Dynamics of monomial mappings

Mattias Jonsson and Elizabeth Wulcan

Albi, January 30, 2010

Mattias Jonsson and Elizabeth Wulcan Dynamics of monomial mappings

- Stability: definition and motivation.
- Old and new results.
- Toric varieties: translation.
- Ideas of proof.

Pullback by meromorphic maps

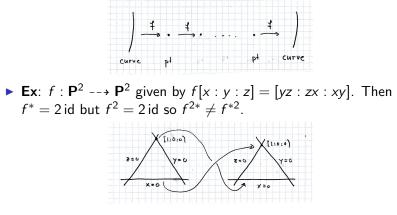
- ► Consider *f* : *X* --→ *X* meromorphic, *X* complex manifold.
- In dynamics, look for invariant objects, e.g. T positive closed (1,1)-current with f^{*}T = λT, λ > 0.
- ▶ What is meant by *f*^{*} when *f* meromorphic?
- Resolve singularities of f:

$$\begin{array}{c} \tilde{X} \\ \pi \\ \chi \\ \chi \\ \chi \\ - \frac{f}{-} > \chi \end{array}$$

- Set $f^*T := \pi_* \tilde{f}^*T$.
- Also set $f^*\alpha := \pi_* \tilde{f}^*\alpha$, $\alpha \in H^2(X; \mathbf{R})$.
- Problem: won't have $f^{n*} = f^{*n}$ in general!

Stability

- **Def**: f is 1-stable if $f^{n*} = f^{*n}$ on $H^2(X; \mathbf{R})$.
- ▶ Prop [Fornæss-Sibony]: f is not 1-stable ≡ fⁿ(H) ⊂ Indet(f) for some n ≥ 1 and some hypersurface H.
- Picture in dimension two!



Stabilization: definition and know results

- Question: given f : X → X, ∃? modification π : X' → X such that the induced map f' : X' → X' is 1-stable?
- ► Thm [Diller-Favre]: YES, when X is a complex surface and f : X --→ X is bimeromorphic.
- ► Thm [Favre]: Complete characterization for f : X --→ X monomial and X = (C^{*})² a toric surface. Write

$$f(z_1, z_2) = (z_1^{a_{11}} z_2^{a_{21}}, z_1^{a_{12}} z_2^{a_{22}}),$$

and μ_1 , μ_2 eigenvalues of $A = (a_{ij}) \in M_2(\mathbb{Z})$. Then TFAE: (a) f not stabilizable, even on toric surface X' with quotient sings; (b) $\overline{\mu_1} = \mu_2$ and μ_1/μ_2 is not a root of unity.

► Thm [Favre-J]: YES for f : C² → C² polynomial (inducing f : P² --→ P²). Here X' has quotient singularities but can often be chosen smooth.

Stabilization: new results

- ▶ Thm [J-Wulcan]: Suppose $X = \overline{(\mathbf{C}^*)^m}$ is a toric variety and $f(z) = z^A$ a monomial map, where A has real eigenvalues $\mu_1 > \mu_2 > \cdots > \mu_m$. Then there exists toric variety X' with quotient singularities and modification $X' \to X$ such that the induced map $f' : X' \dashrightarrow X'$ is 1-stable.
- Can pick X' smooth after replacing f by iterate f^N .
- Examples in dimension two where X' cannot be smooth unless we replace f by f².
- Conjecturally, dynamical degrees $\lambda_1, \ldots, \lambda_m$ are given by

$$\lambda_j=|\mu_1\ldots\mu_j|.$$

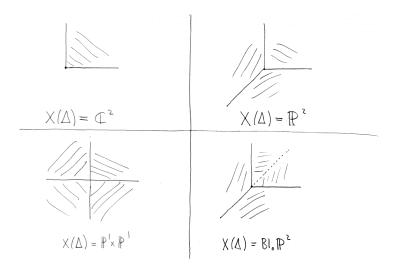
The condition $\mu_1 > \mu_2 > \cdots > \mu_m > 0$ is true (for f^2) iff $j \mapsto \log \lambda_j$ is strictly concave.

Similar results obtained independently by Jan-Li Lin.

Toric varieties

- Toric varieties are algebraic varieties that can be understood/analyzed combinatorially.
- Combinatorial data:
 - *lattice* $N \simeq \mathbf{Z}^m$; write $N_{\mathbf{R}} := M \otimes_{\mathbf{Z}} \mathbf{R} \simeq \mathbf{R}^m$;
 - ► fan Δ ; this is finite collection of (rational, strongly convex) cones $\sigma = \sum_{i=1}^{k} \mathbf{R}_{+} v_{i} \subset N_{\mathbf{R}}$, $v_{i} \in N$, satisfying:
 - a face of a cone in Δ is in Δ ;
 - distinct cones in Δ have disjoint relative interiors;
- To each $\sigma \in \Delta$ can associate affine variety U_{σ} .
- Glue together to get toric variety $X(\Delta)$.
- ► Torus U_{0} ≃ (C^{*})^m is dense in X(Δ) and acts on it.
- Translations:
 - $X(\Delta)$ compact iff Δ complete, i.e. cones in Δ cover all of $N_{\mathbf{R}}$;
 - $X(\Delta)$ has quotient sings if Δ simplicial;
 - $X(\Delta)$ smooth iff Δ regular;

Examples of toric varieties



Stability criterion

- More translations:
 - Refinement $\Delta \rightarrow \Delta'$ (subdivide cones) \implies modification $X(\Delta') \rightarrow X(\Delta)$;
 - ► **Z**-linear map $\phi : N \to N \implies$ monomial map $f : X(\Delta) \dashrightarrow X(\Delta);$
- f is holomorphic iff m-dimensional cones in Δ are mapped into m-dimensional cones in Δ.
- Prop: Assume ∆ simplicial and complete, Suppose there exists S ⊂ ∆ such that:
 - $\phi(\sigma) \subset \sigma$ for all $\sigma \in \mathcal{S}$;
 - if $\rho \in \Delta$ is a 1-dimensional cone and $n \ge 1$, then $\phi^n(\rho) \in \Delta$ or $\phi^n(\rho) \subset \sigma$ for some $\sigma \in S$.

Then $f: X(\Delta) \dashrightarrow X(\Delta)$ is 1-stable.

- Proof involves H²(X(Δ); Z) ≃ Pic(X(Δ)) and representation of Cartier divisors as piecewise linear functions on N_R.
- From now on, suffices to work with combinatorial data!

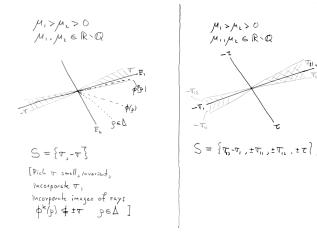
Stability in dimension two

- Suppose $N \cong \mathbb{Z}^2$.
- $\phi: N \to N$ **Z**-linear with eigenvalues μ_1 , μ_2 .
- ▶ Recall criterion for stability: if there exists $S \subset \Delta$ such that:
 - $\phi(\sigma) \subset \sigma$ for all $\sigma \in S$;
 - if $\rho \in \Delta$ is a 1-dimensional cone and $n \ge 1$, then $\phi^n(\rho) \in \Delta$ or $\phi^n(\rho) \subset \sigma$ for some $\sigma \in S$.

Then can stabilize f on model with quotient singularities.

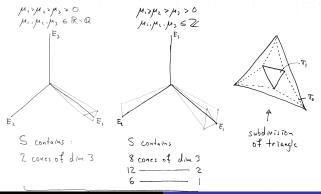
- Cannot achieve this if $\mu_2 = \overline{\mu_1}$ and μ_2/μ_1 not a root of unity: (irrational rotation).
- Can achieve this if $|\mu_1| > |\mu_2| > 0$ (pictures on next slide).
- ► Can also achieve this in all other cases, so get Favre's result.

Stabilization in dimension two: pictures



Higher dimensions

- Difficulties in higher dimensions:
 - book-keeping problems: many possibilities (picture);
 - subdividing cones is more complicated;
 - toy problem: how to subdivide a simplex σ₀ containing another simplex σ₁ so that σ₁ is one of the new simplies?



Mattias Jonsson and Elizabeth Wulcan Dynamics of monomial mappings