Dynamics of monomial mappings

Mattias Jonsson and Elizabeth Wulcan

Albi, January 30, 2010

Mattias Jonsson and Elizabeth Wulcan Dynamics of monomial mappings



» Stability: definition and motivation.
» Old and new results.
» Toric varieties: translation.

» ldeas of proof.
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Pullback by meromorphic maps

Consider f : X --+ X meromorphic, X complex manifold.
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In dynamics, look for invariant objects, e.g. T positive closed
(1,1)-current with F*T = AT, A > 0.

What is meant by f* when f meromorphic?
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Resolve singularities of f:
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Set f*T := m f*T.
Also set f*a = m.f*a, o € H2(X; R).

Problem: won't have f™ = f*" in general!
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» Def: f is 1-stable if f™ = f*" on H?(X;R).
» Prop [Fornass-Sibony]: f is not 1-stable = f"(H) C Indet(f)
for some n > 1 and some hypersurface H.

» Picture in dimension two!
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» Ex: f: P2 - P2 given by f[x:y:z] =[yz:zx:xy]. Then
f* =2id but f2 = 2id so f2* # f*2,
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Stabilization: definition and know results

» Question: given f : X --» X, 3?7 modification 7 : X’ — X
such that the induced map ' : X’ --» X’ is 1-stable?

» Thm [Diller-Favre]: YES, when X is a complex surface and
f : X --» X is bimeromorphic.

» Thm [Favre]: Complete characterization for f : X --» X
monomial and X = (C*)? a toric surface. Write

f(zl, 22) — (251122321,Zf1222322)’
and p1, po eigenvalues of A = (aj) € Ma(Z). Then TFAE:
(a) f not stabilizable, even on toric surface X’ with quotient sings;
(b) @iz = p2 and u1/po is not a root of unity.
» Thm [Favre-J]: YES for f : C> — C? polynomial (inducing
f : P2 ——» P2). Here X' has quotient singularities but can
often be chosen smooth.
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Stabilization: new results

» Thm [J-Wulcan]: Suppose X = (C*)™ is a toric variety and
f(z) = z* a monomial map, where A has real eigenvalues
j1 > pt2 > -+ > fim. Then there exists toric variety X’ with
quotient singularities and modification X’ — X such that the
induced map ' : X’ --» X’ is 1-stable.

» Can pick X’ smooth after replacing f by iterate fV.

» Examples in dimension two where X’ cannot be smooth unless
we replace f by f2.

» Conjecturally, dynamical degrees A1, ..., Ay are given by

Aj= o pl.

The condition p1 > pio > -+ > pim > 0 is true (for £2) iff
J + log A; is strictly concave.

» Similar results obtained independently by Jan-Li Lin.
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Toric varieties

>
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Toric varieties are algebraic varieties that can be
understood/analyzed combinatorially.
Combinatorial data:
> lattice N ~ Z™; write N := M ®z R ~ R™,;
» fan A; this is finite collection of (rational, strongly convex)
cones o = Ef:l R.vi C Ng, v; € N, satisfying:
> a face of a cone in A isin A;
> distinct cones in A have disjoint relative interiors;
To each o € A can associate affine variety U,.
Glue together to get toric variety X(A).

Torus Uy > (C*)™ is dense in X(A) and acts on it.
Translations:

» X(A) compact iff A complete, i.e. cones in A cover all of Ng;
» X(A) has quotient sings if A simplicial;
» X(A) smooth iff A regular;

Mattias Jonsson and Elizabeth Wulcan Dynamics of monomial mappings



Examples of toric varieties

X(A) < P p' X(4) = B, p*
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Stability criterion

>

>
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More translations:
> Refinement A — A’ (subdivide cones) = modification
X(A) — X(A);
» Z-linear map ¢ : N — N = monomial map
f:X(A) --» X(A);
f is holomorphic iff m-dimensional cones in A are mapped
into m-dimensional cones in A.

Prop: Assume A simplicial and complete, Suppose there
exists S C A such that:

» ¢(oc) CoforalloeS;
» if p € Ais a 1-dimensional cone and n > 1, then ¢"(p) € A or
¢"(p) C o for some o € S.

Then f : X(A) --» X(A) is 1-stable.
Proof involves H?(X(A); Z) ~ Pic(X(A)) and representation
of Cartier divisors as piecewise linear functions on NR.

From now on, suffices to work with combinatorial data!
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Stability in dimension two

Suppose N =2 Z2.

» ¢ : N — N Z-linear with eigenvalues p1, uo.

Recall criterion for stability: if there exists S C A such that:
» ¢(oc) CoforalloesS;

» if p € Ais a 1-dimensional cone and n > 1, then ¢"(p) € A or
¢"(p) C o for some o € S.

Then can stabilize f on model with quotient singularities.

v

v

v

Cannot achieve this if uo = iy and p2/p1 not a root of unity:
(irrational rotation).

v

Can achieve this if 1] > |p2| > 0 (pictures on next slide).

v

Can also achieve this in all other cases, so get Favre's result.
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Stabilization in dimension two: pictures

iz pa> 0
/uv»/“y_ em\@

-‘.E\

. _\ )
el
S ={r-v}

['P.‘(L T ;w.(l)m“».‘bi

\\A(u'[mmk T,

)

T\A(ovrb‘!'—a‘( I»uju of rays
<{>k(y\ 4tv  ped ]

Mattias Jonsson and Elizabeth Wulcan Dynamics of monomial mappings

}4|>/4L> o
Mopy e R@

-1




Higher dimensions

» Difficulties in higher dimensions:
» book-keeping problems: many possibilities (picture);
» subdividing cones is more complicated;
> toy problem: how to subdivide a simplex oy containing another
simplex o7 so that o7 is one of the new simplies?
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