) = O(1), dΓ\X(π(q), π(q′)) = O(1).

Then the equality dΓ\X(π(p), π(q)) ≥ dX(p, q)−C follows from dΓ\X(π(p′), π(q′)) ≥
dX(p′, q′)− C.

Remark III.21.18 An independent proof of the Siegel conjecture is given in
[Leu1]. The special case when Γ = SL(n,Z) was proved earlier in [Din]. See
[Ab] and [AbM] for generalizations of the Siegel conjecture and related results.

III.21.19 Summary and comments. Up to a finite Hausdorff distance,
the locally symmetric space Γ\X is a cone over the quotient Γ\∆Q(G), a finite
simplicial complex. Though this does not catch many fine properties of Γ\X,
for example, local topology near infinity, this does give a global picture, or
rather the shape, of Γ\X. The Siegel conjecture fits well into this framework.

III.22 Hyperbolic compactifications and ex-
tension of holomorphic maps from the
punctured disc to Hermitian locally sym-
metric spaces

In this section, we study the Borel-Serre compactification Γ\X
BS

, the reduc-

tive Borel-Serre compactification Γ\X
RBS

and the Satake compactifications
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Γ\X
S

from the point of view of metric spaces.
This section is organized as follows. First we recall the big Picard theo-

rem and relate it to extension of holomorphic maps from the punctured disc
and metric properties of the natural compactification CP 1 of CP 1 \ {0, 1,∞}
(III.22.1). A general extension problem is formulated in III.22.2, and an
answer is given in III.22.3. Motivated by this, the notion of hyperbolic com-
pactifications is introduced in III.22.5, which is shown to be invariant under
quasi-isometries. Existence and other properties of hyperbolic compactifica-
tions are given in III.22.9 and III.22.10. In III.22.11, the reductive Borel-
Serre compactification Γ\X

RBS
is shown to be hyperbolic. As a corollary,

the Baily-Borel compactification is also hyperbolic (III.22.12), which in turn
implies the Borel extension theorem of holomorphic map from the punctured
disc (III.22.13). On the other hand, the Borel-Serre compactification is not
hyperbolic (III.22.14). Similarly, the toroidal compactifications are not hy-
perbolic either (III.22.15). To show that the Baily-Borel compactification is
extremal in certain senses among complex analytic compactifications of Γ\X
(III.22.18 and III.22.19), we state a generalization on extension of holomorphic
maps from the punctured disc (III.22.16). To show the difference between the
geodesic compactification on one hand, and the Satake compactifications and
the reductive Borel-Serre compactification on the other hand, we introduce
the notion of asymptotic compactifications in III.22.21. Then the geodesic
compactification is shown to be an asymptotic compactification (III.22.22),
but the Satake compactifications are not (III.22.23).

III.22.1 In complex analysis of one variable, there is a well-known result
called the big Picard theorem, which says that near an essentially singular
point of a meromorphic function, its values can miss at most three points of
CP 1. This result can be expressed in terms of metric properties of CP 1 \
{0, 1,∞}, which is of the form Γ\H. Let D = {z ∈ C | |z| < 1} be the unit
disc, and D× = D \ {0} be the punctured disc. Then the big Picard theorem
is equivalent to the statement that every holomorphic map

f : D× → CP 1 \ {0, 1,∞}

can be extended across the puncture to a holomorphic map

f : D → CP 1.

This is related to the fact that the Kobayashi pseudo-metric on CP 1\{0, 1,∞}
is a metric. Briefly, the Kobayashi metric is the maximal pseudo-metric such
that (1) it coincides with the Poincaré metric for the unit disc, (2) and it is
distance decreasing under holomorphic maps. (See [Kob2] for details and the
definition of the Kobayashi pseudo-metric).

This result can be generalized to the following situation. Let Y be a com-
plex space and M be a complex subspace of Y whose closure M is compact.
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The question is

Problem III.22.2 Does every holomorphic map f : D× → M extends to a
holomorphic map f : D → Y ?

In the above example, Y = CP 1, and M = CP 1 \ {0, 1,∞}, and the
answer is positive. Though the answer is negative in general, it holds under
some conditions.

Proposition III.22.3 The answer to the above extension problem is positive
if the following two conditions hold:

1. M is a hyperbolic manifold, i.e., the Kobayashi pseudo-metric dM of M
is a metric.

2. For any two sequences pj , qj ∈ M with pj → p∞, qj → q∞ in Y , if
dM (pj , qj)→ 0, then p∞ = q∞.

For the proof of this proposition, see [Kob2]. The conditions say that the
compactification M of M in Y is small in a certain sense. If these conditions
are satisfied, the embedding M ↪→ Y is called a hyperbolic embedding with
respect to the metric dM .

III.22.4 As mentioned earlier, many important spaces Γ\X arise as moduli
spaces of certain varieties or structures in algebraic geometry and are often
non-compact. A natural, important problem is to understand how these ob-
jects degenerate, or their moduli points go to the infinity of Γ\X. This is
equivalent to understand whether holomorphic maps

f : D× → Γ\X

extend and the senses in which they extend.
Motivated by the above results, we introduce the following definition.

Definition III.22.5 Let (Y, d) be a metric space. A compactification Y is
called a hyperbolic compactification with respect to the metric d if the follow-
ing condition is satisfied: Let pj, qj be any two sequences pj , qj in Y which
converges to two boundary points p, q ∈ Y − Y respectively. If d(pj , qj) → 0,
then p = q.

Intuitively, a hyperbolic compactification is small in the sense that the
boundary points will not separate sequences of points which are close in the
distance function d. Clearly, the smallest compactification, the one point
compactification Y ∪ {∞} is always hyperbolic, since all sequences of points
which go to infinity have the same limit. This intuition also tells us that if a
compactification is smaller, it has a better chance to be hyperbolic.
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Lemma III.22.6 Let d1, d2 be two metrics on Y , and Y be a compactification
Y . If Y is hyperbolic with respect to d1 and there exists a constant C > 0
such that

d1(x, y) ≤ Cd2(x, y), for all x, y ∈ Y,
then Y is also hyperbolic with respect to d2. Therefore, if d1, d2 are quasi-
isometric, i.e., there exists C > 1 such that

C−1d2(x, y) ≤ d1(x, y) ≤ Cd2(x, y), for all x, y ∈ Y,

then Y is hyperbolic with respect to d2 if and only if it is hyperbolic with respect
to d1.

Proof. It follows from the definition of hyperbolic compactifications and the
fact that if d2(pj , qj)→ 0, then d1(pj , qj)→ 0.

III.22.7 Suppose that X is a Hermitian symmetric space. It is known that
X is hyperbolic in the sense that the Kobayashi pseudo-metric is a metric.
Let dX,k be the distance function associated with the Kobayashi metric. Let
dX be the distance of the invariant metric. It is also known that the metric
dX,k is invariant under G, in particular under Γ. Denote the induced metric
on Γ\X by dΓ\X,k. Similarly, denote the metric on Γ\X induced from dX by
dΓ\X .

The discussions in [Bo6, 3.1-3.3] imply the following equivalence.

Lemma III.22.8 Assume that X is a Hermitian symmetric space. Then the
two distance functions dk,X and dX are quasi-isometric, and hence dk,Γ\X
and dΓ\X are also quasi-isometric.

If the reference to a distance d is clear, it will be omitted, and a hyperbolic
compactification Y with respect to d will simply be referred to as a hyperbolic
compactification of Y .

Lemma III.22.9 If a compactification Y
2

of Y is dominated by a hyperbolic
compactification Y

1
, then Y

2
is also hyperbolic.

Proof. Let pj , qj be any two sequences in Y converging to p, q in Y
2

respec-
tively and d(pn, qn) → 0. Since Y

1
is compact, we can choose subsequences

pj′ , qj′ such that pj′ → p′, and qj′ → q′ in Y
1
. Since Y

1
dominates Y

2
, p′ is

mapped to p under the dominating map, and q′ is mapped to q. Since Y
1

is
hyperbolic by assumption, p′ = q′. This implies that p = q, and hence Y

2
is

hyperbolic.

The following two general facts are also known. See [Ji4, §2] for proofs.
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Proposition III.22.10 1. Every locally compact metric space (Y, d) has
a unique largest hyperbolic compactification.

2. For any compactification Y of a locally compact metric space (Y, d), there
is a unique largest hyperbolic compactification among all the compacti-
fications dominated by Y . This compactification is called the hyperbolic
reduction of the compactification of Y and denoted by RedH(Y ).

In the following, when we discuss the hyperbolicity of compactifications of
Γ\X, we always use the invariant metric.

Proposition III.22.11 The reductive Borel-Serre compactification Γ\X
RBS

is hyperbolic.

Proof. Let pj , qj be two sequences in Γ\X converging to boundary points
p, q respectively. Assume that d(pj , qj)→ 0. We need to prove that p = q.

We prove this by contradiction. Suppose p 6= q. Let P be rational
parabolic subgroup such that a point z ∈ XP is projected to p. For any
ε > 0, let BXP

(z, ε) be the metric ball in XP or radius ε and center z, and
similarly BAP

(z, ε) a ball in AP.
Since pj → p, there exists a list p̃j of pj such that in the horospherical

decomposition p̃j = (nj , aj , zj), the coordinates satisfy the conditions: (1) nj
is bounded, (2) zj → z in XP, (3) aαj → +∞ for all α ∈ Φ(P,AP).

On the other hand, qj → q 6= p. Hence there exist ε0 > 0 and j0 such that
when j ≥ j0, for any j ≥ j0 and any lift q̃j of qj , the horospherical coordinates
of q̃j = (n′j , a

′
j , zj , ) satisfy the condition:

(a′j , z
′
j) 6∈ BXP

(z, 2ε0)×BAP
(z, 2ε0).

Otherwise, we could extract a subsequence of q̃j converging to z in QX
RBS

.
By the formula of the metric of X in terms of the horospherical decomposition
in Lemma III.20.7, we have

dX(p, q) ≥ max{dXP
(zp, zq), dAP

(ap, aq)},

where p = (np, ap, zp), q = (nq, aq, zq) ∈ NP × AP × XP. When j0 � 1, we
can assume that zj ∈ BXP

(z, ε0) when j ≥ j0. This implies that

dX(p̃j , q̃j) ≥ ε0,

and hence
dΓ\X(pj , qj) ≥ ε0.

This contradicts the assumption d(pj , qj)→ 0.
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Corollary III.22.12 The Baily-Borel compactification Γ\X
BB

is hyperbolic.

Proof. It follows from the fact that Γ\X
RBS

dominates Γ\X
BB

in Proposi-
tion III.15.4, Lemma III.22.9, and Proposition III.22.11.

Together with Proposition III.22.3, Corollary III.22.12 implies the follow-
ing result.

Corollary III.22.13 Let D = {z ∈ C | |z| < 1} be the unit disc, and D−{0}
be the punctured disc. Then every holomorphic map f : D − {0} → Γ\X
extends to a holomorphic map f̃ : D → Γ\X

BB
.

This extension property implies the great Picard theorem and also has
important applications to the theory of variation of Hodge structures (see
[Gri] [GS]). Corollary III.22.13 was first proved in [Bo6], and related results
were also obtained in [KO]. Another proof of Corollary III.22.13 was given in
[GS, p.99].

Corollary III.22.14 The Borel-Serre compactification Γ\X
BS

is not hyper-

bolic, and its hyperbolic reduction RedH(Γ\X
BS

) is the reductive Borel-Serre

compactification Γ\X
RBS

.

Proof. By definition, Γ\X
BS

dominates Γ\X
RBS

. Since Γ\X
RBS

is hy-
perbolic, it suffices to prove that every two points in the inverse image of
the dominating map over any boundary point in Γ\X

RBS
are limits of two

sequences of points pj , qj with d(pj , qj)→ 0. This is clear from the expression

for the invariant metric in Proposition III.20.7 and the definition of Γ\X
BS

.

This result gives another reason for the name of the reductive Borel-Serre
compactification.

As recalled in §III.7, the toroidal compactifications all dominate the Baily-
Borel compactification.

Proposition III.22.15 The hyperbolic reduction of any toroidal compactifi-
cation Γ\X

tor

Σ is the Baily-Borel compactification Γ\X
BB

.

The idea of the proof is similar to that of Corollary III.22.14. See [Ji4,
Theorem 5.3].

To state an application of this proposition, we need the following general-
ization in [KK2] of the big Picard theorem in Proposition III.22.3.
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Proposition III.22.16 Let W be a compact complex analytic space, and Y ⊂
W a hyperbolically embedded complex subspace, i.e., the closure of M in W
is a hyperbolic compactification. Let A be a closed complex subspace of a
complex manifold Z. If the singularities of A are normal crossings, then every
holomorphic map f : Z −A→ Y extends to a holomorphic map f̃ : W → Z.

In the proposition, if we take Z = D, the unit disc, A the origin, this is a
reformulation of the big Picard theorem in Proposition III.22.3.

Proposition III.22.17 Assume that Γ\X is Hermitian. Let Y be a complex
space hyperbolically embedded in a compact complex space W . Then every
holomorphic map f : Γ\X → Y extends to a holomorphic map Γ\X

BB
→W .

Proof. Let Γ\X
tor

Σ be a toroidal compactification which is smooth and the

boundary ∂Γ\X
tor

Σ − Γ\X is a union of divisors with normal crossings. By
the previous proposition, the holomorphic map f : Γ\X → Y extends to a

holomorphic map f̃ : Γ\X
BB
→ W . Since the embedding of Y in W is hy-

perbolic, the map f̃ factors through ResH(Γ\X
tor

Σ ). By Proposition III.22.15,

ResH(Γ\X
tor

Σ ) = Γ\X
BB

, and hence f̃ induces the desired extension.

Corollary III.22.18 Assume that Γ\X is Hermitian. If Γ\X is a hyperbolic
compactification which is also a complex analytic space, then it is dominated
by the Baily-Borel compactification, i.e., the Baily-Borel compactification is
the largest complex analytic hyperbolic compactification.

This corollary shows that among all the hyperbolic complex analytic com-
pactifications of Γ\X, Γ\X

BB
is the maximal one. On the other hand, as

mentioned earlier in §III.4, the Baily-Borel compactification Γ\X
BB

is iso-
morphic to a minimal Satake compactification. The following result shows
that it is also minimal in another sense.

Corollary III.22.19 Assume that Γ\X is hermitian. If Γ\X
′

is a complex
analytic compactification such that the boundary Γ\X

′
− Γ\X is a union of

divisors with normal crossings, then Γ\X
′

dominates Γ\X
BB

.

Proof. By Corollary III.22.12, the inclusion Γ\X → Γ\X
BB

is an hyperbolic
embedding. Then the proposition follows from Proposition III.22.16.

III.22.20 Finally, we mention another general metric compactification which
gives another explanation of the geodesic compactification Γ\X ∪Γ\X(∞) =

Γ\X
T

.
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Definition III.22.21 A compactification Y of a metric space (Y, d) is an
asymptotic compactification if it satisfies the following condition: for any two
sequences pj , qj in Y converging to p, q in Y respectively, if lim supj→+∞ d(pj , qj) <
+∞, then p = q.

Clearly, if Y is a hyperbolic compactification, it is an asymptotic compact-
ification. But the converse is not true.

The asymptotic compactifications have a functorial property in the cate-
gory of locally compact metric spaces with morphisms given by ε-Hausdorff
approximations. Similarly, we can define the asymptotic reduction of any
compactification Y .

Proposition III.22.22 The Tits compactification Γ\X
T

is an asymptotic
compactification.

Proof. We claim that the geodesic compactification Γ\X ∪ Γ\X(∞) is an

asymptotic compactification. By Proposition III.20.15, Γ\X
T

is isomorphic to
Γ\X∪Γ\X(∞) and is hence an asymptotic compactification. In fact, it follows
from the precise reduction theory in Proposition III.2.21 that there exists a
compact base subspace ω0 such that for any two sequences pj , qj ∈ Γ\X going
to infinity, there exist rays γi(t), δj(t) connecting ω0 with pj , qj respectively;
furthermore, if γj(t) → γ(t) and δj(t) → δ(t), and d(pj , qj) is bounded, then
γ ∼ δ, i.e., lim supt→+∞ d(γ(t), δ(t)) < +∞, which implies that pj , qj converge
to the same point in Γ\X ∪ Γ\X(∞).

Proposition III.22.23 The Borel-Serre compactification Γ\X
BS

is never a
asymptotic compactification, and its asymptotic reduction is equal to the end
compactification, which is equal to the one point compactification if the Q-rank
of G is greater than or equal to 2. Similarly, the reductive Borel-Serre com-
pactification Γ\X

RBS
and the Satake compactifications Γ\X

S

τ are not asymp-
totic compactifications unless both the Q-, R- ranks of G are equal to 1.

See [Ji4, §6] for details of the above definition and the proofs of the propo-
sitions.

III.22.24 Summary and comments. The notions of hyperbolic embed-
dings and hyperbolic compactifications are closely related to the notion of
Kobayashi hyperbolic spaces (see [Kob1] [Kob2] for details). The approach
of studying compactifications of Γ\X from the point of view of metric spaces
simplifies several results, for example, the Borel extension on holomorphic
maps from the punctured disc. It also gives a different perspective on sizes of
compactifications.
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III.23 Continuous spectrum, boundaries of
compactifications, and scattering geodesics
of Γ\X

In this section, we discuss relations between the continuous spectrum and the
geometry at infinity of Γ\X. The basic reference is [JM, §13].

This section is organized as follows. The decomposition principle on in-
variance of the continuous spectrum under compact perturbations is stated
in III.23.1. The generalized eigenfunctions and parametrization of the gener-
alized eigenspace of Rn are discussed in III.23.2. For noncompact Γ\X, the
generalized eigenfunctions are given by Eisenstein series (III.23.3, III.23.4).
Then two distinguished subspaces, the discrete subspace L2

dis(Γ\X) and the
continuous subspace L2

con(Γ\X), are introduced, and the spectral decompo-
sition of L2

con(Γ\X) is given in III.23.6 and III.23.7. This decomposition is
interpreted as a parametrization of the generalized eigenspace of Γ\X in terms

of the boundaries of the reductive Borel-Serre compactification Γ\X
RBS

and
the geodesic compactification Γ\X ∪ Γ\X(∞) (III.23.8). To refine relations
between the continuous spectrum and the geometry at infinity, we recall the
Poisson relation for functions on a circle in III.23.10 which relate the spec-
trum of the circle to the lengths of (closed) geodesics. To obtain a generaliza-
tion of the Poisson relation to noncompact manifolds, we introduce scattering
geodesics in III.23.11. The sojourn time of scattering geodesics is introduced
in III.23.13. For Γ\X of Q-rank 1, the structure of scattering geodesics is
studied in III.23.15; scattering matrices of Γ\X are introduced in III.3.16,
and the generalized Poisson relation between the sojourn times of scattering
geodesics and scattering matrices is stated in III.23.17.

Let ∆ be the Laplace operator of Γ\X. It is well-known that when Γ\X
is compact, the spectrum of ∆ (also called the spectrum of Γ\X) is discrete.
On the other hand, when Γ\X is noncompact, its spectrum is not discrete
anymore. The continuous spectrum as a set only depends on the geometry at
infinity. In fact, we have the following decomposition principle:

Proposition III.23.1 For any complete noncompact Riemannian manifold
M , its singular spectrum, in particular the continuous spectrum, does not
change under any compact perturbations and hence only depends on the ge-
ometry at infinity.

In general, more refined spectral data such as the spectral measure and
generalized eigenfunctions will change under any compact perturbations.

A natural question is how the continuous spectrum is related to the ge-
ometry at infinity.

We will discuss two such problems: (1) parametrization of the continuous
spectrum in terms of boundaries of compactifications, (2) the Poisson relation
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between the scattering matrices of the continuous spectrum and the sojourn
times of scattering geodesics.

III.23.2 The basic example is M = R
n. In this case, it follows from the

Fourier transform that the spectrum is purely continuous and is equal to
[0,+∞), and for each λ > 0, the generalized eigenfunctions are given by
ei
√
λ<x,χ>, where χ ∈ Sn−1, whose superpositions∫

Sn−1
ei
√
λ<x,χ>f(χ)dχ

give functions in the generalized eigenspace of Rn with eigenvalue λ, where
f ∈ L1(Sn−1). Clearly, these generalized eigenfunctions ei

√
λ<x,χ> are lin-

early independent. Since the unit sphere Sn−1 can be identified with the
sphere at infinity Rn(∞) in the geodesic compactification, the boundary of
the compactification Rn ∪ Rn(∞) is the parameter space of a basis of gener-
alized eigenfunctions.

III.23.3 When Γ\X is noncompact, it has a continuous spectrum, and the
generalized eigenfunctions of the continuous spectrum is given by Eisenstein
series. We first recall several basic facts about Eisenstein series and the spec-
tral decomposition of L2(Γ\X) following [La], [Ar2], [MW] and [OW2].

For any rational parabolic subgroup P of G, let a∗P be the dual of aP. For
any L2-eigenfunction ϕ of the Laplace operator ∆ on the boundary locally
symmetric space ΓMP

\XP, we define an Eisenstein series E(P|ϕ,Λ), Λ ∈
a∗P ⊗ C, as follows:

E(P|ϕ,Λ : x) =
∑

γ∈ΓP \Γ

e(ρP+Λ)(HP(γx))ϕ(zP(γx)),

where ρP is the half sum of the positive roots in Φ(P,AP) with multiplicity
equal to the dimension of the root spaces, and

x = (nP(x), zP(x), expHP(x)) ∈ NP ×XP ×AP = X,

the horopsherical decomposition with respect to P.
When Re(Λ) ∈ ρP + a∗+P , the above series converges uniformly for x in

compact subsets of X (see [La, Lemma 4.1]). It is a theorem of Langlands
[La, Chap. 7] [MW, Chap. 4] [OW2, Chap. 6] that E(P|ϕ,Λ) can be mero-
morphically continued as a function of Λ to the whole complex space a∗P⊗C,
and E(P|ϕ,Λ) is regular when Re(Λ) = 0.

The Eisenstein series E(P|ϕ,Λ) are clearly Γ-invariant and hence define
functions on Γ\X.

Lemma III.23.4 If ϕ has eigenvalue ν, i.e., ∆ϕ = νϕ, then for any Λ ∈√
−1a∗P,

∆E(P|ϕ,Λ) = (ν + |ρP|2 + |Λ|2)E(P|ϕ,Λ).
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For any f ∈ L2(
√
−1a∗P), define a function f̂ on Γ\X by

f̂(x) =
∫
√
−1a∗P

f(Λ)E(P|ϕ,Λ : x)dΛ.

It is known that f̂ ∈ L2(Γ\X) (see [OW1, p. 328-329] for example). For
every such pair of P and ϕ, denote the span in L2(Γ\X) of all such functions
f̂ above by L2

P,ϕ(Γ\X).
These subspaces induce a decomposition of L2(Γ\X). Denote the sub-

space of L2(Γ\X) spanned by L2-eigenfunctions of the Laplace operator ∆ by
L2
dis(Γ\X), called the discrete subspace, and the orthogonal complement of

L2
dis(Γ\X) in L2(Γ\X) by L2

con(Γ\X), called the continuous subspace. Then

L2(Γ\X) = L2
dis(Γ\X)⊕ L2

con(Γ\X).

The subspace L2
con(Γ\X) can be decomposed into the subspaces L2

P,ϕ(Γ\X)
[La, Chap. 7] [OW1, Theorem 7.5].

Proposition III.23.5 With the notation as above,

L2
con(Γ\X) =

∑
P

∑
ϕ

L2
P,ϕ(Γ\X),

where P sums over all proper rational parabolic subgroups of G, and ϕ is over
eigenfunctions of ΓMP

\XP which form a basis of L2
dis(ΓMP

\XP).

Proposition III.23.6 For any λ > 0, the generalized eigenspace of Γ\X with
eigenvalue λ is spanned by E(P|ϕ,Λ), where P is a parabolic subgroup, ϕ an
L2 eigenfunction of ΓMP

\XP with eigenvalue ν satisfying ν ≤ λ− |ρP|2, and
Λ ∈
√
−1a∗P satisfying |Λ|2 = λ− |ρP|2 − ν.

The sum of the subspaces in Proposition III.23.5 is not direct, and the
Eisenstein series E(P|ϕ,Λ) for different P are not linearly independent. For
example, if two rational parabolic subgroups P1,P2 are conjugate under Γ,
then the subspaces

∑
ϕ L

2
P1,ϕ

(Γ\X),
∑
ϕ L

2
P2,ϕ

(Γ\X) are equal to each other.
Besides this relation, there is another relation coming from the functional
equations of Eisenstein series. It turns out that after all these are all the
relations between them (see [Ar2, Main Theorem, p. 256] [OW1, Proposition
7.4] [JM, Proposition 13.14]).

Proposition III.23.7 For any rational parabolic subgroup P and an L2-
eigenfunction ϕ on ΓMP

\XP, identify L2(
√
−1a∗+P ) with a subspace of L2(Γ\X)

through the map

f → f̂ =
∫
√
−1a∗+P

f(Λ)E(P|ϕ,Λ)dΛ.
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Then the continuous subspace L2
con(Γ\X) is equal to the following direct sum

k∑
i=1

∑
ϕi,j

⊕L2(
√
−1a∗+Pi

),

where P1, · · · ,Pk is a set of representatives of Γ-conjugacy classes of rational
parabolic subgroups of G, and ϕi,j is over an orthonormal basis of eigenfunc-
tions of L2

dis(ΓMPi
\XPi).

See [JM, Proposition 13.14] for proof of the above proposition.

III.23.8 The above proposition says that the generalized eigenspaces of Γ\X
are naturally parametrized by the boundaries of the geodesic compactification
Γ\X ∪ Γ\X(∞) and the reductive Borel-Serre compactification Γ\X

RBS
. In

fact, consider the generalized eigenspace of eigenvalue λ. For each rational
parabolic subgroup Pi above and a boundary eigenfunction ϕi,j , let νi,j be
the eigenvalue of ϕi,j . Then the generalized eigenfunctions are

E(Pi|ϕi,j ,Λ),

where the parameter Λ belongs to the spherical section

{Λ ∈ a∗Pi | |Λ|
2 = λ− νi,j − |ρPi |2},

which can be identified with a+
Pi

(∞) if λ > νi,j + |ρP|2. By Proposition
III.20.15,

Γ\X(∞) =
m∐
i=1

a+
Pi

(∞).

Since the eigenfunctions ϕi,j span L2
dis(ΓMPi

\XPi), the boundary locally sym-
metric spaces ΓMPi

\XPi are also needed. By Proposition III.10.10,

Γ\X
RBS

= Γ\X ∪
m∐
i=1

ΓMPi
\XPi .

It is in this sense that the boundaries of Γ\X ∪Γ\X(∞) and Γ\X
RBS

are the
parameter spaces for the generalized eigenspaces of Γ\X.

Remark III.23.9 To emphasize the relations between geodesics and the con-
tinuous spectrum, we point out that the boundary of the reductive Borel-Serre
compactification Γ\X

RBS
can also be identified with certain classes of EDM

geodesics (see [JM, §14]).
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III.23.10 In the rest of this section, we study relations between the spectral
measure of the continuous spectrum and the geodesics going to infinity.

First we recall relations between the length spectrum of closed geodesics
and the eigenvalues of a compact Riemannian manifold.

The classical Poisson relation!compact manifold∑
n∈Z

f̂(2πn) =
∑
n∈Z

f(n), (III.23.1)

where f ∈ C∞0 (R), and f̂ its Fourier transform, f̂(t) =
∫
R
f(x)e−itxdx can

be regarded as an identity between the length spectrum of closed geodesics
and the eigenvalues of R/Z. It asserts that the singularities of the Fourier
transform of the spectral measure are given by the delta functions at the
lengths of the closed geodesics in R/Z (see [Ji8] for more details).

This relation has been generalized to compact Riemannian manifolds in
[DG]. It states the singularities of the Fourier transform of the spectral mea-
sure are supported at the lengths of closed geodesics. If the metric is generic,
the singularities are be described explicitly.

For a noncompact locally symmetric space Γ\X, the spectral measure of
the continuous spectrum is essentially determined by the scattering matrices
and the relevant geodesics are not closed geodesics, but a certain class of
geodesics going to infinity defined below.

Definition III.23.11 A geodesic γ(t) in Γ\X is called a scattering geodesics
if it is EDM in both directions, i.e., there exist t+, t− such that for any t1, t2 ≥
t+ or t1, t2 ≤ t−,

d(γ(t1), γ(t2)) = |t1 − t2|.

Then it follows from the definition of Γ\X ∪ Γ\X(∞) that both limits
limt→+∞ γ(t) and limt→−∞ γ(t) exist in Γ\X ∪ Γ\X(∞).

III.23.12 When the Q-rank r of G is greater than 1, Γ\X has continuous
spectra of all dimensions up to r. It is reasonable that the scattering geodesics
are related to the one dimensional spectrum. For this reason, in the following,
we assume that the Q-rank of G is equal to 1. Then topologically, the ends
of Γ\X are topological cylinders and correspond to Γ-conjugacy classes of
rational parabolic subgroups of G.

For a closed geodesic, an natural invariant is its length. On the other
hand, the length of a scattering geodesic is infinite and we need a finite renor-
malization. It turns out that there is a canonical renormalization, called the
sojourn time.

Let P1, · · · ,Pk be a set of representatives of Γ-conjugacy classes of rational
parabolic subgroups of G. Since the Q-rank of G is equal to 1, by the precise
reduction theory in Proposition III.2.21, there exist bounded sets Ui ⊂ NPi ,
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Vi ⊂ XPi such that for T � 1, Ui × APi,T × Vi is mapped injectively into
Γ\X and its image π(Ui × APi,T covers one end, where π : X → Γ\X is the
projection map. Hence there exists a smooth manifold with boundary ωT in
Γ\X such that Γ\X admits the disjoint decomposition

Γ\X = ωT ∪
k∐
i=1

π(Ui ×APi,T × Vi).

When Γ\X is a Riemann surface, this is the decomposition into cusp
neighborhoods and a compact core. Since the Q-rank of G is equal to 1, the
picture is similar. Clearly, ωT depends on the (height) parameter T .

Definition III.23.13 1. For any pair of rational parabolic subgroups Pi,Pj,
a scattering geodesic γ is called a scattering geodesic from the end of Pi

to the end of Pj if for t� 0, γ(t) ∈ π(Ui ×APi,T × Vi), and for t� 0,
γ(t) ∈ π(Uj ×APj ,T × Vj).

2. For any scattering geodesic γ between the ends of Pi and Pj, choose
T � 1 such that the intersection γ ∩ π(Ui ×APi,T × Vi) is of the form

γ((−∞, t−) = π({(ni, ai exp tHi, zi) ∈ NPi ×APi ×XPi | t < t−},

and γ ∩ π(Uj ×APj ,T × Vj) is of a similar form γ([t+,+∞)). Then the
sojourn time of γ is defined to be t+ − t− − 2 log T .

Intuitively, the height parameter T of the Siegel sets are chosen high
enough so that the scattering geodesic shoots out directly to infinity once
enters the cusp regions. By the classification of EDM geodesics in Proposi-
tion III.20.8, this is possible. Clearly, when T is bigger, t+ − t− is bigger,
and the subtraction −2 log T adjusts the changes, and the sojourn time is
well-defined (see [JZ1, §2]). In fact, the sojourn time can be interpreted in
terms of the Bruhat decomposition in [JZ2]. Basically, it is the time γ spends
around the compact core of Γ\X.

Remark III.23.14 It should be pointed that in defining the sojourn time,
the Riemannian metric on X is defined by a suitable multiple of the Killing
form such that if α ∈ Φ(Pi, APi) is the short root, then its norm is equal to
1. Since all Pi are conjugate under G(Q), this is possible.

Proposition III.23.15 For any pair of rational parabolic subgroups Pi,Pj,
the set of sojourn times between the ends of Pi,Pj is discrete. For each
sojourn time, the set of scattering geodesics with the given sojourn time form
a smooth family parametrized by a common finite cover of the two boundary
locally symmetric spaces ΓMPi

\XPi and ΓMPj
\XPj .
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The discreteness of the sojourn time is proved in [JZ2], and the parametriza-
tion of the scattering geodesics is proved in [JZ, Theorem 1, p. 442]

For an Eisenstein series E(Pi, φ,Λ), its constant term along Pj is defined
to be

EPj (Pi, φ,Λ)(x) =
∫

ΓNPj
\NPj

E(Pi, φ,Λ)(nx)dn,

the total measure of ΓNPj \NPj is normalized to be 1. For simplicity, identity
aPj with R so that the positive chamber corresponds to the positive half
axis. Then in the horopsherical coordinate decomposition x = (n, eH , z) ∈
NPj ×APj ×XPj ,

EPj (Pi, φ,Λ)(eHz) = δije
(ρ+Λ)(H)φ(z) + e(ρ−Λ)(H)c(Λ)(φ)(z),

where ρ = ρPj , and the operator c(λ) is called the scattering operator. If φ
ranges over suitable orthonormal basis of L2

dis(ΓMPi
\XPi), it become a matrix,

called the scattering matrix. It plays a crucial in the meromorphic continua-
tion of the Eisenstein series and the spectral decomposition of L2(Γ\X) (see
[La] [Ar1] [OW] [MW] for details). The density of the continuous spectrum
can also be expressed in terms of the scattering matrix.

Proposition III.23.16 The singular supports of the Fourier transform of
the scattering matrix are supported on the sojourn times of the scattering
geodesics.

The structures of the singularities are also be described, and the parameter
space of the scattering geodesics in Proposition III.23.15 naturally enters in
the formula. This is a generalization of the Poisson relation to noncompact
Riemannian manifold. See [JZ1, Theorem 2] for details.

III.23.17 Summary and comments. The spectral theory of locally sym-
metric spaces has been intensively and extensively from many different points
of view. See [Sel1] [Sel2] [La] [Bo10] [MoW]. The results in this section indicate
some geometric aspects of the spectral theory: parametrization of generalized
eigenspaces and boundaries of compactifications of Γ\X, and the Poisson re-
lation between the scattering geodesics and the scattering matrices of Γ\X.
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32
Γ\X, compactification of Γ\X, 33
Γ\QX

T
, Tits compactification, 384

ΓP , discrete subgroup Γ ∩ P in P ,
336

ΓMP
, discrete subgroup inMP, 336

ΓMP
\XP, boundary locally symmet-

ric space, 337
ΓNP , discrete subgroup Γ ∩ NP in

NP , 336
ΓXP , discrete subgroup acting on

XP , 337
γ1 ∼ γ2, equivalent geodesics, 51
γH , geodesic along the vector H,

55
k, Lie algebra of K, 33
k, the Lie algebra of K, 39, 51
λ0(X), bottom of the spectrum of

X, 113
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λ0, bottom of the spectrum of X,
22, 113

λ1(Λ), first minimum of lattice Λ,
425

Γ\X, locally symmetric space, 32,
301

Γ\X∪Γ\X(∞), geodesic compact-
ification, 440

m, centralizer of a in k, 41
H, algebra of quaternions, 70
H(a, b), quaternion algebra, 303
G/P, flag variety, 45
H, Poincaré upper half plane, 13
H, upper half plane, 13, 38
H1, Siegel upper half space of de-

gree 1, 13
Hα, root hyperplane, 40, 209
Hn, Siegel upper half space of de-

gree n, 14
LP, Levi quotient of P, 294
S, maximal split torus over Q, 293
X, complex symmetric space or sym-

metric variety, 32
R(G), radical of G, 292
G/H, complex symmetric space or

symmetric variety, 32
RU(G), unipotent radical of G, 292
A, sheaf of analytic functions, 322
CGo, center of Go, 39
Dg, derived algebra [g, g] of g, 40
DmI , derived algebra of mI , 42
F , maximal Furstenberg boundary,

108
F(G), maximal Furstenberg bound-

ary of G, 108
FI , standard Furstenberg bound-

ary, 110
HM , the set of boundary hypersur-

faces of M , 227
Hn, positive definite Hermitian ma-

trices, 70
HM,j , subsets in partition of HM ,

227

L(Rn), space of unimodular lattices,
422

L(2)(Γ\X), L2-complex of sheaves,
335

M(Γ\X), field of meromorphic func-
tions, 318

M1(S1), space of probability mea-
sures, 107

M1(FI), space of probability mea-
sures, 110, 111

N (Γ), normalizer of Γ, 411
O, order of norm 1 in H(a, b), 303
Pn, space of positive definite Her-

mitian matrices of deter-
minant 1, 68, 69

S(G), space of closed subgroups in
G, 191, 412, 420

S(G)/K, K-orbits in space of sub-
groups, 420

S(Rn), space of closed subgroups
in Rn, 422

SP,U,t,V , Siegel set, 132
FL(Rn), space of flag lattices, 429
mI , reductive subalgebra of pI , 42
n, nilpotent subalgebra, 41

example, 44
n−P , opposite nilpotent subalgebra,

214
z(a), centralizer of a, 41
µ, probability measure on G, 110
µ-boundary, 110
µ-connected, 148
µ-connected subset of simple roots,

149
µ-harmonic function, 110
µ-saturated parabolic subgroup, 149
µ-saturated standard parabolic sub-

group, 149
µ-saturation, 149
µ0, K-invariant probability measure,

109
µ1, · · · , µn, weights of representa-

tion, 78
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µτ , highest weight of representa-
tion τ , 78

µτ -connected parabolic subgroup,
87

µτ -connected subset of simple roots,
78

example, 90
µτ -saturated parabolic subgroup, 87

example, 90
µτ -saturation, 83
µτ -saturation of P , 87
µτ -saturation of parabolic subgroup,

example, 90
µτ -saturation of simple roots, 84
nI , nilpotent radical of pI , 42
ν0, horospherical decomposition, 46
X, compactification of X, 32
X
∗
, dual-cell compactification, 210,

211
X
F

I , Furstenberg compactification,
111

X
G

, Gromov compactification, 196
X
K

, Karpelevič compactification,
23, 65, 169

X
M

, Martin compactification, 163
X
O

, Oshima compactification, 24,
220, 221

X
S

, Satake compactification of X,
68

X
S

max, maximal Satake compactifi-
cation, 87, 314

X
S

τ , Satake compactification defined
by τ , 77

X
W

, real locus X
W

(R), 263
X
c
, geodesic (conic) compactifica-

tion, 158
X
BB

, Baily-Borel compactification,
319

X
BS

, Borel-Serre partial compact-
ification, 331

X
OS

, Oshima-Sekiguchi compacti-
fication, 24

X
SF

, Satake-Furstenberg compact-
ification, 18

X
sba

, subalgebra compactification,
28, 194

X
sb

, subgroup compactification, 28,
192

XK , Karpelevič compactification,
169

Xµ, Satake compactification, 152
Xmax, maximal Satake compactifi-

cation, 141
AP , corner of split component AP ,

47
AP, corner of split component AP

in direction of P, 328, 358
A, the corner of the split A, 233
D
∗
, compactification of partial com-

pactification RD
BS

, 183
D
F

, Furstenberg compactification,
107

SL(n,Z)\SL(n,R)/SO(n)
la

, lattice
compactification, 423

SL(n,Z)\SL(n,R)/SO(n)
sub−la

, sub-
lattice compactification, 425

SL(n,Z)\SL(n,R)
la

, lattice com-
pactification, 422, 423

SL(n,Z)\SL(n,R)
sub−la

, sub-lattice
compactification, 425

SL(n,Z)\SL(n,R)
sup−la

, sup-lattice
compactification, 427

SL(n,Z)\SL(n,R)
fl

, flag-lattice com-
pactification, 432

SL(n,Z)\SL(n,R)/SO(n)
sup−la

, sup-
lattice compactification, 428

V Σ, polyhedral compactification, 208
XC

W
, wonderful compactification,

221
ΓUQ\XΣQ

, 348

X
W

, wonderful compactification, 25
a∗, dual-cell complex, 209
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a+, partial dual-cell compactifica-
tion, 213

aK,+P (∞), blow-up of a+(∞), 171
Pn

S
, standard Satake compactifi-

cation, 70
p, orthogonal complement of k in g,

39
p, the orthogonal complement of k

in g, 51
p+, sum of positive complex root

spaces, 96
p−, sum of negative complex root

spaces, 96
pI , parabolic subalgebra, 42
∂λX, Martin boundary, 23
∂λ,minX, minimal Martin bound-

ary, 23
π+, projection to p+, 96
σ, involution on G, 237
σ-isotropic torus, 259
σ-rank, 238
σ-unisotropic torus, 259
Span(C), span of a cone, 207
Supp(µi), support of weight, 78
θ, Cartan involution, 40
θ-rank, 238
C̃(X), quotient of space of contin-

uous functions, 194
S̃(X), Sobolev space, 196, 197
εt, signature, 220
M̃ , self-gluing of M , 227
X̃S

max, maximal Satake as analytic
manifold, 207, 216

X̃S
max, modified dual-cell compact-

ification, 28, 207
definition, 216

dH , Hausdorff distance, 59, 442
dX , distance function of X, 445
dΓ\X , distance function of Γ\X, 445
e(C), boundary component of cone

C, 208
e(P ), boundary component of real

P , 34

e(Q), boundary component of Q,
75

e(P), boundary component of ra-
tional P, 33

hg, conjugation of h by g−1, 33
iτ , embed X into Pn, 76
j-invariant of elliptic curves, 14
oP , 330
rk(M), rank of a manifold M with

corners, 226
rk(X), rank of X, 58
rkQ(G), Q-rank of G, 292
rkR(G), R-rank of G, 292
sgn(x), signature, 220
Gr(g, h), Grassmanian of h dimen-

sional subspaces in g, 193
RedH(Y ), hyperbolic reduction, 450
gh, conjugation of h by g, 33

QG
BS

, 388

QG
BS

, partial Borel-Serre compact-
ification, 388

QG
RBS

, partial reductive Borel-Serre
compactification, 392

QX
S

max, partial maximal Satake com-
pactification, 376

QX
T

, 383

QX
BSO

, Borel-Serre-Oshima par-
tial compactification, 406

QX
BS

, Borel-Serre partial compact-
ification, 331, 356

QX
RBS

, partial reductive Borel-Serre
compactification, 368

RX
BS

, real partial Borel-Serre com-
pactification, 179

RX
RBS

, real reductive Borel-Serre
compactification, 183

abelian variety, 12
admissible domain, 18
admissible family of polyhedral cone

decomposition, 347



468 Index

admissible polyhedral decomposi-
tion, 347

admissible region, 128, 140
algebraic group, 290

as automorphism group, 290
defined over Q, 290
definition, 290
different embedding, 300
real form, 245

algebraic torus, 291
amenable group, 108
analytic arc, 101
analytic arc component, 101
analytic boundary component, 101

example, 102
vs. boundary component, 104

analytic cross-section, 329
analytic space

criterion, 323
patching up, 322

anisotropic group, 292
apartment, 57
apartment in building, 57

Σ(a), 57
arc

chain of holomorphic arcs, 101
holomorphic, 101

arithmetic Fuchsian group, 302
arithmetic group

example of higher rank, 304
large scale geometry, 30
torsion free subgroups, 301

arithmetic subgroup, 32, 300
cohomology, 327
finite generation, 307
independence of embeddings,

300
maximal, 411
more general, 411
over number fields, 301
references, 31

Arthur’s trace formula, 204
asymptotic compactification, 453

automorphic form, 14
locally symmetric space, 15
spectral theory, 30

Baily compactification, 16
Baily-Borel compactification, 18, 25,

91, 97, 318
analytic space, 323
boundary component, 104
decomposition into boundary

components, 322
example, 325
geometrically rational, 316, 322
hyperbolic compactification, 451
largest complex analytic hyper-

bolic compactification, 452
link of singular strata, 325
minimal complex analytic com-

pactification, 452
minimal Satake compactifica-

tion, 105
motivation, 318
normal projective variety, 325
over integers, 29
over number fields, 29
resolution, 20
resolution of singularities, 348
singular, 19, 325
three steps of construction, 19
topological ball, 198

base compact subset, 438
Bergman kernel, 92

example, 93
Bergman metric, 93

example, 93
invariance property, 93

Bianchi group, 303
big Picard theorem, 447
blow up of geodesic compactifica-

tion, 63
bordification, Borel-Serre, 185
Borel embedding, 103
Borel extension result, 451
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Borel extension theorem, 29
Borel subgroup, 293
Borel-Serre bordification, 185
Borel-Serre compactification, 21, 25,

326, 334
analytic structure, 364
boundary component, 330, 367
convergent sequence, 356
corner structure, 403
decomposition into boundary

component, 337
example, 334, 402
Hausdorff property, 362
hyperbolic reduction, 451
neighborhood, 357
not hyperbolic, 451
of Γ\G, 386
rank of manifold with corners,

404
real, 179
Satake compactification, 22
self-gluing, 403
too large, 21
toroidal compactification, 22
uniform construction, 355
vs. toroidal compactification,

22
Borel-Serre compactification of ho-

mogeneous space Γ\G, 386
Borel-Serre partial compactification,

331
Borel-Serre-Oshima compactification,

26, 398, 403, 407
bottom of the spectrum, λ0, 113
boundary

H-boundary, 108
µ-boundary, 110
example of non-faithful bound-

ary, 111
faithful, 111
Furstenberg, 18
maximal, 108
Poisson, 118

rigidity of lattice, 110
small, 19
standard Furstenberg, 110
universal, 108

boundary component
centralizer, 322

boundary complex
Tits building, 125

boundary component, 17, 125
G-action, 142
K-action, 142, 158, 165, 173
Γ-rational, 17
analytic, 101
analytic, example, 102
analytic, functorial property, 101
attaching, 17
Baily-Borel compactification, 104
Borel-Serre, 330
centralizer, 74, 84
closeness, 67
compatibility, 125
definition, 85
different over Q and R, 302
disjoint, 81, 85
embedding, 81, 82
example of Baily-Borel, 102
example of centralizer, 74
example of normalizer, 74
group vs. analytic, 104
isotropy subgroup, 86
Karpelevič compactification, 173
motivation, 164
nearby, 58
normalizer, 74, 83, 84, 86, 90,

105
rational, 17, 309, 311, 313, 322
rationality, 17
same type form G-orbit, 17
Satake compactification, 75, 85,

88
saturated parabolic subgroup,

88
Siegel rational, 17, 312, 321
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splitting, 75
stabilizer, 74, 86, 89
types, 126
weakly rational, 313, 321

boundary component of Q, 88
boundary component of geodesic com-

pactification, 158
boundary component of maximal

parabolic subgroup, 75
boundary component of maximal

Satake, 141, 375
boundary face, 226

open, 226
boundary faces

locally finite, 405
boundary hypersurface, 226

choice of partition, 228
embedded, 226
finite partition, 227
non-embedded, 227
Oshima compactification, 233

boundary locally symmetric space,
18, 337

boundary of a Lie group, 108
boundary of moduli space, exten-

sion of holomorphic map,
448

boundary point
equivalent, 101
rational, 14
stabilizer, 75

boundary symmetric space, 33, 46
XI of PI , 43
as a homogeneous space, 46
closure in Satake compactifi-

cation, 75
disjoint, 85
embedding, 82
example, 44, 73, 90
real vs. rational, 33

boundary symmetric space associ-
ated with real P , 46

boundary symmetric space, XP , 46

bounded symmetric domain, 92
classical domain, 94
closure, 18
exceptional, 95
Hermitian symmetric space, 18
symmetric space, 93

Brownian motion, 118
Poisson boundary, 121

Brownian path, 118
symmetric space, 121

Bruhat decomposition, 182, 215, 416

canonical numbering of simple roots,
321

Cartan decomposition, 33, 39, 51,
198, 237

Cartan involution, 39, 295
extension, 295

Cayley transform, 99
action on the disc, 101
analytic boundary component,

102
example, 101, 102
full, 99
partial, 99

Cayley transformation, 13
centralizer, 83
centralizer of a, z(a), 41
centralizer of boundary component,

74, 322
chain of holomorphic arcs, 101
chamber, positive, 53, 132
class one representation, 260
classical domain, 18, 19, 94

type I, 94
type II, 94
type III, 94
type IV, 94
vs. exceptional domains, 95

classification of compactifications,
25

classifying space, 326
finite, 326
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closure of flat, 178
closure of flats in Satake compact-

ification, 81
closure of positive chamber in Sa-

take compactification, 81,
86

closure operator, 130
cohomology

L2, 21, 325, 335, 339
Lp, 339
boundary, 327
Galois, 243
interior, 327
intersection, 21, 325
weighted, 21, 340

cohomology of arithmetic groups,
30, 403

commensurable discrete subgroup,
300

common quotient, 22
common quotient of compactifica-

tion, 188, 399
common refinement of compactifi-

cation, 188
compact normal complex analytic

space, 19
compactification

as a topological ball, 197, 198
as moduli spaces, 30
asymptotic, 453
Baily, 16
Baily-Borel, 18, 25, 97, 151,

318
beginning, 16
big or small, 21
Borel-Serre, 25
Borel-Serre-Oshima, 26, 403,

407
boundary, 110
classical, 289
classification, 25
closed subgroups in Rn, 423
closure of fundamental set, 353

common quotient, 22, 399
compatibility, 22
configuration spaces, 31
conic, 52
continuous extension of action,

212
continuous spectrum, 28
DeConcini-Procesi, 258
dominating map, 398
dual-cell, 24, 206, 209, 211, 212
embedding into Grassmanian,

28
embedding method, 124
end, 381, 453
enumerative algebraic geome-

try, 25
equivariant, 70, 77
Euclidean building, 30
example of GCQ, 402
finite K(Γ, 1)-space, 21
finite quotient and equivariant

forms, 407
finite triangulation, 21
flag-lattice, 432, 433
from symmetric to locally sym-

metric, 17
functional theoretic vs. geo-

metric, 23
functorial property, 190, 401
fundamental domain, 310
fundamental set, 309
Furstenberg, 18, 25, 107, 111
Furstenberg vs. Satake, 18,

111
GCQ, 22, 188, 381, 399
GCQ of Borel-Serre and toroidal

compactifications, 402
general steps, 125
generalized eigenspaces, 29
geodesic, 11, 23, 25, 28, 52,

438
geometric rational, 18
geometrically rational, 18, 313,
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314, 318
geometrically rational, exam-

ple, 314
geometry at infinity, 28
Grassmanian, 193
greatest common quotient, 381
Gromov, 196, 441
group, 31
history, 13
homogeneous spaces, 31
hyperbolic, 446, 448
hyperbolic compactification, 28
independence between X and

Γ\X, 352
intermediate, 402
intrinsic construction, 18
intrinsic method, 124
Karpelevič, 23, 25, 63, 65
lattice in Rn, 422, 423
lattices in Rn, 27
LCR, 188
least common refinement, 119
locally symmetric space, 287
locally symmetric space, Γ\X,

32
locally symmetric space, refer-

ences, 31
Martin, 22, 25, 115
metric size, 27
minimal, 452
new points of view, 25
Oshima, 24, 26, 220, 221, 233
Oshima-Sekiguchi, 24, 26, 271,

276
other spaces, 30
partial, 17, 180, 309, 311
Piateski-Shapiro, 19
polyhedral, 129, 208
potential theory, 18
procedure of Baily-Borel, 16
properties for locally symmet-

ric space, 397
quotient, 22

rational, 18
rationality, 29
reductive Borel-Serre, 21, 22,

338
reductive Borel-Serre, Γ\G

RBS
,

393
relate different types, 26
relation, 188
relation to fundamental set, 317
relations, 399
relations between all, 189
Satake, 15–17, 25, 87
Satake, X

S
, 68

Satake, standard, 17
Satake-Furstenberg, 18, 112
semipositive Hermitian forms,

17
Siegel, 15
sizes matter, 21
smooth, 223, 225, 246
sphere, 52
standard Satake, 17
steps for locally symmetric space,

316
strict domination, 398
sub-lattice, 425
subalgebra, 28, 194
subgroup, 28, 192, 409, 417
subgroup compactification, 413,

420
sup-lattice, 427
symmetric space of noncompact

type, 13
symmetric space, X, 32
symmetric space, references, 31
symmetric vs. locally symmet-

ric spaces, 14, 123, 311
three types, 25
Tits, 384
too large, 21
toroidal compactification, 20
uniform construction, 352
uniform method, 125
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uniforming themes, 26
using space of flag, 421
visibility, 52
vs. closure of fundamental do-

main, 17
with G-action, 33
with group action, 33
wonderful, 25, 26, 221, 255,

258, 259
dual-cell, 210
compactification of Γ\G

extension of bundle, 394
motivation, 387
relations to compactifications

of Γ\X, 400
compactification of Γ\X

extension of bundle, 390, 394
compactification of Hermitian lo-

cally symmetric space, 400
relations between them, 400

compactification of locally symmet-
ric space

classical, 351
relations, 399

compactification of symmetric space
relations, 188

compactifications of locally symmet-
ric space

relations, 398
compactness criterion

locally symmetric space, 306
comparison

Satake compactifications, 147
complete polyhedral decomposition,

207
complete quadrics, 25
complex symmetric space, 25, 32,

205
X, 243
compactification, 255
real locus, 243, 262

complexification of group, GC, 45,
95

configuration space, 12, 31
congruence subgroup, 301

principal, 302
conic compactification, 52
conic topology, 52
conjecture

Godement, 306
Harris-Zucker, 22, 345
Helgason, 24
Novikov, 179
Siegel, 29, 445
Zucker, 325

conjecture of Harris-Zucker, 401
conjecture of Helgason, 24
conjecture of Siegel, 29
conjugation, notation, 33
connected subsets of Dynkin dia-

gram, 79
construction of compactification, gen-

eral method, 352
continuity of extended action, 32
continuous extension of G-action,

393
continuous spectrum, 455

invariance under compact per-
turbation, 454

parametrization in terms of bound-
aries, 455

parametrization of eigenspace
by boundaries, 29

relation to geometry at infin-
ity, 454

continuous spectrum and boundary
of compactification, 454

continuous subspace, 456
convention in this book, 32
convergence class of sequences, 131
convergent class of sequences, 142
convergent sequence in Satake com-

pactification, 86
convexity of moment map, 200
corner, 214, 328
corner of AP , 47



474 Index

corner of split component AP , 47
CQ of compactifications, 399
critical root, 321
cusp point, 14

class number, 302
puncture, 14

cylindrical topology, 19
vs. Satake topology, 324

de Rham
cohomology, 21
decomposition, 40

decomposition principle, 454
DeConcini-Procesi compactification,

255, 258–260
derived group, 39
derived Lie algebra, 39
diagonal matrices

limits, 72
differential equation with regular

singularities, 24
differential manifold with corners,

21
Dirichlet domain, 305, 439, 440
Dirichlet problem, 106
discrete subgroup

commensurable, 300
maximal, 411
rigidity, 30

discrete subspace, 456
distinguished root, 100
division algebra, 303
domain, star shaped, 439
dominant weight, 148
dominate, 188
dominating map between compact-

ification, 398
dominating map, one compactifi-

cation over another, 188
domination between compactifica-

tions, 87, 398
doubling of manifold with bound-

ary

generalization, 227
dual-cell compactification, 24, 191,

206, 209–211
continuous extension of group

action, 32
Duality

Tits building and boundary com-
ponents, 143

duality
Lie group, Gu, G, 103
symmetric space, Xu, X, 103

EDM geodesic, 437
classification in Γ\X, 439
explicit form in Γ\X, 439

eigenfunction
joint of all invariant differen-

tial operators, 24
eigenspace representation, 24
Eisenstein series, 416, 455
elliptic curves, 14
embedded hypersurfaces, 226
embedding

harmonic, 111
torus, 341

embedding method, 128
embedding method of compactifi-

cation, 124
embedding of boundary component,

81
end compactification, 381, 453
equivalence class of geodesic [γ], 51
equivalence relation of geodesic

refined vs. usual, 61
equivalence relation of geodesics

refined, 60
equivalent geodesic, 51, 437
ergodic action, 403
Euclidean building, 30
exceptional bounded symmetric do-

main, 95
extension of G-action is not contin-

uous, 390
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extension of K-action, 389
extension of continuous G-action,

32
extension of group action, 389
extension of group action to com-

pactification, 400
extension of holomorphic map, 446,

448, 451
generalization, 452

extension of homogeneous bundle,
394

extremal elements, 113
extremal vector of a cone, 114

faithful boundary, 111
Furstenberg boundary, 18

faithful Furstenberg boundary, 18
faithful projective representations,

69
fifth theme, 27
finite K(Γ, 1)-space, 20
finite bundle of geodesics, 60
finite generation of arithmetic groups,

307
finitely presented, arithmetic group,

21
first theme, 26
flag lattice, 429

compactification, 421
moduli space, 429
topology, 430

flag of subspaces in Rn, 428, 429
flag space, 89
flag variety, 89, 421
flag-lattice compactification, 432, 433
flat

closure, 213
closure in X

BB
, 98

corner, 213
maximal flat subspace, 41
vs. polydisc, 98

flat closure, 178, 199
moment map, 199

Satake compactification, 202
flat in symmetric space, A · x0, 41
formal limit, 212
fourth theme, 27
Fuchsian group, 14, 302

first kind, 14
functor of restriction of scalar, 301,

320
fundamental domain, 14, 305, 309

closure, 17, 311
compactification, 310
Dirichlet domain, 439
Weyl group W , 40

fundamental sequence, 115
definition, in Martin compact-

ification, 212
dual-cell compactification, 193
equivalence class, 115

fundamental set, 306
closure, 311
compactification, 309
relation to compactification, 317

Furstenberg boundaries, 18
Furstenberg boundary, 89, 106

faithful, 106, 111
faithful boundary and repre-

sentation, 111
maximal, 12, 18, 24
standard, 110

Furstenberg compactification, 18,
25, 106, 107, 111

example, 107
harmonic function, 111
maximal, 18
partial ordering, 112
relation to Satake compactifi-

cation, 111

Galois cohomology, 243
GCQ of compactification

example, 402
GCQ of compactifications, 22, 188,

399
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GCQ, greatest common quotient of
compactifications, 22

generalized eigenfunction, 454, 455
continuous spectrum, 455

generalized eigenspace, 455, 456
generalized Siegel set, 133, 134

continuity of action, 146
generic representation, 89
generic weight, 89
geodesic

γH(t), 55
distance minimizing, 436
EDM, 437
equivalence class, 23
equivalent, 51, 437
family, 53
interpretation of Langland de-

composition, 61
nonsingular, 169
parallel, 50
parameter space, 55
parameter space of equivalence

classes, 61
ray, 437
scattering, 288, 454, 458
singular, 178
sojourn time, 436, 459
standard, 53

geodesic compactification, 12
geodesic action, 327
geodesic compactification, 11, 23,

25, 28, 50, 52, 158, 438,
440

base compact subset, 438
basis of neighborhood, 52
blow up of equivalence classes

of geodesics, 63
boundary component, 158
continuous extension of action,

161
extension of action of G, 52
Gromov compactification, 196
Hausdorff property, 159

intrinsic construction, 162
neighborhood base, 159
parametrization of continuous

spectrum, 457
refinement, 59
Sobolev space, 197
uniform construction, 158
vs. minimal Martin boundary,

120
geodesic compactification of Γ\X,

440
geodesic embedding, 104
geodesic in Siegel domain realiza-

tion, 346
geometrically rational, 18

Baily-Borel compactificaton, 322
geometrically rational compactifi-

cation, 313
Baily-Borel, 316

geometry at infinity
relation to continuous spectrum,

454
geometry of numbers, 29
Godement conjecture, 306
greatest common quotient, 188
greatest common quotient of com-

pactifications, 22
Green function, 23, 114

explicit formula, 23
Gromov compactification, 191, 196,

441
alternative construction, 197
geodesic compactification, 196
isomorphic to Tits compactifi-

cation for Γ\X, 441
Gromov convergence, 442
Gromov-Hausdorff convergence, 442
group

amenable, 108
anisotropic, 292
Bianchi group, 303
Fuchsian, 14
Fuchsian group, 302
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nilpotent, 291
Picard modular group, 304
quasi-split, 316
radical, 292
reductive, 39, 40, 292
semisimple, 292
Siegel modular group, 304
solvable, 291
split over Q, 292
sympletic, 15

Harish-Chandra embedding, 95, 97
Harish-Chandra realization, 18
harmonic analysis on symmetric space,

30
harmonic function, 13

µ-harmonic, 110
convergence, Fatou type, 128
Poisson integral formula, 110
strongly harmonic, 110

Harris-Zucker conjecture, 22, 345
Harris-Zucker conjecture on GCQ,

401
Hausdorff distance, dH , 59, 442
Hecke correspondence, 21
Hecke operator, 340, 403
Helgason conjecture, 24
Hermitian matrices

positive definite, Pn, 68
semi-positive definite and com-

pactification, 17
spectral decomposition, 72

Hermitian matrices, Hn, 70
Hermitian symmetric space, 92, 318

as bounded symmetric domain,
97

bounded realization, 18
characterization, 95
example, 100
poly-disc, 98
root system, 100

highest weight of a representation,
78

Hilbert modular group, 302
Hilbert modular surface, 19, 302

link of singular points, 19
resolution of singularities, 20

Hilbert modular variety, 302
Hilbert-Siegel modular space, 16
Hodge structure, 31
holomorphic arc, 101
holomorphic tangent space, 96
homogeneous bundle

extension, 387, 390
extension to compactification,

394
homogeneous bundle, Eσ, 394
homogeneous space

compactification, 386, 391, 421
homogeneous space vs. locally sym-

metric space, 27
horocycle, 14
horodisc, 14
horospherical decomposition, 43, 46,

125, 344, 387
dependence on the basepoint,

46
diffeomorphism ν0, 46
example, 39
rational, 296
transfer under K-action, 46
vs. realization as Siegel do-

main, 402
vs. Siegel domain realization,

346
hyperbolic compactification, 28, 446,

448
Baily-Borel compactification, 451
example, 450, 451
existence, 450
reductive Borel-Serre compact-

ification, 450
hyperbolic embedding, 448
hyperbolic manifold, 304
hyperbolic reduction, 450

Borel-Serre compactification, 451
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example, 451
toroidal compactification, 451

identity component of group, Go,
39

identity representation, 69
intersection cohomology, 325
intersection cohomology group, 21
intrinsic approach to compactifica-

tion, 123
intrinsic method of compactifica-

tion, 124
invariant differential operators, 24
invariant metric on X, 40
involution on G, 267
isomorphic compactification, 188
isotropy subgroup, boundary com-

ponent, 86
Iwasawa decomposition, 43

joint eigenfunction, 24, 110
regular singularity, 24

Karpelevič compactification, 23, 25,
62, 63, 65

X
K

vs. XK , 169
as a ball, 205
as a blow-up of geodesic com-

pactification, 63
blow-up, 172
boundary component, 170–173
boundary point, inductive form,

67
continuous extension of action,

176, 177
convergent sequences, 174
definition, 65
dimension count of the bound-

ary, 63, 64
example, 65
explanation of inductive con-

struction, 67
identification, 179
minimal Martin boundary, 120

motivation, 63
neighborhood base, 175
properties, 67
relation to Martin compactifi-

cation, 178
topology, 65, 171, 173, 174
uniform construction, 169, 179

Killing form, 39, 40, 51, 133
Killing form, B( , ), 40
Kobayashi pseudo-metric, 447

Langlands decomposition, 33, 43,
45

equivariance, 45
example, 38, 44
geometric interpretation, 61
rational, 33, 295
rational-vs-real, 296
real, 33
real vs. rational, 33, 296
relations to equivalence classes

of geodesics, 60
relative, 298, 299
relative for a pair of parabolic

subgroups, 48
transportation, 45

Laplace operator, 23
Laplace-Beltrami operator, 113
large scale geometry

arithmetic subgroups, 30
symmetric space, 30

lattice
reduced basis, 425
scaling, 425, 427
uniform, 306

lattice compactification, 422, 423
difference from Satake compact-

ification, 424
lattice in Rn

moduli space, 302
lattice in flag, 429
lattices, 29
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LCM, least common modification
of compactifications, 22

LCR, 119
LCR of compactifications, 188
LCR, least common refinement, 22
least common modification

definition, 22
least common refinement, 119, 188
least common refinement of com-

pactification, 22, 24
Lefschetz number, 21
length space, 442
length spectrum, 458
Levi decomposition, 292

lifting, 295
lifting over Q, 295

Levi quotient, 294
Levi subgroup, 292
Levi subgroup of parabolic subgroup,

42
limit subgroup, 413
linear algebraic group, 290
link

boundary component, 19
singularity, 19

link of singular strata, 340
locally symmetric space, 11, 13, 301

Γ\X, 32
boundary, 18
classical compactification, 289
compactification, 287
compactness criterion, 306
continuous spectrum vs. bound-

aries of compactification,
454

finite volume, 307
Hermitian, 16
metric property, 435
metric property, references, 31
rigidity, 30
rough geometry, 441
scattering matrix, 460
skeleton, 444

steps of compactification, 316

Mahler’s compactness criterion, 416,
421

manifold with corners, 21, 219, 226,
328

maximal Satake, 215
stratification, 226
stratum, 226

Martin boundary
Karpelevič compactification, 23
minimal, 23, 117, 118
minimal for symmetric space,

120
Martin boundary component, 163
Martin boundary, ∂λX, 23
Martin compactification, 22, 25, 112,

115, 163
as a topological ball, 204
boundary component, 164
compactness, 167
continuous extension of action,

167
definition, 115
Dirichlet problem at infinity,

23
embedding method, 197
fundamental sequence, 212
general manifold, 119
geodesic and Satake compact-

ifications, 24
geodesic compactification, 24,

119
geometric identification, 23
Hausdorff property, 166
identification, 168, 169
integral formula, 116, 118
Karpelevič compactification, 119,

178
motivation, 113
neighborhood base, 165
Satake compactification, 119
small, 117
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symmetric space, 119
topology, 165
uniform construction, 163

Martin compactification, X∪∂λX,
115

Martin integral formula, 116
Martin integral representation, 117,

118
Martin kernel, 117

extension property, 114
Martin kernel function, 23

minimal, 23
Martin kernel, Kλ(·, ξ), 115
Martin representation, 116
maximal parabolic subgroup

example, 44
maximal arithmetic subgroup, 411

example, 411, 420
maximal boundary, 108

as unique G-orbit, 111
maximal discrete subgroup, 410
maximal flat subspace, 58
maximal flat totally geodesic sub-

spaces, 41
maximal Furstenberg boundary, 12,

18, 24, 108
example, 109
faithful, 111
minimal parabolic subgroup, 109

maximal Furstenberg compactifica-
tion, 18

maximal parabolic subgroup, 42
maximal Satake compactification,

87, 89, 380
as analytic manifold, 191, 207
corner, 215
dual-cell compactification, 211
flag-lattice compactification, 434
geometrical rational, 314
geometrically rational, 315
more constructions, 191
Oshima compactification, 221
Oshima construction, 218

real analytic manifold with cor-
ners, 28, 29, 206

real locus of wonderful com-
pactification, 29

real reductive Borel-Serre, 184
semisimple symmetric space, 235
subalgebra compactification, 194
subgroup compactification, 193
uniform construction, 141, 375
vs. reductive Borel-Serre com-

pactification, 339
maximal Satake partial compacti-

fication, 376
metric property of locally symmet-

ric space, 435
metric, invariant on X, 438
minimal parabolic subgroup

example, 44
minimal compactification, 452
minimal function, 117
minimal Martin boundary, 23, 113

∂λ,minX, 117
minimal Martin kernel function, 23
minimal parabolic subgroup, 42

over Q, 293
minimal Satake compactification, 18,

87
Baily-Borel compactification, 91,

105
simple root, 90

modular curve, 13
modular forms, 14

meromorphic function, 19, 318
modular group

Hilbert, 302
Picard, 304
Siegel, 304

modular lattice in Rn, 409
modular space

Hilbert-Siegel, 16
modular surface

Hilbert, 19
Picard, 304



Index 481

modular variety
Siegel, 15

moduli space, 12, 14, 15
elliptic curves, 14
extension of holomorphic map,

448
of unimodular lattices, 302
quadratic forms, 16

moment map, 199, 200
convexity, 200
example, 201
explicit formula, 203
image as a polygon, 201
Satake compactification, 202

monodromy group, 31

N-relation on geodesics, 60
non-Riemannian symmetric space,

G/H, 32
nontangential region, 128
normal complex analytic space, 16
normal projective variety, 16, 19
normalizer

boundary component, 83
boundary component of Satake

compactification, 90
normalizer of boundary component,

74, 90
normalizer of boundary component

in Baily-Borel, 105
notations in this book, 32
Novikov conjectures, 179
null bundle of geodesics, 60
number field

imaginary quadratic, 303, 304
real quadratic, 302
totally real, 302

orbifold, 15
orbit decomposition

boundary component of same
type, 76

compactification, 24
geodesic compactification, 59

maximal Satake compactifica-
tion, 89

reductive Borel-Serre compact-
ification of Γ\G, 395

Satake compactification, 17, 85
standard Satake compactifica-

tion, 75
subgroup compactification, 418
the standard compactification,

73
orbit of G in real locus (G/H)(R),

246
ordered partition, 170
organization and outline, 28
Oshima compactification, 24, 26,

220, 221, 233
alternative construction, 234
maximal Satake compactifica-

tion, 221
orbit decomposition, 24
original definition, 234
real locus of wonderful com-

pactification, 27
self-gluing from the Satake com-

pactification, 235
Oshima-Sekiguchi compactification,

24, 271, 275, 276
definition, 276
free Weyl group action, 278
glue up from Satake compact-

ification, 235
main properties, 278
vs. wonderful compactification,

271, 279, 281
wonderful compactification as

a finite quotient, 29
Oshima-Sekiguchi compactification

of G/K, 276

p-adic symmetric space, 30
parabolic subalgebra, 41

standard, 41
type, 42
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parabolic subgroup
µτ -connected, 87
µτ -saturated, 87
as algebraic group, 45
as stabilizers, 53
boundary component, 124
conjugation to standard one,

45
definition, 42, 293
definition over algebraically closed

field, 45
example, 39, 71
example in GC, 103
example of maximal, 44
example of minimal, 44
fixed point set, 56
geometrical characterization, 53
in reductive group, 43
Levi subgroup, 42
maximal, 42
minimal, 42
minimal over Q, 293
rational, 290
rational split component, AP,

33
real, 38
real split component, AP , 33
reduction theory, 306
relation to partition, 44
relations to geometry at infin-

ity, 124
saturated, 90
saturation, 86
self-normalizing, 42
Siegel sets, 306
standard, 42, 294

parabolic subgroup over Q, 293
parabolic subgroups

ΓM -equivalent, 418
containing a fixed parabolic sub-

group, 47
pair, 48
relative decomposition, 48

parametrization of continuous spec-
trum

geodesic compactification, 457
reductive Borel-Serre compact-

ification, 457
partial compactification, 14, 17, 180,

185, 309
partial desingularization, 20
partial dual-cell compactification,

213
partial polyhedral cone decomposi-

tion, 207
partition of boundary hypersurfaces,

228, 406
partition of unity, 21, 335
period domain, 31
Piateski-Shapiro compactification,

19
Picard modular group, 304
Picard modular surface, 304
Picard modular variety, 22
Poincaré disc, 13, 38
Poincaré duality, 325
Poincaré upper half plane, 13
Poincaré-Eisenstein series, 324
Poisson boundary, 113, 118, 120

Brownian motion, 121
symmetric space, 120

Poisson integral formula, 13, 110,
113, 118

Poisson kernel, 110, 113
Poisson relation, 288, 436, 455, 458

noncompact manifold, 460
poly-disc in Hermitian symmetric

space, 98
polyhedral compactification, 129, 208

compatibility, 210
polyhedral cone, 207

Γ-admissible family, 20
polyhedral cone compactification,

209
polyhedral cone decomposition, 207,

342, 347
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polyhedral decomposition, 347
positive chamber

closure, 86
closure in Satake compactifi-

cation, 81, 86
positive chamber, a+

P (∞), 53
positive chamber, AP,t, 132
positive definite Hermitian matri-

ces, Pn, 69
positive roots, 41
positive Weyl chamber, 40
potential, 116
potential theory of symmetric space,

30
potential theory, basic problem, 113
precise reduction theory, 308, 309

Γ-equivariant tiling, 308
primitive set of vectors of lattice,

425
principal congruence subgroup, 14,

302
principally polarized abelian vari-

eties, 15
procedure of compactification

Baily-Borel, 16
puncture, 14
punctured disc, 14
punctured neighborhood, 14

quadrics
complete, 25
moduli space, 25
non-degenerate, 25

quasi-split group, 316
quaternion algebra, 302, 304
quaternion algebra, H(a, b), 303
quaternions, 70

radical, 292
rank

different over Q and R, 302
example, 292
over Q, 292
over R, 292

rational, 292
real, 292

rank of G, 58
rank of X, 58
rank of a manifold with corners,

226
rank of manifold with corners, 226,

404
rational parabolic subgroup, 293
rational boundary component, 17,

309, 311, 313, 322
proper action, 313
Siegel rational, 312
weakly rational, 313

rational boundary points, 14
rational compactification, 18
rational Langlands decomposition,

295
rational parabolic subgroup, 290
rational rank, 292
rational spherical decomposition, 296

G, 296
rational split component

parabolic subgroup, 33
rational vs. real Langlands decom-

positions, 296
ray, 437
real analytic manifold with corners,

28, 219, 366, 391
Γ\G

BS
, 390

real Borel-Serre compactification
boundary component, 180
Hausdorff property, 181
neighborhood base, 181
non-continuous group extension,

184
noncompact, 181
topology, 181

real form, 240
example, 252

real form of algebraic groups, 245
real locus

group, 293
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symmetric variety, 262
wonderful compactification, 255,

265
wonderful compactification, ex-

ample, 284
real locus of complex symmetric space,

243
real parabolic subgroup, 38
real rank, 292
real reductive Borel-Serre compact-

ification
Satake compactification, 184

real split component
parabolic subgroup, 33

reduced basis of lattice, 425
reduction theory, 140, 300, 306, 307

Γ-equivariant tiling, 308
classical, 306, 307
generalization, 369
precise, 308
refined, 307
Siegel sets, 307
using all parabolic subgroups,

308
reduction theory, references, 31
reductive Borel-Serre boundary com-

ponent, 392
Reductive Borel-Serre compactifi-

cation
decomposition into boundary

component, 337
reductive Borel-Serre compactifica-

tion, 21, 22, 25, 335, 338
Γ\G

RBS
, 393

boundary components, 374
boundary components, Γ\G, 395
compactness, 372
domination over subgroup com-

pactification, 419
embedding into compact space,

27
example, 338, 339
flag-lattice compactification, 432

is hyperbolic, 450
of homogeneous space Γ\G, 391
orbit decomposition, 395
parametrization of continuous

spectrum, 457
real, 180, 183
real (noncompact, Hausdorff),

183
Satake compactification, 22
uniform construction, 367
vs. maximal Satake compact-

ification, 339
vs. subgroup compactification,

419, 420
vs. toroidal compactification,

22
reductive Borel-Serre partial com-

pactification, 392
reductive group, 39, 40, 292
refinement of compactification, 188
regular singularities, 24
Relations between compactifications,

188
relative Langlands decomposition,

48, 298
representation

class one, 260
generic, 89
regular, 387
spherical, 260
spherical or class one irreducible,

261
representing measure, 114, 118
resolution of singularities

Baily-Borel compactification, 20,
348

partial, 20
restricted root, 40
restriction of scalar, 302
Riemann extension theorem, 318
Riemannian symmetric space, X =

G/K, 32
Riesz representation theorem, 116
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rigidity of discrete subgroup
super, 110

rigidity of locally symmetric spaces,
30

root, 33, 40
additive vs. multiplicative, 41
canonical numbering, 321
critical, 321
distinguished root, 100
positive, 33
restricted, 40
space, 40, 41
system, 41
transfer, 297

root hyperplane, 209
root hyperplane, Hα, 40
root lattice, 342
root system, 40

Type BCr, 99
Type Cr, 99

roots on groups, 41
rough geometry of locally symmet-

ric space, 441

S-arithmetic groups, 30
Satake

compactification, 16
Satake compactification, 15–17, 21,

25, 68
G-orbits, 89
X
S

, 68
self-gluing into the Oshima com-

pactification, 235
analytic manifold, 219
applications, 90
as G-space, 85
as a ball, 203
as analytic manifold, 219
axioms, 85
Borel-Serre compactification, 22
boundary component, 75, 85,

426

boundary component and or-
bit, 85

boundary spaces, 73
characterization, 85
closure of flat, 28
closure of positive chamber, 86
cohomology, 30
compactness, 144
condition on boundary compo-

nents, 312
condition on closure of funda-

mental set, 312
continuous extension of action,

85
convergence of sequences in Weyl

chamber, 80
convergent sequence in positive

chamber, 86
convergent sequence, character-

ization, 81
decomposition into boundary

components, 88
definition, 77
dependence on τ , 86
difference from lattice compact-

ification, 424
dominating maps, 88
embedding, 26
example, 70, 89
example of rational ones, 314
finitely many isomorphic ones,

78
flat closure, 28
general, 77
general procedure, 311
geometrically rational, 313, 315,

425
geometrically rational, exam-

ple, 314
Hausdorff property, 143
inductive nature, 75
intrinsic construction, 147
isomorphic to sub-lattice com-
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pactification, 426
locally symmetric space, 309,

312
Martin compactification, 24, 119
maximal, 12, 87, 89
maximal vs. flag-lattice com-

pactification, 434
maximal, identification, 147
minimal, 18, 76, 87, 90
minimal vs. Baily-Borel, 105
moment map, 202
non-maximal, 148
not lattice compactification, 423
orbit, 83
orbit decomposition, 85
orbit decomposition of standard

compactification, 75
Oshima construction, 216
parametrization by Weyl cham-

ber faces, 87
partial ordering, 76, 87
procedure, 316
rational, 18
rational, example, 314
reductive Borel-Serre compact-

ification, 22
relation, 147
relation to Furstenberg com-

pactification, 111
second step, 76
small, 21
stabilizers of boundary com-

ponent, 89
standard, 68, 70, 89
steps for locally symmetric space,

18
subgroup compactification, 193
sup-lattice compactification, 428
topology, 30, 142
totally geodesic embedding, 77
two steps of construction, 68
uniform construction, 148

Satake topology, 14, 17, 310, 311

cylindrical, 324
Satake-compactification

continuous extension of group
action, 145

Satake-Furstenberg compactification,
18, 112

saturation of simple roots, 83
scattering geodesic, 288, 436, 454,

458
parameter space, 460
sojourn time, 436

scattering matrix, 460
second theme, 26
self-glue manifold with corners, 27,

226
self-gluing, 227

Borel-Serre compactification, 403
self-gluing of Rm≥0, 230

self-gluing of QX
BS

, 406
self-gluing of manifold with corners

equivariant quotient, 229
example, 230
existence, 227
generalization, 235
one-step construction, 232
special case, 229
structure, 229

semisimple algebraic group, 292
semisimple symmetric pair, 238
semisimple symmetric space, 237,

256, 272
four basic cases, 239

semisimple symmetric spaces, 237
separation property, 132
sequence, convergence class, 130
sheaf of analytic functions, 322
Siegel compactification, 15
Siegel conjecture, 445

rough geometry, 441
Siegel domain, 324

first kind, 324
second kind, 324
third kind, 324
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vs. horospherical decomposi-
tion, 402

Siegel domain of third kind, 19, 345
Siegel domain realization

geodesic, 346
vs. horospherical decomposi-

tion, 346
Siegel finiteness, 306
Siegel finiteness property, 306
Siegel modular group, 15, 304
Siegel modular variety, 15
Siegel problem, 19
Siegel question transcendental de-

gree, 318
Siegel rational boundary component,

17, 312, 315
Siegel set, 131, 132, 141, 299, 309

admissible domain, 128
comparison between different

kinds, 135
comparison of metrics, 29
different split component, 308
general vs. admissible domain,

140
general vs. usual, 134
generalization, 131
generalized, 134
generalized separation, 369
in G, 299
separation property, 132, 140,

307
strong separation, 133, 135, 138

Siegel upper half space, 305
Siegel upper half space, Hn, 14
signature map, 241
signature of a number, 230
signature of a set, 230
signature on a root system, 240
signature, proper, 220
simple roots, 33, 41

example, 99
saturation, 84

simple roots, ∆(g, a), 41

simplex in Tits building, ∆P , 57
singularity

explicit resolution, 20
link, 19
partial resolution, 20
resolution, 20, 22
resolution of Hilbert modular

surface, 20
topological resolution, 20, 22

skeleton of locally symmetric space,
444

smooth compactification, 223, 225,
246

sojourn time, 436, 459
discreteness, 460
scattering geodesic, 436

solvable groups, 291
space of closed subgroups, 191
space of flag, 421
space of flag lattice, 429
space of lattices, L(Rn), 421
space of probability measures, 18
spectral decomposition, 456

L2(Γ\X), 455
continuous spectrum, 456

spectral measure, 454, 458
sphere at infinity, 23, 52

G-orbits, 59
disjoint decomposition, 55

sphere at infinity, X(∞), 51
spherical decomposition

relative, 298
spherical or class one irreducible rep-

resentation, 261
spherical representation, 260
split component

Q vs. R, 314
example, 39, 100
parabolic subgroup, 45

split component, AP , 45
split group over Q, 292
splitting torus, 291
stabilizer of boundary component,
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74, 86, 89
explanation, 83

stabilizer of boundary point, 75
standard parabolic subalgebra, 41
standard parabolic subgroup, 42
standard representation, 69
standard Satake compactification,

17, 68, 70
example, 70
orbit decomposition, 73

stratification, 226
stratum, 226
strong separation of Siegel sets, 133,

135, 138
strong separation property, 128
strongly orthogonal roots, 97
sub-lattice compactification, 425
subalgebra compactification, 28, 191,

194
maximal Satake compactifica-

tion, 194
subgroup

arithmetic, 17, 32
arithmetic, more general, 411
Borel, 293
Levi, 292
maximal discrete, 410

subgroup compactification, 28, 191,
192, 409, 413, 417

G-orbits, 418
maximal Satake compactifica-

tion, 193
reductive Borel-Serre compact-

ification, 420
relation to reductive Borel-Serre

compactification, 419
vs. reductive Borel-Serre, 419

sup-lattice compactification, 427
superrigidity, 110
Supp(µ), 79
Supp(µi), support of weight µi, 136
support of weight, 78, 79
symmetric domain, 92

symmetric pair, (G,K), 32
symmetric space

boundary, 33
Brownian path, 121
compact type, 12
complex, 243
complexification, 25
definition, 39
formula for invariant metric,

438
harmonic analysis, 30
harmonic function, 18
Hermitian, 95, 318
Hermitian symmetric, 92
invariant metric, 40
large scale geometry, 30
local, 11
minimal Martin boundary, 120
non-Riemannian, 32
noncompact type, 11, 40
other types, 12
p-adic, 30
Poisson boundary, 120
potential theory, 30
references, 31
Riemannian and semisimple, 24
semisimple, 237, 256, 272
three types, 11
tiling, 309
totally geodesic embedding, 76

symmetric space of compact type,
11

symmetric space of flat type, 11
symmetric space of noncompact type,

11
symmetric space, X, 32
symmetric variety, 25, 32, 243

real locus, 262
sympletic group, 15

tangent cone at infinity, 442
theme

fifth, 27
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first, 26
fourth, 27
second, 26
third, 27

themes in this book, 26
third theme, 27
tile, 308
tiling

precise reduction theory, 308
Tits building, 294

∆(G) of real G, 34
∆Q(G) of rational G, 34
boundary components, 143, 164
realization, 57
topological, 58

Tits building, ∆(G), 56
Tits compactification, 50, 381, 384

asymptotic compactification, 453
isomorphic to Gromov compact-

ification for Γ\X, 441
Tits metric, 58
Tits partial compactification, 383
topics not covered, 29
topological ball

compactification, 198
topological ball, compactification,

197
topological Tits building, 58

application to compactification,
67, 184

realization in sphere, 59
topology

compactification, 30
conic, 52
convergent sequences, 142
cylindrical, 19, 324
geodesic compactification, 158
in terms of convergent sequences,

130
on set of boundary components,

58
Satake, 14, 17
Satake compactification, 142

Satake vs. cylindrical, 324
sum, 332
weak-?, 107, 111
Zariski, 45

toric varieties, 31
toroidal compactification, 20, 340

Borel-Serre compactification, 22
example, 402
motivation, 341
not hyperbolic, 451
vs. Borel-Serre compactifica-

tion, 22
vs. reductive Borel-Serre com-

pactification, 22
torus

algebraic, 291
example, 291
maximal split, 293
non-split, 291
split, 291
split over different fields, 291

torus embedding, 20, 207, 209, 341,
342

totally geodesic embedding, 69, 76
totally geodesic submanifold, 68, 76

Satake compactification, 76
transcendental degree, 318
transcendental degree of function

field, 318
tube domain, 20
type of parabolic subalgebra, 42
types of compactification, 25

uniform construction of compacti-
fication, 125, 351, 352

general features, 126
locally symmetric space, 352
symmetric space, 124

uniform method of compactification,
125

unipotent radical, 42, 292
example, 39

unipotent radical, NP , 45
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unipotent subgroup, 291
upper half plane, 38

V-manifold, 15
variation of Hodge structure, 31,

451
visibility compactification, 52
visibility sphere, 52

weakly rational boundary compo-
nent, 313

weight
more regular, 87
support, 136

weighted cohomology group, 21
weights of a representation, 78
Weyl chamber, 40
Weyl chamber decomposition, 209

symmetry, 210
Weyl chamber face, 209
Weyl group, 40, 293

example, 100
wonderful compactification, 25, 26,

221, 255, 258–260
alternative definition, 260, 279
application to Oshima compact-

ification, 234
definition, 259
Poisson geometry, 27
real locus, 255, 263
subalgebra compactification, 28
topology, 30
vs. Oshima-Sekiguchi, 279
vs. Oshima-Sekiguchi compact-

ification, 271, 281

Zariski topology, 45
Zucker conjecture, 325
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[BLV] M.Brion, D.Luna, T.Vust, Espaces homoge‘nes sphe’riques, Invent.
Math. 84 (1986) 617-632.

[Br1] K.Brown, Buildings, Springer-Verlag, 1989.

[Br2] K.Brown, Cohomology of groups, Graduate Texts in Mathematics,
87. Springer-Verlag, New York, 1994.

[BMP] R.Bruggeman, R.Miatello, I.Pacharoni, Density results for automor-
phic forms on Hilbert modular groups, Geom. Funct. Anal. 13 (2003)
681-719.

[BMW] R.Bruggeman, R.Miatello, N.Wallach, Resolvent and lattice points
on symmetric spaces of strictly negative curvature, Math. Ann. 315
(1999) 617-639.

[BuM1] U.Bunke, M.Olbrich, The spectrum of Kleinian manifolds, J. Funct.
Anal. 172 (2000) 76-164.

[BuM2] U.Bunke, M.Olbrich, Group cohomology and the singularities of the
Selberg zeta function associated to a Kleinian group, Ann. of Math.
149 (1999) 627-689.

[BuM3] U.Bunke, M.Olbrich, Gamma-cohomology and the Selberg zeta func-
tion, J. Reine Angew. Math. 467 (1995) 199-219.

[BuM4] U.Bunke, M.Olbrich, Selberg zeta and theta functions. A differential
operator approach, Akademie-Verlag, Berlin, 1995. 168 pp.

[BuM5] U.Bunke, M.Olbrich, The wave kernel for the Laplacian on the clas-
sical locally symmetric spaces of rank one, theta functions, trace
formulas and the Selberg zeta function, Ann. Global Anal. Geom. 12
(1994) 357-405.

[BuMo] M.Burger, N.Monod, Bounded cohomology of lattices in higher rank
Lie groups, J. Eur. Math. Soc. 1 (1999) 199-235.

[BuW] J.Burgos, J.Wildeshaus, Hodge modules on Shimura varieties and
their higher direct images in the Baily-Borel compactification, Ann.
Sci. E’cole Norm. Sup. 37 (2004) 363-413.



498 References

[BuS1] K.Burns, R.Spatzier, On the topological Tits buildings and their clas-
sifications, Publ. Sci. IHES 65 (1987), 5-34.

[BuS2] K.Burns, R.Spatzier, Manifolds of nonpositive curvature and their
buildings, Inst. Hautes Itudes Sci. Publ. Math. 65 (1987) 35-59.

[By] A.Bytsenko, Heat-kernel asymptotics of locally symmetric spaces of
rank one and Chern-Simons invariants, in Quantum gravity and
spectral geometry, Nuclear Phys. B Proc. Suppl. 104 (2002) 127-134.

[Cas1] W.Casselman, Canonical extensions of Harish-Chandra modules to
representations of G, Canad. J. Math. 41 (1989), 385-438.

[Cas2] W.Casselman, Geometric rationality of Satake compactifications, in
Algebraic groups and Lie groups, pp. 81–103, Austral. Math. Soc.
Lect. Ser., 9, Cambridge Univ. Press, Cambridge, 1997.

[Cass1] J.Cassels, An introduction to the geometry of numbers, Corrected
reprint of the 1971 edition, in Classics in Mathematics, Springer-
Verlag, 1997. viii+344 pp.

[Cass2] J.Cassels, Rational quadratic forms, in London Mathematical Society
Monographs, 13. Academic Press, Inc., 1978. xvi+413 pp.

[Cat1] E.Cattani, On the partial compactification of the arithmetic quotient
of a period matrix domain, Bull. Amer. Math. Soc. 80 (1974) 330-
333.

[Cat2] E.Cattani, Mixed Hodge structures, compactifications and mon-
odromy weight filtration, in Topics in transcendental algebraic ge-
ometry, pp. 75-100, Ann. of Math. Stud., vol. 106, Princeton Univ.
Press, 1984.

[Cat3] E.Cattani, Homogeneous spaces and Hodge theory, Conference on
differential geometry on homogeneous spaces, Rend. Sem. Mat. Univ.
Politec. Torino 1983, Special Issue, 1-16 (1984).

[CK] E.Cattani, A.Kaplan, Extension of period mappings for Hodge struc-
tures of weight two, Duke Math. J. 44 (1977) 1-43.

[CKS1] E.Cattani, A.Kaplan, W.Schmid, Some remarks on L2 and intersec-
tion cohomologies, in Hodge theory, 32-41, Lecture Notes in Math.,
vol. 1246, Springer, 1987.

[CKS2] E.Cattani, A.Kaplan, W.Schmid, Variations of polarized Hodge
structure: asymptotics and monodromy, in Hodge theory, pp. 16-31,
Lecture Notes in Math., vol. 1246, Springer, 1987.



References 499

[CKS3] E.Cattani, A.Kaplan, W.Schmid, L2 and intersection cohomologies
for a polarizable variation of Hodge structure, Invent. Math. 87
(1987) 217-252.

[Ch1] C.L.Chai, Arithmetic minimal compactification of the Hilbert-
Blumenthal moduli spaces, Ann. of Math. 131 (1990), 541-554.

[Ch2] C.L.Chai, Arithmetic compactification of the Siegel moduli space, in
Theta functions—Bowdoin 1987, Part 2, pp. 19-44, Proc. Sympos.
Pure Math., vol. 49, Part 2, Amer. Math. Soc., 1989.

[Ch3] C.L.Chai, Siegel moduli schemes and their compactifications over C,
in Arithmetic geometry, pp. 231-251, Springer, 1986.

[Ch4] C.L.Chai, Compactification of Siegel moduli schemes, London Math-
ematical Society Lecture Note Series, vol. 107, Cambridge University
Press, 1985. xvi+326 pp.

[CL] R.Charney, R.Lee, Cohomology of the Satake compactification,
Topology 22 (1983), no. 4 389-423.

[CY] S.Y.Cheng, S.T.Yau, Differential equations on Riemannian mani-
folds and their geometric applications, Comm. Pure Appl. Math. 28
(1975), 333–354.
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Birkhäuser, Switzerland, pp. 106-119.

[Ke2] Kelly, General topology, Graduate Texts in Math. vol. 27, Springer,
1955.

[KKMS] G.Kempf, F.Knudsen, D.Mumford, B.Saint-Donat, Toroidal embed-
dings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag,
1973. viii+209 pp.

[Ki] P.Kiernan, On the compactifications of arithmetic quotients of sym-
metric spaces, Bull. Amer. Math. Soc. 80 (1974), 109-110.

[KK1] P.Kiernan, S.Kobayashi, Comments on Satake compactification and
Picard theorem, J. Math. Soc. Japan 28 (1976), 577-580.

[KK2] P.Kiernan, S.Kobayashi, Satake compactification and extension of
holomorphic mappings, Invent. Math. 16 (1972), 237-248.

[Kn1] F.Knop, Homogeneous varieties for semisimple groups of rank one,
Compositio Math. 98 (1995) 77-89.



512 References

[Kn2] F.Knop, The Luna-Vust theory of spherical embeddings, in Proc. of
the Hyderabad Conference on Algebraic Groups, pp. 225-249, Manoj
Prakashan, Madras, 1991.

[KL] F.Knop, H.Lange, Some remarks on compactifications of commuta-
tive algebraic groups, Comment. Math. Helv. 60 (1985) 497-507.

[Kob1] S.Kobayashi, Hyperbolic complex spaces, Grundlehren der Mathema-
tischen Wissenschaften, vol. 318, 1998. xiv+471 pp.

[Kob2] S.Kobayashi, Hyperbolic manifolds and holomorphic mappings, Mar-
cel Dekker Inc., 1970.

[KO] S.Kobayashi, T.Ochiai, Satake compactification and the great Picard
theorem, J. Math. Soc. Japan 23 (1971), 340-350.

[Kom1] B.Komrakov, The lattice of geometric compactifications of symmet-
ric Riemannian spaces, (Russian) Uspehi Mat. Nauk 28 (1973) 217-
218.

[Kom2] B.Komrakov, Compactifications of simply connected Riemannian
spaces of nonpositive curvature, (Russian) Vesci Akad. Navuk BSSR
Ser. Fiz.-Mat. Navuk 1973, no. 3, 45-52, 136.

[Ko1] A.Koranyi, Poisson integrals and boundary components of symmetric
spaces, Inv. Math. 34 (1976), 19-35.

[Ko2] A.Koranyi, A survey of harmonic functions on symmetric spaces,
Proc. of Symp. in Pure Math. vol. XXXV, 1979, pp. 323-344.

[Ko3] A.Koranyi, Harmonic functions on symmetric spaces, in Symmetric
spaces ed. by W.Boothy and G.Weiss, 1973, Marcel Dekker, 1972,
pp. 380-412.

[Ko4] A.Koranyi, Admissible limit sets of discrete groups on symmetric
spaces of rank one, in Topics in Geometry: in memory of Joseph
D’Atri, ed. by S.Gindikin, Birkhäuser, 1996, pp. 231–240.
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