Pluripotential theory in a non-archimedean setting

Mattias Jonsson (University of Michigan)

NUS, Jan 6, 2011

Mattias Jonsson (University of Michigan) Pluripotential theory in a non-archimedean setting

- Archimedean pluripotential theory.
- Non-archimedean pluripotential theory.
- ► Joint work with S. Boucksom and C. Favre.

Pluripotential theory on Kähler manifolds

- Pluripotential theory = study of plurisubharmonic (psh) fcns.
- (X, ω) compact Kähler manifold. Assume $\int_X \omega^n = 1$.
- ▶ Say $\varphi: X \to [-\infty, \infty[\ \omega\text{-psh} \text{ if } dd^c \varphi + \omega \ge 0.$
- Example: $X = \mathbf{P}^n$, $\omega =$ Fubini-Study and

$$\varphi = \frac{1}{2m} \log \sum_{k=1}^{N} \frac{|f_k|^2}{\|\cdot\|^{2m}},$$

where f_1, \ldots, f_N homo polys on \mathbf{C}^{n+1} with $\bigcap_k f_k^{-1}(0) = \{0\}$.

Compactness property: the function

$$\mathsf{PSH}(X,\omega) \ni \varphi \mapsto \sup_X \varphi \in \mathbf{R}$$

is continuous and proper in the L^1 -topology.

Geometric Monge-Ampère equation

Monge-Ampère equation: given probability measure μ on X, find ω-psh function φ on X such that

$$\mathsf{MA}(\varphi) := (\omega + dd^c \varphi)^n = \mu.$$

- Thm by Calabi/Yau: uniqueness/existence when µ > 0 smooth.
- ► Thm by Guedj-Zeriahi/Dinew: existence/uniqueness when µ non-pluripolar measure (no mass on {u = -∞}, u psh).
- Example: $X = \mathbf{P}^1$, $\omega =$ Fubini-Study.

$$arphi(z) = \int \log rac{|z-w|}{\sqrt{1+|w|^2}} d\mu(w).$$

► Non-linear problem in dim > 1!

Capacity and extremal functions

- To study MA eqn, useful to develop capacity theory.
- For any subset $E \subseteq X$, define *extremal function*

$$u_E = \sup\{\varphi \in \mathsf{PSH}(X, \omega) \mid \varphi \leq 0, \varphi|_E \leq -1\}.$$

• For $E \subseteq X$ Borel, define the *capacity*

$$Cap(E) = sup\{\int_E MA(\varphi) \mid \varphi \in PSH(X, \omega), -1 \le \varphi \le 0\}.$$

- ▶ **Thm**: for $K \subseteq X$ compact, $Cap(K) = \int_K MA(u_K^*)$ and supp $MA(u_K^*) \subseteq K$.
- Thm: for any $E \subseteq X$, TFAE:
 - *E* is pluripolar, i.e. $E \subseteq \{u = -\infty\}$, *u* psh;
 - $\forall \varepsilon \exists G \supseteq E \text{ open with } Cap(G) < \epsilon;$

•
$$u_E^* \equiv 0;$$

► E is "negligable".

- ▶ **Regularization**: can approximate any $\varphi \in \mathsf{PSH}(X, \omega)$ by a *decreasing sequence* $\varphi_j \searrow \varphi$, with $\varphi_j \in \mathsf{PSH}(X, \omega) \cap C^{\infty}(X)$.
- Comparison principle:

$$\int\limits_{arphi < \psi} \mathsf{MA}(\psi) \leq \int\limits_{arphi < \psi} \mathsf{MA}(arphi)$$

for $\varphi, \psi \in \mathsf{PSH}(X, \omega)$ sufficiently regular.

- Balayage": Can solve MA = 0 with Dirichlet boundary condition. Implies supp MA(u^{*}_K) ⊂ K.
- Countability: X has countable basis for topology. Used to prove e.g. Choquet's Lemma.

Beyond Archimedes

- Try to extend previous analysis to non-archimedean setting.
- Natural for problems of arithmetic nature.
- Relevant work by several people: Baker-Rumely, Boucksom-Favre-J, Chambert-Loir, Chinburg-Rumely, Favre-Rivera-Letelier, Gubler, Kontsevich-Tschinkel, Liu, Thuillier, Yuan-Zhang,
- **Definition**. Archimedean=not non-Archimedean.
- Factoid: Archimedes died 2222 years ago.

- ► Assume k field equipped with non-archimedean norm: |a + b| ≤ max{|a|, |b|}. Also assume k complete.
- Example: C((t)) (Laurent series) 0 < |t| < 1, |c| = 1.
- Example: any field k with trivial norm: |a| = 1, $a \neq 0$.
- Can try to develop analytic geometry as over C.
- ▶ Problem 1: *k* totally disconnected.
- ▶ Problem 2: in general, *k* not locally compact.
- Various ways to deal with this.
- Approach: replace k (or kⁿ) by suitable Berkovich space (space of valuations).

The Berkovich affine space

- ▶ Def: Aⁿ_{Berk} is the set of multiplicative seminorms on k[z₁,..., z_n] extending the given norm on k.
- When $k = \mathbf{C}$, $\mathbf{A}_{Berk}^n = \mathbf{C}^n$ by Gelfand-Mazur.
- Points of A¹_{Berk} can be viewed as *balls* in *k*. Thus A¹_{Berk} admits *tree structure*.

For n > 1, $\mathbf{A}_{\text{Berk}}^n$ harder to visualize!

The valuation space ${\cal V}$

- Try to adapt previous results to Berkovich spaces. Look at special case: k = C with trivial valuation.
- Define subsets $\mathcal{V} \subset \widehat{\mathcal{V}} \subset \mathbf{A}^n_{\mathsf{Berk}}$ by

$$\widehat{\mathcal{V}} := \{ \text{seminorms on } \mathbf{C}[z_1, \dots, z_n] \mid \max_i |z_i| < 1 \}.$$

$$\mathcal{V} := \{ ext{seminorms on } \mathbf{C}[z_1, \dots, z_n] \mid \max_i |z_i| = e^{-1} \}.$$

- ▶ Useful for studying singularities at a point in Cⁿ.
 ▶ Û ≃ cone over V.
- ▶ V contractible compact Hausdorff space. No countable basis.
- $\mathcal{V} \simeq$ limit of simplicial complexes. **R**-tree when n = 2.
- ▶ Define class PSH(V) and "do" pluripotential theory on it.
- Functions in $PSH(\mathcal{V})$ extend to $\widehat{\mathcal{V}}$ by homogeneity.

Plurisubharmonic functions

View elements of V as semivaluations

$$\nu: \mathbf{C}[z_1,\ldots,z_n] \to [0,+\infty]$$

using $|\cdot| = e^{-\nu}$.

Define psh fcn as decreasing limit of fcns of the form

 $c \max_{1 \leq j \leq N} \log |f_j|,$

where c > 0, $f_j \in \mathbf{C}[z_1, ..., z_n]$ and $\bigcap_j \{f_j = 0\} = \{0\}$.

- Here $\log |f|(\nu) := -\nu(f)$.
- ► Can define analogy of L¹-topology (but not metrizable).
- Thm: the function

$$\mathsf{PSH}(\mathcal{V})
i \varphi \mapsto \sup_{\mathcal{V}} \varphi \in \mathbf{R}_{-}$$

is continuous and proper.

• Proof uses multiplier ideals to construct $\varphi_j \searrow \varphi$.

Monge-Ampère operator on $\ensuremath{\mathcal{V}}$

- First define MA(φ) for $\varphi = \max_j \log |f_j|$.
- Suffices to define $\int_{\mathcal{V}} \psi \operatorname{MA}(\varphi)$ for $\psi = \max_{i} \log |g_{i}|$.
- Do this as a local intersection number. Analytically:

$$\int_{\mathcal{V}}\psi\operatorname{\mathsf{MA}}(\varphi)=-((\mathit{dd}^{c}\varphi)^{n-1}\wedge \mathit{dd}^{c}\psi)\{0\},$$

where in the RHS we view φ and ψ as functions on \mathbf{C}^n !

- ► For general $\varphi \in \mathsf{PSH}(\mathcal{V})$, define $\mathsf{MA}(\varphi) = \lim_{j \to \infty} \mathsf{MA}(\varphi_j)$, where $\varphi_j \searrow \varphi$.
- Thm. Unique solution to MA(φ) = μ for any non-pluripolar measure μ.
- Existence proof uses variational approach (Alexandrov; Berman-Boucksom-Guedj-Zeriahi).
- Need to develop capacity theory along the way.

Capacity and extremal functions

• For any subset $E \subseteq \mathcal{V}$, define *extremal function*

$$u_E = \sup\{\varphi \in \mathsf{PSH}(\mathcal{V}) \mid \varphi|_E \leq -1\}.$$

• For $E \subseteq \mathcal{V}$ Borel, define the *capacity*

$$Cap(E) = sup\{\int_E MA(\varphi) \mid \varphi \in PSH(\mathcal{V}), \varphi \ge -1\}.$$

- ▶ **Thm**: for $K \subseteq \mathcal{V}$ compact, $Cap(K) = \int_K MA(u_K^*)$ and supp $MA(u_K^*) \subseteq K$.
- Thm: for any $E \subseteq \mathcal{V}$, TFAE:
 - *E* is pluripolar, i.e. $E \subseteq \{u = -\infty\}$, *u* psh;
 - $\forall \varepsilon \exists G \supseteq E \text{ open with } Cap(G) < \epsilon;$
 - $u_E^* \equiv 0;$
 - E is "negligable".
- Results exactly parallel to the archimedean situation!

- Many proofs are the same as in the archimedean situation, but a few basic ingredients are different.
- ► Countability: V has no countable basis for topology but C[z₁,..., z_n] is noetherian. Used to prove Choquet's Lemma.
- ► Regularization: can approximate any φ ∈ PSH(V) by a decreasing sequence φ_j ↘ φ, with φ_j ∈ PSH(V) of nice form.
- ► This was built into the definition of PSH(V)... but then properness of φ → sup φ was hard to establish!
- ► In Cⁿ, can regularize using convolution. On V, we use multiplier ideals.

Comparison principle:

$$\int\limits_{arphi < \psi} \mathsf{MA}(\psi) \leq \int\limits_{arphi < \psi} \mathsf{MA}(arphi)$$

for $\varphi, \psi \in \mathsf{PSH}(\mathcal{V})$ not too singular.

- As in \mathbf{C}^n prove this by reduction to the case φ , ψ "smooth".
- In Cⁿ, the smooth case uses Stokes' theorem. On V, uses positivity of certain intersection nos.
- "Balayage": Don't know how to solve Dirichlet problem locally. Replacement is the orthogonality property of asymptotic Zariski decompositions in the sense of Boucksom-Demailly-Păun-Peternell.

- Would like to do pluripotential theory on other Berkovich spaces.
- Example: work on all of \mathbf{A}_{Berk}^n , not just localized at one point.
- ► Example: analytification of projective varieties over **C**((*t*)).