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Plan

1. KE metrics on Fano manifolds and coercivity of functionals.

2. K-stability from several points of view.

3. A variational proof of the YTD conjecture.

4. Extensions and speculations.

Based on joint work with R. Berman, H. Blum, S. Boucksom and
T. Hisamoto (in various configurations).

Heavily uses work by many, many other people! References far from
complete: apologies!



Part 1: Kähler-Einstein metrics on Fano manifolds

In this part:

• General remarks on Kähler-Einstein metrics.

• The “calculus” of metrics on line bundles.

• Functionals on the space of metrics.

• Kähler-Einstein metrics and coercivity of Ding and Mabuchi.



Kähler-Einstein metrics

• X = smooth complex projective variety of dim n.

• KX = canonical bundle (or divisor class).

• ω = Kähler form on X . Also think of as Hermitean metric.

• Say ω is a Kähler-Einstein (KE) metric if

Ricω = λω

for some λ ∈ R.

• The cases λ < 0 (X can. polarized) and λ = 0 (X Calabi-Yau)
are understood due to work by Calabi, Aubin and Yau. Namely,
there exists a unique Kähler-Einstein metric.

• Remains to consider the case when λ > 0 and X is Fano, i.e.
−KX ample. After scaling, λ = 1 so we look at

Ricω = ω.

• This equation may or may not have a solution!



KE metrics in Fano case

• Assume X Fano and look at the equation

Ricω = ω, (KE1)

where ω ∈ c1(X ) = c1(−KX ) is a Kähler form on X .

• Fix a reference Kähler form ω0 ∈ c1(X ) and write

ω = ω0 + ddcϕ,

for ϕ ∈ C∞(X ), where ddc = i
π∂∂. Then (KE1) becomes

(ω0 + ddcϕ)n = ce−2ϕµ, (KE2)

where c = c(ϕ) > 0 is a normalizing constant and µ = µ(ω0) is a
positive volume form on X .

• Equation (KE2) is a PDE of Monge-Ampère type.

• Both existence and uniqueness are nontrivial.



Bando-Mabuchi and YTD

• Uniqueness governed by the Bando-Mabuchi theorem.

• Thm [Bando-Mabuchi; Berndtsson] If X is Fano and ω, ω′ are
KE metrics, then there exists g ∈ Aut(X ) such that ω′ = g∗ω.

• Existence is more subtle. Starting with Matsushima ’57, people
found various obstructions.

• Example: P2 blown up in one pt is Fano but has no KE metric.

• YTD conjecture: a KE metric exists iff X is K-(poly)stable.

• Discuss K-stability later. In principle algebraic condition on X .

• Thm[Chen-Donaldson-Sun, Tian] The YTD conjecture is true.



Methods for constructing KE metrics

• Several approaches to solving the equation

(ω0 + ddcϕ)n = ce−2ϕµ. (KE2)

• Cont. method (Chen-Donaldson-Sun, Tian, Székelyhidi).
• Kähler-Ricci flow (Chen-Sun-Wang).
• Variational method (Berman-Boucksom-J).

• Will only discuss the variational method in these lectures.

• All methods have versions (easier, but still nontrivial) in the
canonically polarized and Calabi-Yau case. In these cases,
solutions always exist.

• In the Fano case, solutions do not always exist. The methods
must use the K-polystability assumption (explained later).



Variational approach: basic idea

• Again look at the equation

(ω0 + ddcϕ)n = ce−2ϕµ. (KE2)

• Consider the space H := {ϕ ∈ C∞(X ) | ω0 + ddcϕ > 0}.
• Define a functional F : H → R whose critical points, F ′(ϕ) = 0,

are solutions to (KE2).

• Find these critical points as minima of F on H.

• Not obvious that a minimizer exists: ignore this issue for now.

• Will use two different functionals: Mabuchi and Ding. . .

• . . . as well as some other functionals.

• Useful to identify elements of H as metrics on −KX .



Metrics on line bundles

• Equip C with the usual norm |a + ib| =
√
a2 + b2 for a, b ∈ R.

• A norm on a C-vector space V is a function ‖ · ‖ : V → R+ s.t.:

• ‖v‖ = 0 iff v = 0;
• ‖v + w‖ ≤ ‖v‖+ ‖w‖ for v ,w ∈ V ;
• ‖av‖ = |a| · ‖v‖ for a ∈ C and v ∈ V .

• If dimC V = 1, any two norms on V are proportional, but there is
no canonical norm on V in general.

• If π : L→ X is a line bundle on a complex manifold X , then a
metric on L is a function ‖ · ‖ : L→ R+ whose restriction to
π−1(x) ' C is a norm for all x ∈ X .

• Use additive terminology and identify a metric ‖ · ‖ with

φ := − log ‖ · ‖ : L× → R,

where L× is L with the zero section removed.



Calculus on metrics on line bundles

• Use additive terminology on line bundles, too: L1 +L2 := L1⊗L2.

• φi metric on Li , ai ∈ Z =⇒ a1φ1 + a2φ2 metric on a1L1 + a2L2.

• If s ∈ Γ(U, L) is a local nowhere vanishing section, then
φ := log |s| is a metric on L over U for which φ ◦ s ≡ 0.

• Identify metrics on OX with functions on X : evaluate at “1”.

• Given a reference metric φ0 on L, any other metric on L is of the
form φ = φ0 + ϕ, where ϕ is a function on X .

• Given a metric φ on L, set ddcφ := ddc(φ ◦ s) for any local
nonvanishing section s of L. Then ddcφ ∈ c1(L).

• Say φ is positive if φ smooth and ddcφ Kähler, i.e. ddcφ > 0.

• Any metric φ on KX induces volume form e2φ on X and conv’ly.

• In this way, Ricω = −ddc 1
2 log |ωn| for any Kähler form ω.

• X Fano, φ positive metric on −KX =⇒ ddcφ is a KE metric iff

(ddcφ)n = c(φ)e−2φ.



Functionals on the space of metrics

• Let (X , L) be a polarized smooth complex projective variety.
Identify X and L with their analytifications.

• Redefine H as the space of positive metrics φ on L.

• Can define several functionals on H.

The Monge-Ampère energy and related functionals.
The Mabuchi (or K -energy) functional.
The Ding functional (in the Fano case L = −KX ).

• Set V = (Ln). Then
∫
X (ddcφ)n = V for all φ ∈ H.

• Given metric φ ∈ H, set

MA(φ) := V−1(ddcφ)n.

This is a probability measure on X .



Monge-Ampère energy

• Fix reference metric φ0 ∈ H. Any other metric is of the form
φ = φ0 + ϕ, where ϕ is a function on X .

• Define the Monge-Ampère energy of φ as

E (φ) =
1

n + 1

n∑
j=0

V−1
∫
X
ϕ(ddcφ)j ∧ (ddcφ0)n−j

where V = (Ln).

• This is the antiderivative of the Monge-Ampère operator:

E ′(φ) = MA(φ)

i.e. d
dtE (φ+ tf )

∣∣
t=0

=
∫
X f MA(φ) for f ∈ C∞(X ).

• Also have E (φ0) = 0 and E (φ+ c) = E (φ) + c for c ∈ R.

• Can get rid of reference metric by viewing E as a metric 〈φn+1〉
on the line 〈Ln+1〉 given by the Deligne pairing.



The functionals I , J , and I − J

• Using the Monge-Ampère energy, can define several functionals
that serve as “norms” or exhaustion functions on H.

• The functionals I , J and I − J are given by

I (φ) =

∫
X
ϕ(MA(φ0)−MA(φ))

J(φ) =

∫
X
ϕMA(φ0)− E (φ)

(I − J)(φ) = E (φ)−
∫
X
ϕMA(φ).

• They are translation invariant: I (φ+ c) = I (φ) etc.

• We have I (φ) ≥ 0 with equality iff φ = φ0 + c . Same for J, I − J.

• We have the inequality

n−1J ≤ I − J ≤ nJ,

so the three functionals are equivalent.



The Ding functional

• Assume X is Fano and that L = −KX .

• Any metric φ ∈ H then induces a volume form e−2φ on X .

• The Ding functional on H is defined by

D(φ) = L(φ)− E (φ),

where

L(φ) = −1

2
log

∫
X
e−2φ.

• We have

D ′(φ) = e−2φ/

∫
X
e−2φ −MA(φ)

• Thus the critical points of Ding are Kähler-Einstein metrics!

• More precisely: D ′(φ) = 0 iff ω = ddcφ is a KE metric.



Entropy

• Define a reference prob. measure on X by µ0 = e−2φ0/
∫
X e−2φ0 ,

where φ0 ∈ H is the reference metric.

• Define the entropy of a probability measure µ (wrt µ0) as

Ent(µ) :=

∫
X

log
dµ

dµ0
µ,

if µ� µ0, and Ent(µ) = +∞ otherwise.

• We have Ent(µ) ≥ 0 with equality iff µ = µ0.

• The entropy functional is the Legendre dual of the functional L:

Ent(µ) = sup{L(φ)−
∫

(φ− φ0)µ
∣∣ φ smooth metric on L}

L(φ) = inf{Ent(µ) +

∫
(φ− φ0)µ

∣∣ µ prob measure on X}



The Mabuchi functional

• Define the Mabuchi functional on H by

M(φ) = H(φ)− (I − J)(φ),

where

H(φ) =
1

2
Ent(MA(φ))

• The critical points of the Mabuchi functional

M ′(φ) = 0,

also give rise to KE metrics, just like for the Ding functional.

• Can define the Mabuchi functional for general polarizations using
a different formula. In this case, the critical points define
constant scalar curvature Kähler metrics.

• The formula above is due to Tian and Chen.



Coercivity and KE metrics

• For Fano manifolds w/o nontrivial vector fields, the existence of
KE metrics can be detected by the Mabuchi and Ding functionals.

• Say M is coercive if ∃δ,C > 0 such that

M ≥ δJ − C on H.

• Thm [Tian97,. . . , BBEGZ16, DR17] If Aut(X ) finite, TFAE

(i) X admits a KE metric;
(ii) D is coercive;
(iii) M is coercive.

• By [DR17], the theorem is also true if X has nontrivial vector
fields if one replaces J(φ) in the coercivity condition by
JG (φ) := inf{J(g∗φ) | φ ∈ G} where G = Aut0(X ).

• In these lectures, we shall focus on the case when G = {id}.
• Will take Thm for granted, and relate coercivity to K-stability!



A version of the YTD conjecture

• Goal for rest of lectures is to explain the following result.

• Thm [Berman-Boucksom-J] For a Fano manifold X w/o
nontrivial vector fields, TFAE

(i) X admits a KE metric;
(ii) The Ding functional D is coercive;
(iii) The Mabuchi functional M is coercive;
(iv) X is uniformly K-stable;
(v) X is uniformly Ding-stable;

• Will take the equivalence of (i)–(iii) for granted.

• Need to explain (iv) and (v).

• Will outline proof of (iii) =⇒ (iv) =⇒ (v) =⇒ (iii).



Part 2: K-stability from several points of view

In this part (X Fano):

• K-stability via test configurations for X .

• K-stability via anticanonical Q-divisors on X .

• K-stability via (divisorial) valuations on X .

• K-stability via valuations on the cone C(X ).

• Berkovich analytifications.

• Test configurations as non-Archimedean metrics.

• K-stability via functionals on non-Archimedean metrics.

• K-stability and Ding stability.



K-stability

• The notion of K-stability was introduced by Tian and Donaldson
to understand obstructions for KE metrics.

• It is inspired by and related to stability in the sense of GIT.

• Its is algebraic in the sense that it works over any algebraically
closed field of characteristic zero.

• Here, will explain K-stability from 5 points of view:

(1) Test configurations for (X ,−KX ).
(2) Singularities of special divisors in | −mKX |, m� 0.
(3) Divisorial valuations on X .
(4) Valuations on the cone C(X ) of X .
(5) Non-Archimedean metrics on −KX .

• Will be sloppy with Cartier divisors, Q-Cartier divisors, line
bundles,. . .



Test configurations

• Let (X , L) be a polarized variety. A test-configuration for (X , L)
is essentially a 1-parameter degeneration of (X , L). Consists of:

(1) a flat scheme X → P1 and a Q-line bundle L on X ;
(2) a C∗-action on (X ,L) lifting the action on P1;
(3) a C∗-equivariant isomorphism

(X \ X0,L|X\X0
)
∼→ (X × (P1 \ {0}), p∗1L).

**** PICTURE ****

• The test configuration is normal if X is normal. It is
ample/semiample/nef if L is relatively ample/semiample/nef.



More on test configurations

• Any C∗-action on X induces a product test configuration
(X × P1, p∗1L), with the diagonal C∗-action on X × P1.

• As a special case, if the C∗-action on X is trivial, we get the
trivial test configuration for (X , L).

• If (X ,L) is a test configuration for (X , L), so is its normalization.

• A test configuration is almost trivial if its normalization is trivial.

• Suppose rL is very ample, where r ∈ N∗ and consider X ↪→ PV ,
where V = H0(X , rL). Then any 1-PS

C∗ → PGL(V )

gives rise to an ample (not necessarily normal) test configuration.
Every ample test configuration is obtained in this way.

• Will not use this characterization of ample test configurations.



Donaldson-Futaki invariant

• Consider ample test configuration (X ,L) for (X , L).

• Set Nm = h0(X ,mL). Note that h0(X0,L|X0) = Nm for m� 0.

• Have induced C∗-action on H0(X0,L|X0) and its determinant line
detH0(X0,L|X0). Let wm be the weight of the latter action.

• By (suitable versions of) Riemann-Roch, have expansion

wm

mNm
= F0 + m−1F1 + m−2F2 + . . .

where Fi ∈ Q. The Donaldson-Futaki invariant of (X ,L) is

DF(X ,L) = −2F1

• Can check that the Donaldson-Futaki invariant does not change
when replacing a tc by its normalization.

• Odaka, Wang: intersection theoretic formula for DF(X ,L).



K-stability via test configurations

• Say that the polarized pair (X , L) is

(i) K-semistable if DF(X ,L) ≥ 0 for every ample tc (X ,L).
(ii) K-stable if it is K-semistable and DF(X ,L) = 0 iff (X ,L)

almost trivial (i.e. its normalization is trivial).
(iii) K-polystable if it is K-semistable and DF(X ,L) = 0 iff

(X ,L) almost product (i.e. its normalization is a product).

• X Fano is K-semistable (etc) iff (X ,−KX ) is K-semistable.

• Can also consider the canonically polarized case L = KX and the
Calabi-Yau case KX = 0. In these cases (X , L) is always K-stable.

• Can also allow singularities. Odaka proved:

(i) a can. polarized normal variety is K-stable iff it is lc;
(ii) a polarized normal Calabi-Yau variety is K-stable iff it is klt.

• Can also allow non-normal varieties and pairs, but will stick to
the smooth case here.



Uniform K-stability

• K-stability means DF(X ,L) > 0 for any ample tc (X ,L) for
(X , L), except if (X ,L) is almost trivial.

• Can make this inequality quantitative.

• Introduce norm ‖(X ,L)‖ of a test configuration. See later.

• Key property: ‖(X ,L)‖ = 0 iff (X ,L) almost trivial.

• Uniform K-stability then means ∃δ > 0 such that

DF(X ,L) ≥ δ‖(X ,L)‖

for every ample test configuration (X ,L) for (X , L).

• Uniform K-stability implies that Aut(X , L) finite.

• Notion of uniform K-polystability being developed, won’t discuss.



Other approaches to K-stability

• The above definition of K-stability is the “traditional” one.

• Next, characterize K-stability of Fano mfld X in four other ways:

(1) Singularities of certain anticanonical Q-divisors on X .
(2) Invariants of divisorial valuations on X .
(3) Invariants of valuations on the cone C(X ).
(4) Non-Archimedean metrics on −KX .

• Will focus on the last one.



K-stability via anticanonical Q-divisors

• Define the alpha-invariant of a Fano manifold X by

α(X ) := inf{lct(D) | D effective Q-divisor,D ∼Q −KX},

an algebraic version of the invariant introduced by Tian.

• Fujita and Odaka introduced a new delta-invariant.

• Given m� 0, say D is of m-basis type if there exists a basis
s1, . . . , sNm for Γ(X ,−mKX ) such that D = 1

mNm

∑Nm
j=1 div(sj),

and set δm(X ) := inf{lct(D) | D of m-basis type}.
• Thm [Blum-J] The limit δ(X ) := limm δm(X ) exists, and

(i) X is K-semistable iff δ(X ) ≥ 1.
(ii) X is uniformly K-stable iff δ(X ) > 1.

• The result was conjectured by Fujita and Odaka.

• Proof uses result by Fujita and C. Li (and Li-Xu), see later.



K-stability via divisorial valuations

• Next, characterize K-stability of a Fano manifold as a condition
on divisorial valuations.

• Let X be a smooth variety. A prime divisor over X is a prime
divisor E ⊂ Y , where Y is a normal variety together with a
birational morphism π : Y → X .

• Such a divisor induces a divisorial valuation

ordE : κ(X )→ Z

• Two prime divisors E ⊂ Y and E ′ ⊂ Y ′ over X induce the same
divisorial valuation iff the canonical birational map Y 99K Y ′

sends E onto E ′.



Invariants of divisorial valuations

• Consider divisorial valuation ordE , associated to prime divisor
E ⊂ Y over X , with birational morphism π : Y → X .

• The log discrepancy of ordE is

AX (ordE ) := 1 + ordE (KY /X ),

where KY /X is the relative canonical divisor.

• Fix an ample line bundle L on X . Set V = Vol(L) = (Ln).

• Define

T (ordE ) := sup{t > 0 | π∗L− tE pseudoeffective}

and

S(ordE ) := V−1
∫ T (ordE )

0
Vol(π∗L− tE ) dt.

• These invariants depend only on ordE (and not on Y ).



K-stability of Fano manifolds via divisorial valuations

• Can characterize K-stability of a Fano mfld using div. valuations.

• Thm [Fujita, C. Li] If X is a Fano manifold, then

(i) X is K-semistable iff AX (ordE ) ≥ S(ordE ) for all E .

(ii) X is uniformly K-stable iff infE
AX (ordE )
S(ordE )

> 1.

• The invariants of X defined via anticanonical Q-divisors satisfy:

α(X ) = inf
E

AX (ordE )

T (ordE )
and δ(X ) = inf

E

AX (ordE )

S(ordE )

• This is easy for α(X ) and was proved for δ(X ) by Blum-J using
Okounkov bodies.

• The theorem by Fujita and Li thus implies the above
characterization of K-stability via anticanonical Q-divisors.

• The proof of the theorem uses MMP as in Li-Xu as well as the
notion of Ding-stability. More on this below.



K-stability via valuations on the cone C(X )

• Consider cone Y = C(X ) of a Fano mfld X . This has a klt
singularity at 0 and comes with C∗-action.

• Consider valuation v on C[Y ] centered at 0.

• C. Li introduced the normalized volume of v :

v̂ol(v) := AX (v)n+1 vol(v),

where AX (v) is the log discrepancy and vol(v) is the volume of v .

vol(v) = lim sup
m→∞

dimC(OY ,0/{v ≥ m}
mn+1/(n + 1)!

• Thm [Li, Li-Liu] X is K-semistable iff vol(v) is minimized for the
divisorial valuation ord0 obtained by blowing up 0 ∈ Y .

• Will not discuss this further here but the idea of working on the
cone is similar in spirit to working with test configurations.

• Recent work on general klt sings: Li-Liu, Li-Xu, Liu-Xu, Blum,. . .



K-stability via non-Archimedean geometry

• Next, interpret K-stability via non-Archimedean (NA) geometry.

• NA geometry is analogue of complex geometry when replacing
the complex numbers by elements of a NA field.

• NA field: field k with NA multiplicative norm | · | : k → R+, i.e.
|a + b| ≤ max{|a|, |b|}, |a| = 0 iff a = 0, |ab| = |a| · |b|.
• Key examples:

(i) k = C with the trivial norm: |a| = 1 for a 6= 0.
(ii) k = C((t)) with |f | = rord0(f ) for some r ∈ (0, 1).

• Other examples: k = Qp and k = Fp((t)). Won’t be used here.

• Will use the approach to NA geometry due to V. Berkovich.

• Don’t need general Berkovich spaces but only analytifications of
complex algebraic varieties. Further, mainly treat them as
topological spaces, ignoring structure sheaf.



Berkovich analytifications

• Fix NA field k (e.g. k = C with trivial norm).

• Given scheme X/k of f.t., define Berkovich analytification X an.

• If X = SpecA is affine, with A = f.g. k-algebra, then

X an = {multiplicative seminorms on A extending norm on k}

with weakest top. s.t. X an 3 | · | → |f | ∈ R+ cont. ∀f ∈ A.

• In general, get X an by gluing Uan for open affine subsets U ⊂ X .

• As a set, X an is the set of pairs (ξ, | · |), where ξ ∈ X is a scheme
pt, and | · | mult. norm on k(ξ) extending norm on k.

• Thm: X an is locally compact and locally arcwise connected.

• Morphism f : Y → X induces continous map f an : Y an → X an.

• Have various GAGA results, such as:

(i) X an compact (Hausdorff) iff X proper.
(ii) X an arcwise connected iff X connected.

• Have embedding X (k) ↪→ X an. Not surjective if dimX > 0.



The Berkovich affine line

• The Berkovich affine line A1,an
k looks like a tree.

**** PICTURES (triv and nontriv norm) ****

• It has a skeleton consisting of norms on k[T ] of the form

|
∑
i

aiT
i | = max

i
|ai |r i ,

for some fixed r ∈ R+.



Metrics on line bundles

• A line bundle L→ X analytifies to Lan → X an

• Fiber over x ∈ X an is isomorphic to A1,an
H(x), where H(x) is the

complete residue field of x , a NA extension of k .

• A metric on Lan is a function

‖ · ‖ : Lan → R+

whose restriction to any fiber Lanx ' A1,an
H(x) is of the form

| · | → c(x)|T |

for some c(x) ∈ R∗+.

• Completely analogous to the Archimedean situation!

• Will again work additively, replacing ‖ · ‖ by φ := − log ‖ · ‖.



Calculus on metrics on line bundles

• Much of the “calculus” in the Archimedean case carries over.

• φi metric on Li , ai ∈ Z =⇒ a1φ1 + a2φ2 metric on a1L1 + a2L2.

• If s ∈ Γ(U, L) is a nowhere vanishing local section, then
φ := log |s| is a metric on L over U for which φ ◦ s ≡ 0.

• Can and will identify metrics on Oan
X with functions on X an.

• Given a reference metric φ0 on Lan, any other metric on Lan is of
the form φ = φ0 + ϕ, where ϕ is a function on X an.

• Chambert-Loir and Ducros have given meaning to ddcφ for
suitably nice metrics φ on Lan. Will not define this here, but will
later use Monge-Ampère measure (ddcφ)n.

• Metrics on KX play special role: more on this later.



Fubini-Study metrics

• Now focus on case k = C with trivial norm and X projective.

• Instead of “metric on Lan” will say “NA metric on L”.

• Given glob sections sj of mL w/o common zeros, and λj ∈ Z,

φ := m−1 max
1≤j≤l

(log |sj |+ λj)

is a continuous NA metric on L, called Fubini-Study (FS) metric.

• If λj = 0 ∀j , get can. NA metric on L, the trivial metric φtriv.

• A DFS metric is a difference of FS metrics. A DFS function is a
DFS metric on OX , viewed as fcn on X an. Notation: DFS(X ).

• Fact: DFS(X ) is dense in C 0(X an).

• DFS metrics are NA analogues of smooth metrics.

• FS metrics are NA analogues of positive smooth metrics. For this
reason, also write HNA := FS(L).



Test configurations and divisorial valuations

• Let X be a smooth (or normal) projective variety.

• A valuation on X is a valuation v on the function field k(X ) that
is trivial on the ground field C.

• Say v is a divisorial valuation on X if v = c ordF , where c ∈ Q∗+
and F is a prime divisor over X .

• Every valuation v on X defines a point x = exp(−v) in X an.

• Fact: the set X div ⊂ X an consisting of points corresponding to
divisorial valuations is dense in X an.

• Consider normal test configuration X for X and an irreducible
component E ⊂ X0 of the central fiber.

• Then ordE is a C∗-invariant divisorial valuation on X .

• Fact: The restriction of ordE to C(X ) ⊂ C(X ) is a valuation on
X that is either divisorial or the trivial valuation on X . Further,
every such valuation on X arises in this way.



Test configurations and NA metrics

• Consider X/C sm proj and L→ X line bundle (not nec. ample).

• Any tc (X ,L) for (X , L) induces a NA metric φL on L.

• Won’t give complete definition, but if s ∈ H0(X , L), let s̄ be the
canonical C∗-equivariant extension of s to a rational section of L.
Then s̄ ∈ H0(X ,L) iff φL ◦ s ≥ 0.

• The metric φL does not change under pullbacks:{
ρ : X ′ → X birat’l, C∗-equivariant

L′ = ρ∗L
=⇒ φL′ = φL.

• In general, φL = φL′ iff (X ,L), (X ′,L′) admit common pullback.

• Fact: Let φ be a NA metric on L

(i) φ ∈ DFS(L) iff φ = φL for some L;
(ii) φ ∈ FS(L) iff φ = φL for some semiample (or ample) L.

• Thus DFS (resp. FS) metrics on L can be though of as
equivalence classes of tc’s (resp. semiample tc’s) for (X , L).



Monge-Ampère measures

• For 1 ≤ j ≤ n, let φi be a NA metric on a line bundles Lj
represented by a test configuration (Xj ,Lj) for (X , Lj).

• The mixed Monge-Ampère measure ddcφ1 ∧ · · · ∧ ddcφn is a
finite signed atomic measure on X div ⊂ X an defined as follows.

• May assume Xj = X independent of j . Write the central fiber as

X0 =
∑
i∈I

biEi ,

and let xi ∈ X div be the point corresponding to Ei . Then

ddcφ1 ∧ · · · ∧ ddcφn =
∑
i∈I

bi (L1|Ei
· . . . · Ln|Ei

)δxi .

• If the Li are ample and the φi positive, then the mixed
Monge-Ampère measure is a positive measure.

• If L is ample and φ ∈ HNA, then we write

MA(φ) := V−1(ddcφ)n = V−1ddcφ ∧ · · · ∧ ddcφ,

where V = (Ln) = Vol(L).



Energy functionals

• Define the energy functionals E , I , J in exactly the same way as
before, using φtriv as reference metric:

E (φ) =
1

n + 1

n∑
j=0

V−1
∫
X
ϕ(ddcφ)j ∧ (ddcφtriv)n−j

I (φ) =

∫
X
ϕ(MA(φtriv)−MA(φ))

J(φ) =

∫
X
ϕMA(φtriv)− E (φ).

where ϕ = φ− φtriv is a function on X an.

• If φ = φL, can also write these using intersection nos on X , e.g.

E (φL) =
1

n + 1
V−1(Ln+1).

• The functionals I , J and I − J are ≥ 0 and comparable. We have
J(φ) ≥ 0 with equality iff φ = φtriv. Same for I , I − J.

• Use any one of them as “norm” on HNA, e.g. ‖(X ,L)‖ := J(φL).



The Ding functional

• Now assume X Fano and L = −KX .

• Extend log discrepancy A = AX as lsc function on X an.

• The Ding functional
D : HNA → R

is again defined as

D(φ) = L(φ)− E (φ),

where the functional L is defined by

L(φ) = inf
Xan

(A + φ− φtriv).

• Say X is Ding semistable if D ≥ 0 on HNA.

• Say X is uniformly Ding stable if ∃δ > 0 s.t. D ≥ δJ on HNA.



Entropy and the Mabuchi functional

• The entropy of a probability measure µ on X an is defined in
terms of the log discrepancy:

Ent(µ) :=

∫
Xan

A(x) dµ(x).

• The Mabuchi functional M : HNA → R is now defined as

M(φ) = Ent(MA(φ))− (I − J)(φ).

• The Mabuchi functional can be defined for more general
polarizations. The formula above is the NA Chen-Tian formula.

• The Mabuchi functional is closely related to the DF invariant.

• If φ = φL ∈ HNA is defined by a normal ample tc (X ,L), then

DF(X ,L) = M(φL) + V−1((X0 −X0,red) · Ln)

≥ M(φL)

with equality iff X0 is reduced.

• The Mabuchi functional is “better” than the DF invariant.



K-stability and Ding stability

• Thm [Boucksom-Hisamoto-J] For X Fano and δ ≥ 0 we have:

DF ≥ δJ on HNA ⇔ M ≥ δJ on HNA. (uKs)

• Setting δ = 0 shows X K-semistable iff M ≥ 0 on HNA.

• If ineqs in (uKs) hold for some δ > 0, say X uniformly K-stable.

• Notion makes sense for general L. Also introduced by Dervan.

• Thm [Berman-Boucksom-J, Fujita] For X Fano:

(i) X K-semistable iff X Ding-semistable
(ii) X uniformly K-stable iff X uniformly Ding stable.

In fact, can use the same δ ∈ (0, 1] in (ii).

• The proof uses MMP as pioneered by Li-Xu. Sketch:

• Always have M ≥ D so “if” is clear.
• For “only if” run MMP starting with tc. Check that D − δJ

decreasing and end up with tc where D = M.

• Alternative proof in preparation uses Legendre duality between
the functionals L and Ent (cf. Berman in the Arch. case.)



Part 3: A variational proof of the YTD conjecture

In this part:

• Partial summary of Parts 1 and 2.

• Remarks on non-Archimedean degenerations.

• Proof of necessity of K-stability.

• Proof of sufficiency ot K-stability: simplified picture.

• More details: singular metrics of finite energy.



Partial summary of Lectures 1 and 2

• Goal: variational proof of YTD conjecture in special case.

• Let X be a complex Fano manifold with Aut(X ) finite.

• Black box: ∃ KE metric on X ⇔ Mabuchi or Ding coercive:

M ≥ δJ − C ⇔ D ≥ δJ − C ′ on H,

where H = {positive metrics on −KX} and δ,C ,C ′ > 0.

• Study K-stability using Berkovich geometry wrt trivial norm on C.

• Saw: X uniformly K-stable iff X uniformly Ding stable

M ≥ δJ ⇔ D ≥ δJ on HNA,

where HNA = {Fubini Study metrics on −KX} and δ > 0.

• Now want to show that all four conditions above are equivalent.

• Idea: the metrics in HNA arise as degenerations of metrics in H.



Non-Archimedean degenerations

• Variational proof of YTD conjecture involves considering NA
metrics as degenerations of Archimedean metrics.

• The idea of NA objects as limits of degenerations has appeared
several times in the literature, for example:

(i) Bergman ’71: the logarithmic limit set of an alg variety.
(ii) Morgan-Shalen ’84: compactifications of affine algebraic

varieties using valuations.
(iii) Mikhalkin ’01, Rullg̊ard ’01, J ’16: degenerations of

amoebas to tropical varieties.
(iv) Kiwi ’06, ’15; DeMarco-Faber ’14, 16; Favre ’16:

degeneration of complex dynamics to NA dynamics.
(v) Boucksom-J ’17: Degenerations of Calabi-Yau varieties.

• A trivial but relevant remark is that if | · | is the Euclidean norm
on C, then | · |ρ converges pointwise to the trivial norm as ρ→ 0.



Necessity of K-stability for existence of KE metrics

• Suppose X has KE metric, so Ding and Mabuchi are coercive:

M ≥ D ≥ δJ − C on H.

• Consider any ample test configuration (X ,L) for (X ,−KX ).

• Pick a smooth S1-invariant semipositive metric Φ for L near X0.

• Using C∗-action, Φ induces a ray (φt)∞0 of metrics on L.

• Thm: if F is any of the functionals E , I , J, M or D, then

lim
t→∞

t−1F (φt) = F (φL),

where φL ∈ HNA is the NA metric defined by (X ,L).

• Thus D,M ≥ δJ on HNA i.e. X is unif. Ding and K-stable.

• The case F = D due to Berman.

• The cases F = E , I , J,M proved in [BHJ2] using Deligne
pairings. Earlier versions exist in the literature.



Sufficiency of K-stability: outline

• Now suppose X uniformly Ding (and hence K-)stable:

M ≥ D ≥ δJ

on HNA for some δ ∈ (0, 1).

• Want to prove Mabuchi coercive: for any δ′ ∈ (0, δ)

M ≥ δ′J − C

on H for some C = Cδ′ > 0.

• Argue by contradiction: suppose there exists (φj)
∞
1 such that

M(φj) ≤ δ′J(φj)− j .

• Idea is to “extract” from (φj)
∞
1 a ray (φt)∞0 in H and a NA

metric φ ∈ HNA such that D(φt) ≤ δ′J(φt) and

lim t−1F (φt) = F (φ)

where F = D, J. This contradicts D ≥ δJ on HNA.



Difficulties and remedies

• Unclear how to “extract” (subgeodesic) ray from sequence in H.

• Even if this can be done, no reason why this ray is associated to
a test configuration, i.e. to a metric in HNA.

• Both problems can be overcome by working with more general
Archimedean and NA metrics on −KX .

• On the Archimedean side, we use the space E ⊃ H of (singular)
metrics of finite energy. Extensively studied by Darvas, following
work of Cegrell, Guedj-Zeriahi, BBEGZ, . . .

• The space E has a Finsler metric with certain compactness
properties, allowing us to construct generalized geodesic rays.

• On the NA side, there is a corresponding space ENA ⊃ HNA. A
geodesic ray in E induces a metric in ENA.

• Instead of metrics in ENA, can work with sequences of test
configurations, so don’t need to formally introduce ENA.



Metrics of finite energy
• Consider general smooth polarized variety (X , L).
• There exists a natural space PSH(L) of (singular) metrics on L.

Can define it as the set of decreasing limits of metrics in H.
• Extend the Monge-Ampère energy functional E to PSH(L) via

E (φ) = inf{E (ψ) | ψ ≥ φ, ψ ∈ H},
and define E = E(L) as the space of metrics of finite energy:

E = {φ ∈ PSH(L) | E (φ) > −∞}.
• Can define Monge Ampère measures and extend the functionals
I , J, M to the space E . Same for D = Ding if L = −KX .
• Thm [GZ]. The Monge-Ampère operator induces a bijection

MA: E/R ∼→M,

withM the space of probability measures µ on X of finite energy,

E ∗(µ) := sup{E (φ)−
∫

(φ− φ0) MA(φ) | φ ∈ H} < +∞.

Further, we have E ∗(MA(φ)) = (I − J)(φ).



Non-Archimedean metrics of finite energy

• Consider smooth polarized complex variety (X , L).

• Can define the space ENA of NA (singular) metrics of finite
energy exactly as in the Archimedean case.

• Same for the space MNA of Radon probability measures µ on
X an of finite energy, E ∗(µ) < +∞.

• Can define Monge Ampère measures and extend the functionals
I , J, M to the space ENA. Same for D = Ding if L = −KX .

• Thm [Boucksom-Favre-J, Boucksom-J]. We have a bijection

MA: ENA/R
∼→MNA,

and the supremum in E ∗(MA(φ)) is attained at φ, i.e.

E ∗(MA(φ)) = (I − J)(φ)

for any φ ∈ ENA.

• Can use this result to prove that uniform K-stability is equivalent
to uniform Ding-stability.



Sufficiency of K-stability: some further details

• To reach contradiction, assume 0 < δ′ < δ < 1,

D ≥ δJ on HNA.

and there exists a sequence (φj)
∞
1 in H such that

M(φj) ≤ δ′J(φj)− j .

• Chen: join φ0 and φj by geodesic segment φtj , 0 ≤ t ≤ Tj in E .

• Convexity of M [Berman-Berndtsson] =⇒ M(φtj ) ≤ δ′t.

• Thus, for fixed T , the metrics φtj , t ≤ T , lie in compact subset
of E . Use Ascoli to construct geodesic ray (φt)∞0 in E such that

D(φt) ≤ M(φt) ≤ δ′t



Sufficiency of K-stability: cont.

• The constructed geodesic ray (φt)∞0 in E satisfies

E (φt) = −t, sup(φt − φ0) = 0 and D(φt) ≤ δ′t for all t.

• Will use ray to construct NA metric ψ ∈ ENA. How?

• Ray induces S1-invariant psh metric Φ on the lb p∗1L on X ×D∗.
Extends to the central fiber, i.e. psh metric on p∗1L on X ×D.

• For m ≥ 1, let µm : Xm → X × P1 be the normalized blowup
along the multiplier ideal J (mΦ).

• Set Lm := µ∗mp
∗
1L− 1

m+m0
Em, where Em = exc div and m0 � 0.

• Then (Xm,Lm) is a tc for X , defining metric ψm ∈ HNA.

• By subadditivity of multiplier ideals, the sequence ψm in HNA is
essentially decreasing, and has a psh limit ψ.

• Can now show ψ ∈ ENA and D(ψ) ≤ δ′J(ψ), a contradiction.



Sufficiency of K-stability: cont.

• Pick Ψm = smooth S1-inv. psh metric on Lm near X0. It defines:

(i) subgeodesic ray (ψt
m)t in H.

(ii) an S1-invariant psh metric Φm on p∗1L above X ×D∗.

• Know limt t
−1L(ψt

m) = L(ψm) and limt t
−1E (ψt

m) = E (ψm).

• Demailly’s reg. thm =⇒ Φm less singular than Φ. Thus

E (ψm) = lim t−1E (ψt
m) ≥ lim

t
t−1E (ψt) = −1,

and hence E (ψ) = limm E (ψm) ≥ −1. In particular, ψ ∈ ENA.

• Thm: limt L(φt) = L(ψ). This follows from the fact [BFJ08]
that integrability can be detected using valuations.

• Since C ≥ D(φt)− δ′J(φt) = L(φt)− (1− δ′)t, it follows that
L(ψ) ≤ 1− δ′; hence D(ψ)− δ′J(ψ) = L(ψ)− (1− δ′)E (ψ) ≤ 0.

• This completes the proof of sufficiency!

• Again: can formulate everything in terms of sequences of test
configurations if one wants to avoid NA language.



Part 4: Extensions, comments, speculations

• K-stability and uniform K-stability.

• The case of vector fields, and singular Fanos.

• The case of cscK metrics.

• Twisted Kähler-Einstein metrics.



K-stability and uniform K-stability

• Suppose X Fano with Aut(X ) finite.

• By [CDS, Tian] and [BBJ], X K-stable iff X unif K-stable.

• Is there a direct algebraic (or NA) proof, not using KE metrics?



The case of vector fields, and singular Fanos

• Should be able to modify proof to allow for vector fields.

• Darvas-Rubinstein: coercivity of modified versions of Ding and
Mabuchi equivalent to existence of KE metrics

• On NA side, need to develop analogous notions of uniform
K-polystability and uniform Ding-polystability.

• This is work in progress.

• Should also be able to treat the case X = Q-Fano (or log Fano)
but there are some analytic difficulties.



The case of cscK metrics

• More general YTD conjecture: the existence of a cscK metric
ω ∈ c1(L) is equivalent to (some kind of) K-stability for (X , L).

• If Aut(X , L) finite, uniform K-stability may be the right condition.

• Berman-Darvas-Lu: cscK metric implies stability. Other direction
completely open in general.

• Unfortunately, our proof uses X Fano at several places. . .



Twisted KE metrics

• Method does generalize to existence of twisted KE metrics.

• Consider any smooth complex polarized variety (X , L).

• Question: for what δ ≥ 0 is the following true: for any
α ∈ c1(−KX − δL) there exists ω ∈ c1(L) Kähler with

Ricω = δω + α?

• Yau’s theorem (for integral classes) exactly says that δ = 0 works!

• Thm [BBJ]: The supremum of such δ is the delta-invariant
introduced by Fujita-Odaka (for L = −KX ):

δ(L) = lim
m→∞

inf{lct(D) | 0 ≤ D ∼Q L of m-basis type},

i.e.

D = (mNm)−1
Nm∑
1

div(sj) for basis s1, . . . , sNm of H0(X ,mL).

where the existence of the limit is proved by Blum-J.


