DYNAMICS ON BERKOVICH SPACES IN LOW DIMENSIONS

MATTIAS JONSSON

ABSTRACT. These are expanded lecture notes for the summer school on Berkovich
spaces that took place at the Institut de Mathématiques de Jussieu, Paris, during
June 28-July 9, 2010. They serve to illustrate some techniques and results from
the dynamics on low-dimensional Berkovich spaces and to exhibit the structure
of these spaces.
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2 MATTIAS JONSSON

1. INTRODUCTION

The goal of these notes is twofold. First, I'd like to describe how Berkovich spaces
enters naturally in certain instances of discrete dynamical systems. In particular,
I will try to show how my own work with Charles Favre [F.JO7, [FJ11] on valuative
dynamics relates to the dynamics of rational maps on the Berkovich projective line
as initiated by Juan Rivera-Letelier in his thesis [Riv03a] and subsequently studied
by him and others. In order to keep the exposition somewhat, I have chosen three
sample problems (Theorems A, B and C below) for which I will present reasonably
complete proofs.

The second objective is to show some of the simplest Berkovich spaces “in action”.
While not necessarily representative of the general situation, they have a structure
that is very rich, yet can be described in detail. In particular, they are trees, or
cones over trees.

For the purposes of this introduction, the dynamical problems that we shall be
interested in all arise from polynomial mappings

f:A" = A"

where A" denotes affine n-space over a wvalued field, that is, a field K complete with
respect a norm | - |. Studying the dynamics of f means, in rather vague terms,
studying the asymptotic behavior of the iterates of f:

fr=foforof

(the composition is taken m times) as m — oo. For example, one may try to identify
regular as opposed to chaotic behavior. One is also interested in invariant objects
such as fixed points, invariant measures, etc.

When K is the field of complex numbers, polynomial mappings can exhibit very
interesting dynamics both in one and higher dimensions. We shall discuss this a
little further in below. As references we point to [CG93, IMil06] for the one-
dimensional case and [Sib99] for higher dimensions.

Here we shall instead focus on the case when the norm on K is non-Archimedean in
the sense that the strong triangle inequality |a+b| < max{|al, |b|} holds. Interesting
examples of such fields include the p-adic numbers Q,, the field of Laurent series
C((t)), or any field K equipped with the t¢rivial norm.

One motivation for investigating the dynamics of polynomial mappings over non-
Archimedean fields is simply to see to what extent the known results over the
complex (or real) numbers continue to hold. However, non-Archimedean dynam-
ics sometimes plays a role, even when the original dynamical system is defined over
the complex numbers. We shall see some instances of this phenomenon in these
notes; other examples are provided by the work of Kiwi [Kiw06], Baker and De-
Marco [BAM09], and Ghioca, Tucker and Zieve [GTZ0§].

Over the complex numbers, many of the most powerful tools for studying dy-
namics are either topological or analytical in nature: distortion estimates, potential
theory, quasiconformal mappings etc. These methods do not directly carry over to
the non-Archimedean setting since K is totally disconnected.
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On the other hand, a polynomial mapping f automatically induces a selfmap
f : A%erk — A%erk

of the corresponding Berkovich space A} .. By definition, A}, = AB, (K) is
the set of multiplicative seminorms on the coordinate ring R ~ Klz,...,z,] of
A" that extend the given norm on K. It carries a natural topology in which it
it locally compact and arcwise connected. It also contains a copy of A™: a point
x € A" is identified with the seminorm ¢ — |¢(x)|. The action of f on A}, is
given as follows. A seminorm |- | is mapped by f to the seminorm whose value on
a polynomial ¢ € R is given by |f*®|.

The idea is now to study the dynamics on A3, . At this level of generality, not
very much seems to be known at the time of writing (although the time may be
ripe to start looking at this). Instead, the most interesting results have appeared
in situations when the structure of the space Aj, . is better understood, namely in
sufficiently low dimensions.

We shall focus on two such situations:

(1) f: A' — Al is a polynomial mapping of the affine line over a general valued
field K

(2) f: A? — A? is a polynomial mapping of the affine plane over a field K
equipped with the trivial norm.

In both cases we shall mainly treat the case when K is algebraically closed.

In (1), one makes essential use of the fact that the Berkovich affine line A,
is a treeE| This tree structure was pointed out already by Berkovich in his original
work [Ber90] and is described in great detail in the book [BR10] by Baker and
Rumely. It has been exploited by several authors and a very nice picture of the
global dynamics on this Berkovich space has taken shape. It is beyond the scope
of these notes to give an account of all the results that are known. Instead, we
shall focus on one specific problem: equidistribution of preimages of points. This
problem, which will be discussed in further detail in clearly shows the advantage
of working on the Berkovich space as opposed to the “classical” affine line.

As for (2), the Berkovich affine plane A2Berk is already quite a beast, but it is
possible to get a handle on its structure. We shall be concerned not with the global
dynamics of f, but the local dynamics either at a fixed point 0 = f(0) € A%, or at
infinity. There are natural subspaces of A%erk consisting of seminorms that “live” at
0 or at infinity, respectively, in a sense that can be made precise. These two spaces
are cones over a tree and hence reasonably tractable.

While it is of general interest to study the dynamics in (2) for a general field K,
there are surprising applications to compler dynamics when using K = C equipped
with the trivial norm. We shall discuss this in and below.

1.1. Polynomial dynamics in one variable. Our first situation is that of a poly-
nomial mapping

fiAl— Al

Ior a precise definition of what we mean by “tree”, see
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of degree d > 1 over a complete valued field K, that we here shall furthermore
assume to be algebraically closed and, for simplicity, of characteristic zero.

When K is equal to the (archimedean) field C, there is a beautiful theory describ-
ing the polynomial dynamics. The foundation of this theory was built in the 1920’s
by Fatou and Julia, who realized that Montel’s theorem could be used to divide the
phase space A! = A'(C) into a region where the dynamics is tame (the Fatou set)
and a region where it is chaotic (the Julia set). In the 1980’s and beyond, the theory
was very significantly advanced, in part because of computer technology allowing
people to visualize Julia sets as fractal objects, but more importantly because of
the introduction of new tools, in particular quasiconformal mappings. For further
information on this we refer the reader to the books [CG93l IMil06].

In between, however, a remarkable result by Hans Brolin [Bro65] appeared in the
1960’s. His result seems to have gone largely unnoticed at the time, but has been
of great importance for more recent developments, especially in higher dimensions.
Brolin used potential theoretic methods to study the asymptotic distribution of
preimages of points. To state his result, let us introduce some terminology. Given a
polynomial mapping f as above, one can consider the filled Julia set of f, consisting
of all points z € A! whose orbit is bounded. This is a compact set. Let pf be
harmonic measure on the filled Julia set, in the sense of potential theory. Now, given
apoint z € A! we can look at the distribution of preimages of x under f™. There are
d" preimages of z, counted with multiplicity, and we write [0, = > fry—z 0y, where
the sum is taken over these preimages. Thus d=" f"*), is a probability measure on
Al Brolin’s theorem now states

Theorem. For all points x € A, with at most one exception, we have
lim d™" "6, — py.

n—o0

Furthermore, a point © € Al is exceptional iff there exists a global coordinate z on
Al vanishing at x such that f is given by the polynomial z — z%. In this case,

A" "6, = 05 for alln.

A version of this theorem for selfmaps of P! was later proved independently
by Lyubich [Lyu83] and by Freire-Lopez-Mané [FLMS83]. There have also been
far-reaching generalizations of Brolin’s theorem to higher-dimensional complex dy-
namics. However, we shall stick to the one-dimensional polynomial case in this
introduction.

It is now natural to ask what happens when we replace C by a non-Archimedean
valued field K. We still assume that K is algebraically closed and, as above, that it
is of characteristic zero. An important example is K = C,, the completed algebraic
closure of the p-adic numbers Q,. However, while most of the early work focused
on C,, and certain deep results that are true for this field do not hold for general
K, we shall not assume K = C,, in what follows.

Early on, through work of Silverman, Benedetto, Hsia and others [Ben00, [Ben0O1al,
Ben02bl, Hsi00, MS95, Riv03a] it became clear that there were some significant
differences to the archimedean case. For example, with the most direct translations
of the definitions from the complex numbers, it may well happen that the Julia set of
a polynomial over a non-Archimedean field K is empty. This is in clear distinction
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with the complex case. Moreover, the topological structure of K is vastly different
from that of C. Indeed, K is totally disconnected and usually not even locally
compact. The lack of compactness is inherited by the space of probability measures
on K: there is a priori no reason for the sequence of probability measures on K to
admit a convergent subsequence. This makes it unlikely that a naive generalization
of Brolin’s theorem should hold.

Juan Rivera-Letelier was the first one to realize that Berkovich spaces could be
effectively used to study the dynamics of rational functions over non-Archimedean
fields. As we have seen above, A! embeds naturally into A%erk and the map f
extends to a map

[ All_%erk - A]I_%erk :

Now Aﬁerk has good topological properties. It is locally compactﬂ and con-
tractible. This is true for the Berkovich affine space Aj, . of any dimension. How-
ever, the structure of the Berkovich affine AL, can be understood in much greater
detail, and this is quite helpful when analyzing the dynamics. Specifically, AL
has a structure of a tree and the induced map f : A]13erk — Agerk preserves the tree
structure, in a suitable sense.

Introducing the Berkovich space A]13erk is critical for even formulating many of
the known results in non-Archimedean dynamics. This in particular applies to the
non-Archimedean version of Brolin’s theorem:

Theorem A. Let f: Al — Al be a polynomial map of degree d > 1 over an alge-
braically closed field of characteristic zero. Then there exists a probability measure
p = ps on A]13erk such that for all points x € A, with at most one exception, we
have

lim d7"f™ 6, — p.

n—o0
Furthermore, a point © € Al is exceptional iff there exists a global coordinate z on
Al vanishing at x such that f is given by the polynomial z — 2. In this case,
d=" ™6, = 0y for alln.

In fact, we could have started with any point x € A]13erk assuming we are careful
with the definition of f™*§,. Notice that when x € A', the probability measures
d~" f"*§,, are all supported on A' C AL . but the limit measure may very well give
no mass to A!. It turns out that if we define the Julia set J ¢ of f as the support of the
measure py, then Jy shares many properties of the Julia set of complex polynomials.
This explains why we may not see a Julia set when studying the dynamics on A'
itself.

Theorem A is due to Favre and Rivera-Letelier [FR10]. The proof is parallel to
Brolin’s original proof in that it uses potential theory. Namely, one can define a
Laplace operator A on A%erk and to every probability measure p on A%erk associate
a subharmonic function ¢ = ¢, such that Ay = p — pg, where p is a fixed reference
measure (typically a Dirac mass at a point of AL_, \A!). The function ¢ is unique
up to an additive constant. One can then translate convergence of the measures
in Theorem A to the more tractable statement about convergence of potentials.

s one-point compactification is the Berkovich projective line Phg,y = Ao U{oo}.
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The Laplace operator itself can be very concretely interpreted in terms of the tree
structure on Af_, . All of this will be explained in §

The story does not end with Theorem A. For instance, Favre and Rivera-Letelier
analyze the ergodic properties of f with respect to the measure py. Okuyama [Okullb]
has given a quantitative strengthening of the equidistribution result in Theorem A.
The measure p¢ also describes the distribution of periodic points, see [FR10, Théoreme B]
as well as [Okullal.

As already mentioned, there is also a very interesting Fatou-Julia theory. We shall
discuss this a little further in §4] but the discussion will be brief due to limited space.
The reader will find many more details in the book [BR10]. We also recommend the
recent survey by Benedetto [Benl()].

1.2. Local plane polynomial dynamics. The second and third situations that
we will study both deal with polynomial mappings

fiA®— A

over a valued field K. In fact, they originally arose from considerations in complex
dynamics and give examples where non-Archimedean methods can be used to study
Archimedean problems.

Thus we start out by assuming that X = C. Polynomial mappings of C? can
have quite varied and very interesting dynamics; see the survey by Sibony [Sib99)
for some of this. Here we will primarily consider local dynamics, so we first consider
a fived point 0 = f(0) € A%. For a detailed general discussion of local dynamics in
this setting we refer to Abate’s survey [Abal()].

The behavior of f at the fixed point is largely governed by the tangent map df (0)
and in particular on the eigenvalues A1, Ay of the latter. For example, if |\], |[A2| < 1,
then we have an attracting fixed point: there exists a small neighborhood U > 0
such that f(U) C U and f* — 0 on U. Further, when there are no resonances
between the eigenvalues A1, Ao, the dynamics can in fact be linearized: there exists
a local biholomorphism ¢ : (A2,0) — (AZ2,0) such that fo¢ = ¢ o A, where
A(z1,22) = (M2z1,A222). This in particular gives very precise information on the
rate at which typical orbits converge to the origin: for a “typical” point x ~ 0 we
have || f"(z)|| ~ max;—12 |\|"[|z| as n — oo.

On the other hand, in the superattracting case, when A\ = Ao = 0, the action of f
on the tangent space TyC? does not provide much information about the dynamics.
Let us still try to understand at what rate orbits tend to the fixed point. To this
end, let

f=fctfer1++Ja
be the expansion of f in homogeneous components: fj(Az) = M f;(z) and where
fe 0. Thus ¢ = ¢(f) > 1 and the number ¢(f) in fact does not depend on the
choice of coordinates. Note that for a typical point z ~ 0 we will have

If (@) ~ ]|

Therefore, one expects that the speed at which the orbit of a typical point x tends
to the origin is governed by the growth of ¢(f™) as n — oo. This can in fact be
made precise, see [FJOT], but here we shall only study the sequence (¢(f™))s,.
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Note that this sequence is supermultiplicative: c(f"*™) > c(f™)c(f™). This
easily implies that the limit

N n\1l/n
Coo(f) 7= lim_c(f")
exists. Clearly coo(f™) = coo(f)" for n > 1.

Example 1.1. If f(z1, 2z2) = (22, 2z122), then ¢(f") is the (n+2)th Fibonacci number
and coo(f) = 3(v5 4 1) is the golden mean.

Our aim is to give a proof of the following result, originally proved in [EJOT].

Theorem B. The number cx = coo(f) is a quadratic integer: there exists a,b € Z
such that ¢2, = acs +b. Moreover, there exists a constant § > 0 such that

et < e(f") < e,
for allm > 1.

Note that the right-hand inequality ¢(f™) < ¢l is an immediate consequence of
supermultiplicativity. It is the left-hand inequality that is nontrivial.
To prove Theorem B we study the induced dynamics

A2 2
f . ABerk - ABerk

of f on the Berkovich affine plane AIZSerk‘ Now, if we consider K = C with its
standard Archimedean norm, then it is a consequence of the Gelfand-Mazur theorem
that A2Berk ~ A2, so this may not seem like a particularly fruitful approach. If
we instead, however, consider K = C equipped with the trivial norm, then the
associated Berkovich affine plane A%erk is a totally different creature and the induced
dynamics is very interesting.

By definition, the elements of A%erk are multiplicative seminorms on the coordi-
nate ring of A2, that is, the polynomial ring R ~ K|z1, 22 in two variables over K.
It turns out to be convenient to instead view these elements “additively” as semi-
valuations v : R — R U {+00} such that v|g+ = 0. The corresponding seminorm is
|-|=e".

Since we are interested in the local dynamics of f near a (closed) fixed point
0 € A2, we shall study the dynamics of f on a corresponding subspace of A%erk,
namely the set Vy of semivaluations v such that v(¢) > 0 whenever ¢ vanishes at 0.
In valuative terminology, these are the semivaluations v € A%erk \A? whose center
on A? is the point 0. It is clear that f(Vg) C V.

Note that V, has the structure of a cone: if v € f)o, then tv € Vy for 0 < t < oo.
The apex of this cone is the image of the point 0 € A2 under the embedding A% —
A%erk. The base of the cone can be identified with the subset Vy C ]>0 consisting
of semivaluations that are normalized by the condition v(mp) = minyem, v(¢) = +1,
where mg C R denotes the maximal ideal of 0. This space V) is compact and has a
structure of an R-tree. We call it the valuative tree at the point 0. Its structure is
investigated in detail in [FJ04] and will be examined in

3In [EJ04, [F'J07], the valuative tree is denoted by V. We write Vo here in order to emphasize the
choice of point 0 € AZ.
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Now V) is in general not invariant by f. Instead f induces a selfmap
f. : Vo — Vo
and a “multiplier” function c¢(f,-) : Vo — R4 such that

fv) =c(f,v)fev

for v € Vy. The number ¢(f) above is exactly equal to ¢(f,ordy), where ordy € Vy
denotes the order of vanishing at 0 € A2. Moreover, we have

n—1
c(f™") =c(f" ordy) = H c(f,vi), where v; = f¢ordy;
i=0
this equation will allow us to understand the behavior of the sequence ¢(f™) through
the dynamics of f, on V.

The proof of Theorem B given in these notes is simpler than the one in [FJOT].
Here is the main idea. Suppose that there exists a valuation v € Vy such that
fev = v, so that f(v) = cv, where ¢ = ¢(f,v) > 0. Then c(f",v) = " for n > 1.
Suppose that v satisfies an Izumi-type bound:

v(¢) < Cordo(¢) for all polynomials ¢, (1.1)

where C' > 0 is a constant independent of ¢. This is true for many, but not all
semivaluations v € Vy. The reverse inequality v > ordg holds for all v € Vy by
construction. Then we have

C7e" = C7le(f™,v) < e(f™) < e(f™,v) < ™

This shows that cs(f) = ¢ and that the bounds in Theorem B hold with § = C~L.
To see that cy is a quadratic integer, we look at the value group I';, of v. The
equality f(v) = cv implies that I, C T',. If we are lucky, then I' ~ Z¢ where
d € {1,2}, which implies that c,, = ¢ is an algebraic integer of degree one or two.
The two desired properties of v hold when the eigenvaluation v is quasimonomial
valuation. In general, there may not exist a quasimonomial eigenvaluation, so the
argument is in fact a little more involved. We refer to §g§| for more details.

1.3. Plane polynomial dynamics at infinity. Again consider a polynomial map-
ping
f:A% 5 A?

over the field K = C of complex numbers. In the previous subsection, we discussed
the dynamics of f at a (superattracting) fixed point in A2. Now we shall consider the
dynamics at infinity and, specifically, the rate at which orbits tend to infinity. Fix an
embedding A2 < P2. It is then reasonable to argue that the rate at which “typical”
orbits tend to infinity is governed by the degree growth sequence (deg f")n>1. Precise
assertions to this end can be found in [F.JO7, [F.J11]. Here we shall content ourselves
with the study on the degree growth sequence.

In contrast to the local case, this sequence is submultiplicative: deg f*t™ <
deg f" deg f, but again the limit

doo(f) = lim (deg f*)'/"
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exists. Apart from some inequalities being reversed, the situation is very similar
to the local case, so one may hope for a direct analogue of Theorem B above.
However, the skew product example f(z1,22) = (22, 2122) shows that we may have
deg f* ~ nd% . What does hold true in general is

Theorem C. The number doo = doo(f) is a quadratic integer: there exist a,b € Z
such that d>, = ads +b. Moreover, we are in exactly one of the following two cases:

(a) there exists C' > 0 such that d% < deg f™* < CdY, for all n;

(b) deg f™* ~nd% asn — co.
Moreover, case (b) occurs iff f, after conjugation by a suitable polynomial automor-
phism of C?, is a skew product of the form

f(z1,22) = (9(21), ¥(21) 25 + Oz, (5= 71)),
where deg ¢ = d and deg > 0.

As in the local case, we approach this theorem by considering the induced dy-
namics

A2 2
f . ABerk — ABerk?

where we consider K = C equipped with the trivial norm. Since we are interested
in the dynamics of f at infinity, we restrict our attention to the space Vo consisting
of semivaluations v : R — R U {+00} whose center is at infinity, that is, for which
v(¢) < 0 for some polynomial ¢. This space has the structure of a pointedﬁ cone.
To understand its base, note that our choice of embedding A? — P? determines the
space L of affine functions on A? (the polynomials of degree at most one). Define

= A2 i L)=-1}L
VOO {U € Berk | 1316121’[)( ) }

We call V, the valuative tree at inﬁm’tyﬁ This subspace at first glance looks very
similar to the valuative tree Vy at a point but there are some important differences.
Notably, for a semivaluation v € Vy we have v(¢) > 0 for all polynomials ¢. In
contrast, while a semivaluations in V,, must take some negative values, it can take
positive values on certain polynomials.

Assuming for simplicity that f is proper, we obtain a dynamical system f : V. —
V.., which we can split into an induced map fo : V.. — V.. and a multiplier a(f,-):
V.. — Ry such that f(v) = d(f,v)fev.

The basic idea in the proof of Theorem C is again to look for an eigenvaluation,
that is, a semivaluation v € V_ such that fev = v. However, even if we can find
a “nice” (say, quasimonomial) eigenvaluation, the proof in the local case does not
automatically go through. The reason is that Izumi’s inequality may fail.

The remedy to this problem is to use an invariant subtree V. C V., where the
Izumi bound almost always holds. In fact, the valuations v € V. for which ITzumi’s
inequality does not hold are of a very special form, and the case when we end up with
a fixed point of that type corresponds exactly to the degree growth deg f™ ~ ndZ .

AThe apex of the cone does not define an element in A%, .
SIn [EJO7, [FJ11], the valuative tree at infinity is denoted by Vo, but the notation V., seems more
natural.



10 MATTIAS JONSSON

In these notes, V. is called the tight tree at infinity. I expect it to have applications
beyond the situation here.

1.4. Philosophy and scope. When writing these notes I was faced with the ques-
tion of how much material to present, and at what level of detail to present it. Since
I decided to have Theorems A, B and C as goals for the presentation, I felt it was
necessary to provide enough background for the reader to go through the proofs,
without too many black boxes. As it turns out, there is quite a lot of background
to cover, so these notes ended up rather expansive!

All the main results that I present here can be found in the literature, However,
we draw on many different sources that use different notation and terminology. In
order to make the presentation coherent, I have tried to make it self-contained.
Many complete proofs are included, others are sketched in reasonable detail.

While the point of these notes is to illustrate the usefulness of Berkovich spaces,
we only occasionally draw on the general theory as presented in [Ber90, Ber93]. As a
general rule, Berkovich spaces obtained by analytification of an algebraic variety are
much simpler than the ones constructed by gluing affinoid spaces. Only at a couple
of places in §3| and §4| do we rely on (somewhat) nontrivial facts from the general
theory. On the other hand, these facts, mainly involving the local rings at a point
on the Berkovich space, are very useful. We try to exploit them systematically.
It is likely that in order to treat higher-dimensional questions, one has to avoid
simple topological arguments based on the tree structure and instead use algebraic
arguments involving the structure sheaf of the space in question.

At the same time, the tree structure of the spaces in question is of crucial impor-
tance. They can be viewed as the analogue of the conformal structure on Riemann
surfaces. For this reason I have included a self-contained presentation of potential
theory and dynamics on trees, at least to the extent that is needed for the later
applications in these notes.

I have made an attempt to provide a unified point of view of dynamics on low-
dimensional Berkovich spaces. One can of course try to go further and study dy-
namics on higher-dimensional Berkovich spaces over a field (with either trivial or
nontrivial valuation). After all, there has been significant progress in higher dimen-
sional complex dynamics over the last few years. For example, it is reasonable to
hope for a version of the Briend-Duval equidistribution theorem [BDO1].

Many interesting topics are not touched upon at all in these notes. For instance,
we say very little about the dynamics on structure of the Fatou set of a rational
map and we likewise do not study the ramification locus. Important contribu-
tions to these and other issues have been made by Matt Baker, Robert Benedetto,
Laura DeMarco, Xander Faber, Charles Favre, Liang-Chung Hsia, Jan Kiwi, Yisuke
Okuyama, Clayton Petsche, Juan Rivera-Letelier, Robert Rumely Lucien Szpiro,
Michael Tepper, Eugenio Trucco and others. For the relevant results we refer to
the original papers [BAMO09, Bak06l Bak09, BHO05, BR06l Ben98l, Ben00), Ben01al,
Ben01bl [Ben02al, [Ben05al, Ben05bl [Ben06l, [Fab09], [Fabl1al [FabI1bl [Fabllc, [FKT11l
FRO4, [FRO06. [FR10, Hsi00, Kiw06, Kiw11l [OkulTal [Okul1bl [PST09, Riv03al [Riv03bl
Riv04, Riv05, Tru09]. Alternatively, many of these results can be found in the
book [BR10] by Baker and Rumely or the lecture notes [Benl0] by Benedetto.
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Finally, we say nothing about arithmetic aspects such as the equidistribution of
points of small height [BR10, [CL06L [FR06, Yua08, [(Gub08|, [Fab09, [YZ094, [YZ09b].
For an introduction to arithmetic dynamics, see [Sil07] and [Sil10].

1.5. Comparison to other surveys. Beyond research articles such as the ones
mentioned above, there are several useful sources that contain a systematic treatment
of material related to the topics discussed in these notes.

First, there is a significant overlap between these notes and the material in the
Thése d’Habilitation [Fav05] of Charles Favre. The latter thesis, which is strongly
recommended reading, explains the usage of tree structures in dynamics and com-
plex analysis. It treats Theorems A-C as well as some of my joint work with him
on the singularities of plurisubharmonic functions [FJ05a) [FJ05b]. However, the
presentation here has a different flavor and contains more details.

The book by [BR10] by Baker and Rumely treats potential theory and dynamics
on the Berkovich projective line in great detail. The main results in §§3H5| are
contained in this book, but the presentation in these notes is at times a little different.
We also treat the case when the ground field has positive characteristic and discuss
the case when it is not algebraically closed and/or trivially valued. On the other
hand, [BRI0] contains a great deal of material not covered here. For instance, it
contains results on the structure of the Fatou and Julia sets of rational maps and it
gives a much more systematic treatment of potential theory on the Berkovich line.

The lecture notes [Benl(] by Benedetto are also recommended reading. Just
as [BR10], they treat the dynamics on the Fatou and Julia sets in detail. It also
contains results in “classical” non-Archimedean analysis and dynamics, not involving
Berkovich spaces.

The Ph.D. thesis by Amaury Thuillier [Thu05|] gives a general treatment of po-
tential theory on Berkovich curves. It is written in a less elementary way than the
treatment in, say, [BR10] but on the other hand is more amenable to generalizations
to higher dimensions. Potential theory on curves is also treated in [Bak0§].

The valuative tree in §7] is discussed in detail in the monograph [FJ04]. How-
ever, the exposition here is self-contained and leads more directly to the dynamical
applications that we have in mind.

As already mentioned, we do not discuss arithmetic dynamics in these notes. For
information on this fascinating subject we again refer to the book and lecture notes
by Silverman [Sil07, [Sil10].

1.6. Structure. The material is divided into three parts. In the first part, we
discuss trees since the spaces on which we do dynamics are either trees or cones over
trees. The second part, §§3Hp], is devoted to the Berkovich affine and projective lines
and dynamics on them. Finally, in §§6HI0 we study polynomial dynamics on the
Berkovich affine plane over a trivially valued field.

We now describe the contents of each chapter in more detail. Each chapter ends
with a section called “Notes and further references” containing further comments.

In §2) we gather some general definitions and facts about trees. Since we shall work
on several spaces with a tree structure, I felt it made sense to collect the material in
a separate section. See also [Fav05]. First we define what we mean by a tree, with
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or without a metric. Then we define a Laplace operator on a general metric tree,
viewing the latter as a pro-finite tree. In our presentation, the Laplace operator is
defined on the class of quasisubharmonic functions and takes values in the space
of signed measures with total mass zero and whose negative part is a finite atomic
measure. Finally we study maps between trees. It turns out that simply assuming
that such a map is finite, open and surjective gives quite strong properties. We also
prove a fixed point theorem for selfmaps of trees.

The structure of the Berkovich affine and projective lines is outlined in This
material is described in much more detail in [BR10]. One small way in which our
presentation stands out is that we try to avoid coordinates as far as possible. We also
point out some features of the local rings that turn out to be useful for analyzing the
mapping properties and we make some comments about the case when the ground
field is not algebraically closed and/or trivially valued.

In §4]we start considering rational maps. Since we work in arbitrary characteristic,
we include a brief discussion of separable and purely inseparable maps. Then we
describe how polynomial and rational maps extend to maps on the Berkovich affine
and projective line, respectively. This is of course only a very special case of the
analytification functor in the general theory of Berkovich spaces, but it is useful to
see in detail how to do this. Again our approach differs slightly from the ones in the
literature that I am aware of, in that it is coordinate free. Having extended a rational
map to the Berkovich projective line, we look at the important notion of the local
degree at a pointE] We adopt an algebraic definition of the local degree and show
that it can be interpreted as a local expansion factor in the hyperbolic metric. While
this important result is well known, we give an algebraic proof that I believe is new.
We also show that the local degree is the same as the multiplicity defined by Baker
and Rumely, using the Laplacian (as was already known.) See [Fabllal [Fab11b| for
more on the local degree and the ramification locus, defined as the subset where the
local degree is at least two. Finally, we discuss the case when the ground field is not
algebraically closed and/or is trivially valued.

We arrive at the dynamics on the Berkovich projective line in Here we do not
really try to survey the known results. While we do discuss fixed points and the
Fatou and Julia sets, the exposition is very brief and the reader is encouraged to
consult the book [BR10] by Baker and Rumely or the notes [Benl0] by Benedetto
for much more information. Instead we focus on Theorem A in the introduction, the
equidistribution theorem by Favre and Rivera-Letelier. We give a complete proof
which differs in the details from the one in [FR10]. We also give some consequences
of the equidistribution theorem. For example, we prove Rivera-Letelier’s dichotomy
that the Julia set is either a single point or else a perfect set. Finally, we discuss
the case when the ground field is not algebraically closed and/or is trivially valued.

At this point, our attention turns to the Berkovich affine plane over a trivially val-
ued field. Here it seems more natural to change from the multiplicative terminology
of seminorms to the additive notion of semivaluations. We start in §6| by introducing
the home and the center of a valuation. This allows us to stratify the Berkovich
affine space. This stratification is very explicit in dimension one, and possible (but

6m [BRI10], the local degree is called multiplicity.
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nontrivial) to visualize in dimension two. We also introduce the important notion
of a quasimonomial valuation and discuss the Izumi-Tougeron inequality.

In §7| we come to the valuative tree at a closed point 0. It is the same object as
in the monograph [FJ04] but here it is defined as a subset of the Berkovich affine
plane. We give a brief, but self-contained description of its main properties with a
presentation that is influenced by my joint work with Boucksom and Favre [BF.JOSb),
BEJ11al BFJ11b] in hiugher dimensions. As before, our treatment is coordinate-
free. A key result is that the valuative tree at 0 is homeomorphic to the inverse
limit of the dual graphs over all birational morphisms above 0. Each dual graph
has a natural metric, so the valuative tree is a pro-finite metric tree, and hence a
metric tree in the sense of In some sense, the cone over the valuative tree is
an even more natural object. We define a Laplace operator on the valuative tree
that takes this fact into account. The subharmonic functions turn out to be closely
related to ideals in the ring of polynomials that are primary to the maximal ideal
at 0. In general, the geometry of blowups of the point 0 can be well understood and
we exploit this systematically.

Theorem B is proved in §8 We give a proof that is slightly different and shorter
than the original one in [FJO7]. In particular, we have a significantly simpler argu-
ment for the fact that the number ¢y is a quadratic integer. The new argument
makes more systematic use of the value groups of valuations.

Next we move from a closed point in A? to infinity. The valuative tree at infinity
was first defined in [FJ07] and in §9| we review its main properties. Just as in the
local case, the presentation is supposed to be self-contained and also more geometric
than in [FJO7]. There is a dictionary between the situation at a point and at infinity.
For example, a birational morphism above the closed point 0 € A2 corresponds to a
compactification of A% and indeed, the valuative tree at infinity is homeomorphic to
the inverse limit of the dual graphs of all (admissible) compactifications. Unfortu-
nately, the dictionary is not perfect, and there are many subtleties when working at
infinity. For example, a polynomial in two variables tautologically defines a function
on both the valuative tree at a point and at infinity. At a point, this function is
always negative but at infinity, it takes on both positive and negative values. Al-
ternatively, the subtelties can be said to stem from the fact that the geometry of
compactifications of A? can be much more complicated than that of blowups of a
closed point.

To remedy some shortcomings of the valuative tree at infinity, we introduce a sub-
tree, the tight tree at infinity. It is an inverse limit of dual graphs over a certain class
of tight compactifications of A%. These have much better properties than general
compactifications and should have applications to other problems. In particular,
the nef cone of a tight compactification is always simplicial, whereas the nef cone in
general can be quite complicated.

Finally, in §10| we come to polynomial dynamics at infinity, in particular the proof
of Theorem C. We follow the strategy of the proof of Theorem B closely, but we make
sure to only use tight compactifications. This causes some additional complications,
but we do provide a self-contained proof, that is simpler than the one in [F.J07].
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1.7. Novelties. While most of the material here is known, certain proofs and ways
of presenting the results are new.

The definitions of a general tree in and metric tree in are new, although
equivalent to the ones in [[J04]. The class of quasisubharmonic functions on a
general tree also seems new, as are the results in §2.5.6| on their singularities. The
results on tree maps in are new in this setting: they can be found in e.g. [BR10]
for rational maps on the Berkovich projective line.

Our description of the Berkovich affine and projective lines is new, but only in
the way that we insist on defining things in a coordinate free way whenever possible.
The same applies to the extension of a polynomial or rational map from A'! or P!
to A%erk or P]136rk7 respectively.

While Theorem [£.7], expressing the local degree as a dilatation factor in the hy-
perbolic metric, is due to Rivera-Letelier, the proof here is directly based on the
definition of the local degree and seems to be new. The remarks in on the
non-algebraic case also seem to be new.

The structure of the Berkovich affine plane over a trivially valued field, described
in §6.7| was no doubt known to experts but not described in the literature. In
particular, the valuative tree at a closed point and at infinity were never explicitly
identified as subsets of the Berkovich affine plane.

Our exposition of the valuative tree differs from the treatment in the book [F.J04]
and instead draws on the analysis of the higher dimensional situation in [BEJOSD.

The proof of Theorem B in §8|is new and somewhat simpler than the one in [EJ07].
In particular, the fact that co, is a quadratic integer is proved using value groups,
whereas in [FJO7] this was done via rigidification. The same applies to Theorem C
in
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2. TREE STRUCTURES

We shall do dynamics on certain low-dimensional Berkovich spaces, or subsets
thereof. In all cases, the space/subset has the structure of a tree. Here we digress to
discuss exactly what we mean by this. We also present a general version of potential
theory on trees. The definitions that follow are slightly different from, but equivalent
to the ones in [FJ04, [BR10L Fav05], to which we refer for details. The idea is that any
two points in a tree should be joined by a unique interval. This interval should look
like a real line interval but may or may not be equipped with a distance function.

2.1. Trees. We start by defining a general notion of a tree. All our trees will be
modeled on the real line (as opposed to a general ordered group A)m In order to
avoid technicalities, we shall also only consider trees that are complete in the sense
that they contain all their endpoints.

Definition 2.1. An interval structure on a set I is a partial order < on I under
which I becomes isomorphic (as a partially ordered set) to the real interval [0, 1] or
to the trivial real interval [0,0] = {0}.

Let I be a set with an interval structure. A subinterval of I is a subset J C [ that
becomes a subinterval of [0,1] or [0,0] under such an isomorphism. The opposite
interval structure on I is obtained by reversing the partial ordering.

Definition 2.2. A tree is a set X together with the following data. For each
x,y € X, there exists a subset [z,y] C X containing x and y and equipped with an
interval structure. Furthermore, we have:

(T1) [z, 2] = {z};

(T2) if = # y, then [z,y] and [y, z] are equal as subsets of X but equipped with
opposite interval structures; they have x and y as minimal elements, respec-
tively;

(T3) if z € [z,y] then [z, z] and [z,y] are subintervals of [x,y] such that [z,y] =
[z,2]U[z,9] and [z,2] N [z, 4] = {z};

(T4) for any z,y,z € X then there exists a unique element = A, y € [x,y] such
that [z, 2] N[y, z] = [z Az y,a] and [2,y] N [z, y] = [z Az v, y);

(T5) if z € X and (Ya)aeca is a net in X such that the segments [z, y,] increase
with o, then there exists y € X such that |J, [z, y.[= [z, y[.

In (T5) we have used the convention [z,y[:= [z,y] \ {y}. Recall that a net is a
sequence indexed by a directed (possibly uncountable) set. The subsets [z, y] above
will be called intervals or segments.

2.1.1. Topology. A tree as above carries a natural weak topology. Given a point
x € X, define two points y,z € X \ {z} to be equivalent if |x,y]N]x, 2] # 0. An
equivalence class is called a tangent direction at x and the set of y € X representing
a tangent direction ¥ is denoted U(¥)). The weak topology is generated by all such
sets U (). Clearly X is arcwise connected and the connected components of X \ {z}

"Our definition of “tree” is not the same as the one used in set theory [JecO3] but we trust that
no confusion will occur. The terminology “R-tree” would have been natural, but has already been
reserved [GHI0)] for slightly different objects.
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are exactly the sets U(¥) as ¢ ranges over tangent directions at z. A tree is in
fact uniquely arc connected in the sense that if x # y and v : [0,1] — X is an
injective continuous map with v(0) = x, v(1) = y, then the image of 7 equals [z, y].
Since the sets U(¥) are connected, any point in X admits a basis of connected open
neighborhoods. We shall see shortly that X is compact in the weak topology.

If v = [z, y] is a nontrivial interval, then the annulus A(vy) = A(z,y) is defined by
A(z,y) == U(0,)NU(Ty), where ¥, (resp., ¥y) is the tangent direction at = containing
y (resp., at y containing x).

An end of X is a point admitting a unique tangent direction. A branch point is
a point having at least three tangent directions.

2.1.2. Subtrees. A subtree of a tree X is a subset Y C X such that the intersection
[z,y] N'Y is either empty or a closed subinterval of [z,y] for any z,y € X. In
particular, if z,y € Y, then [z,y] C Y and this interval is then equipped with the
same interval structure as in X. It is easy to see that conditions (T1)—(T5) are
satisfied so that Y is a tree. The intersection of any collection of subtrees of X is a
subtree (if nonempty). The convex hull of any subset Z C X is the intersection of
all subtrees containing Z.

A subtree Y is a closed subset of X and the inclusion Y < X is an embedding. We
can define a retraction v : X — Y as follows: for z € X and y € Y the intersection
[z,y] NY is an interval of the form [r(x),y]; one checks that r(x) does not depend
on the choice of y. The map r is continuous and restricts to the identity on Y. A
subtree of X is finite if it is the convex hull of a finite set.

Let (Ya)aca be an increasing net of finite subtrees of X, indexed by a directed
set A (i.e. Y, C Yg when a < ). Assume that the net is rich in the sense that
for any two distinct points x1, 9 € X there exists a € A such that the retraction
ro : X — Y, satisfies ro(z1) # ro(x2). For example, A could be the set of all finite
subtrees, partially ordered by inclusion. The trees (Y,) form an inverse system via
the retraction maps rog : Yz — Y, for a < 3 defined by rog = 7“Oé|y[37 and we can form
the inverse limit @Ya, consisting of points (Ya)aca in the product space [[, Ya
such that 745(yg) = ya for all a < B. This inverse limit is a compact Hausdorff
space. Since X retracts to each Y, we get a continuous map

T:X—>1'£1Ya,

which is injective by the assumption that A is rich. That r is surjective is a conse-
quence of condition (T5). Let us show that the inverse of r is also continuous. This
will show that r is a homeomorphism, so that X is compact. (Of course, if we knew
that X was compact, the continuity of 7~! would be immediate.)

Fix a point z € X and a tangent direction @' at x. It suffices to show that (U (¥))
is open in limY,,. Pick a sequence (xy,)p>1 in U(¥) such that [z,11,2] C [xy,x] and
N,[Zn, z[= 0. By richness there exists a,, € A such that rq, (n) # ra, (). Let ¥,
be the tangent direction in X at r,, (z) represented by 74, (z5). Then r(U(d,)) is
open in lim Y, and hence so is r(U0)) =U,, r(U(th)).

Remark 2.3. One may form the inverse limit of any inverse system of finite trees
(not necessarily subtrees of a given tree). However, such an inverse limit may contain
a “compactified long line” and hence not be a tree!
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2.2. Metric trees. Let I be a set with an interval structure. A generalized metric

on [ is a function d : I x I — [0, +00] satisfying:

(GM1) d(z,y) = d(y,x) for all z,y, and d(x,y) =0 iff z = y;

(GM2) d(z,y) = d(z, 2) + d(z,y) whenever z < z <y

(GM3) d(z,y) < oo if neither x nor y is an endpoint of I.

(GM4) if 0 < d(x,y) < oo, then for every ¢ > 0 there exists z € I such that
r<z<yand0<d(x,z)<e.

A metric tree is a tree X together with a choice of generalized metric on each
interval [z, y] in X such that whenever [z, w] C [z, y], the inclusion [z, w] < [x,y] is
an isometry in the obvious sense.

It is an interesting question whether or not every tree is metrizable in the sense
that it can be equipped with a generalized metric. See Remark below.

2.2.1. Hyperbolic space. Let X be a metric tree containing more than one point and
let zo € X be a point that is not an end. Define hyperbolic space H to be the set
of points x € X having finite distance from zg. This definition does not depend on
the choice of zy. Note that all points in X \ H are ends, but that some ends in X
may be contained in H.

The generalized metric on X restricts to a bona fide metric on H. One can show
that H is complete in this metric and that H is an R-tree in the usual sense [GH90].
In general, even if H = X, the topology generated by the metric may be strictly
stronger than the weak topology. In fact, the weak topology on X may not be
metrizable. This happens, for example, when there is a point with uncountable
tangent space: such a point does not admit a countable basis of open neighborhoods.

2.2.2. Limit of finite trees. As noted in Remark the inverse limit of finite trees
may fail to be a tree. However, this cannot happen in the setting of metric trees.
A finite metric tree is a finite tree equipped with a generalized metric in which all
distances are finite. Suppose we are given a directed set A, a finite metric tree Y,
for each oo € A and, for o < :

e an isometric embedding tg, : Y, — Y3; this means that each interval in Y,
maps isometrically onto an interval in Yg;

e a continuous map 7.8 : Y3 — Y, such that roz o 15, = idy, and such that
rqp maps each connected component of Y3 \ Y, to a single point in Y.

We claim that the space

X :=limY,
i

is naturally a metric tree. Recall that X is the set of points (x4 )aca in the product
space [[,, Yo such that rog(zg) = x4 for all @ < . It is a compact Hausdorff space.
For each a we have an injective map ¢ : Yo — X mapping x € Y, to (23)gea,
where xg € Yj is defined as follows: xg = 73,tya(2), where v € A dominates both o
and 8. Abusing notation, we view Y, as a subset of X. For distinct points z,y € X
define

[z, y] == {z} U U [Za, Y] U{y}-

acA
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We claim that [z,y] naturally carries an interval structure as well as a generalized
metric. To see this, pick ag such that x4, # Yo, and z = (2a) €]Tag, Yao|- Then
do(Ta, 2o) and do(Ya, 2o) are finite and increasing functions of «, hence converge
to dz,0, € [0,400], respectively. This gives rise to an isometry of [z,y] onto the
interval [—6,,d,] C [—00, +00].

2.3. Rooted and parametrized trees. Sometimes there is a point in a tree that
plays a special role. This leads to the following notion.

Definition 2.4. A rooted tree is a partially ordered set (X, <) satisfying the follow-

ing properties:

(RT1) X has a unique minimal element xo;

(RT2) for any z € X \ {zo}, the set {z € X | z < z} is isomorphic (as a partially
ordered set) to the real interval [0, 1];

(RT3) any two points z,y € X admit an infimum z Ay in X, that is, z < x and
z<yiff z <z Avy;

(RT4) any totally ordered subset of X has a least upper bound in X.

Sometimes it is natural to reverse the partial ordering so that the root is the
unique mazrimal element.

Remark 2.5. In [FJ04] it was claimed that (RT3) follows from the other three
axioms but this is not true. A counterexample is provided by two copies of the
interval [0, 1] identified along the half-open subinterval [0, 1[. T am grateful to Josnei
Novacoski and Franz-Viktor Kuhlmann for pointing this out.

Let us compare this notion with the definition of a tree above. If (X, <) is a rooted
tree, then we can define intervals [z,y] C X as follows. First, when z < y € X,
set [x,y] :={z € X | x < z <y} and [y,z] := [z,y]. For general z,y € X set
[x,y] := [x Ay, z]U[z Ay, y]. We leave it to the reader to equip [z, y] with an interval
structure and to verify conditions (T1)—(T5). Conversely, given a tree X and a point
xo € X, define a partial ordering on X by declaring x < y iff x € [z, y]. One checks
that conditions (RT1)-(RT4) are verified.

A parametrization of a rooted tree (X, <) as above is a monotone function o : X —
[—00, +00] whose restriction to any segment [x,y] with < y is a homeomorphism
onto a closed subinterval of [—o0, +00]. We also require |a(zg)| < oo unless zg is an
endpoint of X. This induces a generalized metric on X by setting

d(z,y) = |a(z) — a(z Ayl + |a(y) — oz Ay)l
for distinct points z,y € X. The set H is exactly the locus where |a| < oo. Con-
versely given a generalized metric d on a tree X, a point g € H and a real number
ap € R, we obtain an increasing parametrization a of the tree X rooted in x¢ by
setting a(z) = ap + d(x, o).

Remark 2.6. A natural question is whether or not every rooted tree admits a
parametrization. In personal communication to the author, Andreas Blass has out-
lined an example of a rooted tree that cannot be parametrized. His construction
relies on Suslin trees [Jec03], the existence of which cannot be decided from the ZFC
axioms. It would be interesting to have a more explicit example.
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2.4. Radon measures on trees. Let us review the notions of Borel and Radon
measures on compact topological spaces and, more specifically, on trees.

2.4.1. Radon and Borel measures on compact spaces. A reference for the material
in this section is [Fol99, §7.1-2]. Let X be a compact (Hausdorff) space and B the
associated Borel o-algebra. A Borel measure on X is a function p : B — [0, +00]
satisfying the usual axioms. A Borel measure p is regular if for every Borel set
E C X and every € > 0 there exists a compact set F' and an open set U such that
FCECUand p(U\F) <e.

A Radon measure on X is a positive linear functional on the vector space C°(X)
of continuous functions on X. By the Riesz representation theorem, Radon measures
can be identified with regular Borel measures.

If X has the property that every open set of X is o-compact, that is, a countable
union of compact sets, then every Borel measure on X is Radon. However, many
Berkovich spaces do not have this property. For example, the Berkovich projective
line over any non-Archimedean field K is a tree, but if the residue field of K is
uncountable, then the complement of any Type 2 point (see is an open set
that is not o-compact.

We write M (X) for the set of positive Radon measures on X and endow it with
the topology of weak (or vague) convergence. By the Banach-Alaoglu Theorem, the
subspace MT(X ) of Radon probability measure is compact.

A finite atomic measure on X is a Radon measure of the form p = Zf\i 1 Ci0g; s
where ¢; > 0. A signed Radon measure is a real-valued linear functional on CY(X; R).
The only signed measures that we shall consider will be of the form p — pg, where p
is a Radon measure and pg a finite atomic measure.

2.4.2. Measures on finite trees. Let X be a finite tree. It is then easy to see that
every connected open set is of the form (', U(¥;), where 01,...,7, are tangent
directions in X such that U(v;) NU(;) # 0 but U(¥;) € U(¥;) for i # j. Each such
set is a countable union of compact subsets so it follows from the above that every
Borel measure is in fact a Radon measure.

2.4.3. Radon measures on general trees. Now let X be an arbitrary tree in the sense
of Definition It was claimed in [FJ04] and [BR10|] that in this case, too, every
Borel measure is Radon, but there is a gap in the proofs.

Example 2.7. Let Y be a set with the following property: there exists a probability
measure p on the maximal o-algebra (that contains all subsets of Y) that gives zero
mass to any finite set. The existence of such a set, whose cardinality is said to
be a real-valued measurable cardinal is a well known problem in set theory [Fre93]:
suffice it to say that its existence or nonexistence cannot be decided from the ZFC
axioms. Now equip Y with the discrete topology and let X be the cone over Y, that
is X =Y x[0,1]/ ~, where (y,0) ~ (¢/,0) for all y,9/ € Y. Let ¢ : Y — X be
the continuous map defined by ¢(y) = (y,1). Then p := ¢.u is a Borel measure on
X which is not Radon. Indeed, the open set U := X \ {0} has measure 1, but any
compact subset of U is contained in a finite union of intervals {y}x]0,1] and thus
has measure zero.
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Fortunately, this does not really lead to any problems. The message to take away
is that on a general tree, one should systematically use Radon measures, and this is
indeed what we shall do here.

2.4.4. Coherent systems of measures. The description of a general tree X as a pro-
finite tree is well adapted to describe Radon measures on X. Namely, let (Yy,)aca
be a rich net of finite subtrees of X, in the sense of The homeomorphism
X5 lim Y, then induces a homeomorphism Mf(x) = @MT(YQ) Concretely,
the right hand side consists of collections (pq)aca of Radon measures on each Y,
satisfying (7a)«ps = pa for a < B. Such a collection of measures is called a
coherent system of measures in [BR10]. The homeomorphism above assigns to a
Radon probability measure p on X the collection (pq)aca defined by po := (74)«p-

2.5. Potential theory. Next we outline how to do potential theory on a metric tree.
The presentation is adapted to our needs but basically follows [BR10], especially §1.4
and §2.5. The Laplacian on a tree is a combination of the usual real Laplacian with
the combinatorially defined Laplacian on a simplicial tree.

2.5.1. Quasisubharmonic functions on finite metric trees. Let X be a finite metric
tree. The Laplacian A on X is naturally defined on the class BDV(X) C C°(X) of
functions with bounded differential variation, see [BR10L §3.5], but we shall restrict
our attention to the subclass QSH(X) C BDV(X) of quasisubharmonic functions.

Let po = Ef\il ¢idz; be a finite atomic measure on X. Define the class SH(X, pg)
of pg-subharmonic functions as the set of continuous functions ¢ that are convex on
any segment disjoint from the support of pg and such that, for any z € X:

pofz} + ) Dip >0,

v

where the sum is over all tangent directions ¢’ at . Here Dz denotes the directional
derivative of ¢ in the direction @' (outward from z): this derivative is well defined
by the convexity of . We leave it to the reader to verify that

Dzp <0 whenever po(U(¥)) =0 (2.1)

for any ¢ € SH(X, pp); this inequality is quite useful.

Define QSH(X) as the union of SH(X, pg) over all finite atomic measures pp.
Note that if pg, pf, are two finite atomic measures with pf, > po, then SH(X, py) C
SH(X, pj). We also write SH(X, zg) := SH(X,d,,) and refer to its elements as
ro-subharmonic.

Let Y C X be a subtree of X containing the support of pg. We have an injection
t:Y — X and a retraction 7 : X — Y. It follows easily from that

(" SH(X, po) CSH(Y,po) and r*SH(Y, po) C SH(X, po).

Moreover, ¢ < r*1*¢ for any ¢ € SH(X, p).
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2.5.2. Laplacian. For ¢ € QSH(X), define Ay to be the signed (Borel) measure on
X defined as follows: if #,...,7, are tangent directions in X such that U(%;) N
U(7;) # 0 but U(v;) € U(t;) for i # j, then

Ap((U(@) =D Dyep.
i=1 i=1

This equation defines Ay uniquely as every open set in X is a countable disjoint
union of open sets of the form (U(¥;). The mass of Ay at a point € X is given
by ZﬁeTz Dz and the restriction of Ay to any open segment I C X containing no
branch point is equal to the usual real Laplacian of ¢|;.

The Laplace operator is essentially injective. Indeed, suppose 1, p2 € QSH(X)
and A1 = Agpy. We may assume @1, p2 € SH(X, po) for a common positive measure
po- If o = w1 — @2, then ¢ is affine on any closed interval whose interior is disjoint
from the support of pg. Moreover, at any point x € X we have ZEETI Dzp = 0.
These two conditions easily imply that ¢ is constant. (Too see this, first check that
¢ is locally constant at any end of X.)

If o € SH(X,pp), then py + Agp is a positive Borel measure on X of the same
mass as pg. In particular, when pg is a probability measure, we obtain a map

SH(X, po) 3 ¢ = po + Ap € M (X), (2.2)
where M7 (X) denotes the set of probability measures on X. We claim that this
map is surjective. To see this, first note that the function ¢, . given by

pr,z(x) = *d(z, AV y)7 (2'3)

with z A, y € X as in (T4), belongs to SH(X, z) and satisfies Ay = 6, — 6,. For a
general probability measure p and finite atomic probability measure pg, the function

o) = / / y=(@) dp(y)dpo(2) (2.4)

belongs to SH(X, po) and satisfies Ap = p — po.
Let Y C X be a subtree containing the support of pg and denote the Laplacians
on X and Y by Ax and Ay, respectively. Then, with notation as above,

Ay (*p) =r«(Axy) for ¢ € SH(X, po) (2.5)
Ax(r*¢) = t(Ayp) for ¢ € SH(Y, po),

where ¢ : Y — X and r : X — Y are the inclusion and retraction, respectively.

2.5.3. Equicontinuity. The spaces SH(X, pp) have very nice compactness properties
deriving from the fact that if pg is a probability measure then

|Dgp| <1 for all tangent directions ¢’ and all ¢ € SH(X, po). (2.7)

Indeed, using the fact that a function in QSH(X) is determined, up to an additive
constant, by its Laplacian follows from when pg and pg + A are Dirac
masses, and from in general.

As a consequence of (2.7, the functions in SH(X, pg) are uniformly Lipschitz
continuous and in particular equicontinuous. This shows that pointwise convergence
in SH(X, po) implies uniform convergence.
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The space SH(X, pg) is easily seen to be closed in the C°-topology, so we obtain
several compactness assertions from the Arzela-Ascoli theorem. For example, the
set SH(X, po) of ¢ € SH(X, po) for which max ¢ = 0 is compact.

Finally, we have an exact sequence of topological vector spaces

0 — R — SH(X, pg) — M (X) — 0; (2.8)

here MT(X ) is equipped with the weak topology on measures. Indeed, the con-
struction in (2.3)-(@4)) gives rise to a continuous bijection between M7 (X) and
SH(X, po)/R ~ SHY(X, pg). By compactness, the inverse is also continuous.

2.5.4. Quasisubharmonic functions on general metric trees. Now let X be a general
metric tree and pg a finite atomic measure supported on the associated hyperbolic
space H C X.

Let A be the set of finite metric subtrees of X that contain the support of pg. This
is a directed set, partially ordered by inclusion. For o € A, denote the associated
metric tree by Y,. The net (Y,)aca is rich in the sense of so the retractions
re : X — Y, induce a homeomorphism r : X = l'LmYO,

Define SH(X, pg) to be the set of functions ¢ : X — [—o0,0] such that ¢|y, €
SH(Ya, po) for all a € A and such that ¢ = lim 7} ¢. Notice that in this case 7% in
fact decreases to . Since 77 is continuous for all «, this implies that ¢ is upper
semicontinuous.

We define the topology on SH(X, pg) in terms of pointwise convergence on H.
Thus a net ¢; converges to ¢ in SH(X, po) iff ¢;]y,, converges to ¢|y, for all a.. Note,
however, that the convergence y; — ¢ is not required to hold on all of X.

Since, for all o, SH(Y,, po) is compact in the topology of pointwise convergence
on Yy, it follows that SH(X, pp) is also compact. The space SH(X, pg) has many
nice properties beyond compactness. For example, if (¢;); is a decreasing net in
SH(X, po), and ¢ := lim ¢;, then either p; = —oco on X or ¢ € SH(X, pg). Further, if
(pi)q is a family in SH(X, pg) with sup; maxx ¢; < 0o, then the upper semicontinuous
regularization of ¢ := sup, ¢; belongs to SH(X, po).

As before, we define QSH(X), the space of quasisubharmonic functions, to be the
union of SH(X, pg) over all finite atomic measures py supported on H.

2.5.5. Laplacian. Let X, pp and A be as above. Recall that a Radon probability
measure p on X is given by a coherent system (p,)aca of (Radon) probability
measures on Yj,.

For ¢ € SH(X, po) we define pg + Ap € M{(X) to be the unique Radon proba-
bility measure such that

(Ta)+(po + Ap) = po + Ay, (¢lv,,)

for all @ € A. This makes sense in view of (2.5).

The construction in (2.3))-(2.4) remains valid and the sequence (2.8)) of topolog-
ical vector spaces is exact. For future reference we record that if (¢;); is a net in

SH®(X, po), then ¢; — 0 (pointwise on H) iff Ap; — 0 in M (X).
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2.5.6. Singularities of quasisubharmonic functions. Any quasisubharmonic function
on a metric tree X is bounded from above on all of X and Lipschitz continuous on
hyperbolic space H, but can take the value —oo at infinity. For example, if zog € H
and y € X \ H, then the function ¢(z) = —du(zo, * Ay, y) is zo-subharmonic and
¢(y) = —oo. Note that Ay = 6y — d,,. The following result allows us to estimate
a quasisubharmonic function from below in terms of the mass of its Laplacian at
infinity. It will be used in the proof of the equidistribution result in

Proposition 2.8. Let pg be a finite atomic probability measure on H and let ¢ €
SH(X, po). Pick xo € H and any number A > sup,c x\u Ap{y}. Then there exists
a constant C = C(xq, po, p, A) > 0 such that

o(x) > p(xo) — C — Adu(x, z)
for all x € H.
We shall use the following estimates, which are of independent interest.
Lemma 2.9. Let pg be a finite atomic probability measure on H and let zo € H.

Pick ¢ € SH(X, po) and set p = po+ Agp. Then

T

ﬂm—wuwz—/prywmwzdmam»mZZﬂ,

zo

where < is the partial ordering on X rooted in xg.

Proof of Lemma[2.9. Tt follows from (2.4) that

T

ﬂ@—w@wz—/kvaZywmw

o

Z—/wMzZM¢MH2—/wM22$MMw=dH@Jw-MZ2xL

0 Zo

where we have used that p > Ay and x > y. U

Proof of Proposition[2.8, Let < denote the partial ordering rooted in zy and set
Vii={y € X|[(po+Ap){z >y} > A}

Recall that py + A is a probability measure. Thus Yy = 0 if A > 1. If A < 1,
then Y) is a finite subtree of X containing zp and having at most 1/\ ends. The
assumption that A > sup,c x\ug Ap{y} implies that Y) is in fact contained in H. In
particular, the number C' := sup, ¢y, du(wo,y) is finite.

It now follows from Lemma 2.9 that

T
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o

completing the proof. O
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2.5.7. Regularization. In complex analysis, it is often useful to approximate a qua-
sisubharmonic function by a decreasing sequence of smooth quasisubharmonic func-
tions. In higher dimensions, regularization results of this type play a fundamental
role in pluripotential theory, as developed by Bedford and Taylor [BT82, BT8T7].
They are also crucial to the approach to non-Archimedean pluripotential theory
in [BFJOSD, BEJ11al, BEJ11b].

Let us say that a function ¢ € SH(X, po) is regular if it is piecewise affine in the
sense that Ay = p — pg, where p is a finite atomic measure supported on H.

Theorem 2.10. For any ¢ € SH(X, po) there exists a decreasing sequence ()22,
of reqular functions in SH(X, pg) such that ¢, converges pointwise to ¢ on X.

Proof. Let Yy C X be a finite tree containing the support of p and pick a point
o € Yp. Set p = po + Ap.

First assume that p is supported on a finite subtree contained in H. We may
assume Yp C Y. For each n > 1, write Y \ {zo} as a finite disjoint union of half-open
segments v; = |x;,yi], @ € I, called segments of order n, in such a way that each
segment of order n has length at most 27" and is the disjoint union of two segments
of order n + 1. Define finite atomic measures p, by

pn = p{x0}02q + Y p(11)0y,
i€lp
and define ¢,, € SH(X, x0) by A¢yn = pn— po, ¢n(z0) = ¢(x0). From and
it follows that ¢, decreases to ¢ pointwise on X, as n — oo. Since ¢ = r§¢ is
continuous, the convergence is in fact uniform by Dini’s Theorem.
Now consider a general ¢ € SH(X, pg). For n > 1, define Y, C X by

Vi={yeX|p{lz=y}>2" and du(zo,y) <2"},

where < denotes the partial ordering rooted in zp. Then Y, is a finite subtree of X
and Y, C Y, for n > 1. Let Y, be the convex hull of the union of ¥, and Y, and
set Y, = ri‘,ngon. Since Y,, C Y11, we have ¢ < 941 < ¢y, for all n. We claim that
Y (z) converges to p(x) as n — oo for every x € X. Write z,, := 7y, (x) so that
n(x) = p(x,). The points x,, converge to a point y € [z, ] and lim,, ¥, (z) = ©(y).
If y = x, then we are done. But if y # x, then by construction of Y/, the measure p
puts no mass on the interval |y, x], so it follows from and that p(x) = ().

Hence 1, decreases to ¢ pointwise on X as n — oo. By the first part of the proof,
we can find a regular ¢,, € SH(X, pg) such that ¢, < ¢, < 1, +27" on X. Then
o, decreases to ¢ pointwise on X, as desired. U

Remark 2.11. A different kind of regularization is used in [FRO6, §4.6]. Fix a
point xp € H and for each n > 1 let X,, C X be the (a priori not finite) subtree
defined by X,, = {z € X | dg(xo,z) < n~'}. Let ¢, € SH(X,po) be defined
by po + Apn = (rn)«(po + Ap) and ¢, (z9) = ©(z0), where 7, : X — X, is the
retraction. Then ¢, is bounded and ¢,, decreases to ¢ as n — oc.

2.6. Tree maps. Let X and X' be trees in the sense of We say that a contin-
uous map f : X — X' is a tree map if it is open, surjective and finite in the sense
that there exists a number d such that every point in X’ has at most d preimages
in X. The smallest such number d is the topological degree of f.
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Proposition 2.12. Let f : X — X' be a tree map of topological degree d.

(i) if U C X is a connected open set, then so is f(U) and 0f(U) C f(OU);

(i) if U" C X' is a connected open set and U is a connected component of
f~HU"), then f(U) = U’ and f(OU) = dU’; as a consequence, f~1(U’) has
at most d connected components;

(iii) if U C X is a connected open set and U = f(U), then U is a connected
component of f~1(U") iff f(OU) C oU’.

The statement is valid for finite surjective open continuous maps f : X — X'
between compact Hausdorff spaces, under the assumption that every point of X
admits a basis of connected open neighborhoods. We omit the elementary proof; see
Lemma 9.11, Lemma 9.12 and Proposition 9.15 in [BR10] for details.

Corollary 2.13. Consider a point v € X and set 2’ := f(x) € X'. Then there
exists a connected open neighborhood V' of x with the following properties:

(i) if U is a tangent direction at x, then there exists a tangent direction U' at
z' such that f(V NU(D)) C UT); furthermore, either f(U(v)) = U(V') or
fUW)) = X'

(i) if ¥ is a tangent direction at z’ then there exists a tangent direction U at x
such that f(V NU(¥)) CU(W).

Definition 2.14. The tangent map of f at x is the map that associates v to .

The tangent map is surjective and every tangent direction has at most d preimages.
Since the ends of X are characterized by the tangent space being a singleton, it
follows that f maps ends to ends.

Proof of Corollary[2.13. Pick V small enough so that it contains no preimage of
a2’ besides x. Note that (ii) follows from (i) and the fact that f(V) is an open
neighborhood of z'.

To prove (i), note that V N U(?¥) is connected for every ¢. Hence f(V N U(7))
is connected and does not contain 2/, so it must be contained in U(¢") for some ¢/
Moreover, the fact that f is open implies Of(U(¥)) C f(0U(¥)) = {«'}. Thus either
f(U(@)) = X" or f(U(V)) is a connected open set with boundary {«’}. In the latter
case, we must have f(U(¥)) = U(¢'). O

2.6.1. Images and preimages of segments. The following result makes the role of the
tangent map more precise.

Corollary 2.15. Let f: X — X' be a tree map as above. Then:

(i) if U is a tangent direction at a point x € X, then there exists a pointy € U (V)
such that f is a homeomorphism of the interval [z,y] C X onto the interval
[f(x), f(y)] C X'; furthermore, f maps the annulus A(x,y) onto the annulus
A, F0);

(i) if ¥ is a tangent direction at a point ' € X', then there exists y' € U(V")
such that if v := [2',y/] then =" =, v, where the v; = [x;,y;] are closed
intervals in X with pairwise disjoint interiors and f maps ; homeomorphi-
cally onto ' for all i; furthermore we have f(A(x;,y:)) = A(x',y') for all i

and [~ A ) = U; Az, i):
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Proof. We first prove (ii). Set U’ = U(¢") and let U be a connected component
of f~1(U"). By Proposition m (ii), the boundary of U consists of finitely many
preimages x1,...Z;, of /. (The same preimage of 2’ can lie on the boundary of
several connected components U.) Since U is connected, there exists, for 1 < i < m,
a unique tangent direction ¥; at z; such that U C U(%;).

Pick any point 2’ € U’. Also pick points z1,..., 2, in U such that the segments
[x;, 2] are pairwise disjoint. Then f(]z;, 2;])N]x’, 2] # O for all i, so we can find
y' €la’, 2] and y; €|y, z;] arbitrarily close to x; such that f(y;) = v/ for all i. In
particular, we may assume that the annulus A4; := A(x;,y;) contains no preimage
of z/. By construction it contains no preimage of 2’ either. Proposition [2.12] (i)
first shows that 9f(A;) C {2/,y'}, so f(A;) = A’ := A(2/,y) for all i. Proposi-
tion (iii) then implies that A; is a connected component of f~!(A’). Hence
Y AYNU =, Ai.

Write v; = [x;,y;] and +' = [2/, ] Ple any & € lx;,y;[ and set & := f().
the one hand, f(A(&,vi)) C f(A; ) . On the other hand, df(A(&,y:)) C {¢,y }
so we must have f(A(&,v;)) = A(E, ’) and & € +/. We conclude that f(v;) =
and that f:7; — 4/ is injective, hence a homeomorphism.

The same argument gives f(A(z;,£)) = A(2/,£). Consider any tangent direction
W at € such that U(w) C A;. As above we have f(U(w)) C A" and 9f(U(w)) C
{¢'}, which implies f(U(w)) = U(w') for some tangent direction @ at & for which
U(w) C A’. We conclude that f=1(v') N A; C 5.

This completes the proof of (ii), and (i) is an easy consequence. O

Using compactness, we easily deduce the following result from Corollary See
the proof of Theorem 9.35 in [BR10].

Corollary 2.16. Let f: X — X' be a tree map as above. Then:

(i) any closed interval v in X can be written as a finite union of closed intervals
vi with pairwise disjoint interiors, such that ~, == f(v;) C X' is an interval
and f : v — 7. is a homeomorphism for all i; furthermore, f maps the
annulus A(v;) onto the annulus A(%));

(i) any closed interval 7' in X' can be written as a union of finitely many in-
tervals v with pairwise disjoint interiors, such that, for all i, f~1(v}) is a
finite union of closed intervals y;; with pairwise disjoint interiors, such that
[ 7ij = i is a homeomorphism for each j; furthermore, f maps the annu-
lus A(vij) onto the annulus A(v)); and A(vij) is a connected component of

FHAMGD)-

2.6.2. Fized point theorem. It is an elementary fact that any continuous selfmap of a
finite tree admits a fixed point. This can be generalized to arbitrary trees. Versions
of the following fixed point theorem can be found in [FJ04] Riv04, BRIO0].

Proposition 2.17. Any tree map f : X — X admits a fized point © = f(x) € X.
Moreover, we can assume that one of the following two conditions hold:

(i) = is not an end of X;

(ii) = is an end of X and x is an attracting fized point: there exists an open

neighborhood U C X of x such that f(U) C U and ﬂnzo M (U) ={x}.



DYNAMICS ON BERKOVICH SPACES IN LOW DIMENSIONS 27

In the proof we will need the following easy consequence of Corollary (1).

Lemma 2.18. Suppose there are points xz,y € X, © # y, with r(f(x))) = = and
r(f(y)) = y, where r denotes the retraction of X onto the segment [x,y]. Then f
has a fixed point on [z,y].

Proof of Proposition[2.17. We may suppose that f does not have any fixed point
that is not an end of X, or else we are in case (i). Pick any non-end zy € X and
pick a finite subtree X that contains xg, all preimages of xg, but does not contain
any ends of X. Let A be the set of finite subtrees of X that contain Xy but does
not contain any end of X. For o € A, let Y,, be the corresponding subtree. Then
(Ya)aca is a rich net of subtrees in the sense of so X 5 limY,.

For each «, define f, : Y, — Y, by fo = fors. This is a continuous selfmap of a
finite tree so the set Fy, of its fixed points is a nonempty compact set. We will show
that ro(Fg) = F, when 8 > «. This will imply that there exists € X such that
ra(f(ra(x)) = ro(z) for all a. By assumption, = is an end in X. Pick a sequence
(xn)0%, of points in X such that x,41 €]z, z[ and z, — x as n — oco. Applying
what precedes to the subtrees Y,, = Xo U [z, z,] we easily conclude that z is an
attracting fixed point.

It remains to show that r(F3) = F, when § > «. First pick 23 € Fz. We
will show that z, 1= ro(2g) € Fy. This is clear if 23 € Y, since ro = 745 0 18, 50
suppose zg € Yy, By assumption, f(zs) # 2o and f(xg) # x5. Let ¥ be the tangent
direction at z, represented by xg. Then U(¢) NY, = 0 so zo ¢ f(U(?¥)) and hence
f(U(¥)) = U(¥') for some tangent direction ¢ at f(z,). Note that f(zg) € U(¥').
If f(z,) € U(V), then Lemma applied to © = x4, y = xg gives a fixed point for
fin [zq, 28] C Yp, a contradiction. Hence f(zo) & U(?V), so that 7o (f(za)) = Ta,
that is, zo € Fy.

Conversely, pick z, € F,. By assumption, f(zs) # xo. Let U be the tangent
direction at z, defined by U(#). Then U(¥) NY, = 0 so f(U(¥)) C U(#). Now
U(¥) NYjs is a finite nonempty subtree of X that is invariant under fz. Hence f3
admits a fixed point zg in this subtree. Then x5 € Y3 and ro(23) = Zq. (]

2.7. Notes and further references. Our definition of “tree” differs from the one
in set theory, see |[JecO3|]. It is also not equivalent to the notion of “R-tree” that
has been around for quite some time (see [GH90]) and found striking applications.
An R-tree is a metric space and usually considered with its metric topology. On
the other hand, the notion of the weak topology on an R-tree seems to have been
rediscovered several times, sometimes under different names (see J[CLMOT]).

Our definitions of trees and metric trees are new but equivalenté to the ones given
in [FJ04], where rooted trees are defined first and general (non-rooted) trees are
defined as equivalence classes of rooted trees. The presentation here seems more
natural. Following Baker and Rumely [BR10] we have emphasized viewing a tree as
a pro-finite tree, that is, an inverse limit of finite trees.

Potential theory on simplicial graphs is a quite old subject but the possibility
of doing potential theory on general metric trees seems to have been discovered

8Except for the missing condition (RT3), see Remark
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independently by Favre and myself [FJ04], Baker and Rumely [BR10] and Thuil-
lier [Thu05]; see also [Fav05]. Our approach here follows [BR10] quite closely in how
the Laplacian is extended from finite to general trees. The class of quasisubharmonic
functions is modeled on its complex counterpart, where its compactness properties
makes this class very useful in complex dynamics and geometry. It is sufficiently
large for our purposes and technically easier to handle than the class of functions of
bounded differential variations studied in [BR10)].

Note that the interpretation of “potential theory” used here is quite narrow; for
further results and questions we refer to [BRI10) [Thu05]. It is also worth mention-
ing that while potential theory on the Berkovich projective line can be done in a
purely tree theoretic way, this approach has its limitations. In other situations,
and especially in higher dimensions, it seems advantageous to take a more geomet-
ric approach. This point of view is used already in [Thu05] and is hinted at in
our exposition of the valuative tree in §7| and We should remark that Thuillier
in [Thu05] does potential theory on general Berkovich curves. These are not always
trees in our sense as they can contain loops.

Most of the results on tree maps in are well known and can be found in [BR10]
in the context of the Berkovich projective line. I felt it would be useful to isolate
some properties that are purely topological and only depend on the map between
trees being continuous, open and finite. In fact, these properties turn out to be quite
plentiful.

As noted in the text, versions of the fixed point result in Proposition [2.17| can be
found in the work of Favre and myself [F.JO7] and of Rivera-Letelier [Riv04]. The
proof here is new.
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3. THE BERKOVICH AFFINE AND PROJECTIVE LINES

Let us briefly describe the Berkovich affine and projective lines. A comprehensive
reference for this material is the recent book by Baker and Rumely [BRI10]. See
also Berkovich’s original work [Ber90]. One minor difference to the presentation
in [BR10] is that we emphasize working in a coordinate free way.

3.1. Non-Archimedean fields. We start by recalling some facts about non-Archimedean
fields. A comprehensive reference for this material is [BGR84].

3.1.1. Seminorms and semivaluations. Let R be a integral domain. A multiplicative,
non-Archimedean seminorm on R is a function |- | : R — Ry satisfying |0 = 0,
|1 =1, |ab| = |a||b] and |a + b| < max{]al,|b|}. If |a] > O for all nonzero a, then |- |
is a morm. In any case, the set p C R consisting of elements of norm zero is a prime
ideal and | - | descends to a norm on the quotient ring R/p and in turn extends to a
norm on the fraction field of the latter.

Sometimes it is more convenient to work additively and consider the associated
semi—valuatiowﬂ v: R — RU{+00} defined by v = —log |- |. It satisfies the axioms
v(0) = 400, v(1) = 0, v(ab) = v(a) + v(b) and v(a + b) > min{v(a),v(b)}. The
prime ideal p above is now given by p = {v = +oo} and v extends uniquely to a
real-valued valuation on the fraction field of R/p.

Any seminorm on a field K is a norm. A non-Archimedean field is a field K
equipped with a non-Archimedean, multiplicative norm | - | = | - |x such that K
is complete in the induced metric. In general, we allow the norm on K be trivial:
see Example As a topological space, K is totally disconnected. We write
|K*| = {|a] | @ € K\ {0}} C R% for the (multiplicative) value group of K.

3.1.2. Discs. A closed disc in K is a set of the form D(a,r) ={b € K | |a—b| <r}.
This disc is degenerate if r = 0, rational if r € |K*| and irrational otherwise.
Similarly, D~ (a,r):={b€ K | [a —b| < r}, r >0, is an open disc.

The terminology is natural but slightly misleading since nondegenerate discs are
both open and closed in K. Further, if 0 < r ¢ |K*|, then D~ (a,r) = D(a,r). Note
that any point in a disc in K can serve as a center and that when two discs intersect,
one must contain the other. As a consequence, any two closed discs admit a unique
smallest closed disc containing them both.

3.1.3. The residue field. The valuation ring of K is the ring o := {|-| < 1}. It
is a local ring with maximal ideal mg := {| - | < 1}. The residue field of K is
K = ox/mg. We can identify ox and my with the closed and open unit discs in
K, respectively. The residue characteristic of K is the characteristic of K. Note
that if K has characteristic zero, then so does K.

Example 3.1. We can equip any field K with the ¢rivial norm in which |a| = 1
whenever a # 0. Then o = K, mg =0 and K = K.

9Unfortunately, the terminology is not uniform across the literature. In [BGR84| [Ber90] ‘valu-
ation’ is used to denoted multiplicative norms. In [EJ04], ‘valuation’ instead of ‘semi-valuation’ is
used even when the prime ideal {v = +o0} is nontrivial.
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Example 3.2. The field K = Q, of p-adic numbers is the completion of Q with
respect to the p-adic norm. Its valuation ring ox is the ring of p-adic integers Z,
and the residue field K is the finite field F,. In particular, Q, has characteristic
zero and residue characteristic p > 0.

Example 3.3. The algebraic closure of Q,, is not complete. Luckily, the completed
algebraic closure C,, of Q, is both algebraically closed and complete. Its residue
field is Fip7 the algebraic closure of F),. Again, C, has characteristic zero and residue
characteristic p > 0.

Example 3.4. Consider the field C of complex numbers (or any algebraically closed
field of characteristic zero) equipped with the trivial norm. Let K = C((u)) be the
field of Laurent series with coefficients in C. The norm |- | on K is given by
log|>,cz anu™| = —min{n | a, # 0}. Then ox = C[[u]], mg = uox and K = C.
We see that K is complete and of residue characteristic zero. However, it is not
algebraically closed.

Example 3.5. Let K = C((u)) be the field of Laurent series. By the Newton-
Puiseux theorem, the algebraic closure K¢ of K is the field of Puiseuzx series

a= Z agu®, (3.1)

BeB

where the sum is over a (countable) subset B C Q for which there exists m, N € N
(depending on a) such that m+ NB C N. This field is not complete; its completion

S~

K@ is algebraically closed as well as complete. It has residue characteristic zero.

Example 3.6. A giant extension of C((u)) is given by the field K consisting of
series of the form ({3.1)), where B ranges over well-ordered subsets of R. In this case,
|K*| = R*.

3.2. The Berkovich affine line. Write R ~ K|z] for the ring of polynomials in
one variable with coefficients in K. The affine line A' over K is the set of maximal
ideals in R. Any choice of coordinate z (i.e. R = K|[z|) defines an isomorphism
A' 5 K. A (closed or open) disc in Al is a disc in K under this isomorphism. This
makes sense since any automorphism z — az + b of K maps discs to discs. We can
also talk about rational and irrational discs. However, the radius of a disc in A is
not well defined.

Definition 3.7. The Berkovich affine line A}, = Ab., (K) is the set of multi-
plicative seminorms | - | : R — R4 whose restriction to the ground field K C R is
equal to the given norm |- |x.

Such a seminorm is necessarily non-Archimedean. Elements of A]13erk are usually
denoted z and the associated seminorm on R by |- |;. The topology on AL . is
the weakest topology in which all evaluation maps = — |¢|,, ¢ € R, are continuous.
There is a natural partial ordering on AL ,: z <y iff ¢, <|¢|, for all ¢ € R.

3.3. Classification of points. One very nice feature of the Berkovich affine line is
that we can completely and precisely classify its elements. The situation is typically
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much more complicated in higher dimensions. Following Berkovich [Ber90] we shall
describe four types of points in A%Berk, then show that this list is in fact complete.

For simplicity we shall from now on and until assume that K is algebraically
closed and that the valuation on K is montrivial. The situation when one or both
of these conditions is not satisfied is discussed briefly in See also for a
different presentation of the trivially valued case.

3.3.1. Seminorms from points. Any closed point z € A' defines a seminorm |- |, on
R through

|9l == |¢()]-
This gives rise to an embedding A! < AL _, . The images of this map will be called
classical pointsm

Remark 3.8. If we define A%Serk as above when K = C, then it follows from the
Gel’fand-Mazur Theorem that all points are classical, that is, the map A' — A}Berk
is surjective. The non-Archimedean case is vastly different.

3.3.2. Seminorms from discs. Next, let D C A' be a closed disc and define a semi-
norm | - |p on R by

61 = mae ().

It follows from Gauss’ Lemma that this indeed defines a multiplicative seminorm on
R. In fact, the maximum above is attained for a “generic” x € D. We denote the
corresponding element of A%erk by zp. In the degenerate case D = {z}, » € Al,
this reduces to the previous construction: xp = x.

3.3.3. Seminorms from nested collections of discs. It is clear from the construction
that if D, D’ are closed discs in A, then

|¢|p < |¢|p for all ¢ € Riff DC D' (3.2)

Definition 3.9. A collection £ of closed discs in A! is nested if the following con-
ditions are satisfied:
(a) if D, D' € £ then D C D' or D' C D;
(b) if D and D’ are closed discs in A with D’ € £ and D’ C D, then D € &;
(c) if (Dy)n>1 is a decreasing sequence of discs in £ whose intersection is a disc
D in A', then D € £.

In view of we can associate a seminorm zg € AllBerk to a nested collection £
of discs by
ve = ful oo
indeed, the limit of an decreasing sequence of seminorms is a seminorm. When the
intersection (e D is nonempty, it is a closed disc D(E) (possibly of radius 0). In
this case z¢ is the seminorm associated to the disc D(€). In general, however, the

intersection above may be empty (the existence of a nested collection of discs with
nonempty intersection is equivalent to the field K not being spherically complete).

10They are sometimes called rigid points as they are the points that show up rigid analytic
geometry [BGR84].
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The set of nested collections of discs is partially ordered by inclusion and we have
xTre < xTer iff 5/ - E.

3.3.4. Classification. Berkovich proved that all seminorms in A]13>erk arise from the
construction above.

Theorem 3.10. For any x € A1136rk there exists a unique nested collection € of
discs in A' such that x = xg. Moreover, the map £ — xg is an order-preserving
isomorphism.

Sketch of proof. The strategy is clear enough: given x € A]136rk define £(x) as the
collection of discs D such that xp > x. However, it requires a little work to show that
the maps €& — z¢ and x — &(z) are order-preserving and inverse one to another.
Here we have to use the assumptions that K is algebraically closed and that the
norm on K is nontrivial. The first assumption implies that x is uniquely determined
by its values on linear polynomials in R. The second assumption is necessary to
ensure surjectivity of £ — x¢: if the norm on K is trivial, then there are too few
discs in A'. See the proof of [BRI0, Theorem 1.2] for details. O

3.3.5. Tree structure. Using the classification theorem above, we can already see
that the Berkovich affine line is naturally a tree. Namely, let & denote the set of
nested collections of discs in A'. We also consider the empty collection as an element
of &. It is then straightforward to verify that &, partially ordered by inclusion, is a
rooted tree in the sense of As a consequence, the set AL, U{oco} is a rooted
metric tree. Here oo corresponds to the empty collection of discs in A! and can be
viewed as the function |- | : R — [0, +00] given by |¢| = oo for any nonconstant
polynomial ¢ € R and |- | = |- |k on K. Then AL , U{oo} is a rooted tree with
the partial ordering x < 2’ iff | - |, > |- |- on R. See Figure

X
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F1GURE 3.1. The Berkovich affine line.

3.3.6. Types of points. Using the identification with nested collections of discs, Berkovich
classifies the points in A]136rk as follows:

e a point of Type 1 is a classical point, that is, a point in the image of the
embedding Al «— A}%erk;

e a point of Type 2 is of the form xp where D is a rational disc in A';

e a point of Type 3 is of the form xp where D is an irrational disc in A';
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e a point of Type 4 is of the form z¢, where £ is a nested collection of discs
with empty intersection.

Note that Type 3 points exist iff |K| C R4, while Type 4 points exist iff K is not
spherically complete.

3.3.7. Action by automorphisms. Any automorphism A € Aut(A!) arises from a
K-algebra automorphism A* of R, hence extends to an automorphism of All_%erk by
setting
9la() = [A"¢la

for any polynomial ¢ € R. Note that A is order-preserving. If £ is a nested collection
of discs in A, then so is A(E) and A(zg) = wa(e). It follows that A preserves the
type of a point in A, .

Clearly Aut(A!) acts transitively on A, hence on the Type 1 points in AL, .
It also acts transitively on the rational discs in A!, hence the Type 2 points. In
general, it will not act transitively on the set of Type 3 or Type 4 points, see

3.3.8. Coordinates, radii and the Gauss norm. The description of A]13>erk above was
coordinate independent. Now fix a coordinate z : A! = K. Using z, every disc
D C A! becomes a disc in K, hence has a well-defined radius (D). If D is a closed
disc of radius 7 = r,(D) centered at point in A with coordinate a € K, then

|z — b|p = max{|a — b|,7}. (3.3)

We can also define the radius r,(€) := infpeg 7.(D) of a nested collection of discs.
The completeness of K implies that if r.(€) = 0, then ((pce D is a point in Al

The Gauss norm is the norm in A}Berk defined by the unit disc in K. We emphasize
that the Gauss norm depends on a choice of coordinate z. In fact, any Type 2 point
is the Gauss norm in some coordinate.

The radius r,(D) of a disc depends on z. However, if we have two closed discs
D C D' in A%, then the ratio 7,(D’) /r.(D) does not depend on z. Indeed, any other
coordinate w is of the form w = az+0b, with a € K*, b € K and so r,(D) = |a|r,(D),

rw(D') = |a|r;(D’). We think of the quantity log :z((%l))
D'\ D. Tt will play an important role in what follows.

In the same spirit, the class [r,(x)] of r.(z) in R% /|K*| does not depend on the
choice of coordinate z. This implies that if |[K| # R, then Aut(A!) does not act
transitively on Type 3 points. Indeed, if |K| # R, then given any Type 3 point
x we can find another Type 3 point y € [o0, x| such that [r,(z)] # [r:(y)]. Then
A(z) # y for any A € Aut(A'). The same argument shows that if K admits Type 4
points of any given radius, then A does not always act transitively on Type 4 points.
For K = C,, there does indeed exist Type 4 points of any given radius, see [Rob00,
p.143].

as the modulus of the annulus

3.4. The Berkovich projective line. We can view the projective line P! over
K as the set of proper valuation rings A of F//K, where F' ~ K(z) is the field of
rational functions in one variable with coefficients in K. In other words, A C F is a
subring containing K such that for every nonzero ¢ € F we have ¢ € A or ¢~ € A.
Since A # F, there exists z € F'\ A such that FF = K(z) and 2=! € A. The other
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elements of P! are then the localizations of the ring R := K|[2] at its maximal ideals.
This gives rise to a decomposition P! = A! U {oo} in which A becomes the point
~ € PL.

Given such a decomposition we define a closed disc in P! to be a closed disc in
A, the singleton {oo}, or the complement of an open disc in A'. Open discs are
defined in the same way. A disc is rational if it comes from a rational disc in Al
These notions do not depend on the choice of point co € P1.

Definition 3.11. The Berkovich projective line Py, over K is the set of functions |-
| : F' — [0, 400] extending the norm on K C F' and satisfying |¢+v| < max{|¢|, |¢|}
for all ¢,¢ € F, and |p| = |4|[t| unless |¢| = 0, |¢p| = 400 or [¢| =0, |¢| = +o0.

To understand this, pick a rational function z € F' such that F' = K(z). Then

R := K|[z] is the coordinate ring of A! := P!\ {z = oc}. There are two cases.
Either |z| = oo, in which case |¢| = oo for all nonconstant polynomials ¢ € R,
or | -] is a seminorm on R, hence an element of AL ,. Conversely, any element

T € A]1Berk defines an element of P]13erk in the sense above. Indeed, every nonzero
¢ € F is of the form ¢ = ¢1/¢2 with ¢1,d2 € R having no common factor. Then
we can set |@|, := |d1|s/|d2|s; this is well defined by the assumption on ¢; and
¢o. Similarly, the function which is identically co on all nonconstant polynomials
defines a unique element of P]13erk: each ¢ € F defines a rational function on P! and
|| := |¢p(c0)| € [0,400]. This leads to a decomposition

P]1?>erk = A]13erk U{OO},
corresponding to the decomposition P! = Al U {cc}.

We equip P]%erk with the topology of pointwise convergence. By Tychonoff, P]I3 ork
is a compact Hausdorff space and as a consequence, A113erk is locally compact. The
injection Al — A113erk extends to an injection P! — P113erk by associating the
function oo € P113erk to the point co € P!,

Any automorphism A € Aut(P!) is given by an element A* € Aut(F/K). hence
extends to an automorphism of PL_, by setting

for any rational function ¢ € F. As in the case of Aéerk, the type of a point is
preserved. Further, Aut(P!) acts transitively on the set of Type 1 and Type 2
points, but not on the Type 3 or Type 4 points in general, see §3.3.§

3.5. Tree structure. We now show that P}Berk admits natural structures as a tree
and a metric tree. See §2| for the relevant definitions.

Consider a decomposition P! = Al U {co} and the corresponding decomposition
PL . = AL, U{cc}. The elements of PL_, define functions on the polynomial
ring R with values in [0, +00]. This gives rise to a partial ordering on Pg_,: = < 2’
iff and only if ||, > |p|y for all polynomials ¢. As already observed in
P}13erk then becomes a rooted tree in the sense of with oo as its root. The
partial ordering on P1136rk depends on a choice of point co € P!, but the associated
(nonrooted) tree structure does not.

The ends of Pll?>erk are the points of Type 1 and 4, whereas the branch points are
the Type 2 points. See Figure 3.2
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FIGURE 3.2. The Berkovich projective line.

Given a coordinate z : A' = K we can parametrize P113erk rooted in oo using
radii of discs. Instead of doing so literally, we define an decreasing parametrization
o, : P, — [—00, +oc] using

a(zg) :=logr,(£). (3.4)

One checks that this is a parametrization in the sense of The induced metric
tree structure on P]]LBerk does not depend on the choice of coordinate z and any
automorphism of P! induces an isometry of P}, in this generalized metric. This is
one reason for using the logarithm in . Another reason has to do with potential
theory, see Note that a,(c0) = 0o and a,(x) = —oc iff x is of Type 1.

The associated hyperbolic space in the sense of §2|is given by

H:= Py, \P.

The generalized metric on P%erk above induces a complete metric on H (in the usual
sense). Any automorphism of P! induces an isometry of H.

3.6. Topology and tree structure. The topology on P%erk defined above agrees
with the weak topology associated to the tree structure. To see this, note that P}Serk
is compact in both topologies. It therefore suffices to show that if ¢'is a tree tangent
direction ¥ at a point x € P]I3 ok then the set U(¥) is open in the Berkovich topology.
We may assume that z is of Type 2 or 3. In a suitable coordinate z, z = zp(g, ) and
¥ is represented by the point zg. Then U(?) = {y € P4, | |2z < r}, which is open
in the Berkovich topology.

A generalized open Berkovich disc is a connected component of Py, \{z} for
some x € P]136rk' When z is of Type 2 or 3 we call it an open Berkovich disc and
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when z of Type 2 a strict open Berkovich disc. An (strict) simple domain is a finite
intersection of (strict) open Berkovich discs. The collection of all (strict) simple
domains is a basis for the topology on Pll_%erk.

3.7. Potential theory. As P113erk is a metric tree we can do potential theory on
it, following See also [BR10] for a comprehensive treatment, and the thesis of
Thuillier [Thu05] for potential theory on general Berkovich analytic curves.

We shall not repeat the material in here, but given a finite atomic prob-
ability measure py on X with support on H, we have a space SH(PL_,,po) of
po-subharmonic functions, as well as a homeomorphism

/%) + A SH(PIISerb po)/R :> MT(P]I-%ETk)'

Over the complex numbers, the analogue of SH(Pﬁerk, po) is the space SH(P!, w)
of w-subharmonic functions on P!, where w is a Kéhler form.

Lemma 3.12. If¢ € F\{0} is a rational function, then the functionlog|¢|: H — R
is Lipschitz continuous with Lipschitz constant deg(¢).

Proof. Pick any coordinate z on P! and write ¢ = ¢1/¢o, with ¢y, ¢o polynomials.
The functions log|¢;| and log|¢2| are decreasing in the partial ordering rooted at
oo and log|¢| = log |¢p1]| — log |¢2|. Hence we may assume that ¢ is a polynomial.
Using that K is algebraically closed we further reduce to the case ¢ = z — b, where
b € K. But then the result follows from . (]

Remark 3.13. The function log|¢| belongs to the space BDV(PL_, ) of functions
of bounded differential variation and A log |¢| is the divisor of ¢, viewed as a signed,
finite atomic measure on P! C PL_ : see [BRI0, Lemma 9.1]. Lemmathen also
follows from a version of for functions in BDV(P%_, ). These considerations
also show that the generalized metric on P}Berk is the correct one from the point of
potential theory.

3.8. Structure sheaf and numerical invariants. Above, we have defined the
Berkovich projective line as a topological space, but it also an analytic space in the
sense of Berkovich and carries a structure sheaf . The local rings O, are useful
for defining and studying the local degree of a rational map. They also allow us to
recover Berkovich’s classification via certain numerical invariants.

3.8.1. Structure sheaf. A holomorphic function on an open set U C P]13 ork 18 @ locally
uniform limit of rational functions without poles in U. To make sense of this, we
first need to say where the holomorphic functions take their values: the value at a
point x € P§_, is in a non-Archimedean field H(z).

To define H(z), assume x € Af_,. The kernel of the seminorm | - |, is a prime
ideal in R and |- |, defines a norm on the fraction field of R/ ker(|-|;); the field H(x)
is its completion.

When z is of Type 1, H(x) ~ K. If instead x is of Type 3, pick a coordinate z € R
such that 7 := |z|, & |K|. Then H(x) is isomorphic to the set of series > _a;z7
with a; € K and |a;|r/ — 0 as j — +oo. For x of Type 2 or 4, I am not aware of a
similar explicit description of H(z).



DYNAMICS ON BERKOVICH SPACES IN LOW DIMENSIONS 37

The pole set of a rational function ¢ € F' can be viewed as a set of Type 1 points
in PL_,. If 2 is not a pole of ¢, then ¢(z) € H(x) is well defined. The definition
of a holomorphic function on an open subset U C P1136rk now makes sense and gives
rise to the structure sheaf O.

3.8.2. Local rings and residue fields. The ring O, for = € P]13erk is the ring of germs
of holomorphic functions at . Denote by m, the maximal ideal of O, and by
k(z) := Oz /my the residue field. Note that the seminorm |- |, on O, induces a norm
on k(z). The field H(z) above is the completion of k(z) with respect to the residue
norm and is therefore called the completed residue field.

When z is of Type 1, O, is isomorphic to the ring of power series > 7° ajzj such
that limsup |a;|'/7 < oo, and k(z) = H(z) = K.

If x is not of Type 1, then m; = 0 and O, = k(z) is a field. This field is usually
difficult to describe explicitly. However, when z is of Type 3 it has a description
analogous to the one of its completion H(x) given above. Namely, pick a coordinate
z € Rsuch that r := |z|, € |K|. Then O, is isomorphic to the set of series Y>> a;27
with a; € K for which there exists 7’ < r < r” such that |a;|(r")7,a—;|(r")™ — 0
as j — 4o0.

3.8.3. Numerical invariants. While the local rings O, and the completed residue
fields H(x) are not always easy to describe explicitly, certain numerical invariants
of them are easily understood and allow us to recover Berkovich’s classification.

First, = is of Type 1 iff the seminorm | - |, has nontrivial kernel. Now suppose
the kernel is trivial. Then O, is a field and contains F' ~ K (z) as a subfield. Both
these fields are dense in H(z) with respect to the norm |- |;. In this situation we
have two basic invariants.

First, the (additive) value group is defined by

Iy :=log|H(z)"|z = log |0}, = log |F™|,.

This is an additive subgroup of R containing I'x := log |K*|. The rational rank
rat. rkx of x is the dimension of the Q-vector space (I';/T'x) ®z Q.
Second, the three fields H(x), O, and F have the same residue field with respect

to the norm | - |,. We denote this field by H,(z); it contains the residue field K of K
as a subfield. The transcendence degree tr.degx of x is the transcendence degree of

the field extension H(z)/K.
One shows as in [BR10, Proposition 2.3] that
e if x is of Type 2, then tr.degx = 1 and rat. rkx = 0; more precisely I', = 'k
and % ~ K(z);
o if x is of Type 3, then tr.degax = 0 and rat.rka = 1; more precisely, I', =
I'x ® Za, where a € ', \ T, and % ~ K;
o ifx is/gf;ljypefl, then tr. deg x = 0 and rat. rk x = 0; more precisely, I', = 'k

and H(x) ~ K;

3.8.4. Quasicompleteness of the residue field. Berkovich proved in [Ber93l 2.3.3] that
the residue field x(x) is quasicomplete in the sense that the induced norm |- |, on
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k(z) extends uniquely to any algebraic extension of x(x). This fact is true for any
point of a “good” Berkovich space. It will be exploited (only) in §4.8.2

3.8.5. Weak stability of the residue field. If x is of Type 2 or 3, then the residue field
k(x) = Oy is weakly stable. By definition [BGR84, 3.5.2/1] this means that any finite
extension L/k(x) is weakly Cartesian, that is, there exists a linear homeomorphism
L = k(x)", where n = [L : (z)], see [BGR84, 2.3.2/4]. Here the norm on L is the
unique extension of the norm on the quasicomplete field x(z). The homeomorphism
above is not necessarily an isometry.

The only consequence of weak stability that we shall use is that if L/k(x) is a
finite extension, then [L : k(z)] = [L : #(z)], where L denotes the completion of L,
see [BGR84, 2.3.3/6]. This, in turn, will be used (only) in §4.8.2

Let us sketch a proof that k(z) = O, is weakly stable when z is of Type 2
or 3. Using the remark at the end of [BGR84, 3.5.2] it suffices to show that the
field extension H(x)/O, is separable. This is automatic if the ground field K has
characteristic zero, so suppose K has characteristic p > 0. Pick a coordinate z € R
such that z is associated to a disc centered at 0 € K. It is then not hard to see that
OLr = O,[z"/?] and it suffices to show that z'/P ¢ H(z). If z is of Type 3, then
this follows from the fact that %logr =log|z'/?|, & T + Zlogr = I',. If instead
x is of Type 2, then/wg/may assume that x is the Gauss point with respect to the

coordinate z. Then H(z) ~ K(z) # z/? and hence z'/? ¢ H(z).

3.8.6. Stability of the completed residue field. When z is a Type 2 or Type 3 point,
the completed residue field H(z) is stable field in the sense of [BGR84, 3.6.1/1].
This means that any finite extension L/H(z) admits a basis ey, ..., e, such that
| >, aiei| = max; |a;||e;| for a; € K. Here the norm on L is the unique extension of
the norm on the complete field H(z). The stability of H(x) is proved in [Tem10bl
6.3.6] (the case of a Type 2 point also follows from [BGR84, 5.3.2/1]).

Let x be of Type 2 or 3. The stability of H(x) implies that for any finite extension
L/H(x) we have [L : H(z)] = [ : Ty - [L : H(z)], where I', and L are the value
group and residue field of L, see [BGR84, 3.6.2/4].

3.8.7. Tangent space and reduction map. Fix x € Pll_%erk. Using the tree structure,
we define as in the tangent space Ty, of P]136rk at x as well as a tautological “re-
duction” map from P}_, \{z} onto T}, Let us interpret this procedure algebraically
in the case when x is a Type 2 point.

The tangent space T}, at a Type 2 point z is the set of valuation rings A C H(z)
containing K. Fix a coordinate z such that z becomes the Gauss point. Then
H(z) = K(2) and T, ~ P'(K). Let us define the reduction map 7, of PL_, \{z}
onto T, ~ PY(K). Pick a point y € Pk, \{z}. If |2[, > 1, then we declare
rz(y) = oo. If |z], <1, then, since y # z, there exists a € ox such that |z —al, < 1.
The element a is not uniquely defined, but its class @ € K is and we set ry (y) = a.
One can check that this definition does not depend on the choice of coordinate z
and gives the same result as the tree-theoretic construction.

The reduction map can be naturally understood in the context of formal models,
but we shall not discuss this here.
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3.9. Other ground fields. Recall that from §3.4] onwards, we assumed that the
field K was algebraically closed and nontrivially valued. These assumptions were
used in the proof of Theorem Let us briefly discuss what happens when they
are removed.

As before, AL_, (K) is the set of multiplicative seminorms on R ~ K|[z] extend-
ing the norm on K and PL_, (K) ~ AL, (K)U {cc}. We can equip A}, (K)
and PL_, (K) with a partial ordering defined by @ < ' iff |¢p(z)| > |¢(2’)| for all
polynomials ¢ € R.

3.9.1. Non-algebraically closed fields. First assume that K is nontrivially valued
but not algebraically closed. Our discussion follows [Ber90, §4.2]; see also [Ked11bl,
§2.2], [Ked10, §5.1] and [Ked1lal §6.1].

Denote by K the algebraic closure of K and by Ko its completion. Since K is
complete, the norm on K has a unique extension to K.

The Galois group G := Gal(K®/K) acts on K@ and induces an action on Al erk(f/(\a),
which in turn extends to P%erk(f(\a) = Allgerk(l/(-'\“) U {oo} using g(oco) = oo for all
g € G. It is a general fact that PL_, (K) is isomorphic to the quotient Pllgerk(l/(\a)/G.

The quotient map 7 : P]lgerk(l/(:\“) — P}, (K) is continuous, open and surjective.

It is easy to see that g maps any segment [z,00] homeomorphically onto the
segment [g(z), co]. This implies that P, (K) is a tree in the sense of In fact,
the rooted tree structure on Ph,, (K) is defined by the partial ordering above.

If ge Gand x € P113erk(f{\a)7 then x and g(x) have the same type. This leads

to a classification of points in PL_, (K) into Types 1-4. Note that since Ko # K¢
in general, there may exist Type 1 points = # oo such that |¢(z)] > 0 for all
polynomials ¢ € R = K|z].

We can equip the Berkovich projective line P}, (K) with a generalized metric.
In fact, ther/e\ are two natural ways of doing this. Fix a coordinate z € R. Let
&, : PL_ (K% — [—00,+0o0] be the parametrization defined in It satisfies
G, 09 = G, for all g € G and hence induces a parametrization &, : PL_, (K) —
[—00, +00]. The associated generalized metric on P}, (K) does not depend on the
choice of coordinate z and has the nice feature that the associated hyperbolic space
consists exactly of points of Types 2—4.

However, for potential theoretic considerations, it is better to use a slightly dif-
ferent metric. For this, first define the multz’plicz’tﬂ m(z) € Zy U {oo} of a point

—

z € PL_, (K) as the number of preimages of z in PL_, (K®). The multiplicity of
a Type 2 or Type 3 point is finite and if x < y, then m(z) divides m(y). Note
that m(0) = 1 so all points on the interval [oco,0] have multiplicity 1. We now
define a decreasing parametrization a, : Py, (K) — [—00, +00] as follows. Given
z € Ph ., (K), set 2o := 2 A0 and

ax(e) = au(an) ~ [ s di(y) (3.5)

HThis differs from the “algebraic degree” used by Trucco, see [Tru09) Definition 5.1].
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Again, the associated generalized metric on P§_, (K) does not depend on the choice
of coordinate z. The hyperbolic space H now contains all points of Types 2—4 but
may also contain some points of Type 1.

One nice feature of the generalized metric induced by «, is that if pg is a finite
positive measure on P113erk(K ) supported on points of finite multiplicity and if ¢ €

SH(PL,., (K), po), then ¢ € QSH(PL_, (K%)) and
Ap = T A(T"p).

Furthermore, for any rational function ¢ € F, the measure Alog|¢| on Pg_, (K)
can be identified with the divisor of ¢, see Remark

3.9.2. Trivially valued fields. Finally we discuss the case when K is trivially valued,
adapting the methods above. A different approach is presented in

First assume K is algebraically closed. Then a multiplicative seminorm on R is
determined by its valued on linear polynomials. Given a coordinate z € R it is easy
to see that any point x € A]1Berk is of one of the following three types:

e we have |z — al, = 1 for all a € K; this point z is the Gauss point;

e there exists a unique a € K such that |z —al, < 1;

e there exists > 1 such that |z —a|, =7 for all a € K.
Thus we can view AL_, as the quotient K x [0,00[ / ~, where (a,r) ~ (b, s) iff r = 5
and |a—b| < r. Note that if » > 1, then (a,r) ~ (b,r) for all r, whereas if 0 < r < 1,
then (a,r) ~ (b,r) iff a = b.

We see that the Berkovich projective line Py, = AL, U{co} is a tree naturally
rooted at oo with the Gauss point as its only branch point. See Figure [3.3] The
hyperbolic metric is induced by the parametrization «,(a,r) = logr. In fact, this
parametrization does not depend on the choice of coordinate z € R.

©.9]

Q

Gauss

FiGUuRE 3.3. The Berkovich affine line over a trivially valued field.

If we instead choose the Gauss point as the root of the tree, then we can view
the topological space underlying P%erk as the cone over P!, that is, as the quotient
P! x [0, 00], where (a,s) ~ (b,t) if s =t = 0. The Gauss point is the apex of the
cone and its distance to (a,t) is ¢t in the hyperbolic metric. See Figure

Just as in the nontrivially valued case, the generalized metric on Py, is the
correct one in the sense that Remark [3.13 holds also in this case.

Following the terminology of a point of the form (a,t) is of Type 1 and
Type 2 iff t = 0 and t = oo, respectively. All other points are of Type 3; there are
no Type 4 points.
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FiGURE 3.4. The Berkovich projective line over a trivially valued field.

We can also describe the structure sheaf O. When z is the Gauss point, the local
ring O, is the field F of rational functions and H(z) = O, = F is equipped with
the trivial norm. Further, I'y = T'g =0, so rat.rtkx = 0 and tr.degxz = 1.

Now assume z € P]13erk is not the Gauss point and pick a coordinate z € F such
that |z], < 1. If = is of Type 3, that is, 0 < |z]; < 1, then O, = K][z]] is the ring
of formal power series and H(x) = O, is equipped with the norm ]ZJO.’;O ajzj\x =
pmax{jla;#0} - Fyrther, 'y = Zlogr, so rat.tkz = 1, tr.degz = 0.

If instead |z|; = 0 so that x is of Type 1, then we still have O, = K|[[2]], whereas
H(z) ~ K is equipped with the trivial norm.

Finally, when K is not algebraically closed, we view Ph_, (K) as a quotient
of Ph. (K%), where K® is the algebraic closure of K (note that K¢ is already
complete in this case). We can still view the Berkovich projective line as the quotient
P(K) x [0,00]/ ~, with P}(K) the set of closed (but not necessarily K-rational)
points of the projective line over K and where (a,0) ~ (b,0) for all a,b. The
multiplicity (i.e. the number of preimages in P, (K®) of the Gauss point is 1 and
the multiplicity of any point (a,t) is equal to the degree [K(a) : K] if t > 0, where
K (a) is the residue field of a. We define a parametrization of P}, (K) using (3.5).
Then the result in Remark B.13] remains valid.

3.10. Notes and further references. The construction of the Berkovich affine
and projective lines is, of course, due to Berkovich and everything in this section is,
at least implicitly, contained in his book [Ber90].

For general facts on Berkovich spaces we refer to the original works [Ber90L
Ber93] or to some of the recent surveys, e.g. the ones by Conrad [Con08] and
Temkin [Teml10a]. However, the affine and projective lines are very special cases
of Berkovich spaces and in fact we need very little of the general theory in order
to understand them. I can offer a personal testimony to this fact as I was doing
dynamics on Berkovich spaces before I even knew what a Berkovich space was!
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Having said that, it is sometimes advantageous to use some general notions, and
in particular the structure sheaf, which will be used to define the local degree of a
rational map in Further, the stability of the residue field at Type 2 and 3 points
is quite useful. In higher dimensions, simple arguments using the tree structure are
probably less useful than in dimension 1.

The Berkovich affine and projective lines are studied in great detail in the book [BR10]
by Baker and Rumely, to which we refer for more details. However, our presentation
here is slightly different and adapted to our purposes. In particular, we insist on try-
ing to work in a coordinate free way whenever possible. For example, the Berkovich
unit disc and its associated Gauss norm play an important role in most descriptions
of the Berkovich projective line, but they are only defined once we have chosen a
coordinate; without coordinates all Type 2 points are equivalent. When studying
the dynamics of rational maps, there is usually no canonical choice of coordinate and
hence no natural Gauss point (the one exception being maps of simple reduction,
see .

One thing that we do not talk about at all are formal models. They constitute a
powerful geometric tool for studying Berkovich spaces, see [Ber99, Ber04] but we do
not need them here. However, the corresponding notion for trivially valued fields is

used systematically in §56)
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4. ACTION BY POLYNOMIAL AND RATIONAL MAPS

We now study how a polynomial or a rational map acts on the Berkovich affine
and projective lines, respectively. Much of the material in this chapter can be found
with details in the literature. However, as a general rule our presentation is self-
contained, the exception being when we draw more heavily on the general theory of
Berkovich spaces or non-Archimedean geometry. As before, we strive to work in a
coordinate free way whenever possible.

Recall that over the complex numbers, the projective line P! is topologically a
sphere. Globally a rational map f : P! — P! is a branched covering. Locally it is of
the form z +— 2™, where m > 1 is the local degree of f at the point. In fact, m =1
outside the ramification locus of f, which is a finite set.

The non-Archimedean case is superficially very different but in fact exhibits many
of the same properties when correctly translated. The projective line is a tree and
a rational map is a tree map in the sense of Furthermore, there is a natural
notion of local degree that we shall explore in some detail. The ramification locus
can be quite large and has been studied in detail by Faber [Fabllal [Fab11bl [Fabllc].
Finally, it is possible to give local normal forms, at least at points of Types 1-3.

4.1. Setup. As before, K is a non-Archimedean field. We assume that the norm on
K is non-trivial and that K is algebraically closed but of arbitrary characteristic.
See for extensions.

Recall the notation R ~ K|z] for the polynomial ring in one variable with coeffi-
cients in K, and F' ~ K(z) for its fraction field.

4.2. Polynomial and rational maps. We start by recalling some general alge-
braic facts about polynomial and rational maps. The material in is
interesting mainly when the ground field K has positive characteristic. General
references for that part are [Lan02, VIL.7] and [Har77, IV.2].

4.2.1. Polynomial maps. A nonconstant polynomial map f : Al — Al of the affine
line over K is given by an injective K-algebra homomorphism f* : R — R. The
degree deg f of f is the dimension of R as a vector space over f*R. Given coordinates
z,w € Ron A', f*w is a polynomial in z of degree deg f.

4.2.2. Rational maps. A nonconstant regular map f : P! — P! of the projective
line over K is is defined by an injective homomorphism f* : F — F of fields over K,
where F' ~ K (z) is the fraction field of R. The degree of f is the degree of the field
extension F/f*F. Given coordinates z,w € F on P! f*w is a rational function
of z of degree d := deg f, that is, f*w = ¢/¢, where ¢,9 € K|[z] are polynomials
without common factor and max{deg ¢, deg 1} = d. Thus we refer to f as a rational
map, even though it is of course regular.

Any polynomial map f : A' — A! extends to a rational map f : P! — P!
satisfying f(co) = oo. In fact, polynomial maps can be identified with rational
maps [ : P! — P! admitting a totally invariant point co = f~1(0c0).
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4.2.3. Separable maps. We say that a rational map f is separable if the field ex-
tension F/f*F is separable, see [Lan02, VII.4]. This is always the case if K has
characteristic zero.

If f is separable, of degree d, then, by the Riemann-Hurwitz Theorem [Har77,
IV.2/4] the ramification divisor Ry on P! is well defined and of degree 2d — 2. In
particular, all but finitely many points of P! have exactly d preimages under f, so
f has topological degree d.

4.2.4. Purely inseparable maps. We say that a rational map f is purely inseparable
if the field extension F'/f*F is purely inseparable. Assuming deg f > 1, this can
only happen when K has characteristic p > 0 and means that for every ¢ € F there
exists n > 0 such that ¢?" € f*F, see [Lan02, VIL.7]. Any purely inseparable map
f : P! = Plis bijective. We shall see in that if f is purely inseparable of degree
d > 1, then d = p" for some n > 1 and there exists a coordinate z € F on P! such
that f*z = 2.

4.2.5. Decomposition. In general, any algebraic field extension can be decomposed
into a separable extension followed by a purely inseparable extension, see [Lan02]
VIL.7]. As a consequence, any rational map f can be factored as f = g o h, where
g is separable and h is purely inseparable. The topological degree of f is equal to
the degree of g or, equivalently, the separable degree of the field extension F/f*F,
see [Lan02, VIIL.4].

4.2.6. Totally ramified points. We say that a rational map f : P' — P! is totally
ramified at a point z € PLif f~1(f(x)) = {z}.

Proposition 4.1. Let f : P! — P! be a rational map of degree d > 1.

(i) If f is purely inseparable, then f is totally ramified at every point x € P1.
(ii) If f is not purely inseparable, then there are at most two points at which f
1s totally ramified.

Proof. If f is purely inseparable, then f : P! — P! is bijective and hence totally
ramified at every point.

Now suppose f is not purely inseparable. Then f = g o h, where h is purely
inseparable and ¢ is separable, of degree degg > 1. If f is totally ramified at =z,
then so is g, so we may assume f is separable. In this case, a direct calculation
shows that the ramification divisor has order d — 1 at x. The result follows since the
ramification divisor has degree 2(d — 1). O

4.3. Action on the Berkovich space. Recall that the affine and projective line A
and P! embed in the corresponding Berkovich spaces A]13erk and P]13 ok Tespectively.

4.3.1. Polynomial maps. Any nonconstant polynomial map f : A — Al extends
to

1 1
f : ABerk - ABerk
as follows. If z € A}_,, then 2/ = f(z) is the multiplicative seminorm | - |, on R
defined by

|Plar = [ /7 Da-
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It is clear that f : AL, — A]13erk is continuous, as the topology on All3erk was
defined in terms of pointwise convergence. Further, f is order-preserving in the
partial ordering on A}_, given by x < 2’ iff |¢|, < |§|, for all polynomials ¢.

4.3.2. Rational maps. Similarly, we can extend any nonconstant rational map f :
P! — P! to a map
1 1
f : PBerk - PBerk :

Recall that we defined P}, as the set of generalized seminorms |- | : F' — [0, +00].
If z € P}, then the value of the seminorm | - | f(z) On a rational function ¢ € F'is
given by

1Dl f(z) = |f Dl

On the Berkovich projective line P]13erk there is no canonical partial ordering, so in
general it does not make sense to expect f to be order preserving. The one exception
to this is when there exist points z, 2’ € PL_, such that f~!(z') = {z}. In this case
one can show that f : P%erk — P]13erk becomes order preserving when the source and
target spaces are equipped with the partial orderings rooted in x and z’. If x and
x’ are both of Type 2, we can find coordinates on the source and target in which x
and 7/ are both equal to the Gauss point, in which case one says that f has good
reduction, see

4.4. Preservation of type. There are many ways of analyzing the mapping prop-
erties of a rational map f : PL_, — PL_,. First we show the type of a point is
invariant under f. For this, we use the numerical classification in §3.8.3]

Lemma 4.2. The map f : P]13erk — Pll_%erk sends a point of Type 1-4 to a point of
the same type.

Proof. We follow the proof of [BRI0, Proposition 2.15]. Fix x € P}, and write
= f(x).

If | - |, has nontrivial kernel, then clearly so does |- |, and it is not hard to prove
the converse, using that K is algebraically closed.

Now suppose | - |, and |- |7 have trivial kernels. In this case, the value group
I', is a subgroup of I', of finite index. As a consequence, z and 2’ have the same

—~—

rational rank. Similarly, H(z)/H(z') is a finite field extension, so x and 2’ have the
same transcendence degree. In view of the numerical classification, x and 2’ must
have the same type. U

4.5. Topological properties. Next we explore the basic topological properties of
a rational map.

Proposition 4.3. The map f : P]lBerk — P]13e]rk s continuous, finite, open and
surjective. Any point in P]13erk has at least one and at most d preimages, where
d=degf.

We shall see shortly that any point has ezactly d preimages, counted with multi-
plicity. However, note that for a purely inseparable map, this multiplicity is equal
to deg f at every point.
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Proof. All the properties follow easily from more general results in [Ber90, Ber93],
but we recall the proof from [FR10, p.126].

Continuity of f is clear from the definition, as is the fact that a point of Type 1
has at least one and at most d preimages. A point in H = P1136rk \P! defines a norm
on F'| hence also on the subfield f*F. The field extension F'/f*F has degree d, so
by [ZS75] a valuation on f*F has at least one and at most d extensions to F'. This
means that a point in H also has at least one and at most d preimages.

In particular, f is finite and surjective. By general results about morphisms of
Berkovich spaces, this implies that f is open, see [Ber90, 3.2.4]. O

Since P]13erk is a tree, Proposition shows that all the results of §2.6/apply and
give rather strong information on the topological properties of f.

One should note, however, that these purely topological results seem very hard to
replicated for Berkovich spaces of higher dimensions. The situation over the complex
numbers is similar, where the one-dimensional and higher-dimensional analyses are
quite different.

4.6. Local degree. It is reasonable to expect that any point in P]13elrk should have
exactly d = deg f preimages under f counted with multiplicity. This is indeed true,
the only problem being to define this multiplicity. There are several (equivalent)
definitions in the literature. Here we shall give the one spelled out by Favre and
Rivera-Letelier [FR10], but also used by Thuillier [Thu05]. It is the direct translation
of the corresponding notion in algebraic geometry.

Fix a point z € Py, and write 2’ = f(z). Let m, be the maximal ideal in
the local ring O, and k(z) := O,/m, the residue field. Using f we can O, as an
O,-module and O, /m O, as a k(x')-vector space.

Definition 4.4. The local degree of f at x is deg, f = dim, () (Oz/myOy).

Alternatively, since f is finite, it follows [Ber90l, 3.1.6] that O, is a finite O,-
module. The local degree deg, f is therefore also equal to the rank of the module
O, viewed as O,-module, see [Mat89, Theorem 2.3]. From this remark it follows
that if f,g: P! — P! are nonconstant rational maps, then

degw(f o g) = dega} g- degg(aﬂ) f

for any = € P%Berk‘

The definition above of the local degree works also over the complex numbers.
A difficulty in the non-Archimedean setting is that the local rings O, are not as
concrete as in the complex case, where they are isomorphic to the ring of convergent
power series.

The following result shows that that local degree behaves as one would expect
from the complex case. See [FR10, Proposition-Definition 2.1].

Proposition 4.5. For every simple domain V and every connected component U
of f~Y(V), the integer
Z deg, f (4.1)

fly)=zyelU
is independent of the point x € V.
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Recall that a simple domain is a finite intersection of open Berkovich discs;
see The integer in should be interpreted as the degree of the map from
UtoV. Ifweput U=V = Pllaerk» then this degree is d.

We refer to [FR10, p.126] for a proof. The idea is to view f : U — V as a map
between Berkovich analytic curves. In fact, this is one of the few places in these
notes where we draw more heavily on the general theory of Berkovich spaces.

We would like to give a more concrete interpretation of the local degree. First, at
a Type 1 point, it can be read off from a local expansion of f:

Proposition 4.6. Let x € P]13erk be a Type 1 point and pick coordinates z, w on P!
such that x = f(x) = 0. Then Oy ~ K{z}, Oy = K{w} and we have

ffw = azF(1 + h(2)), (4.2)
where a # 0, k = deg,(f) and h(0) = 0.

Proof. The only thing that needs to be checked is that k& = deg,(f). We may
assume a = 1. First suppose char K = 0. Then we can find ¢(z) € K{z} such that
1+h(2) = (14+6(2))* in K{z}. It is now clear that O, ~ K{z} is a free module over
J*Oj(yy of rank k, with basis given by (z(1+¢(2)))7, 0 < j < k—1, so deg,(f) = k.
A similar argument can be used the case when K has characteristic p > 0; we refer
to [FR10, p.126] for the proof. O

We shall later see how the local degree at a Type 2 or Type 3 points also appears
in a suitable local expansion of f.

The following crucial result allows us to interpret the local degree quite concretely
as a local expansion factor in the hyperbolic metric.

Theorem 4.7. Let f: P113erk — P113erk be as above.

(i) If x is a point of Type 1 or 4 and v = [x,y] is a sufficiently small segment,
then f maps v homeomorphically onto f(y) and expands the hyperbolic met-
ric on 7y by a factor deg,(f).

(ii) If = is a point of Type 3 and 7y is a sufficiently small segment containing x
in its interior, then f maps v homeomorphically onto f(v) and expands the
hyperbolic metric on v by a factor deg,(f).

(iii) If x is a point of Type 2, then for every tangent direction U at x there exists
an integer mg(f) such that the following holds:

(a) for any sufficiently small segment v = [x,y| representing ¥, f maps 7y
homeomorphically onto f(v) and expands the hyperbolic metric on ~y by
a factor mg(f);

(b) if U is any tangent direction at x and ¥1,...,0,, are the preimages of U
under the tangent map, then ), my (f) = deg,(f).

Theorem is due to Rivera-Letelier [Riv05, Proposition 3.1] (see also [BR10),
Theorem 9.26]). However, in these references, different (but equivalent) definitions
of local degree were used. In below we will indicate a direct proof of Theorem [4.7]
using the above definition of the local degree.

Since the local degree is bounded by the algebraic degree, we obtain as an imme-
diate consequence
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Corollary 4.8. If f: P}%erk — Pll_%erk is as above, then

for all z,y € H.

Using Theorem we can also make Corollary more precise:

Corollary 4.9. Let v C P]l_%erk be a segment such that the local degree is constant
on the interior of v. Then f maps v homeomorphically onto v = f(v).

Proof. By Corollary the first assertion is a local statement: it suffices to prove
that if = belongs to the interior of v then the tangent map of f is injective on the
set of tangent directions at x defined by «. But if this were not the case, the local
degree at x would be too high in view of assertion (iii) (b) in Theorem O

Remark 4.10. Using similar arguments, Rivera-Letelier was able to improve Propo-
sition and describe f(U) for a simple domain U. For example, he described
when the image of an open disc is an open disc as opposed to all of P]13erk and simi-
larly described the image of an annulus. See Theorems 9.42 and 9.46 in [BR10] and
also the original papers [Riv03al, [Riv03b].

4.7. Ramification locus. Recall that over the complex numbers, a rational map
has local degree 1 except at finitely many points. In the non-Archimedean setting,
the situation is more subtle.

Definition 4.11. The ramification locus Ry of f is the set of x € Pllaerk such that
deg,.(f) > 1. We say that f is tamﬂ if Ry is contained in the convex hull of a finite
subset of P!,

Lemma 4.12. If K has residue characteristic zero, then f is tame. More precisely,
Ry is a finite union of segments in P]136rk and is contained in the convex hull of the
critical set of f : P1 — P, As a consequence, the local degree is one at all Type 4
points.

We will not prove this lemma here. Instead we refer to the papers [Fabllal, [Fabl1b]
by X. Faber for a detailed analysis of the ramification locus, including the case of
positive residue characteristic. The main reason why the zero residue characteristic
case is easier stems from the following version of Rolle’s Theorem (see e.g. [BR10),
Proposition A.20]): if char K = 0 and D C P! is an open disc such that f(D) # P*
and f is not injective on D, then f has a critical point in D.

Se §4.10] below for some examples of ramification loci.

4.8. Proof of Theorem While several proofs of Theorem [4.7] exist in the
literature, I am not aware of any that directly uses Definition of the local degree.
Instead, they use different definitions, which in view of Proposition[4.5|are equivalent
to the one we use. Our proof of Theorem uses some basic non-Archimedean
analysis in the spirit of [BGR&4].

12The terminology “tame” follows Trucco [Tru09].
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4.8.1. Type 1 points. First suppose x € P! is a classical point. As in the proof
of Proposition we find coordinates z and w on P! vanishing at = and 2/, re-
spectively, such that f*w = az*(1 + h(z)), where a # 0, k = deg,(f) > 1 and
h(0) = 0. In fact, we may assume a = 1. Pick ro > 0 so small that |h(z)[pr) <1
for r < rg. It then follows easily that f(xp(,)) = Tp(+) for 0 < r < ro. Thus
f maps the segment [0, Zp(o,ry)] homeomorphically onto the segment [anmD(o,rg)]
and the hyperbolic metric is expanded by a factor k.

4.8.2. Completion. Suppose x is of Type 2 or 3. Then the seminorm |- |, is a norm,
O, is a field having O, as a subfield and deg,(f) is the degree [O, : O,/] of the field
extension O, /0O, . Recall that H(x) is the completion of O,.

In general, the degree of a field extension can change when passing to the com-
pletion. However, we have

Proposition 4.13. For any point x € P%erk of Type 2 or 3 we have

e~ ———~—

deg,(f) = [Or : Op] = [H(x) : H(2")] = [z : T] - [H(2) - H(2')], (4.3)

where T and H denotes the value groups and residue fields of the morms under
consideration.

Proof. Recall from that the field O, is quasicomplete in the sense that the
norm | - [, on O, extends uniquely to any algebraic extension. In particular, the
norm |- |, is the unique extension of this norm to O,. Also recall from that the
field O, is weakly stable. Thus O, is weakly Cartesian over O,/, which by [BGR84,
2.3.3/6] implies the second equality in (4.3).

Finally recall from that the field H(z') is stable. The third equality in
then follows from [BGR84) 3.6.2/4]. O

4.8.3. Approximation. In order to understand the local degree of a rational map, it
is useful to simplify the map in a way similar to ([£.2). Suppose z and 2’ = f(z)
are Type 2 or Type 3 points. In suitable coordinates on the source and target, we
can write = xp(y and &’ = xp v, where 0 < 77" < 1. If  and 2’ are Type 2
points, we can further assume r = 7’ = 1.

Write f*w = f(z) for some rational function f(z) € F' ~ K(z). Suppose we can
find a decomposition in F' of the form

f(z)=9g(z)(1+ h(z)), where |h(2)|, < 1.
The rational function g(z) € F induces a rational map g : P! — P!, which extends
tog: Pllfierk - P]IBerk'

Lemma 4.14. There exists 6 > 0 such that g(y) = f(y) and deg,(g) = deg,(f) for
all y € H with dy(y,x) < 9.

Proof. We may assume that h(z) # 0, or else there is nothing to prove. Thus we
have |h(2)|; > 0. Pick 0 < & < 1 such that |h(2)|, < &3, set

_ . |h(2)]e r’
°=a _E)mm{degh(@’ 2degf}
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and assume dy(y, z) < 0. We claim that

[0 —g"¢ly <elf¢l, forallgeF. (4.4)
Granting ([.4), we get |g*¢|, = |f*¢|, for all ¢ and hence g(y) = f(y) =:
Furthermore, f and ¢ give rise to isometric embeddings f*,¢* : H(y') — H(y). B

Proposition u the degrees of the two induced field extens1ons H(y ) / H(y') are
equal to deg f and deg g, respectively. By continuity, the inequality (4.4)) extends
to all ¢ € 7-[( N, Tt then follows from [Tem10Obl 6.3.3] that deg, f = degy

We also remark that (4.4)) implies

fTy=gTy and fHQY)=gMHy). (4.5)
Thus f and g give the same embeddings of I'ys and H(y’) into I'y and #H(y), respec-
tively. When y, and hence 3 is of Type 2 or 3, the field H(y') is stable, and so
gives another proof of the equality deg, f = deg, g.

It remains to prove . A simple calculation shows that if . holds for
¢, € F, then it also holds for ¢, 1/¢ and a¢ for any a € K. Since K is
algebraically closed, it thus suffices to prove for ¢ = w — b, where b € K.

Using Lemma and the fact that f(x) = zp(,), we get

|f(2) = bly > |f(2) = ble — ddeg f = |w — b|f(y) — ddeg f >
> 7' —ddeg f > e(r' +ddeg f) = e(|f(2)|x + ddeg f) > el f(2)]y-

Now Lemma and the choice of § imply |h(z)], < €2 < 1. As a consequence,
l9(2)|y = |f(2)]y. We conclude that

[ (w = b) = g"(w =)y = [h(2)lylg()ly < %[ f(2)ly < el f(2) = bly = el f*(w = by,
establishing (4.4)) and completing the proof of Lemma O

4.8.4. Type 8 points. Now consider a point x of Type 3. In suitable coordinates z,
w we may assume that z and 2/ = f(z) are associated to irrational closed discs
D(0,7) and D(0,7"), respectively. In these coordinates, f is locally approximately
monomial at z; there exists # € K* and k € Z \ {0} such that f*w = 02F(1 + h(z)),
where h(z) € K(z) satisfies ]h(z)|x < 1. Replacing w by (0~'w)*! we may assume
6 =1 and k > 0. In particular, 7’ = r*.

Let g : P* — P! be defined by g*w = zF. We claim that deg,(¢g) = k. Indeed,
the field H(z) (resp. H(z')) can be concretely described as the set of formal series
> a2 (resp. ZO_OOO w’) with |aj|r? — 0 as |j| — oo (resp. |bj|lr* — 0 as
|7| = o0). Then 1,2 k ! form a basis for ’H( )/H(z"). We can also see that

deg,(g9) = k from using that H( ) = 7-[( Y = K, T, = Tg + Zlogr and
FI/ =T+ kZ logr.

Lemma gives deg,(f) = deg,(g). Moreover, we must have f(xps) =
Tp(o,s+) for s & 7, so f expands the hyperbolic metric by a factor k = deg,(f). Thus
we have established all statements in Theorem [£.7] for Type 3 points.
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4.8.5. Type 2 points. Now suppose z and hence ' = f(z) is of Type 2. Then
'y, =T, = I'x. We may assume = and z’ both equal the Gauss point in suitable
coordinates z and w. The algebraic tangent spaces Ty, Ty ~ P1(K) defined in §3.8.7

have % ~ K(z) and H(z') ~ K(w) as function fields. Now f induces a map

—_—

f*: H(z') — H(z) and hence a map T, — T,». By (4.3), the latter has degree
deg, (f)-
As opposed to the Type 3 case, we cannot necessarily approximate f by a mono-

mial map. However, after applying a coordinate change of the form z — (02)*!, we
can find g(z) € F' = K(z) of the form

l-m/,6
9(z) = zm—n’fl =) (4.6)
Hj:l(z - b;)
with m > 0, |a;| = |bj| = 1, a; # bj and a;b; # 0 for all 4, j, such that

frw=g(2)(1+h(z2)),
in F, where |h(z)|s < 1= |g(2)|s-

On the one hand, g(z) induces a map g : P'(K) — P!(K) and hence also a map
g:PL . — PL .. We clearly have g(z) = 2/ and Lemma gives deg,(g) =
deg,(f). On the other hand, g(z) also induces a map g : P!(K) — P!(K), which
can be identified with the common tangent map T, — T,» of f and g. Both these
maps ¢ have degree max{l, k}, so in accordance with (4.3)), we see that deg,(f) =
[H(z) : H(z')].

To prove the remaining statements in Theorem (iii), define mgz(f) as the
local degree of the algebraic tangent map 7, — T, at the tangent direction .
Statement (a) in Theorem (iii) is then clear, so it suffices to show (b). We may
assume that ¥ and its image ¢’ are both represented by zo. Then m(7) is the integer

m in (4.6)). We see from (4.6)) and from Lemma that f(zp,)) = p(o,m) when
0 < 1—7r < 1. Thus (b) holds.

4.8.6. Type 4 points. Finally suppose z is a Type 4 point. By Corollary 2.15 we can
find y € P}, such that f is a homeomorphism of the segment v = [z, y] onto f(7).
We first claim that by moving y closer to x, f will expand the hyperbolic metric on
~ by a fixed integer constant m > 1.

Let @ be the tangent direction at y represented by x. By moving y closer to x, if
necessary, we may assume that z is the unique preimage of 2’ in U(w).

Consider a point £ €]z,y[. If  is of Type 3, then we know that f locally
expands the hyperbolic metric along v by a factor m(&). Now suppose £ is a Type 2
point and let ¥, and ¢¥_ be the tangent directions at £ represented by z and y,
respectively. Then f locally expands the hyperbolic metric along ¢4 by factors
m(¥y). Suppose that m(¥y) < m(v_). Then there must exist a tangent direction
v at £ different from ¥y but having the same image as ¥4 under the tangent map.
By Corollary this implies that 2’ € f(U(?¥)) C f(U(W) \ {z}), a contradiction.
Hence m(v4) > m(v_). Since m(¥y) is bounded from above by d = deg f, we may
assume that m(vy) = m(v_) at all Type 2 points on . This shows that f expands
the hyperbolic metric on v by a constant factor m.
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To see that m = deg,(f), note that the above argument shows that deg¢(f) =m
for all £ € v\ {z}. Moreover, if &' is the tangent direction at f(y) represented
by f(z), then the above reasoning shows that U(w) is a connected component of
Y U(@")) and that ¢ is the unique preimage of f(¢) in U(w) for any € € +. It then
follows from Proposition [£.5] that deg, f = m.

4.9. Laplacian and pullbacks. Using the local degree we can pull back Radon
measures on P%Berk by f. This we do by first defining a push-forward operator on
continuous functions:

foH(z) = Y deg,(f)H(y)
fly)==

for any H € C’O(Pllgerk). It follows from Proposition that f,H is continuous and
it is clear that || foH ||co < d||H||c0, where d = deg f. We then define the pull-back
of Radon measures by duality:

(f*p, H) = {p, f+H).

The pull-back operator is continuous in the weak topology of measures. If p is a
probability measure, then so is d~'f*p. Note that the pull-back of a Dirac mass
becomes

f*(sm = Z degy(f)éy'
fly)==
Recall from §2.5[ that given a positive Radon measure p on P]%erk and a finite
atomic measure pg supported on H of the same mass as p, we can write p = po+ Ay
for a unique function ¢ € SHO(P]l3 ok P0)- A key property is

Proposition 4.15. If ¢ € SHO(P]%erk, po), then f*p € SHO(P]I_%erk, f*po) and
A(f7 ) = [(Ayp). (4.7)

This formula, which will be crucial for the proof of the equidistribution in the next
section, confirms that the generalized metric dg on the tree P}13erk is the correct one.
See also Remark

Proof. By approximating ¢ by its retractions ¢ o rx, where X ranges over finite
subtrees of H containing the support of pg we may assume that p := pg + Ay is
supported on such a finite subtree X. This means that ¢ is locally constant outside
X. By further approximation we reduce to the case when p is a finite atomic measure
supported on Type 2 points of X.

Let Y = f~!(X). Using Corollary and Theorem we can write X (resp.
Y') as a finite union ~; (resp. 7;;) of intervals with mutually disjoint interiors such
that f maps v;; homeomorphically onto ~; and the local degree is constant, equal to
d;; on the interior of ;. We may also assume that the interior of each 7; (resp. 7;5)
is disjoint from the support of p and py (resp. f*p and f*pg). Since f expands the
hyperbolic metric on each 7;; with a constant factor d;;, it follows that A(f*¢) =0
on the interior of v;;.

In particular, A(f*y) is a finite atomic measure. Let us compute its mass at a
point x. If ¥ is a tangent direction at 2 and ¢’ = D f(¥) its image under the tangent
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map, then it follows from Theorem (iii) that

Dy(f*¢) = mz(f) D () (4.8)
and hence
A(ffo){z} =D Da(f*e) =Y ma(f)Dy(e) => Dyp > ms(f)
7 7 B Df(7)=v
= deg,(f) Y Di(p) = deg,(/)(Ap){f(2)} = f*(Ap){z},
which completes the proof. O

4.10. Examples. To illustrate the ideas above, let us study three concrete examples
of rational maps. Fix a coordinate z € F on P'. Following standard practice we
write f(z) for the rational function f*z.

Example 4.16. Consider the polynomial map defined by
f(2) = a(z® — 32?)

where a € K. Here K has residue characteristic zero. The critical points of f : P! —
P! are z = 0, z = 2 and z = oo, where the local degree is 2, 2 and 3, respectively.
On Péerk, the local degree is 3 on the interval [z, 00|, where z¢ is the Gauss norm.
The local degree is 2 on the intervals [0, zg[ and [2, z¢[ and it is 1 everywhere else.

See Figure

Ta T e
f(zc)
2 2

-1 2 0 3 —4a 0

FIGURE 4.1. The ramification locus of the map f(z) = a(z® — 322)
in Example when |a| < 1. Here z¢ is the Gauss point. The
preimage of the interval [0, f(z¢)] is [0, ] (with multiplicity 2) and
[3,z¢]. The preimage of the interval [—4a, f(zq)] is [2,2¢] (with
multiplicity 2) and [—1, zg]. The preimage of the interval [oco, f(zg)]
is [00, z¢] (with multiplicity 3).

Example 4.17. Next consider the polynomial map defined by
flz) =2
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for a prime p. Here the ground field K has characteristic zero. If the residue
characteristic is different from p, then f is tamely ramified and the ramification
locus is the segment [0,00]. On the other hand, if the residue characteristic is p,
then f is not tamely ramified. A point in A%Berk corresponding to a disc D(a,r)
belongs to the ramification locus iff » > p~!|a|. The ramification locus is therefore
quite large and can be visualized as an “inverted Christmas tree”, as illustrated
in Figure It is the set of points in P]%erk having hyperbolic distance at most
log p to the segment [0, 00]. See [BR10, Example 9.30] for more details.

Vel T g

A\ SN

—a +a 0 —b +b a? 0 b2

FIGURE 4.2. The ramification locus of the map f(z) = 2% in residual
characteristic 2. A point in AllBerk corresponding to a disc D(a,r)
belongs to the ramification locus iff 7 > 2|a|. The point z¢ is the
Gauss point.

Example 4.18. Again consider the polynomial map defined by
f(z) =2

for a prime p, but now assume that K has characteristic p > 0. Then f is purely
inseparable and usually called the Frobenius map. We will see in that every
purely inseparable map of degree > 1 is an iterate of the Frobenius map in some
coordinate z.

The mapping properties of f on the Berkovich projective line are easy to describe.
Since f is a bijection, the local degree is equal to p at all points of P]130rk. Hence
the ramification locus is equal to P]136rk' The Gauss point zg in the coordinate
z is a fixed point: f(zg) = zg. If € Ph_,, then f maps the segment [z, 7]
homeomorphically onto the segment [z, f(x)] and expands the hyperbolic metric
by a constant factor p.

For many more interesting examples, see [BR10, §10.10].

4.11. Other ground fields. Above we worked with the assumption that our non-
Archimedean field K was algebraically closed and nontrivially valued. Let us briefly
discuss what happens when one or both of these assumption is dropped.
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4.11.1. Nom-algebraically closed fields. First suppose K is nontrivially valued but
not algebraically closed. Most of the results above remain true in this more gggeral
setting and can be proved by passing to the completed algebraic closure K¢ as
in Let us outline how to do this.

The deﬁnitiox/1§ and results in go through unchanged. Note that f induces a
map f : PL (K% — P}, (K%) that is equivariant under the action of the Galois
group G = Gal(K®/K). Thus for = mo f, where  : P}Berk(l/(\a) — PL_, (K) is the
projection. The fact that f preserves the type of a point (Lemma implies that
f does so as well. Proposition remains valid and implies that f is a tree map in
the sense of

We define the local degree of f as in §4.6] Proposition remains /\ialid. The
local degrees of f and f are related as follows. Pick a point Z € P]13erk(K @) and set
x=m(2), & = f(2) and 2’ := w(2') = f(z). The stabilizer G; := {0 € G| o(Z) =
2} is a subgroup of G and we have G; C Gz. The index of G in Gy only depends
on the projection x = 7(&) and we set

6:(f) =[Gy : Ggl;

this is an integer bounded by the (topological) degree of f. We have m(z) =
6:(f)m(f(z)) for any = € PL, (K), where m(z) is the multiplicity of z, i.e. the
number of preimages of x under 7. Now

deg,(f) = 02(f) degz (f)-

Using this relation (and doing some work), one reduces the assertions in Theorem 4.7]
to the corresponding statements for f. Thus the local degree can still be interpreted
as a local expansion factor for the hyperbolic metric on Pg_, (K ), when this metric
is defined as in In particular, Corollaries [4.8] and [4.9| remain valid. Finally, the
pullback of measures is defined using the local degree as in and formulas (4.7))—

(4.8) continue to hold.

4.11.2. Trivially valued fields. Finally, let us consider the case when K is trivially
valued. First assume K is algebraically closed. The Berkovich projective line P]1?>erk
is discussed in (see also below). In particular, the Berkovich projective
line is a cone over the usual projective line. In other words, P]13erk ~ Pl x[0,00]/ ~,
where (z,0) ~ (y,0) for any z,y € P'. This common point (x,0) is the Gauss point
in any coordinate. See Figure The generalized metric on P]13erk is induced by
the parametrization o : Py, — [0, 4+00] given by a(z,t) = t.

Any rational map f : P! — P! of degree d > 1 induces a selfmap of P§_, that
fixes the Gauss point. The local degree is d at the Gauss point. At any point
(x,t) with t > 0, the local degree is equal to the local degree of f : P! — P! at
x. Moreover, f(z,t) = (f(z),tdeg,(f)), so f expands the hyperbolic metric by a
factor equal to the local degree, in accordance with Theorem [.7]

Finally, the case when K is trivially valued but not algebraically closed can be
treated by passing to the algebraic closure K (which is of course already complete
under the trivial norm).
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4.12. Notes and further references. A rational map on the Berkovich projective
line is a special case of a finite morphism between Berkovich curves, so various
results from [Ber90, Ber93| apply. Nevertheless, it is instructive to see the mapping
properties in more detail, in particular the interaction with the tree structure.

The fact that the Berkovich projective line can be understood from many different
points of view means that there are several ways of defining the action of a rational
map. In his thesis and early work, Rivera-Letelier viewed the action as an extension
from P! to the hyperbolic space H, whose points he identified with nested collections
of closed discs as in §3.3.4] The definition in [BR10, §2.3] uses homogeneous coordi-
nates through a “Proj” construction of the Berkovich projective line whereas [FR10]
simply used the (coordinate-dependent) decomposition Pg_, = AL, U{oc}. Our
definition here seems to be new, but it is of course not very different from what is
already in the literature. As in §3| it is guided by the principle of trying to work
without coordinates whenever possible.

There are some important techniques that we have not touched upon, in particular
those that take place on the classical (as opposed to Berkovich) affine and projective
lines. For example, we never employ Newton polygons even though these can be
useful see [BR10, §A.10] or [Benl0, §3.2].

The definition of the local degree is taken from [FR10] but appears already
in [ThuO5] and is the natural one in the general context of finite maps between
Berkovich spaces. In the early work of Rivera-Letelier, a different definition was
used, modeled on Theorem The definition of the local degree (called multiplic-
ity there) in [BRI10] uses potential theory and is designed to make hold.

As noted by Favre and Rivera-Letelier, Proposition implies that all these
different definitions coincide. Having said that, I felt it was useful to have a proof
of Theorem that is directly based on the algebraic definition of the local degree.
The proof presented here seems to be new although many of the ingredients are not.

The structure of the ramification locus in the case of positive residue characteristic
is very interesting. We refer to [Fabllal [Fabl1bl [Fabllc| for details.
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5. DYNAMICS OF RATIONAL MAPS IN ONE VARIABLE

Now that we have defined the action of a rational map on the Berkovich projective
line, we would like to study the dynamical system obtained by iterating the map.
While it took people some time to realize that considering the dynamics on P113erk
(as opposed to P') could be useful, it has become abundantly clear that this is the
right thing to do for many questions.

It is beyond the scope of these notes to give an overview of all the known results
in this setting. Instead, in order to illustrate some of the main ideas, we shall focus
on an equidistribution theorem due to Favre and Rivera-Letelier [FR10], as well as
some of its consequences. For these results we shall, on the other hand, give more
or less self-contained proofs.

For results not covered here—notably on the structure of Fatou and Julia sets—
we recommend the book [BRI0] by Baker and Rumely and the survey [BenlQ] by
Benedetto.

5.1. Setup. We work over a fixed non-Archimedean field K, of any characteristic.
For simplicity we shall assume that K is algebraically closed and nontrivially valued.
The general case is discussed in

Fix a rational map f : P! — P! of degree d > 1. Our approach will be largely
coordinate free, but in any case, note that since we are to study the dynamics of f,
we must choose the same coordinates on the source and target. Given a coordinate
z, f*z is a rational function in z of degree d.

5.2. Periodic points. When analyzing a dynamical system, one of the first things
to look at are periodic points. We say that x € P%erk is a fized point if f(x) =z
and a periodic point if f™(x) = x for some n > 1.

5.2.1. Classical periodic points. First suppose z = f"(z) € P! is a classical periodic
point and pick a coordinate z on P! vanishing at x. Then

My =z + 0(z%)

where A € K is the multiplier of the periodic point. We say that x is attracting
if |A\| < 1, neutral if |[\| = 1 and repelling if |[\| > 1. The terminology is more or
less self-explanatory. For example, if x is attracting, then there exists a small disc
D C P! containing z such that f*(D) C D and f""(y) — x as m — oo for every
yeD.

The multiplicity of a periodic point x = f™(x) is the order of vanishing at x of
the rational function f™*z — z for any coordinate z € F' vanishing at x. It is easy to
see that f has d + 1 fixed points counted with multiplicity. Any periodic point of
multiplicity at least two must have multiplier A = 1.

Proposition 5.1. Let f : P! — P! be a rational map of degree d > 1.

(i) There exist infinitely many distinct classical periodic points.
(ii) There exists at least one classical nonrepelling fized point.
(iii) Any nonrepelling classical fized point admits a basis of open neighborhoods
U C P, that are invariant, i.e. f(U) CU.
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Statement (i) when K = C goes back at least to Julia. A much more precise
result was proved by by I. N. Baker [Bak64]. Statements (ii) and (iii) are due to
Benedetto [Ben98] who adapted an argument used by Julia.

Sketch of proof. To prove (i) we follow [Bea91l, pp.102-103] and [Sil07, Corollary 4.7].
We claim that the following holds for all but at most d + 2 primes ¢: any classical
point z with f(x) = x has the same multiplicity as a fixed point of f and as a
fixed point of f?. This will show that f? has d? —d > 1 fixed points (counted with
multiplicity) that are not fixed points of f. In particular, f has infinitely many
distinct classical periodic points.

To prove the claim, consider a fixed point z € P! and pick a coordinate z € F
vanishing at . We can write f*z = az + bz"t! + O(2"2), where a,b € K* and
r > 0. One proves by induction that

2 =a"z 4 b2 + O(2712),

where b, = " 'b(14a" +---+a™ D). If a # 1, then for all but at most one prime
g we have a? # 1 and hence x is a fixed point of multiplicity one for both f and f9.
If instead @ = 1, then b, = gb, so if ¢ is different from the characteristic of K, then
x is a fixed point of multiplicity r for both f and f9.

Next we prove (ii), following [Benl0, §1.3]. Any fixed point of f of multiplicity
at least two is nonrepelling, so we may assume that f has exactly d + 1 fixed points
(z))4]. Let ()\,)fill be the corresponding multipliers. Hence A; # 1 for all 4. it
follows from the Residue Theorem (see [Benl0), Theorem 1.6]) that

d+1

1
Z1—Ai:1‘

=1

If |[A;] > 1 for all 4, then the left hand side would have norm < 1, a contradiction.
Hence |A;] <1 for some ¢ and then z; is a nonrepelling fixed point.

Finally we prove (iii). Pick a coordinate z € F vanishing at x and write f*z =
Az + O(2?), with |A\| < 1. For 0 < r < 1 we have f(@p(or)) = Tp(o,), where 1’ =
|Alr < 7. Let U, := U(%,), where v, is the tangent direction at xp(,) determined
by x. The sets U, form a basis of open neighborhoods of z and it follows from
Corollary (ii) that f(U,) C U, for r small enough. O

5.2.2. Nonclassical periodic points. We say that a fixed point x = f(z) € H is
repelling if deg,(f) > 1 and neutral otherwise (points in H cannot be attracting).
This is justified by the interpretation of the local degree as an expansion factor in
the hyperbolic metric, see Theorem [.7]

The following result is due to Rivera-Letelier [Riv03b, Lemme 5.4].

Proposition 5.2. Any repelling fized point x € H must be of Type 2.

Sketch of proof. We can rule out that = is of Type 3 using value groups. Indeed,
by the local degree of f at a Type 3 point is equal to index of the value group
['4(z) as a subgroup of 'y, so if f(z) = z, then the local degree is one.

I am not aware of an argument of the same style to rule out repelling points
of Type 4. Instead, Rivera-Letelier argues by contradiction. Using Newton poly-
gons he shows that any neighborhood of a repelling fixed point of Type 4 would
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contain a classical fixed point. Since there are only finitely many classical fixed
points, this gives a contradiction. See the original paper by Rivera-Letelier or [BR10),
Lemma 10.80]. O

5.2.3. Construction of fixed points. Beyond Proposition there are at least two
other methods for producing fixed points.

First, one can use Newton polygons to produce classical fixed points. This was
alluded to in the proof of Proposition [5.2] above. We shall not describe this further
here but instead refer the reader to [Benl0, §3.2] and [BR10l §A.10].

Second, one can use topology. Since f can be viewed as a tree map, Proposi-
tion applies and provides a fixed point in P]1?>erk‘ This argument can be refined,
using that f expands the hyperbolic metric, to produce either attracting or repelling
fixed points. See [BR10, §10.7].

5.3. Purely inseparable maps. Suppose f is purely inseparable of degree d > 1.
In particular, char K = p > 0. We claim that there exists a coordinate z € F' and
n > 1 such that f*z = 2P". A rational map f such that f*z = 2P is usually called
the Frobenius map, see [Har77, 2.4.1-2.4.2].

To prove the claim, we use the fact that f admits exactly d 4+ 1 classical fixed
points. Indeed, the multiplier of each fixed point is zero. Pick a coordinate z € F
such that z = 0 and z = oo are fixed points of f. Since f is purely inseparable there
exists n > 0 such that 2" € f*F. Choose n minimal with this property. Since
deg f > 1 we must have n > 1. On the other hand, the minimality of n shows that
2" = f*w for some coordinate w € F. The fact that z = 0 and z = oo are fixed
points imply that z = aw for some a € K*, so f*z = azP". After multiplying z by
a suitable power of a, we get a = 1, proving the claim.

5.4. The exceptional set. A classical point z € P! is called exceptional for f if
its total backward orbit | J,~o f~"(«) is finite. The exceptional set of f is the set of
exceptional points and denoted E;. Since f is surjective, it is clear that Epn = Ef
for any n > 1. We emphasize that Ey by definition consists of classical points only.

Lemma 5.3. Let f : P! — P! be a rational map of degree d > 1.

(i) If f is not purely inseparable, then there are at most two exceptional points.
Moreover:
(a) if there are two exceptional points, then f(z) = 2% in a suitable coor-
dinate z on P! and Ef = {0, 0o};
(b) if there is exactly one exceptional point, then f is a polynomial in a
suitable coordinate and Ey = {oo}.
(ii) If f is purely inseparable, then the exceptional set is countably infinite and
consists of all periodic points of f.

Case (ii) only occurs when char K = p > 0 and f is an iterate of the Frobenius
map: f*z = 2% for d a power of p in some coordinate z € F, see

Proof. For x € Ef set Fy :=J,50 f7"(2). Then F; is a finite set with YN F,) C

F, C E;. Since f is surjective, f~1(F,) = F, = f(F,). Hence each point in F, must
be totally ramified in the sense that f~1(f(z)) = {z}.
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If f is purely inseparable, then every point in P! is totally ramified, so F}, is finite
iff = is periodic.

If f is not purely inseparable, then it follows from Proposition (i) that £t has
at most two elements. The remaining statements are easily verified. O

5.5. Maps of simple reduction. By definition, the exceptional set consists of
classical points only. The following result by Rivera-Letelier [Riv03b] characterizes
totally invariant points in hyperbolic space.

Proposition 5.4. If zq € H is a totally invariant point, f~'(xz¢) = wo, then xq is
a Type 2 point.

Definition 5.5. A rational map f : P! — P! has simple reduction if there exists a
Type 2 point that is totally invariant for f.

Remark 5.6. Suppose f has simple reduction and pick a coordinate z in which the
totally invariant Type 2 point becomes the Gauss point. Then we can write f*z =
¢/, where ¢, 1) € 0k 2] and where the rational function ¢ /v € K (z) has degree d =
deg f. Such a map is usually said to have good reduction [MS95]. Some authors refer
to simple reduction as potentially good reduction. One could argue that dynamically
speaking, maps of good or simple reduction are not the most interesting ones, but
they do play an important role. For more on this, see [Ben05b, [Bak09, [PST09].

Proof of Proposition[5.4 A totally invariant point in H is repelling so the result
follows from Proposition Nevertheless, we give an alternative proof.

Define a function G : PL_, x PL_, — [—00, 0] byE|

G(l‘,y) = 7dH(‘/L‘0,$ /\xo y)

It is characterized by the following properties: G(y,z) = G(x,y), G(zo,y) = 0 and
AG(-,y) = 0y — Oz -

Pick any point y € P}13erk' Let (y;)™, be the preimages of y under f and d; =
deg,,(f) the corresponding local degrees. We claim that

G(f(z),y) = diG(x,y;) (5.1)
=1

for any z € P]%erk. To see this, note that since f*d,, = dd,, it follows from Propo-
sition that both sides of are ddg,-subharmonic as a function of x, with
Laplacian f*(dy — 6z,) = >_; di(dy, — 0z,). Now, the Laplacian determines a qua-
sisubharmonic function up to a constant, so since both sides of vanish when
T = o they must be equal for all x, proving the claim.

Now pick x and y as distinct classical fixed points of f. Such points exist after
replacing f by an iterate, see Proposition We may assume y; = y. Then
gives

(di = 1)G(x,y) + Y diG(z,y:) = 0 (5.2)
i>2
Since G < 0, we must have G(z,y;) =0 for ¢ > 2 and (dy — 1)G(z,y) = 0.

13 [Bak09) [BRI0], the function —G is called the normalized Arakelov-Green’s function with
respect to the Dirac mass at xg.
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First assume zq is of Type 4. Then x( is an end in the tree P]lgerk, so since
x # xo and y; # xo for all i, we have x Ay, yi # xo and hence G(z,y;) < 0. This
contradicts ([5.2]).

Now assume xg is of Type 3. Then there are exactly two tangent directions at
xo in the tree Pllserk' Replacing f by an iterate, we may assume that these are
invariant under the tangent map. We may assume that the classical fixed points
x,y € P! above represent the same tangent direction, so that z A, y # 7o. Since
xo is totally invariant, it follows from Corollary (i) that all the preimages y; of
y also represent this tangent vector at zp. Thus G(x,y;) < 0 for all ¢ which again

contradicts ([5.2)). O

Remark 5.7. The proof in [Bak09] also uses the function G above and analyzes the
lifting of f as a homogeneous polynomial map of K x K.

5.6. Fatou and Julia sets. In the early part of the 20th century, Fatou and Julia
developed a general theory of iteration of rational maps on the Riemann sphere.
Based upon some of those results, we make the following definition.

Definition 5.8. The Julia set J = J; is the set of points z € P]13erk such that for
every open neighborhood U of z we have |J,~q ["(U) 2 Ph. . \Es. The Fatou set
is the complement of the Julia set. -

Remark 5.9. Over the complex numbers, one usually defines the Fatou set as the
largest open subset of the Riemann sphere where the sequence of iterates is locally
equicontinuous. One then shows that the Julia set is characterized by the conditions
in the definition above. Very recently, a non-Archimedean version of this was found
by Favre, Kiwi and Trucco, see [FKT11, Theorem 5.4]. Namely, a point x € P]13 ork
belongs to the Fatou set of f iff the family {f"},>1 is normal in a neighborhood of
x in a suitable sense. We refer to [FKTI1I, §5] for the definition of normality, but
point out that the situation is more subtle in the non-Archimedean case than over
the complex numbers.

Theorem 5.10. Let f: P! — P! be any rational map of degree d > 1.

(i) The Fatou set F and Julia set J are totally invariant: F = f(J) = f~1(F)
and J = f(F) = f~1(T).
ii) We have Fr = Fn and Jr = Jgn for alln > 1.
f f f f
iii) The Fatou set is open and dense in PL .. It contains any nonrepelling
Berk
classical periodic point and in particular any exceptional point.
(iv) The Julia set is nonempty, compact and has empty interior. Further:
(a) if f has simple reduction, then J consists of a single Type 2 point;
(b) if f does not have simple reduction, then J is a perfect set, that is, it
has no isolated points.

Proof. 1t is clear that F is open. Since f : P]13erk — P]lgﬂrk is an open continuous
map, it follows that F is totally invariant. Hence J is compact and totally invariant.
The fact that Fg» = Fy, and hence Jy» = J¢, follow from the total invariance of

It follows from Proposition that any nonrepelling classical periodic point is in
the Fatou set. Since such points exist, the Fatou set is nonempty. This also implies
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that the Julia set has nonempty interior. Indeed, if U were an open set contained
in the Julia set, then the set U’ := J,,~, f™"(U) would be contained in the Julia set
for all n > 1. Since the Fatou set is open and nonempty, it is not contained in Ey,
hence PL_, \U’ Z Ey, so that U C F, a contradiction.

The fact that the Julia set is nonempty and that properties (a) and (b) hold is
nontrivial and will be proved in as a consequence of the equidistribution theorem

below. See Propositions and O

Much more is known about the Fatou and Julia set than what is presented here.
For example, as an analogue of the classical result by Fatou and Julia, Rivera-Letelier
proved that J is the closure of the repelling periodic points of f.

For a polynomial map, the Julia set is also the boundary of the filled Julia set,
that is, the set of points whose orbits are bounded in the sense that they are disjoint
from a fixed open neighborhood of infinity. See [BR10, Theorem 10.91].

Finally, a great deal is known about the dynamics on the Fatou set. We shall not
study this here. Instead we refer to [BR10), Benl0)].

5.7. Equidistribution theorem. The following result that describes the distri-
bution of preimages of points under iteration was proved by Favre and Rivera-
Letelier [FR04, [FRI10]. The corresponding result over the complex numbers is
due to Brolin [Bro65|] for polynomials and to Lyubich [Lyu83] and Freire-Lopez-
Mané [FLM83] for rational functions.

Theorem 5.11. Let f : P! — P! be a rational map of degree d > 1. Then there
exists a unique Radon probability measure py on Pll3e1rk with the following property:
if p is a Radon probability measure on Pll_%erk, then

1
d—nf"*p—>pf as n — 0o,

in the weak sense of measures, iff p(Ey) = 0. The measure py puts no mass on any
classical point; in particular ps(Ey) = 0. It is totally invariant in the sense that

I pr =dpy.

Recall that we have assumed that the ground field K is algebraically closed and
nontrivially valued. See for the general case.

As a consequence of Theorem we obtain a more general version of Theorem A
from the introduction, namely

Corollary 5.12. With f as above, we have

1 n
o Z deg, (f")6y — py asn — oo,
[ y)==

for any non-exceptional point x € P]13erk \Ey.

Following [BR10] we call p¢ the canonical measure of f. It is clear that py = psn
for n > 1. The proof of Theorem will be given in §5.9

Remark 5.13. Okuyama [Okullb] has proved a quantitative strengthening of
Corollary The canonical measure is also expected to describe the distribution
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of repelling periodic points. This does not seem to be established full generality, but
is known in many cases [Okullal.

5.8. Consequences of the equidistribution theorem. In this section we collect
some result that follow from Theorem (.11l

Proposition 5.14. The support of the measure py is exactly the Julia set J = Jy.
In particular, J is nonempty.

Proof. First note that the support of py is totally invariant. This follows formally
from the total invariance of py. Further, the support of p; cannot be contained in
the exceptional set E since ps(Ef) = 0.

Consider a point x € P]13erk‘ If x is not in the support of py, let U = P%erk \ supp py.
Then f*(U) = U for all n. In particular, (J,,~, f™(U) is disjoint from supp ps. Since
supp py € Ey, x must belong to the Fatou set.

Conversely, if € supp py and U is any open neighborhood of z, then p(U) > 0.
For any y € P}, \Ey, Corollary implies that f~™(y) N U # 0 for n > 0. We
conclude that | J,~q f"(U) 2 Ph. \Ey, so z belongs to the Julia set. O

We will not study the equilibrium measure p; in detail, but the following result
is not hard to deduce from what we already know.

Proposition 5.15. The following conditions are equivalent.
(i) py puts mass at some point in P}Berk;

(ii) py s a Dirac mass at a Type 2 point;

(iii) f has simple reduction;

(iv) f™ has simple reduction for alln > 1;
)

(v) f™ has simple reduction for some n > 1.

Proof. If f has simple reduction then, by definition, there exists a totally invariant
Type 2 point xg. We then have d™" f""*d,, = 05, so Corollary implies py = d4,.
Conversely, if py = 0, for some Type 2 point xq, then f*p; = dp; implies that zg is
totally invariant, so that f has simple reduction. Thus (ii) and (iii) are equivalent.
Since py = pyn, this implies that (ii)—(v) are equivalent.

Clearly (ii) implies (i). We complete the proof by proving that (i) implies (v).
Thus suppose pr{zo} > 0 for some zg € P} . Since p; does not put mass on
classical points we have g € H. The total invariance of py implies

0 < py{wo} = S(F*pr) 0} = & dessy (Fos{F(w0)} < py{f(r0)},

with equality iff deg, (f) = d. Write x,, = f"(xo) for n > 0. Now the total mass of
py is finite, so after replacing xo by x;, for some m > 0 we may assume that x,, = zg
and deng( f) =dfor 0 < j < n and some n > 1. This implies that x( is totally
invariant under f". By Proposition [5.4] zq is then a Type 2 point and f™ has simple
reduction. O

With the following result we complete the proof of Theorem [5.10

Proposition 5.16. Let f : P! — P! be a rational map of degree d > 1 and let
J = Jy be the Julia set of f.
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(i) If f has simple reduction, then J consists of a single Type 2 point.
(ii) If f does not have simple reduction, then J is a perfect set.

Proof. Statement (i) is a direct consequence of Proposition Now suppose f
does not have simple reduction. Pick any point x € J and an open neighborhood U
of x. It suffices to prove that there exists a point y € U with y # z and f"(y) =z
for some n > 1. After replacing f by an iterate we may assume that x is either fixed
or not periodic. Set m := deg,(f) if f(z) = x and m := 0 otherwise. Note that
m < d as x is not totally invariant.

Since x ¢ Ey, Corollary shows that the measure d=" f"*J, converges weakly
to py. Write f"*0, = m"™0, + p),, where

ph= > deg,(f")d,.
y#x, fr(y)=z

We have x € J = supp py so py(U) > 0 and hence liminf,,_,(d™" f"*0,)(U) > 0.
Since m < d it follows that p/,(U) > 0 for n > 0. Thus there exist points y € U
with y # z and f"(y) = . O

5.9. Proof of the equidistribution theorem. To prove the equidistribution theo-
rem we follow the approach of Favre and Rivera-Letelier [FR10], who in turn adapted
potential-theoretic techniques from complex dynamics developed by Fornaess-Sibony
and others. Using the tree Laplacian defined in §2.5| we can study convergence of
measures in terms of convergence of quasisubharmonic functions, a problem for which
there are good techniques. If anything, the analysis is easier in the nonarchimedean
case. Our proof does differ from the one in [FRIO] in that it avoids studying the
dynamics on the Fatou set.

5.9.1. Construction of the canonical measure. Fix a point zo € H. Since d~! f*d,,
is a probability measure, we have
A1 f*0py = Oz + Au (5.3)

for an xg-subharmonic function u. In fact, (2.3]) gives an explicit expression for u
and shows that u is continuous, since f~!(x9) C H.

Iterating (5.3) and using (4.7)) leads to
A" 05y = Ozy + Aup, (5.4)

where u,, = Z?:_OI d7Juo fi. It is clear that the sequence u,, converges uniformly to
a continuous xg-subharmonic function us,. We set

pf = 0zy + Alige.

Since uq is bounded, it follows from ([2.4) that p; does not put mass on any classical
point. In particular, ps(Ey) = 0, since £ is at most countable.

5.9.2. Auziliary results. Before starting the proof of equidistribution, let us record
a few results that we need.

Lemma 5.17. If zo,x € H, then du(f"(z),z0) = O(d™) as n — cc.
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Proof. We know that f expands the hyperbolic metric by a factor at most d, see
Corollary Using the triangle inequality and the assumption d > 2, this yields
n—1 n—1
du(f"(2),2) <Y da(F (@), f(x) <Y ddu(f(x),z) < d"da(f(z),),
§=0 §=0
so that
du(f"(z),z0) < du(f"(x), ["(x0)) + du(f"(x0), o)
< d"(du(z,w0) + du(f(z0), o)),
completing the proof. O
Lemma 5.18. Suppose that f is not purely inseparable. If p is a Radon prob-

ability measure on P]13erk such that p(Ey) = 0 and we set p, := d~"f"p, then
supyept pniy} — 0 as n — oo.

Note that the supremum is taken over classical points only. Also note that the
lemma always applies if the ground field is of characteristic zero. However, the
lemma is false for purely inseparable maps.

Proof. We have p,{y} = d~" deg, (f")p{f"(y)}, so it suffices to show that
sup deg,(f") = o(d"). (5.5)
yeP\Ey
For y € P! and n > 0, write y, = f*(y). If deg, (f) = d for n = 0,1,2, then
Proposition (i) implies y € Ef. Thus degy(fg) < d?® — 1 and hence deg, (f") <
d?(d® —1)"/3 for y € P! \ E¢, completing the proof. O
5.9.3. Proof of the equidistribution theorem. Let p be a Radon probability measure
on PL_, and set p, = d""f"p. If p(Ef) > 0, then p,(Ef) = p(Ef) > 0 for all n.
Any accumulation point of {p, } must also put mass on Ef, so p, /4 py as n — oo.
Conversely, assume p(Ey) = 0 and let us show that p, — py as n — oo. Let
¢ € SH(PL, ... 7o) be a solution to the equation p = d5, + Ap. Applying d=" f™* to
both sides of this equation and using (4.7)), we get
Pn = d_nfn*5x0 + A@n = 51‘0 + A(un + (Pn)a

where ¢, = d "¢ o f". Here 0, + Au, tends to p; by construction. We must show
that d;, + A(u, + ¢n) also tends to py. By this amounts to showing that
n tends to zero pointwise on H. Since ¢ is bounded from above, we always have
lim sup,, ¢, < 0. Hence it remains to show that

liminf ¢, (z) >0 for any x € H. (5.6)
n—oo
To prove (5.6 we first consider the case when f is not purely inseparable. Set

Em = SUp,ep1 Pmiy} for m > 0. Then €, — 0 as m — oo by Lemma Using
Lemma and Proposition 2.8 we get, for m,n >0

> d_ngom(xo) - d_n(cm + 5de(fn(m)7 l‘o))
Z _ng - Cmdin
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for some constant D independent of m and n and some constant C,, independent
of n. Letting first n — oo and then m — oo yields liminf,, ¢, (z) > 0, completing
the proof.

Now assume f is purely inseparable. In particular, K has characteristic p > 0, f
has degree d = p for some m > 1 and there exists a coordinate z € F' such that f
becomes an iterate of the Frobenius map: f*z = z¢.

In this case, we cannot use Lemma since is evidently false: the local
degree is d everywhere on Pll_%erk. On the other hand, the dynamics is simple to
describe, see Example The Gauss point xg in the coordinate z is (totally)
invariant. Hence p; = d,,. The exceptional set E; is countably infinite and consists
of all classical periodic points. Consider the partial ordering on P%;erk rooted in xg.
Then f is order preserving and du(f™(z),z0) = d"du(z, o) for any z € PL_, .

As above, write p = 6, + Ay, with ¢ € SH(P%erk, xo). Pick any point z € H. It
suffices to prove that holds, where ¢, = d""¢(f™(z)). Using Lemma and
the fact that dg(f™(x),zo) = d"du(x, z¢) it suffices to show that

lim p(Y,) =0, whereY, :={y> f"(z)}. (5.7)
n—oo
Note that for m,n > 1, either Y,,4, C Y, or Y, Y, 41, are disjoint. If p(Y,) 4 0,
there must exist a subsequence (n;); such that Y;,, ., C Y, for all j and p(Yn].) 4 0.
Since du(f"(x), o) — oo we must have (; Yy, = {yo} for a classical point yo € Pl
Thus p{yo} > 0. On the other hand, we claim that yg is periodic, hence exceptional,
contradicting p(Ef) = 0.

To prove the claim, pick m; > 1 minimal such that Y, 41, = f™ (Yy,) C Yy, and
set Zy, = Yo, 4rmy = [ (Yy,) for 7 > 0. Then Z, forms a decreasing sequence of
compact sets whose intersection consists of a single classical point y, which moreover
is periodic: f™!(y) = y. On the other hand, for m > 1 we have Yy, C Y, iff
mq divides m. Thus we can write n; = n1 + rjm; with r; — oo. This implies that
{yo} =N; Yo, €N, Zr = {y} so that yo = y is periodic.

The proof of Theorem [5.11]is now complete.

5.10. Other ground fields. Above we worked with the assumption that our non-
Archimedean field K was algebraically closed and nontrivially valued. Let us briefly
discuss what happens for other fields, focusing on the equidistribution theorem and
its consequences.

5.10.1. Non-algebraically closed fields. Suppose K is of arbitrary characteristic and
nontrivially valued but not algebraically closed. The Berkovich projective line
PL . (K) and the action by a rational map were outlined in and §4.11.1]
respectively. Let K® be the algebraic closure of K and K its completion. Denote
by 7 : Pll?)erk(f?\a) — PL_, (K) the natural projection. Write f : Pllgerk([?\‘l) —
Péerk([/f\a) for the induced map. Define E ;as the exceptional set for f and set

Ef = m(Eg). Then f7Y(Ef) = E; and Ej has at most two elements, except if K

has characteristic p and f is purely inseparable, in which case E; is countable.



DYNAMICS ON BERKOVICH SPACES IN LOW DIMENSIONS 67

We will deduce the equidistribution result in Theorem- 5.11] for f from the corre-
sponding theorem for f Let Pi be the measure on PB 1 (/@) given by Theorem|5.11

and set py = 7 (pf). Since E; =7~ 1(E}), the measure py puts no mass on Ey.

Let p be a Radon probablhty measure on PL_, (K). If p(Ef) > 0, then any
limit point of d™"f™*p puts mass on Ef, hence d "f"p /4 pr. Now assume

p(Ef) = 0. Write 2o and #o for the Gauss point on P§_, (K) and PBerk(K“),
respectively, in some coordinate on K. We have p = d,, + Ap for some ¢ €
SH(P}, . (K),z0). The e generalized metric on PL . (K) was defined in such a way

that m*¢ € SH(PS,, (K ) 0)- Set p = 0z, + A(7*p). Then p is a Radon proba-
bility measure on Pg_ k(K @) such that m.p = p. Since E is countable, 7r(E )=Ef

and p(Ey) = 0 we must have p(Ey) = 0. Theoremtherefore gives d™" f*p — Pj
and hence d™" f™"*p — py as n — 0.

5.10.2. Trivially valued fields. Finally let us consider the case when K is equipped
with the trivial valuation. Then the Berkovich projective line is a cone over P1(K),
ee §3.9.2] The equidistribution theorem can be proved essentially as above, but the
proof is in fact much easier. The measure ps is a Dirac mass at the Gauss point and
the exceptional set consists of at most two points, except if f is purely inseparable,
The details are left as an exercise to the reader.

5.11. Notes and further references. The equidistribution theorem is due to
Favre and Rivera-Letelier. Our proof basically follows [FRI0] but avoids study-
ing the dynamics on the Fatou set and instead uses the hyperbolic metric more
systematically through Proposition and Lemmas and In any case,
both the proof here and the one in [FR10] are modeled on arguments from complex
dynamics. The remarks in about general ground fields seem to be new.

The measure p; is conjectured to describe the distribution of repelling periodic
points, see [FRI10, Question 1, p.119]. This is known in certain cases but not in
general. In characteristic zero, Favre and Rivera-Letelier proved that the classical
periodic points (a priori not repelling) are distributed according to p¢, see [FR10),
Théoreme B| as well as [Okullal.

Again motivated by results over the complex numbers, Favre and Rivera also go
beyond equidistribution and study the ergodic properties of py.

Needless to say, I have not even scratched the surface when describing the dy-
namics of rational maps. I decided to focus on the equidistribution theorem since
its proof uses potential theoretic techniques related to some of the analysis in later
sections.

One of the many omissions is the Fatou-Julia theory, in particular the classifica-
tion of Fatou components, existence and properties of wandering components etc.
See [BR10, §10] and [Benl0, §§6-7] for this.

Finally, we have said nothing at all about arithmetic aspects of dynamical systems.
For this, see e.g. the book [Sil07] and lecture notes [Sil10] by Silverman.
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6. THE BERKOVICH AFFINE PLANE OVER A TRIVIALLY VALUED FIELD

In the remainder of the paper we will consider polynomial dynamics on the
Berkovich affine plane over a trivially valued field, at a fixed point and at infin-
ity. Here we digress and discuss the general structure of the Berkovich affine space
AL, in the case of a trivially valued field. While we are primarily interested in the
case n = 2, many of the notions and results are valid in any dimension.

6.1. Setup. Let K be any field equipped with the trivial norm. (In § we
shall make further restriction on K.) Let R ~ KJz,...,z,] denote the polynomial
ring in n variables with coefficients in K. Thus R is the coordinate ring of the
affine n-space A" over K. We shall view A™ as a scheme equipped with the Zariski
topology. Points of A™ are thus prime ideals of R and closed points are maximal
ideals.

6.2. The Berkovich affine space and analytification. We start by introducing
the basic object that we shall study.

Definition 6.1. The Berkovich affine space Aj,, of dimension n is the set of
multiplicative seminorms on the polynomial ring R whose restriction to K is the
trivial norm.

This definition is a special case of the analytification of a variety (or scheme)
over K. Let Y C A" be an irreducible subvariety defined by a prime ideal Iy C R
and having coordinate ring K[Y] = R/Iy. Then the analytification Ypek of Y is
the set of multiplicative seminorms on K[Y'] restricting to the trivial norm on K E
We equip Yperk with the topology of pointwise convergence. The map R — R/Iy
induces a continuous injection Ygerk > Ajq -

As before, points in AR, will be denoted « and the associated seminorm by |- |,.
It is customary to write |p(x)| := |p|, for a polynomial ¢ € R. Let p, C R be the
kernel of the seminorm | - |;. The completed residue field H(x) is the completion of
the ring R/p, with respect to the norm induced by | - |;. The structure sheaf O on
AL, can now be defined in the same way as in following [Ber90, §1.5.3], but
we will not directly us it.

Closely related to Aj,, is the Berkovich unit polydisc D3, . This is deﬁnedlﬂ
in [Ber90l §1.5.2] as the spectrum of the Tate algebra over K. Since K is trivially
valued, the Tate algebra is the polynomial ring R and Dg,, is the set of multi-
plicative seminorms on R bounded by the trivial norm, that is, the set of points
x € A}, such that |¢(z)| < 1 for all polynomials ¢ € R.

6.3. Home and center. To a seminorm z € Ap,, we can associate two basic
geometric objects. First, the kernel p, of |- |, defines a point in A™ that we call the
home of x. Note that the home of x is equal to A™ iff | - |; is a norm on R. We
obtain a continuous home map

n n
Berk A"
MThe analytification of a general variety or scheme over K is defined by gluing the analytifica-

tions of open affine subsets, see [Ber90, §3.5].
15The unit polydisc is denoted by E(0,1) in [Berd0, §1.5.2].



DYNAMICS ON BERKOVICH SPACES IN LOW DIMENSIONS 69

Recall that A™ is viewed as a scheme with the Zariski topology.
Second, we define the center of x on A™ as follows. If there exists a polynomial
¢ € R such that |¢(z)| > 1, then we say that x has center at infinity. Otherwise z
belongs to the Berkovich unit polydisc D3, in which case we define the center of
x to be the point of A™ defined by the prime ideal {¢ € R | |¢(x)| < 1}. Thus we
obtain a center ma
%erk — A"

which has the curious property of being anticontinuous in the sense that preimages
of open/closed sets are closed/open.

The only seminorm in A{_, whose center is all of A™ is the trivial norm on R.
More generally, if Y C A" is any irreducible subvariety, there is a unique seminorm
in A3, whose home and center are both equal to Y, namely the image of the trivial
norm on K[Y] under the embedding Yperk < AL, see also below. This gives
rise to an embedding

A" — A%erk
and shows that the home and center maps are both surjective.

The home of a seminorm always contains the center, provided the latter is not at
infinity. By letting the home and center vary over pairs of points of A™ we obtain
various partitions of the Berkovich affine space, see

It will occasionally be convenient to identify irreducible subvarieties of A™ with
their generic points. Therefore, we shall sometimes think of the center and home of
a seminorm as irreducible subvarieties (rather than points) of A™.

There is a natural action of R} on A, which to a real number ¢ > 0 and a
seminorm | - | associates the seminorm | - |*. The fixed points under this action are
precisely the images under the embedding A" — Ap_, above.

6.4. Semivaluations. In what follows, it will be convenient to work additively
rather than multiplicatively. Thus we identify a seminorm |-| € A}, with the
corresponding semivaluation

v=—log|-| (6.1)
The home of v is now given by the prime ideal (v = +00) of R. We say that v is a
valuation if the home is all of A™. If v(¢) < 0 for some polynomial ¢ € R, then v
has center at infinity; otherwise v belongs to the Dy, and its center is defined by
the prime ideal {v > 0}. The action of R} on A}, is now given by multiplication:
(t,v) — tv. The image of an irreducible subvariety ¥ C A™ under the embedding
A" — AR, is the semivaluation trivy, defined by

if
ool = {0 0k

where Iy is the ideal of Y. Note that triva» is the trivial valuation on R.
For v € Dg,,y We write

(6.2)

v(a) := minv(¢)

pea

16The center map is called the reduction map in [Ber90l §2.4]. We use the valuative terminology
center as in [Vaq00] §6] since it will be convenient to view the elements of Aj,;, as semivaluations
rather than seminorms.
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for any ideal a C R; here it suffices to take the minimum over any set of generators
of a.

6.5. Stratification. Let Y C A™ be an irreducible subvariety. To Y we can asso-
ciate two natural elements of A, : the semivaluation trivy above and the valuation
ordylﬂ defined by

ordy (¢) = max{k >0 | ¢ € IL}.

As we explain next, Y also determines several natural subsets of Ap_ .

6.5.1. Stratification by home. Define
Wgy, Wgy and Wy

as the set of semivaluations in AR, whose home in A™ contains Y, is contained in
Y and is equal to Y, respectively. Note that WWcy is closed by the continuity of the
home map. We can identify Wcy with the analytification Ypek of the affine variety
Y as defined in In particular, trivy: € Wcy corresponds to the trivial valuation
on K[Y].

The set W-y is open, since it is the complement in A3, of the union of all W,
where Z ranges over irreducible subvarieties of A™ not containing Y. The set Wy,
on the other hand, is neither open nor closed unless Y is a point or all of A™. It can
be identified with the set of valuations on the coordinate ring K[Y].

6.5.2. Valuations centered at infinity. We define V. to be the open subset of AL,

consisting of semivaluations having center at infinity. Note that V.. is the comple-
ment of D3, in AR,

I]_%erk = D%erk UV, and D%erk NV, = 0.

The space V.. is useful for the study of polynomial mappings of A" at infinity and
will be explored in §9|in the two-dimensional case. Notice that the action of R% on

V.. is fixed point free. We denote the quotient by V..:

V. = V. /R
If we write R = K|[z1, ..., z,], then we can identify V., with the set of semivaluations
for which minj<;<p{v(2;)} = —1. However, this identification depends on the choice

of coordinates, or at least on the embedding of A™ — P".

6.5.3. Stratification by center. We can classify the semivaluations in the Berkovich
unit polydisc Dg,,, according to their centers. Given an irreducible subvariety
Y C A™ we define
1>Qy, f@Y and ]A}y

as the set of semivaluations in D3, whose center contains Y, is contained in ¥ and
is equal to Y, respectively. By anticontinuity of the center map, f)gy is open and,
consequently, V-, closed in D3,- Note that v € Vey iff v(Iy) > 0. As before, Vy
is neither open nor closed unless Y is a closed point or all of A™.

ITThis is a divisorial valuation given by the order of vanishing along the exceptional divisor of
the blowup of Y, see &
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Note that Wy N Dg, € f/gy. The difference figy \ Wcy is the open subset of
D3, consisting of semivaluations v satisfying 0 < v(ly) < co. If we define

Vy :={v € DRy | v(Iy) = 1}, (6.3)

then Vy is a closed subset of D, (hence also of A} ;) and the map v — v/v(Iy)
induces a homeomorphism

O}gy \ WQY)/Ri = Vy.

Remark 6.2. In the terminology of Thuillier [Thu07], f/gy is the Berkovich space
associated to the completion of A™ along the closed subscheme Y. Similarly, the
open subset Vcy \Wey is the generic fiber of this formal subscheme. This terminology

differs slightly from that of Berkovich [Ber94] who refers to Vcy as the generic fiber,
see [Thu07, p.383].

6.5.4. Extremal cases. Let us describe the subsets of A, introduced above in the
case when the subvariety Y has maximal or minimal dimension. First, it is clear
that

Wean = ABere and )}QA” = DBerk -
Furthermore,
VQA" = VA” = WQA” = WA" = {triVAn},
the trivial valuation on R. Since Ia» = 0, we also have
VAn = @
At the other extreme, for a closed point £ € A™, we have
ng = Wg = {tI'IVé‘}

The space V¢ is a singleton when n = 1 (see but has a rich structure when
n > 1. We shall describe in dimension two in {7 in which case it is a tree in the
sense of See [BEJO8D] for the higher-dimensional case.

6.5.5. Passing to the completion. A semivaluation v € D3, whose center is equal
to an irreducible subvariety Y extends uniquely to a semivaluation on the local
ring Oany such that v(my) > 0, where my is the maximal ideal. By my-adic
continuity, v further extends uniquely as a semivaluation on the completion and
by Cohen’s structure theorem, the latter is isomorphic to the power series ring
#&(Y)[z1,. .. 2], where r is the codimension of Y. Therefore we can view Vy as the
set of semivaluations v on x(Y)[z1,... 2] whose restriction to (YY) is trivial and
such that v(my) > 0. In particular, for a closed point &, we can view Ve (resp., V) as
the set of semivaluations v on k(&)[z1, ... z,] whose restriction to (&) is trivial and
such that v(m¢) > 0 (resp., v(mg) = 1). This shows that when K is algebraically
closed, the set V. above is isomorphic to the space considered in [BFJO8b]. This
space was first introduced in dimension n = 2 in [F.J04] where it was called the
valuative tree. We shall study it from a slightly different point of view in g7l Note
that it may happen that a valuation v € Vg has home £ but that the extension of v
to OAné is a semivaluation for which the ideal {v = oo} C O an ¢ is nontrivial.
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6.6. The affine line. Using the definitions above, let us describe the Berkovich
affine line A%erk over a trivially valued field K.
An irreducible subvariety of Al is either A! itself or a closed point. As we noted

in
Vear = Diak, Weat = Abag, Voar = Var = Wo 0 = Wy = {trivai}
whereas Va1 is empty.
Now suppose the center of v € A%erk is a closed point ¢ € Al. If the home of
v is also equal to &, then v = trive. Now suppose the home of v is Al so that

0 < v(lg) < oo. After scaling we may assume v(l¢) = 1 so that v € V. Since
R ~ K|z] is a PID is follows easily that v = ord¢. This shows that

Wee = W = {trive} and Ve = {ord¢},

Similarly, if v € A]13erk has center at infinity, then, after scaling, we may assume that
v(z) = —1, where z € R is a coordinate. It is then clear that v = ord,, where ords
is the valuation on R defined by ordy,(¢) = — deg ¢. Thus we have

V., = {ord}.

Note that any polynomial ¢ € R can be viewed as a rational function on P! =
A U {00} and orduo(¢) < 0 is the order of vanishing of ¢ at oco.

We leave it as an exercise to the reader to compare the terminology above with
the one in See Figure for a picture of the Berkovich affine line over a
trivially valued field.

orda

trivaz

orde¢ ord,

trive triv,

FiGURE 6.1. The Berkovich affine line over a trivially valued field.
The trivial valuation triva: is the only point with center A'. The
point trive for § € A has home £. All the points on the open segment
| triv o1, trive[ have home A and center ¢ and are proportional to the
valuation ord¢. The point co does not belong to A]13erk- The points
on the open segment |trivai,oo[ have home A, center at infinity
and are proportional to the valuation ord...
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6.7. The affine plane. In dimension n = 2, the Berkovich affine space is signifi-
cantly more complicated than in dimension one, but can still—with some effort—be
visualized.

An irreducible subvariety of A? is either all of A2, a curve, or a closed point. As
we have seen,

A~

VQA2 = D}23erk7 WgA2 = A%erlw V;A2 = Va2 = W;A2 = W2 = {trivaz}
whereas Va2 is empty.

Now let ¢ be a closed point. As before, We, = W, = {triv¢}, where trive is
the image of ¢ under the embedding A? < A% ,. The set )>g5 = f}g is open and
Ve \ {trive} = Ve \ W, is naturally a punctured cone with base Ve. The latter will
be called the valuative tree (at the point &) and is studled in detail in ! Suffice
it here to say that it is a tree in the sense of § The whole space V§ is a cone
over the valuative tree with its apex at trive. The boundary of Vg consists of all
semivaluations whose center strictly contains &, so it is the union of triva2 and Ve,
where C' ranges over curves containing C. As we shall see, the boundary therefore
has the structure of a tree naturally rooted in trivaz. See Figure[6.2] If £ and n are
two different closed points, then the open sets ]>§ and f/n are disjoint.

Next consider a curve C C A?. By definition, the set W, consists all semival-
uations whose home is contained in C. This means that W, is the image of the
analytification Cpge of C' under the embedding Cgec — A123erk- As such, it looks
quite similar to the Berkovich affine line A} ., see [Ber90, §1.4.2]. More precisely,
the semivaluation trive is the unique semivaluation in Wc. having center C. All
other semivaluations in Wc, have center at a closed point £ € C. The only such
semivaluation having home § is trivg; the other semivaluations in Wee N Vg have
home C and center {. We can normalize them by v(I¢) = 1. If £ is a nonsingular
point on C, then there is a unique normalized semivaluation vo¢ € A%erk having
home C and center £&. When ¢ is a singular point on C, the set of such semivaluations
is instead in bijection with the set of local brancheﬁ of C' at £&. We see that W
looks like A1136rk except that there may be several intervals joining trive and trive:
one for each local branch of C at £. See Figure

Now look at the closed set V¢ of semivaluations whose center contains C. Tt
consists of all semivaluations tordg for 0 < t < oco. Here t = co and t = 0
correspond to trive and triv a2, respectively. As a consequence, for any closed point
&, 8])5 has the structure of a tree, much like the Berkovich affine line A113erk'

The set f)cc is open and its boundary consists of semivaluations whose center
strictly contains C'. In other words, the boundary is the Slngleton {trivaz}. For two
curves C, D, the intersection VCC N VC p 1s the union of sets V§ over all closed points
EeCnD.

The set Vo ~ (Vee \ Wee)/ R’ looks quite similar to the valuative tree at a
closed point. To see this, note that the valuation ordg is the only semivaluation
in Vo whose center is equal to C. All other semivaluations in V have center at a
closed point £ € C. For each semivaluation v € V¢ whose home is not equal to

18 Jocal branch is a preimage of a point of C' under the normalization map.
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C, there exists a unique t = ¢(§,C) > 0 such that tv € V¢; indeed, t = v(I¢).
Therefore, Vo can be obtained by taking the disjoint union of the trees V¢ over all
¢ € C and identifying the semivaluations having home C with the point ordg. If C
is nonsingular, then Vo will be a tree naturally rooted in ordc.

We claim that if C' is a line, then V¢ can be identified with the Berkovich unit
disc over the field of Laurent series in one variable with coefficients in K. To see
this, pick affine coordinates (z1,22) such that C = {z; = 0}. Then V¢ is the set
of semivaluations v : K|z1,z2] = R4 U {oo} such that v(z1) = 1. Let L = K((#1))
be the field of Laurent series, equipped with the valuation vy, that is trivial on K
and takes value 1 on z1. Then the Berkovich unit disc Dpe over L is the set of
semivaluations L[zo] — Ry U {00} extending vy. Every element of Dpg defines an
element of Vo by restriction. Conversely, pick v € V. If v = orde, then v extends
uniquely to an element of Dpeyi, namely the Gauss point. If v # ordg, then the
center of v is a closed point ¢ € C and v extends uniquely to the fraction field of the
completion O¢. This fraction field contains L[zs].

The open subset V., = AL \ DB, of semivaluations centered at infinity is a
punctured cone over a base V.. The latter space is called the wvaluative tree at
infinity and will be studied in detail in Superficially, its structure is quite similar
to the valuative tree at a closed point £. In particular it is a tree in the sense of
The boundary of V.. is the union of ]A);c over all affine curves C, that is, the set of
semivaluations in D3_, whose center is not a closed point. Thus the boundary has
a structure of a tree rooted in triva2. We emphasize that there is no point trivy, in
Vo

To summarize the discussion, A%erk contains a closed subset ¥ with nonempty
interior consisting of semivaluations having center of dimension one or two. This
set is a naturally a tree, which can be viewed as the cone over the collection of
all irreducible affine curves. The complement of ¥ is an open dense subset whose
connected components are V.., and f)g, where ¢ ranges over closed points of A2. The
set )}w is a punctured cone over a tree V,, and its boundary is all of 3. For a closed
point &, 195 is a cone over a tree V; and its boundary is a subtree of ¥, namely the
cone over the collection of all irreducible affine curves containing &.

6.8. Valuations. A semivaluation v on R ~ K|z1,...,2,] is a valuation if the
corresponding seminorm is a norm, that is, if v(¢) < oo for all nonzero polynomials
¢ € R. A valuation v extends to the fraction field F' ~ K(z1,..., z,) of R by setting
v(¢1/d2) = v(d1) — v(92).

Let X be a variety over K whose function field is equal to F. The center of a
valuation v on X, if it exists, is the unique (not necessarily closed) point £ € X
defined by the properties that v > 0 on the local ring Ox¢ and {v > 0} N Ox ¢ =
my ¢. By the valuative criterion of properness, the center always exists and is unique
when X is proper over K.

Following [JM10] we write Valx for the set of valuations of F' that admit a center
on X. As usual, this set is endowed with the topology of pointwise convergence.
Note that Valy is a subset of AR, that can in fact be shown to be dense. One
nice feature of Valy is that any proper birational morphism X’ — X induces an
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%Fsvﬁ

%WD

F1GURE 6.2. The Berkovich affine plane over a trivially valued field.
The picture shows the closure of the set V, of semivaluations having
center at a closed point & € A2, Here C, D are irreducible curves
containing §. The semivaluation trive € f)g has home £. All semival-
uations in V \ {triv¢} are proportional to a semivaluation v in the
valuative tree V¢ at {. We have tv — trive as t — oco. As t — 0+,
tv converges to the semivaluation trivy, where Y is the home of v.
The semivaluations vc¢ and vp¢ belong to Ve and have home C
and D, respectively. The boundary of f)g is a tree consisting of all
segments [triv a2, trive] for all irreducible affine curves C' containing
both . Note that the segment [trivc, trive] in the closure of Ve is
also a segment in the analytification Cgerx C A%erk of C, see Fig-
ure

isomorphism Valy: = Valy. (In the same situation, the analytification Xfepic MAPS
onto Xperk, but this map is not injective.)

We can view the Berkovich unit polydisc D3, as the disjoint union of Valy,
where Y ranges over irreducible subvarieties of X.

6.9. Numerical invariants. To a valuation v € AJ_, Wwe can associate several
invariants. First, the value group of v is defined by I, := {v(¢) | ¢ € F'\ {0}}. The
rational rank rat.rkv of v is the dimension of the Q-vector space I';, ®z Q.

Second, the valuation ring R, = {¢ € F | v(¢) > 0} of v is a local ring with
maximal ideal m, = {v(¢) > 0}. The residue field k(v) = R,/m, contains K as a
subfield and the transcendence degree of v is the transcendence degree of the field
extension k(v)/K.
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orda.
Vo oo (1) 0
UC’,oo 4
— —_— - triVAZ\ =~ -~
- ordg ~e_
trive ordp = — _
R
trivp

F1GURE 6.3. The Berkovich affine plane over a trivially valued field.
The picture shows (part of) the closure of the set V. of semival-
uations having center at infinity. Here C' and D are affine curves
having two and one places at infinity, respectively. The set V. is a
cone whose base is V., the valuative tree at infinity. Fixing an em-
bedding A? — P? allows us to identify V.. with a subset of ]A)oo and
the valuation ordy is the order of vanishing along the line at infinity

in P2. The semivaluations UD, 00 and vg)oo, 1 = 1,2 have home D and

C, respectively; the segments [ordes, Up o] and [ords, vg’)oo], 1=1,2
belong to V,,. The segments [triv sz, trive] and [triv sz, trivp] at the
bottom of the picture belong to the boundary of V_.: the full bound-
ary is a tree consisting of all such segments and whose only branch
point is triva2. The dotted segments in the top of the picture do not
belong to the Berkovich affine plane.

In our setting, the fundamental Abhyankar inequality states that
rat.rkv + tr.degv < n. (6.4)

The valuations for which equality holds are of particular importance. At least in
characteristic zero, they admit a nice geometric description that we discuss next.

6.10. Quasimonomial and divisorial valuations. Let X be a smooth variety
over K with function field F'. We shall assume in this section that the field K has
characteristic zero or that X has dimension at most two. This allows us to freely
use resolutions of singularities.

Let £ € X be a point (not necessarily closed) with residue field k(§). Let
(C1,...,¢) be a system of algebraic coordinates at £ (i.e. a regular system of pa-
rameters of Oy ¢). We say that a valuation v € Valy is monomial in coordinates
(C1y. .., ¢) with weights ¢q,...,t, > 0 if the following holds: if we write ¢ € (/’)\X,5

as ¢ = Zﬁezgo c[ngB with each cg € (5X,§ either zero or a unit, then
v(¢) = min{(t, 8) | ¢cs # 0},
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C tl"ng

triv,

FIGURE 6.4. The analytification Cger of an affine curve C over a
trivially valued field. The semivaluation trive is the only semivalu-
ation in Cpek having center C' and home C. To each closed point
§ € C is associated a unique semivaluation trive € Cperk With center
and home £. The set of elements of Cpec with home C and center
at a given closed point £ is a disjoint union of open intervals, one
for each local branch of C' at £&. Similarly, the set of elements of
Cgerk With home C' and center at infinity is a disjoint union of open
intervals, one for each branch of C' at infinity. The left side of the
picture shows a nodal cubic curve C and the right side shows its ana-
lytification Cper- Note that for a smooth point € on C, the segment
[trive, trive] in Cperk also lies in the closure of the cone ]A/g, see Fig-
ure

where (t,8) = t181 + --- + t, 5. After replacing £ by the (generic point of the)
intersection of all divisors {¢; = 0} we may in fact assume that ¢; > 0 for all 7.

We say that a valuation v € Valy is quasimonomial (on X) if it is monomial in
some birational model of X. More precisely, we require that there exists a proper
birational morphism 7 : X’ — X, with X’ smooth, such that v is monomial in some
algebraic coordinates at some point £ € X’. As explained in [JMI0], in this case
we can assume that the divisors {(; = 0} are irreducible components of a reduced,
effective simple normal crossings divisor D on X’ that contains the exceptional
locus of 7. (In the two-dimensional situation that we shall be primarily interested
in, arranging this is quite elementary.)

It is a fact that a valuation v € Valx is quasimonomial iff equality holds in Ab-
hyankar’s inequality (6.4). For this reason, quasimonomial valuations are sometimes
called Abhyankar valuations. See [ELS03|, Proposition 2.8].

Furthermore, we can arrange the situation so that the weights ¢; are all strictly
positive and linearly independent over Q: see [JMI10), Proposition 3.7]. In this case
the residue field of v is isomorphic to the residue field of &, and hence tr.degv =

dim(§) = n — r. Furthermore, the value group of v is equal to

T, = Z Zt;, (6.5)
=1

so rat.rkv = r.
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A very important special case of quasimonomial valuations are given by divisorial
valuations. Numerically, they are characterized by rat.tk = 1, tr.deg = n — 1.
Geometrically, they are described as follows: there exists a birational morphism
X’ — X, a prime divisor D C X’ and a constant ¢ > 0 such that t~'v(¢) is the
order of vanishing along D for all ¢ € F'.

6.11. The Izumi-Tougeron inequality. Keep the same assumptions on K and
X as in Consider a valuation v € Valx and let £ be its center on X. Thus ¢
is a (not necessarily closed) point of X. By definition, v is nonnegative on the local
ring Ox ¢ and strictly positive on the maximal ideal mx ¢. Let orde be the order of
vanishing at &. It follows from the valuation axioms that

v > cordg, (6.6)

on Ox ¢, where ¢ = v(mx¢) > 0.

It will be of great importance to us that if v € Valy is quasimonomial then the
reverse inequality holds in . Namely, there exists a constant C' = C'(v) > 0 such
that

corde <wv < Cordg (6.7)

on Ox¢. This inequality is often referred to as Izumi’s inequality (see [Izu85l [Ree89)
HSO01l, [ELS03]) but in the smooth case we are considering it goes back at least
to Tougeron [Tou72, p.178]. More precisely, Tougeron proved this inequality for
divisorial valuations, but that easily implies the general case.

As in a valuation v € Valy having center £ on X extends uniquely to
a semivaluation on @X,g- The Izumi-Tougeron inequality implies that if v is
quasimonomial, then this extension is in fact a valuation. In general, however, the
extension may not be a valuation, so the Izumi-Tougeron inequality certainly does
not hold for all valuations in Valx having center £ on X. For a concrete example, let
X = A2, let ¢ be the origin in coordinates (z,w) and let v(¢) be defined as the order

of vanishing at u = 0 of (u, Y22, %). Then v(¢) < oo for all nonzero polynomials

¢, whereas v(w — 352, %) = 0.

6.12. Notes and further references. It is a interesting feature of Berkovich’s
theory that one can work with trivially valued fields: this is definitely not possible
in rigid geometry (see e.g. [Con08] for a general discussion of rigid geometry and
various other aspects of non-Archimedean geometry).

In fact, Berkovich spaces over trivially valued fields have by now seen several in-
teresting and unexpected applications. In these notes we focus on dynamics, but one
can also study use Berkovich spaces to study the singularities of plurisubharmonic
functions [FJ05al [BFJO8D] and various asymptotic singularities in algebraic geome-
try, such as multiplier ideals [FJ05bL [JM10]. In other directions, Thuillier [Thu07]
exploited Berkovich spaces to give a new proof of a theorem by Stepanov in bira-
tional geometry, and Berkovich [Ber09] has used them in the context of mixed Hodge
structures.

The Berkovich affine space of course also comes with a structure sheaf O. We shall
not need use it in what follows but it is surely a useful tool for a more systematic
study of polynomial mappings on the A, .
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The spaces Ve, V; and V., were introduced (in the case of K algebraically closed of
characteristic zero) and studied in [FJ04), [FJOT, BEJO8D] but not explicitly identified
as subset of the Berkovich affine plane. The structure of the Berkovich affine space
does not seem to have been written down in detail before, but see [YZ09b)].

The terminology “home” is not standard. Berkovich uses this construction in [Ber90,
§1.2.5] but does not give it a name. The name “center” comes from valuation theory,
see [Vaq00, §6] whereas non-Archimedean geometry tends to use the term “reduc-
tion”. Our distinction between (additive) valuations and (multiplicative) norms is
not always made in the literature. Furthermore, in [F.J04, [BEJO8D], the term ‘val-
uation’ instead of ‘semi-valuation’ is used even when the prime ideal {v = +oo} is
nontrivial.

The space Valx was introduced in [JMI10] for the study of asymptotic invariants
of graded sequences of ideals. In loc. cit. it is proved that Valx is an inverse limit
of cone complexes, in the same spirit as below.
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7. THE VALUATIVE TREE AT A POINT

Having given an overview of the Berkovich affine plane over a trivially valued
field, we now study the set of semivaluations centered at a closed point. As indicated
in this is a cone over a space that we call the valuative tree.

The valuative tree is treated in detail in the monograph [FJ04]. However, the self-
contained presentation here has a different focus. In particular, we emphasize aspects
that generalize to higher dimension. See [BF.JO8b] for some of these generalizations.

7.1. Setup. Let K be field equipped with the trivial norm. For now we assume
that K is algebraically closed but of arbitrary characteristic. (See for a more
general case). In applications to complex dynamics we would of course pick K = C,
but we emphasize that the norm is then not the Archimedean one. As in §6|we work
additively rather than multiplicatively and consider K equipped with the trivial
valuation, whose value on nonzero elements is zero and whose value on 0 is +o0.

Let R and F be the coordinate ring and function field of A2. Fix a closed point
0 € A? and write mg C R for the corresponding maximal ideal. If (z1,22) are
global coordinates on A? vanishing at 0, then R = K[z, 20], F = K(z1,2) and
moy = (21,22). We say that an ideal a C R is mg-primary or simply primary if it
contains some power of my.

Recall that the Berkovich affine plane A%erk is the set of semivaluations on R
that restrict to the trivial valuation on K. Similarly, the Berkovich unit bidisc
D%erk is the set of semivaluations v € AQBerk that are nonnegative on R. If a C R
is an ideal and v € D3_,, then we write v(a) = min{v(¢) | ¢ € a}. In particular,

v(mp) = min{v(z1),v(22)}.

7.2. The valuative tree. Let us recall some definitions from and Let
]>0 - D2Berk be the subset of semivaluations whose center on A? is equal to the closed
point 0 € A2. In other words, Vy is the set of semivaluations v : R — [0, +0c] such
that v|x+ =0 and v(mg) > 0.

There are now two cases. Either v(mg) = 400, in which case v = trivg € A%_, is
the trivial valuation associated to the point 0 € A2, or 0 < v(mg) < co. Define Vg
as the set of semivaluations of the latter type. This set is naturally a pointed cone
and admits the following set as a “section”.

Definition 7.1. The valuative tree Vy at the point 0 € A? is the set of semivalua-
tions v : R — [0, +-00] satisfying v(mg) = 1.

To repeat, we have
Vo = {trivo} U VS and f){)k =R V.

We equip Vy and Vo with the subspace topology from A%erk, that is, the weakest
topology for which all evaluation maps v — v(¢) are continuous, where ¢ ranges over
polynomials in R. It follows easily from Tychonoff’s theorem that Vy is a compact
Hausdorff space.

Equivalently, we could demand that v — v(a) be continuous for any primary ideal
a € R. For many purposes it is indeed quite natural to evaluate semivaluations
in 196‘ on primary ideals rather than polynomials. For example, we have v(a +
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b) = min{v(a),v(b)} for any primary ideals a, b, whereas we only have v(¢ + 1) >

min{v(¢),v(¥)} for polynomials ¢, 1.
An important element of Vy is the valuation ordg defined by

ordg(¢) = max{k > 0| ¢ € mk}.

Note that v(¢) > ordg(¢) for all v € Vy and all ¢ € R.

Any semivaluation v € A3_, extends as a function v : F — [—00, +-00], where F
is the fraction field of R, by setting v(¢1/¢2) = v(¢1) — v(¢2); this is well defined
since {v = +oo} C R is a prime ideal.

Our goal for now is to justify the name “valuative tree” by showing that Vg
can be equipped with a natural tree structure, rooted at ordg. This structure can
be obtained from many different points of view, as explained in [F.J04]. Here we

focus on a geometric approach that is partially generalizable to higher dimensions
(see [BE.JOSD]).

7.3. Blowups and log resolutions. We will consider birational morphisms
T Xy — A2

with X smooth, that are isomorphisms above A2\ {0}. Such a 7 is necessarily a
finite composition of point blowups; somewhat sloppily we will refer to it simply as
a blowup. The set By of blowups is a partially ordered set: we say m < 7’ if the
induced birational map X, — X is a morphism (and hence itself a composition of
point blowups). In fact, By is a directed system: any two blowups can be dominated
by a third.

7.3.1. Exceptional primes. An irreducible component £ C 7~1(0) is called an ex-
ceptional prime (divisor) of m. There are as many exceptional primes as the number
of points blown up. We often identify an exceptional prime of 7 with its strict
transform to any blowup 7’/ € By dominating 7. In this way we can identify an
exceptional prime F (of some blowup 7) with the corresponding divisorial valuation
ordg.

If g is the simple blowup of the origin, then there is a unique exceptional prime
Ey of mp whose associated divisorial valuation is ordg, = ordg. Since any blowup
m € B factors through 7y, Ey is an exceptional prime of any .

7.3.2. Free and satellite points. The following terminology is convenient and com-
monly used in the literature. Consider a closed point ¢ € 771(0) for some blowup
m € By. We say that £ is a free point if it belongs to a unique exceptional prime;
otherwise it is the intersection point of two distinct exceptional primes and is called
a satellite point.

7.3.3. Ezxceptional divisors. A divisor on X is exceptional if its support is contained
in 771(0). We write Div(7) for the abelian group of exceptional divisors on X,. If
E;, i € I, are the exceptional primes of 7, then Div(7) ~ @,.; ZE;.

If w, 7" are blowups and 7’ = 7 o u > 7, then there are natural maps

p* : Div(r) — Div(n’) and s : Div(n’) — Div(n)

satisfying the projection formula p,pu* = id. In many circumstances it is natural to
identify an exceptional divisor Z € Div(w) with its pullback p*Z € Div(n’).
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7.3.4. Intersection form. We denote by (Z - W) the intersection number between
exceptional divisors Z, W € Div(r). If ' = wopu, then (u*Z-W') = (Z - u,W') and
hence (u*Z - W*W) = (Z -W) for Z,W € Div(w), Z' € Div(n’).

Proposition 7.2. The intersection form on Div(m) is negative definite and unimod-
ular.

Proof. We argue by induction on the number of blowups in w. If 7 = mq is the
simple blowup of 0 € A2, then Div(r) = ZFEj and (Ep - Ey) = —1. For the inductive
step, suppose 7’ = 7 o u, where i is the simple blowup of a closed point on 771(0),
resulting in an exceptional prime E. Then we have an orthogonal decomposition
Div(n') = p* Div(w) & ZE. The result follows since (E - E) = —

Alternatively, we may view A2 as embedded in P? and X accordingly embedded
in a smooth compact surface X;. The proposition can then be obtained as a con-
sequence of the Hodge Index Theorem [Har77, p.364] and Poincaré Duality applied
to the smooth rational surface X;. O

7.3.5. Positivity. Tt follows from Proposition that for any ¢ € I there exists a
unique divisor F; € Div(r) such that (E; - E;) = 1 and (E; - E;) = 0 for j # i.

An exceptional divisor Z € Div(r) is relatively nejﬂ if (Z- E;) > 0 for all excep-
tional primes F;. We see that the set of relatively nef divisors is a free semigroup
generated by the E;, i € I. Similarly, the set of effective divisors is a free semigroup
generated by the F;, ¢ € I.

Using the negativity of the intersection form and some elementary linear algebra,
one shows that the divisors E; have strictly negative coefficients in the basis (Ej)jer-
Hence any relatively nef divisor is antieﬂ"ectivem

We encourage the reader to explicitly construct the divisors E; using the procedure
in the proof of Proposition n Doing this, one sees directly that F; is antieffective.

See also §

7.3.6. Invariants of exceptional primes. To any exceptional prime E (or the associ-
ated divisorial valuation ordg € fig ) we can associate two basic numerical invariants
ap and Ag. We shall not directly use them in this paper, but they seem quite
fundamental and their cousins at infinity (see will be of great importance.

To define ag, pick a blowup 7 € B for which F is an exceptional prime. Above
we defined the divisor £ = E, € Div(n) by duality: (E;-E) =1 and (E,-F) =0
for all exceptional primes F' # E of m. Note that if 7’ € By dominates 7, then
the divisor E, € Div(n’) is the pullback of E, under the morphism X,» — X,. In
particular, the self-intersection number

ap = a(ordg) := (E - E)
is an integer independent of the choice of 7. Since E is antieffective, ap < —1.
197he acronym “nef” is due to M. Reid who meant it to stand for “numerically eventually free”

although many authors refer to it as “numerically effective”.

207 higher-dimensional version of this result is known as the “Negativity Lemma” in birational
geometry: see [KM98, Lemma 3.39] and also [BAFF10, Proposition 2.11].
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The second invariant is the log discrepancy A EH This is an important invariant
in higher dimensional birational geometry, see [Kol97]. Here we shall use a definition
adapted to our purposes. Let w be a nonvanishing regular 2-form on A2, If 7 € B
is a blowup, then 7*w is a regular 2-form on X,. For any exceptional prime E of 7
with associated divisorial valuation ordg € Vg, we define

Ap := A(ordg) := 1+ ordg(7*w). (7.1)

Note that ordg(m*w) is simply the order of vanishing along F of the Jacobian de-
terminant of m. The log discrepancy Apg is a positive integer whose value does not
depend on the choice of m or w. A direct calculation shows that A(ordg) = 2.

7.3.7. Ideals and log resolutions. A log resolution of a primary ideal a C R is a
blowup 7 € By such that the ideal sheaf a - Ox_ on X is locally principal:

Cl‘(’))(7r :OXW<Z> (7.2)

for some exceptional divisor Z = Z(a) € Div(w). This means that the pullback of
the ideal a to X is locally generated by a single monomial in coordinates defining
the exceptional primes. It is an important basic fact that any primary ideal a C R
admits a log resolution.

If 7 is a log resolution of a and 7’ = 7o u > 7, then 7’ is also a log resolution of
aand Zy(a) = p*Z(a).

Example 7.3. The ideal a = (23 — 23, 2%229) admits a log resolution that is a com-
position of four point blowups. Each time we blow up the base locus of the strict
transform of a. The first blowup is at the origin. In the terminology of the
second and fourth blowups occur at free points whereas the third blowup is at a
satellite point. See Figure [7.1

7.3.8. Ideals and positivity. The line bundle Ox_ (Z) on X, in is relatively
base point free, that is, it admits a nonvanishing section at any point of 7=1(0).
Conversely, if Z € Div(rw) is an exceptional divisor such that Ox, (Z) is relatively
base point free, then Z = Z(a) for a = 1.0x_ (Z).

If a line bundle Ox_(Z) is relatively base point free, then its restriction to any
exceptional prime E is also base point free, implying (Z - E) = deg(Ox, (Z)|g) > 0,
so that Z is relatively nef. It is an important fact that the converse implication also
holds:

Proposition 7.4. If Z € Div(n) is relatively nef, then the line bundle Ox_(Z) is
relatively base point free.

Since 0 € A? is a trivial example of a rational singularity, Propositionis merely
a special case of a result by Lipman, see [Lip69, Proposition 12.1 (ii)]. The proof
in loc. cit. uses sheaf cohomology as well as the Zariski-Grothendieck theorem on
formal functions, techniques that will not be exploited elsewhere in the paper. Here
we outline a more elementary proof, taking advantage of 0 € A? being a smooth
point and working over an algebraically closed ground field.

21The log discrepancy is called thinness in [F.J04] [F.J05al [FJ05b] [F.JO7).
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FIGURE 7.1. A log resolution of the primary ideal a = (25 — 23, 2229).

The dotted curves show the strict transforms of curves of the form
C, = {25 — 23 = azlz} for two different values of a € K*. The
first blowup is the blowup of the origin; then we successively blow up
the intersection of the exceptional divisor with the strict transform
of the curves C,. In the terminology of the second and fourth
blowups occur at free points whereas the third blowup is at a satellite
point.

Sketch of proof of Proposition|[7.4] By the structure of the semigroup of relatively
nef divisors, we may assume Z = E for an exceptional prime E of 7. Pick two
distinct free points &1, & on E and formal curves C; at &, v = 1,2, intersecting
E transversely. Then C; := 7(C;), i = 1,2 are formal curves at 0 € A? satisfying
7*C; = C;+ Gy, where G; € Div () is an exceptional divisor. Now (7*C;- F') = 0 for
every exceptional prime F of m, so (G - F) = —(C; - F) = —0gp = (—E - F). Since
the intersection pairing on Div(w) is nondegenerate, this implies G; = —F, that is,
C;=C; — E fori=1,2.

Pick ¢; € O a2 defining C;. Then the ideal a generated by ¢1 and ¢s is primary

so the ideal a := a N Op2, is also primary and satisfies a - 6A2,0 = a. Since
ordp(a) = ordp(¢;) = —ordp(E), i = 1,2, for any exceptional prime F and the
(formal) curves C; are disjoint, it follows that a- Oy, = Ox, (F) as desired. O

7.4. Dual graphs and fans. To a blowup m € By we can associate two basic
combinatorial objects, equipped with additional structure.

7.4.1. Dual graph. First we have the classical notion of the dual graph A(m). This
is an abstract simplicial complex of dimension one. Its vertices correspond to excep-
tional primes of 7 and its edges to proper intersections between exceptional primes.
In the literature one often labels each vertex with the self-intersection number of
the corresponding exceptional prime. We shall not do so here since this number is
not an invariant of the corresponding divisorial valuation but depends also on the
blowup 7. From the point of view of these notes, it is more natural to use invariants

such as the ones in
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The dual graph A() is connected and simply connected. This can be seen using
the decomposition of 7 as a composition of point blowups, see Alternatively,
the connectedness of A(w) follows from Zariski’s Main Theorem [Har77, p.280] and
the simple connectedness can be deduced from sheaf cohomology considerations,
see |Art66, Corollary 7].

See Figure for an example of a dual graph.

03
. — — — — ._I_.
0o 0o 01 0Opg 02 01 0pg 02 O1

Ficure 7.2. The dual graphs of the blowups leading up to the log
resolution of the primary ideal a = (23 — 23, 2222) described in Exam-
ple[7.3land depicted in Figure[7.1] Here o; is the vertex corresponding

to EZ

7.4.2. Dual fan. While the dual graph A() is a natural object, the dual fan A(r)
is arguably more canonical. To describe it, we use basic notation and terminology
from toric varieties, see [KKMS73], [Ful93, Oda88]ﬂ Set
N(7) := Hom(Div(r), Z).

If we label the exceptional primes Ej, i € I, then we can write N () = @,y Ze; ~
Z! with e; satisfying (e;, Fj) = &;;. Note that if we identify N(7) with Div(7) using
the unimodularity of the intersection product (Proposition , then e; corresponds
to the divisor F; in

Set Ngr(m) := N(7) ®z R ~ R!. The one-dimensional cones in A(x) are then
of the form &; := Rye;, ¢+ € I, and the two-dimensional cones are of the form
0ij = Rye; + Ryej, where 4,j € I are such that E; and E; intersect properly.
Somewhat abusively, we will write A(TF) both for the fan and for its support (which
is a subset of Ng(m)).

Note that the dual fan A(r) is naturally a cone over the dual graph A(r). In
we shall see how to embed the dual graph inside the dual fan.

A point t € A(TF) is irrational if t = tyeq + toes with t; > 0 and ¢1/ty € Q;
otherwise ¢ is rational. Note that the rational points are always dense in A(ﬂ') The
irrational points are also dense except if ™ = 7, the simple blowup of 0 € A2.

7.4.3. Free and satellite blowups. Using the factorization of birational surface maps
into simple point blowups, we can understand the structure of the dual graph and
fan of a blowup m € By.

First, when m = 7 is a single blowup of the origin, there is a unique exceptional
prime Ej, so A(m) consists of a single, one-dimensional cone 69 = Reg and A(r) =
{00} is a singleton.

Now suppose 7’ is obtained from 7 by blowing up a closed point ¢ € 771(0). Let
E;, i € I be the exceptional primes of 7. Write I = {1,2,...,n — 1}, where n > 2.
If £, C X, is the preimage of £, then the exceptional primes of n’ are E;, i € I,

22\e shall not, however, actually consider the toric variety defined by the fan A(W)
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where I’ = {1,2,...,n}. Recall that we are identifying an exceptional prime of =
with its strict transform in X, .

To see what happens in detail, first suppose £ is a free point, belonging to a unique
exceptional prime of 7, say Ep. In this case, the dual graph A(x’) is obtained from
A(m) by connecting a new vertex o, to 1. See Figure

If instead & is a satellite point, belonging to two distinct exceptional primes of m,
say Eq and E5, then we obtain A(n’) from A(rw) by subdividing the edge 012 into
two edges 01, and o2,. Again see Figure @

E*’/ —
= =<

On
El:/ ::»—x:/A::»—o—x’/
01 “01 <

-70q 09~ = ~-701 Op O9 =

ANV 1Y/
ANV Y/

FI1GURE 7.3. Behavior of the dual graph under a single blowup. The
left part of the picture illustrates the blowup of a free point on FEfy,
creating a new vertex o, connected to the vertex o;. The right part
of the picture illustrates the blowup of the satellite point F1 N Fo,
creating a new vertex o, and subdividing the segment 012 into two
segments o1, and oa,.

7.4.4. Integral affine structure. We define the integral affine structure on A(ﬂ') to
be the lattice

Aff() := Hom(N(n),Z) ~ Z!

and refer to its elements as integral affine functions. By definition, Aff(7) can be
identified with the group Div(m) of exceptional divisors on X.

7.4.5. Projections and embeddings. Consider blowups 7, 7" € By with 7 < 7/, say
7 = mwou, with p : X;v — X, a birational morphism. Then p gives rise to an
injective homomorphism p* : Div(w) — Div(n’) and we let

Trn  N(7') — N(7)
denote its transpose. It is clear that ry o rpzr = ree when 7 < 7/ < 7’.

Lemma 7.5. Suppose m, 7’ € By and 7 < 7. Then:
() rew (A7) = Am); A

(ii) any irrational point in A(m) has a unique preimage in A(rn');

(iii) if &' is a 2-dimensional cone in A(w) then either (8" is a one-dimensional
cone in A(rr), or rew(6") is a two-dimensional cone contained in a two-
dimensional cone & of A(w) In the latter case, the restriction of vy to ¢’
is unimodular in the sense that v, Aff(m)|s = Aff(7')|5.

We use the following notation. If e; is a basis element of N () associated to an
exceptional prime E;, then €] denotes the basis element of N(n') associated to the
strict transform of E;.
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Proof. Tt suffices to treat the case when 7’ = 7 o u, where p is a single blowup of a
closed point € € 771(0). As in §7.4.3| we let E;, i € I be the exceptional primes of
m. Write I = {1,2,...,n — 1}, where n > 2. If E,, C X is the preimage of &, then
the exceptional primes of 7’ are F;, i € I', where I' = {1,2,...,n}.

First suppose { € Ej is a free point. Then r,.(€)) = e; for 1 < i < n and
ran(€),) = e1. Conditions (i)-(iii) are immediately verified: r,,» maps the cone &},
onto &1 and maps all other cones é}'gj onto the corresponding cones 6;;, preserving
the integral affine structure.

Now suppose £ € E1 N Ey is a satellite point. The linear map 7,/ is then de-
termined by rq..(e;) = e; for 1 < i < n and r.(e,) = e1 + ea. We see that
the cones &1, and &9, in A(w’) map onto the subcones Rie; + Ry(e; + e2) and
Res + Ri(eg + e2), respectively, of the cone G192 in A(ﬂ') Any other cone &gj of
A(Tr’ ) is mapped onto the corresponding cone &;; of A(ﬂ'), preserving the integral
affine structure. Conditions (i)—(iii) follow. O

Using Lemma we can show that r,, admits a natural one-side inverse.

Lemma 7.6. Let w, 7’ € By be as above. Then there exists a unique continuous,
homogeneous map L : A(w) = A(x') such that:

(i) Tant © Lyt = 1id om A(T['),‘
(ii) trr(ei) =€} for alli.

Further, a two-dimensional cone &' in A(rn') is contained in the image of iy iff
Tant (67) is two-dimensional.

It follows easily from the uniqueness statement that tyv; = tpirpr © L; When
7 < 7’ < 7”. We emphasize that ¢,/ is only piecewise linear and not the restriction
to A(m) of a linear map Ng(m) — Ng(n').

Proof of Lemma[7.6. Uniqueness is clear: when m = m is the simple blowup of
0 € A2, 1, is determined by (ii) and when 7 # 7o, the irrational points are dense
in A(7) and uniqueness is a consequence of Lemma (ii).

As for existence, it suffices to treat the case when 7’ = 7 o u, where pu is a simple
blowup of a closed point ¢ € m=1(0).

When £ € E; is a free point, ¢/, maps e; to €; for 1 < i < n and maps any cone
Gi; in A(w) onto the corresponding cone &gj in A(W’) linearly via ¢/, (tie; + tjej) =
(tie] + tjel).

If instead £ € E1N E; is a satellite point, then ¢,/ (e;) = €} for 1 <14 < n. Further,
Ly 18 piecewise linear on the cone &19:

(tl — tz)e’l + tgeél if t1 > t9

7.3
(tg — tl)eé + tleil if t1 <t9 ( )

Lrn(tier + taeg) = {

and maps any other two-dimensional cone &;; onto &gj linearly via ¢ (tie; +tje;) =
(tieg + tj(i;-). O
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7.4.6. Embedding the dual graph in the dual fan. We have noted that A(TI’) can be
viewed as a cone over A(w). Now we embed A(7) in A(r) C Ng, in a way that
remembers the maximal ideal mg. For ¢ € I define an integer b; > 1 by

bi = OI‘dEi (mo),

where ordg, is the divisorial valuation given by order of vanishing along F;. There
exists a unique function pg € Aff(m) such that pg(e;) = b;. It is the integral
affine function corresponding to the exceptional divisor —Zy € Div(w), where Zy =
—Eie ;biE;. Note that 7 is a log resolution of the maximal ideal mp and that
mp - (’)X7r = OXW(ZO)-

We now define A(r) as the subset of A(7) given by @o = 1. In other words, the
vertices of A(m) are of the form

and the edges of the form
oij = 04j NA(m) = {tie; + tje; | ti,t; > 0,bit; + bjt; = 1}.
If m,7" € By and 7’ > , then r (A(7")) = A(7) and 1 (A(7)) C A(r).
7.4.7. Auziliary calculations. For further reference let us record a few calculations

involving the numerical invariants A, o and b above.
If my € By is the simple blowup of the origin, then

Ap, =2, bg, =1, Ey=-Fy and ag, = —1.
Now suppose 7/ = 7 o u, where p is the simple blowup of a closed point £ and let

us check how the numerical invariants behave. We use the notation of §7.4.3] In the
case of a free blowup we have

Ap, = Ap, +1, bg, =bg, and E,=E; - E,, (7.4)
where, in the right hand side, we identify the divisor Ey € Div(r) with its pullback
in Div(7’). Since (E,, - E,) = —1 we derive as a consequence,

ap, = (E,-E,) =(E,-E1)—1=ag, — 1. (7.5)
In the case of a satellite blowup,
Ap, = Ap, + Ag,, bp, =bg, +bp, and E, =E;+ Ey— E,,. (7.6)
Using (B, - E,) = —1 this implies
ap, ‘=g, +ag, + 2(E; - Ep) — 1. (7.7)

We also claim that if E;, E; are exceptional primes that intersect properly in some
X, then
((biEj — bjEy) - (biEj — bjE;)) = —bib;. (7.8)
Note that both sides of are independent of the blowup 7 € 28y but we have to
assume that F; and £} intersect properly in some blowup.
To prove , we proceed inductively. It suffices to consider the case when E;
is obtained by blowing up a closed point £ € E;. When ¢ is free, we have b; = b;,
E, = E’j — F; and reduces to the fact that (F; - E;) = —1. When instead
€ € Ej N Ey is a satellite point, we have ((b;Ey — bipE;) - (b B — b E;)) = —biby, by
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induction. Furthermore, b; = b; + by, E; = E'j + Ej, — E;; we obtain from these
equations and from simple algebra.

In the dual graph depicted in Figure we have bg = by = 1, by = b3 = 2,
aoz—l, a1:—2, Oé2:—6, a3:—7, AOZQ, A1:3, A2:5andA3=6.

7.4.8. Extension of the numerical invariants. We extend the numerical invariants A
and « in §6.9] to functions on the dual fan
Ay :A(mr) >Ry and ay: A(r) = R_
as follows. First we set Ar(e;) = Ag, and extend A, uniquely as an (integral) linear
function on A(m). Thus we set Ar(t;e;) = t;Az(e;) and
Ar(tie; +tje;) = tiAr(e;) +tjAx(ej). (7.9)

In particular, A, is integral affine on each simplex in the dual graph A(m).

Second, we set ar(e;) = ag, = (F;- F;) and extend o, as a homogeneous function

of order two on A(r) which is affine on each simplex in the dual graph A(r). In
other words, we set ay(t;e;) = t7a,(e;) for any i € I and

b;t; bit;
x(tiei + tje;) = (biti + bjt;)? | ———ax(0i) + = —ax(0;
ar(tie; +tje;) = (biti + bjt;) <biti+bjtja (U)+biti+bjtja (%))
t; t;
= (bztz -f—bjtj) (baw(ei) + b]'Oéﬂ-(ej)) (710)
i j

whenever F; and F; intersect properly.
Let us check that

Aoty =A; and v 0lyr = Qp

on A(r) whenever 7’ > . It suffices to do this when 7/ = 7oy and p is the blowup
of X at a closed point £. Further, the only case that requires verification is when
¢ € E1NE; is a satellite point, in which case it suffices to prove Ar(e1+e2) = A (e),)
and ar(e1 + e2) = a(e),). The first of these formulas follows from and
whereas the second results from , and . The details are left to the
reader.

In the dual graph depicted in Figure we have A,(0g) = 2, Ar(01) = 3,
Ar(o2) = 5/2, Ar(o3) = 3, ax(o0) = —1, az(o1) = =2, az(o2) = —3/2, and
ar(o3) = —7/4.

7.4.9. Multiplicity of edges in the dual graph. We define the multiplicity m(o) of an
edge o in a dual graph A(rm) as follows. Let o = 0;; have endpoints v; = b;lei and
v; = b;lej. We set
m((f@'j) = ng(bi, bj). (7.11)
Let us see what happens when 7’ is obtained from 7 by blowing up a closed point
¢ € 771(0). We use the notation above. See also Figure
If £ € Ey is a free point, then we have seen in that b, = b; and hence

m(o1n) = bi. (7.12)
If instead £ € E1 N Es is a satellite point, then (7.6) gives b, = b1 + by and hence
m(o1n) = m(o2m) = m(o12). (7.13)
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This shows that the multiplicity does not change when subdividing a segment.
In the dual graph depicted in Figure we have mgy = mi2 = 1 and maz = 2.

7.4.10. Metric on the dual graph. Having embedded A(7) inside A(7), the integral
affine structure Aff(m) gives rise to an abelian group of functions on A(7) by restric-
tion. Following [KKMST3|, p.95], this further induces a volume form on each simplex
in A(7). In our case, this simply means a metric on each edge o;;. The length of
oi; is the largest positive number [;; such that ¢(0;) — ¢(0;) is an integer multiple
of I;; for all ¢ € Aff(r). From this description it follows that {;; = lem(b;, b;) 1.
However, it turns out that the “correct” metric for doing potential theory is the

one for which
1 1 1

bibj — mi; lem(bi, by)’
where m;; = ged(b;, b)) is the multiplicity of the edge o;; as in

We have seen that the dual graph is connected and simply connected. It follows
that A(7) is a metric tree. The above results imply that if 7,7’ € By and 7’ > 7,
then ¢ : A(m) — A(n’) is an isometric embedding.

Let us see more concretely what happens when 7/ is obtained from 7 by blowing
up a closed point ¢ € 771(0). We use the notation above.

If £ € Ey is a free point, then b, = b; and the dual graph A(7n’) is obtained
from A(m) by connecting a new vertex o, to o; using an edge of length b1_2. See
Figure [7.3]

If instead £ € Ey N Es is a satellite point, then b, = by 4+ b and we obtain A(7’)
from A(7) by subdividing the edge 012, which is of length ﬁ into two edges o1,

dr(0i,05) = (7.14)

and

and ogy, of lel’lgths by (b11+b2)
1

up to 55 Again see Figure
In the dual graph depicted in Figure [7.2| we have d(og,02) = d(01,02) = 1/2 and
d(og,03) = 1/4.

W (bll ) respectively. Note that these lengths add

7.4.11. Rooted tree structure. The dual graph A(7) is a tree in the sense of We
turn it into a rooted tree by declaring the root to be the vertex oy corresponding to
the strict transform of Ejy, the exceptional prime of 7y, the simple blowup of 0.

When restricted to the dual graph, the functions a;; and A, on the dual fan A ()
described in define parametrizations

ar : A(m) = ]—o00,—1] and Ar: A7) — [2,00] (7.15)

satisfying A o tpr = Ar and a0 Ly = i whenever 7 > .

We claim that o, induces the metric on the dual graph given by (7.14). For this,
it suffices to show that |ay(0;) — ax(0j)| = %bj when E;, E; are exceptional primes
intersecting properly. In fact, it suffices to verify this when F; is obtained by blowing
up a free point on Ej;. But then b; = b; and it follows from ([7.5) that

aﬂ(ai) - OAW(U]') = 5;2(05Ei — OzE].) = _bi_2 = —d(ai,aj).

In a similar way we see that the parametrization A, of A(7w) induces by the
log discrepancy gives rise to the metric induced by the integral affine structure as



DYNAMICS ON BERKOVICH SPACES IN LOW DIMENSIONS 91

in In other words, if E;, E; are exceptional primes of X, intersecting
properly, then
A(oj) — Aloi) = —mij(a(o;) — a(0i)), (7.16)

where m;; = ged(b;, b;) is the multiplicity of the edge ;5.

7.5. Valuations and dual graphs. Now we shall show how to embed the dual
graph into the valuative tree.

7.5.1. Center. It follows from the valuative criterion of properness that any semi-
valuation v € f)(’)‘ admits a center on X, for any blowup 7 € By. The center is the
unique (not necessarily closed) point & = ¢;(v) € X such that v > 0 on the local
ring Ox, ¢ and such that {v > 0}NOx, ¢ equals the maximal ideal my_¢. If 7’ > 7,
then the map X,» — X sends ¢/ (v) to ¢ (v).

7.5.2. Ewvaluation. Consider a semivaluation v € ]>§ and a blowup ™ € By. We
can evaluate v on exceptional divisors Z € Div(nw). Concretely, if Z = >, ;ri [,
£ = cx(v) is the center of v on X and Ej, j € J are the exceptional primes containing
§, then v(Z) = >,y rjv((;), where j € Ox, ¢ and Ej = {(; = 0}.

This gives rise to an evaluation map

evy : Vi — Nr(m) (7.17)
that is continuous, more or less by definition. The image of evy is contained in the
dual fan A(7). Furthermore, the embedding of the dual graph A(7) in the dual fan
A(7) was exactly designed so that ev;(Vy) € A(m). In fact, we will see shortly that

these inclusions are equalities.
It follows immediately from the definitions that

Trp! O €V = €Vy (7.18)

when 7’ > 7. )
Notice that if the center of v € Vj on X, is the generic point of (7,.; E;, then
evy(v) lies in the relative interior of the cone ) .. ;R ye;.

7.5.3. Embedding and quasimonomial valuations. Next we construct a one-sided in-

verse to the evaluation map in (7.17)).
Lemma 7.7. Let m € By be a blowup. Then there exists a unique continuous map
emb, : A*(7) =V such that:
(i) evyoemb, = id on A*(r);
(ii) fort € A*(m), the center of emb(t) is the generic point of the intersection
of all exceptional primes E; of ™ such that (t, E;) > 0.

Furthermore, condition (ii) is superfluous except in the case when m = my is a simple
blowup of 0 € A2 in which case the dual graph A(m) is a singleton.

As a consequence of (i), emb, : A*(m) — Vg is injective and ev, : Vi — A*(r)
surjective.

Corollary 7.8. If m,7’ € Bg and ' > 7, then emb,/ oLr = emb,.
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Asin & we say that a valuation v € )}S is quasimonomial if it lies in the image
of emb, for some blowup 7= € By. By Corollary v then lies in the image of
emb, for all 7’ > .

Proof of Corollary[7.§ We may assume 7’ # 7 so that 7’ is not the simple blowup
of 0 € A2. The map emb! := emb, or/ : A(m) — V is continuous and satisfies

!/ .
evpoemb, =7, oevoemby oty = Trp 0 Ly = 1d.

By Lemma [7.7| this implies emb/. = emb,. O

Proof of Lemma[7.7]. We first prove existence. Consider a point ¢ = Y, ; tie; €

A*(r) and let J C I be the set of indices i such that ¢; > 0. Let & be the generic
point of ﬂieJ E; and write E; = ({; = 0) in local algebraic coordinates (;, i € J at
€. Then we let emb,(t) be the monomial valuation with weights ¢; on ¢; as in §6.10)
More concretely, after relabeling we may assume that either J = {1} is a singleton
and emb,(t) = t; ordg, is a divisorial valuation, or J = {1,2} in which case v; is
defined on R C 6X7r,£ ~ K¢, 2] by

emby(t)( Y cp5C (57) = min{t1 1+t | c5 # 0} (7.19)
B1,82>0

It is clear that emb, is continuous and that ev,; o emb, = id.

The uniqueness statement is clear when m = 7y since the only valuation whose
center on X, is the generic point of the exceptional divisor Ej is proportional to
ordg, = ordp.

Now suppose 7 # m and that emb!. : A*(7) — Vi is another continuous map
satisfying ev, ot = id. It suffices to show that emb/ (¢) = emb,(t) for any irrational
t € A*(r). But if ¢ is irrational, the value of emb’ (t) on a monomial Clﬁl 252 is
t161 +to . In particular, the values on distinct monomials are distinct, so it follows
that the value of emb/ () on a formal power series is given as in (7.19). Hence
emb! (t) = emb, (), which completes the proof.

In particular the divisorial valuation in Vy associated to the exceptional prime FE;
is given by

v; 1= bi_1 ordg, where b;:=ordg,(mp) €N
|

The embedding emb, : A*(1) < Vi C A% . extends to the full cone fan A(r)
and maps the apex 0 € A(ﬂ') to the trivial valuation triva2 on R. The boundary
of emb, : A*(7) inside A3, consists of trivaz and the semivaluation trivg. Thus

emb, (A(m)) looks like a “double cone”. See Figure

7.5.4. Structure theorem. Because of (|7.18]), the evaluation maps ev, induce a con-
tinuous map

ev:Vy— @A(w), (7.20)
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trivy
€3
ordg,
€2 ordg,
g3 U3
09 (]
00 = € o = ey vp = ordg, v = ordp,
0 trivpz

FIGURE 7.4. The dual fan of a blowup. The picture on the left
illustrates the dual fan A(r), where 7 is the log resolution illustrated
in Figure The picture on the left illustrates the closure of the
embedding of the dual fan inside the Berkovich affine plane. The line
segments illustrate the dual graph A(7) and its embedding inside the
valuative tree V.

where the right hand side is equipped with the inverse limit topology. Similarly, the
embeddings emb, define an embedding

emb : th(T[‘) — Vo, (7.21)

where the direct limit is defined using the maps ¢/, and is equipped with the direct
limit topology. The direct limit is naturally a dense subset of the inverse limit and
under this identification we have evoemb = id.

Theorem 7.9. The map ev : Vy — I'&HA(T() is a homeomorphism.

By homogeneity, we also obtain a homeomorphism ev : 1>§ — I&HA* ().

Proof. Since r is continuous and both sides of are compact, it suffices to show
that r is bijective. The image of r contains the dense subset hg A(7) so surjectivity
is clear.

To prove injectivity, pick v,w € Vy with v # w. Then there exists a primary
ideal a C R such that v(a) # w(a). Let m € By be a log resolution of a and write
a-Ox, = Ox,(Z), where Z € Div(w). Then

(eva(v), Z) = —0(a) £ —w(a) = eva(Z) = {evs(w), Z),
so that ev;(v) # ev,(w) and hence ev(v) # ev(w). O



94 MATTIAS JONSSON

7.5.5. Integral affine structure. We set
AfE(V5) = limevy Aff(m).

Thus a function ¢ : f)g — R is integral affine iff it is of the form ¢ = ¢, o ev,, with
©r € Aff (7). In other words, ¢ is defined by an exceptional divisor in some blowup.

7.6. Tree structure on ). Next we use Theorem to equip Vy with a tree
structure.

7.6.1. Metric tree structure. The metric on a dual graph A(w) defined in §7.4.10]
turns this space into a finite metric tree in the sense of Further, if #’ > =,
then the embedding ¢/, : A(7) < A(x’') is an isometry. It then follows from the
discussion in §2.2.2| that Vy ~ @A(ﬂ) is a metric tree.

Lemma 7.10. The ends of Vy are exactly the valuations that are not quasimonomial.

Proof. The assertion in the lemma amounts to the ends of the tree lim A(7) being
exactly the points that do not belong to any single dual graph. It is clear that all
points of the latter type are ends. On the other hand, if t € A(7) for some blowup
7, then there exists a blowup 7' € By dominating 7 such that ¢,/.(¢) is not an
end of A(n’). When ¢ is already not an endpoint of A(w), this is clear. Otherwise
t =0 le;, in which case © can be chosen as the blowup of a free point on the
associated exceptional prime FEj;. O

The hyperbolic space H C V), induced by the generalized metric on Vy contains
all quasimonomial valuations but also some non-quasimonomial ones, see §7.7.5|

7.6.2. Rooted tree structure. We choose the valuation ordg as the root of the tree V)
and write < for the corresponding partial ordering.

The two parametrizations «,; and A, on the dual graph A(7) in give rise
to parametrization

a:Vy— [—oo,—1] and A:Vy— [2,00]. (7.22)
The parametrization « gives rise to the generalized metric on V) and we have
a(v) = —(1 + d(v,ordyp)). (7.23)

The choice of parametrization will be justified in §7.8.1} Note that hyperbolic space
H C V) is given by H = {o > —o0}.
There is also a unique, lower semicontinuous multiplicity function

m: Vo — NU{oo}

on Vy induced by the multiplicity on dual graphs. It has the property that m(w)dividesm(v)

if w < v. The two parametrizations a and A are related through the multiplicity by
v

A(v) =2 —I—/ m(w) da(w);

rdg

this follows from ((7.16]).

23The increasing parametrization —a is denoted by o and called skewness in [EJ04]. The in-
creasing parametrization A is called thinness in loc. cit. .
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There is also a generalized metric induced by A, but we shall not use it.

7.6.3. Retraction. It will be convenient to regard the dual graph and fan as subsets
of the valuation spaces Vy and V), respectively. To this end, we introduce

|A(m)] := embr(A(x)) and |A*(x)| := embr(A*(7)).

Note that if 7/ > 7, then |A*(7)| C |A*(x)|.
The evaluation maps now give rise to retractions

rr :=embyoev,

of V& and Vg onto |Aj| and |A(7)|, respectively. It is not hard to see that /o7y = 7,
when 7' > .

Let us describe the retraction in more detail. Let £ = ¢;(v) be the center of v on
X, and let E;, i € J be the exceptional primes containing £. Write E; = (¢; = 0) in
local algebraic coordinates ¢; at £ and set t; = v((;) > 0. Then w := r,(v) € |A*(x)|
is the monomial valuation such that w({;) = t;, i € J.

It follows from Theorem [7.9 that

r. —1id as ™ — oo.
In fact, we have the following more precise result.

Lemma 7.11. Ifv € f/a‘ and m € Bg is a blowup, then

(rrv)(a) < v(a)

for every ideal a C R, with equality if the strict transform of a to X, does not vanish
at the center of v on X;. In particular, equality holds if a is primary and 7 is a log
resolution of a.

Proof. Pick v € ]>6‘ and set w = r;(v). Let & be the center of v on X, and E; =
(& =0), i € J, the exceptional primes of 7 containing £. By construction, w is the
smallest valuation on O X, ¢ taking the same values as v on the ;. Thus w < v on
@Xﬂ,é O R, which implies w(a) < v(a) for all ideals a C R.

Moreover, if the strict transform of a to X,; does not vanish at £, then a- O X6 18
generated by a single monomial in the (;, and then it is clear that v(a) = w(a). O

7.7. Classification of valuations. Similarly to points in the Berkovich affine line,
we can classify semivaluations in the valuative tree into four classes. The classifica-
tion is discussed in detail in [F.J04] but already appears in a slightly different form
in the work of Spivakovsky [Spi90]. One can show that the set of semivaluations of
each of the four types below is dense in Vj, see [F.J04, Proposition 5.3].

Recall that any semivaluation v € ]>5‘ extends to the fraction field F' of R. In
particular, it extends to the local ring Op := Op2 . Since v(mg) > 0, v also defines

a semivaluation on the completion Oy.
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7.7.1. Curve semivaluations. The subset p := {v = 0o} C O is a prime ideal and
v defines a valuation on the quotient ring O /p. If p # 0, then O /p is principal
and we say that v is a curve semivaluation as v(¢) is proportional to the order of
vanishing at 0 of the restriction of ¢ to the formal curve defined by p. A curve
semivaluation v € V) is always an endpoint in the valuative tree. One can check
that they satisfy a(v) = —oco and A(v) = oc.

7.7.2. Numerical invariants. Now suppose v defines a valuation on (50, that is, p =
(0). Asin we associate to v two basic numerical invariants: the rational rank
and the transcendence degree. It does not make a difference whether we compute
these in R, Oy or (’30. The Abhyankar inequality says that

tr.degv 4+ rat.tkv <2

and equality holds iff v is a quasimonomial valuation.

7.7.3. Divisorial valuations. A valuation v € )}6‘ is divisorial if it has the numerical
invariants tr.degv = rat.rkv = 1. In this situation there exists a blowup 7 € B
such that the center of v on X is the generic point of an exceptional prime FE; of
7. In other words, v belongs to the one-dimensional cone 6; of the dual fan |A*()|
and v = tordg, for some ¢t > 0. We then set b(v) := b; = ordg, (my).

More generally, suppose v € )A/f)* is divisorial and 7™ € By is a blowup such that
the center of v on X, is a closed point £. Then there exists a blowup 7’ € B
dominating 7 in which the (closure of the) center of v is an exceptional prime of 7’.
Moreover, by a result of Zariski (cf. [Kol97, Theorem 3.17]), the birational morphism
X — X, is an isomorphism above X\ {£} and can be constructed by successively
blowing up the center of v.

We will need the following result in

Lemma 7.12. Let m € Bg be a blowup and v € f/a‘ a semivaluation. Set w := r(v).
(i) if v & |A*(n)|, then w is necessarily divisorial;

(ii) if v & |A* ()| and v is divisorial, then b(w) divides b(v);

(iii) if v € |A*(n)|, then v is divisorial iff it is a rational point in the given
integral affine structure; in this case, there exists a blowup @ > w such
that |A*(n')| = |A*(x)| as subsets of Vi and such that v belongs to a one-
dimensional cone of |A*(')];

(iv) ifv € |A*(x)| is divisorial and lies in the interior of a two-dimensional cone,
say 612 of |A(m)], then b(v) > by + bo.

Sketch of proof. For (i), let £ be the common center of v and w on X,. If there is
a unique exceptional prime Ej containing &, then it is clear that w is proportional
to ordg, and hence divisorial. Now suppose £ is the intersection point between
two distinct exceptional primes E; and Fs. Pick coordinates (1, (2 at £ such that
E; = (G =0) for i = 1,2. If v(¢1) and v({2) are rationally independent, then v
gives different values to all monomials (1’8 ! CQ’B %, so we must have v = w, contradicting
v & |A*(x)]. Hence w(¢1) = v(¢1) and w((y) = v((2) are rationally dependent, so
rat.tkw = 1. Since w is quasimonomial, it must be divisorial.
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For (iii), we may assume that the center of v on X, is the intersection point
between two distinct exceptional primes E; = ((; = 0) and Es = (2 = 0) as
above. Then v is monomial in coordinates ((1,(2) and it is clear that rat.rkv = 1 if
v(¢1)/v(¢2) € Q and rat.rkv = 2 otherwise. This proves the first statement. Now
suppose v is divisorial. We can construct 7’ in (iii) by successively blowing up the
center of v using the result of Zariski referred to above. Since v is monomial, the
center is always a satellite point and blowing it up does not change the dual fan,
viewed as a subset of VS

When proving (ii) we may by (iii) assume that w belongs to a one-dimensional
cone &1 of |A(x)|. Then b(w) = b;. We now successively blow up the center of v.
This leads to a sequence of divisorial valuations wy = w, w1, ..., w, = v. Since the
first blowup is at a free point, we have b(w;) = by in view of . Using
and one now shows by induction that by divides b(w;) for j < m, concluding
the proof of (ii).

Finally, in (iv) we obtain v after a finitely many satellite blowups, so the result

follows from ([7.13]). O

7.7.4. Irrational valuations. A valuationwv € f}(’)" is irrational if tr. degv = 0, rat. rkv =
2. In this case v is not divisorial but still quasimonomial; it belongs to a dual fan
|A*(7)| for some blowup 7 € B¢ and for any such 7, v belongs to the interior of a
two-dimensional cone.

7.7.5. Infinitely singular valuations. A valuation v € ]A)f]k is infinitely singular if it
has the numerical invariants rat.tkv = 1, tr.degv = 0. Every infinitely singular
valuation in the valuative tree Vy is an end. However, some of these ends still belong
to hyperbolic space H,

Example 7.13. Consider a sequence (Uj);io defined as follows. First, vg = ordg =
ordg,. Then v; = b;l ordg; is defined inductively as follows: for j odd, Ej is
obtained by blowing up a free point on £;_; and for j even, E; is obtained by blowing
up the satellite point £;_1NE;_o. The sequence (vgj)‘;‘;o is increasing and converges
to an infinitely singular valuation v, see Figure We have by, = bop+1 = 277,
A(van) = 3 —27" and a(v,) = —3(5 — 272"). Thus a(v) = —5/3 and A(v) = 3.
In particular, v € H.

For more information on infinitely singular valuations, see [FJ04, Appendix A].
We shall not describe them further here, but they do play a role in dynamics.

7.8. Potential theory. In we outlined the first elements of a potential theory
on a general metric tree and in we applied this to the Berkovich projective line.

However, the general theory applied literally to the valuative tree Vy does not
quite lead to a satisfactory notion. The reason is that one should really view a
function on Vy as the restriction of a homogeneous function on the cone Vo. In
analogy with the situation over the complex numbers, one expects that for any ideal

a C R, the function log |a| defined by@
log |af(v) := —v(a)

24The notation reflects the fact that | - | := e~? is a seminorm on R, see (6.1).
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FIGURE 7.5. An infinitely singular valuation. The divisorial valua-
tion v; is obtained by performing a sequence of j + 1 blowups, every
other free, and every other a satellite blowup. The picture is not to
scale: we have d(vay, vant2) = d(Vant1, Vant2) = 2-(2n+1) for n > 0.
Further, a(v) = —5/3, A(v) = —3 and d(ordp,v) = 2/3. In particu-
lar, v belongs to hyperbolic space H.

should be plurisubharmonic on Vy. Indeed, log|a| is a maximum of finitely many
functions of the form log |¢|, where ¢ € R is a polynomial. As a special case, the
function log |mg| should be plurisubharmonic on Vy. This function has a pole (with
value —00) at the point trivg and so should definitely not be pluriharmonic on Vo.
However, it is constantly equal to —1 on )V, and so would be harmonic there with
the usual definition of the Laplacian.

7.8.1. Subharmonic functions and Laplacian on Vo. An ad hoc solution to the prob-
lem above is to extend the valuative tree 1y to a slightly larger tree V by connecting
the root ordg to a “ground” point G € V), using an interval of length one. See Fig-
ure [(.0l

OI'd()

|
|
o -

FIGURE 7.6. Connecting the valuative tree V) to “ground” gives rise
to the auxiliary tree V.

Denote the Laplacian on Vy by A. We define the class SH(Vy) of subharmonic
function on Vy as the set of restrictions to Vy of functions ¢ € QSH(Vy) with
©(G)=0 and Ay =p—adg,

where p is a positive measure supported on Vy and a= p(Vo) > 0. In particular, ¢
is affine of slope p(ordp) on the segment [G,ordg[= Vp \ Vo. We then define

Ap = p=(Ap)|y,.
For example, if ¢ = —1 on V), then Acp = dordy — 0¢ and Ay = dord, -

251f € SH(W), then —¢ is a positive tree potential in the sense of [FJ04].
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From this definition and the analysis in one deduces:

Proposition 7.14. Let ¢ € SH(Vy) and write p = Ap. Then:

(i) ¢ is decreasing in the partial ordering of Vo rooted in ordy;

(i) p(ordg) = —p(Vo);
(ili) |Dgp| < p(Mo) for all tangent directions U in V.

As a consequence we have the estimate
—a(v)p(ordg) < p(v) < p(ordy) <0 (7.24)

for all v € Vy, where a : Vg — [—00, —1] is the parametrization given by (7.23). The
exact sequence in ([2.8) shows that

A : SH(Vy) — MT(Vy), (7.25)

is a homeomorphism whose inverse is given by

P(0) = [ 0w Ay v)d(0). (7.26)

In particular, for any C' > 0, the set {¢ € SH(Vy) | ¢(ordg) > —C'} is compact.
Further, if (¢;); is a decreasing net in SH(V}), and ¢ := lim ;, then either p; = —co
on Vy or ¢ € SH(Vy). Moreover, if (¢;); is a family in SH(Vy) with sup; p(ords) <
00, then the upper semicontinuous regularization of ¢ := sup; ¢; belongs to SH(V).

7.8.2. Subharmonic functions from ideals. The definitions above may seem arbitrary,
but the next result justifies them. It shows that the Laplacian is intimately connected
to intersection numbers and shows that the generalized metric on Vy is the correct
one.

Proposition 7.15. If a C R is a primary ideal, then the function log|a| on Vy is
subharmonic. Moreover, if m € Bg is a log resolution of a, with exceptional primes
Ei, i €1, and if we write a- Ox, = Ox,(Z), then

el

where b; = ordg, (mp) and v; = b;l ordg, € V.

Proof. Write ¢ = log|a|. It follows from Lemma that ¢ = @ ory, so Ay is
supported on the dual graph |A(m)| C Vy. Moreover, the proof of the same lemma
shows that ¢ is affine on the interior of each 1-dimensional simplex so Ay is zero
there. Hence it suffices to compute the mass of Ay at each v;.

Note that m dominates 7, the simple blowup of 0. Let Ey be the strict transform
of the exceptional divisor of my. Write mg - Ox, = Ox,(Zy), where Zy = — . b E;.
Since 7y already is a log resolution of my we have

(ZO . Eg) =1 and (Zo . Ej) == O, j 75 0. (727)
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Fix i € I and let E;, j € J be the exceptional primes that intersect E; properly.
First assume ¢ # 0. Using (7.27) and (E; - Ej) =1 for j € J we get

A‘P{Uz’}zz% be o(vi)) =

JjeJ
= Z(bz OI‘dEj — bj OI‘dEZ(Z))(Ez . Ej) =

= bZ(Z . EZ) — OI‘dEi(Z)(ZQ . Ez) = bZ(Z . EZ)
If instead i = 0, then, by the definition of the Laplacian on Vy C Vy, we get

Ap{vo} = Z W]—(UO) p(ordp) Z bi( (vi)) + @(ordy) =

jeJ UO’U]) jeJ
— 3" (ordg, (2) — bp(ordo) )(E; - Eo) + plordy) =
jeJ
= (Z - Ey) — p(ordo)(Zo - Ep) + p(ordy) = (Z - Ep),
which completes the proof. (Note that by = 1.) O

Corollary 7.16. If v = vg = bgl ordg € Vy s a divisorial valuation, then there
exists a primary ideal a C R such that Alog|a| = bgd,,.

Proof. Let m € By be a blowup such that F is among the exceptional primes F;,
i€l Asin above, define E € Div(r) by (E - F) = dgr. Thus E is
relatively nef, so by Proposition [7.4] there exists a primary 1dea1 a C R such that
a-Ox, = Ox, (E). The result now follows from Proposition O

Remark 7.17. One can show that the function log |a| determines a primary ideal a
up to integral closure. (This fact is true in any dimension.) Furthermore, the product
of two integrally closed ideals is integrally closed. Corollary [7.16]therefore shows that
the assignment a — Alog |a| is a semigroup isomorphism between integrally closed
primary ideals of R and finite atomic measures on Vy whose mass at a divisorial
valuation vg is an integer divisible by bg.

Corollary 7.18. If ¢ € R\ {0} is a nonzero polynomial, then the function log |¢|
on Vo is subharmonic. More generally, the function log|a| is subharmonic for any
nonzero ideal a C R.

Proof. For n > 1, the ideal a, := a + m{ is primary. Set ¢, = log|a,|. Then ¢,
decreases pointwise on Vy to ¢ := log |a|. Since the ¢,, are subharmonic, so is ¢. 0O

Exercise 7.19. If ¢ € mg is a nonzero irreducible polynomial, show that
n
Alog|¢ =Y _mjoy,
j=1

where v;, 1 < j <n are the curve valuations associated to the local branches C; of
{¢ = 0} at 0 and where m; is the multiplicity of C; at 0, that is, m; = ordg(¢;),
where ¢; € Oy is a local equation of Cj. Hint Let m € B9 be an embedded resolution
of singularities of the curve C' = {¢ = 0}.
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This exercise confirms that the generalized metric on V) is the correct one.
While we shall not use it, we have the following regularization result.

Theorem 7.20. Any subharmonic function on Vy is a decreasing limit of a sequence
(pn)n>1, where @, = cploglay|, with ¢, a positive rational number and a, C R a
primary ideal.

Proof. By Theorem m (applied to the tree Vp) any given function ¢ € SH(Vp) is
the limit of a decreasing sequence (¢y,)y, of functions in SH(Vy) such that Ay, is a
finite atomic measure supported on quasimonomial valuations. Let m, € By be a
blowup such that Ay, is supported on the dual graph |A(m,)|. Since the divisorial
valuations are dense in |A(m,)|, we may pick ¢, € SH(Vy) such that Ay, is a finite
atomic measure supported on divisorial valuations in |A(7,)|, with rational weights,
such that |1, — ¢p| < 27" on Vy. The sequence (¢, +3-27"),>1 is then decreasing
and A, +3-27") = Ay, + 3 - 27 "00pq, 1S a finite atomic measure supported on
divisorial valuations in |A(7,)|, with rational weights. The result now follows from

Corollary O

Regularization results such as Theorem play an important role in higher
dimensions, but the above proof, which uses tree arguments together with Lipman’s
result in Proposition [7.4] does not generalize. Instead, one can construct the ideals
a, as valuative multiplier ideals. This is done in [FJ05b] in dimension two, and
in [BF.JO8D] in higher dimensions.

7.9. Intrinsic description of the tree structure on V. As explained in §7.6

the valuative tree inherits a partial ordering and a (generalized) metric from the
dual graphs. We now describe these two structures intrinsically, using the definition
of elements in V) as functions on R. The potential theory in is quite useful for
this purpose.

7.9.1. Partial ordering. The following result gives an intrinsic description of the
partial ordering on V.

Proposition 7.21. If w,v € Vy, then the following are equivalent:

(i) v <w in the partial ordering induced by Vo ~ yLnA(’/T),’
(i1) v(¢) < w(ep) for all polynomials ¢ € R;
(iii) v(a) < w(a) for all primary ideals a C R.

Proof. The implication (i) = (ii) is a consequence of Proposition and the fact
that log |¢| is subharmonic. That (ii) implies (iii) is obvious. It remains to prove
that (iii) implies (i). Suppose that v £ w in the sense of (i). After replacing v
and w by r(v) and rr(w), respectively, for a sufficiently large m, we may assume
that v,w € |A(m)|. Set v/ := v Aw. Then v/ < v, v/ < w and |v/,v] N [V, w] = 0.
Replacing v by a divisorial valuation in |v’,v] we may assume that v is divisorial.
By Corollary we can find an ideal a C R such that Alog |a| is supported at v.
Then w(a) = v'(a) < v(a), so (iii) does not hold. O
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7.9.2. Integral affine structure. Next we give an intrinsic description of the integral

affine structure.

Proposition 7.22. If 7 € Bq is a blowup, then a function ¢ : Vo - R belongs to
Aff(m) iff it is of the form ¢ = log |a| — log|b|, where a and b are primary ideals of
R for which m is a common log resolution.

Sketch of proof. After unwinding definitions this boils down to the fact that any
exceptional divisor can be written as the difference of two relatively nef divisors.
Indeed, by Proposition [7.4] if Z is relatively nef, then there exists a primary ideal
a C R such that a- Ox, = Ox,(2). O

Corollary 7.23. A function ¢ : ]A/ff — R is integral affine iff it is of the form
¢ =log|a| —log |b|, where a and b are primary ideals in R.

7.9.3. Metric. Recall the parametrization « of Vy ~ I'&nA(w) given by ([7.23]).

Proposition 7.24. For any v € Vy we have

a(v) = —sup {O;ﬁ(;) ’ pe mo} = —sup { Orifoa()a)

and the suprema are attained when v is quasimonomsial.

aCR mo-primary}

In fact, one can show that supremum in the second equality is attained only if
v is quasimonomial. Further, the supremum in the first equality is never attained
when v is infinitely singular, but is attained if v is a curve semivaluation (in which
case a(v) = —o0), and we allow ¢ € mg - Op.

Proof. Since the functions log|a| and log|¢| are subharmonic, shows that
v(a) < —a(v)ordg(a) and v(¢) < —a(v)orde(¢) for all a and all ¢.

Let us prove that equality can be achieved when v is quasimonomial. Pick a
blowup 7 € B such that v € |[A(7)| and pick w € |A(7)| divisorial with w > v. By
Corollary there exists a primary ideal a such that Alog |a| is supported at w.
This implies that the function log |a| is affine with slope —ordg(a) on the segment
[ordg, w]. In particular, v(a) = —a(v) ordg(a). By picking ¢ as a general element in
a we also get v(¢) = —a(v) ordg(¢).

The case of a general v € V) follows from what precedes, given that r v(¢), rrv(a)
and a(rz(v)) converge to v(¢), v(a) and a(v), respectively, as ™ — 0. O

Notice that Proposition gives a very precise version of the Izumi-Tougeron
inequality (6.7). Indeed, a(v) > —oo for all quasimonomial valuations v € V.

7.9.4. Multiplicity. The multiplicity function m : Vy — NU{oc} can also be charac-
terized intrinsically. For this, one first notes that if v = v is a curve semivaluation,
defined by a formal curve C, then m(v) = ordo(C). More generally, one can show
that

m(v) = min{m(C) | v < vc}.
In particular, m(v) = oo iff v cannot be dominated by a curve semivaluation, which
in turn is the case iff v is infinitely singular.
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7.9.5. Topology. Theorem shows that the topology on V) induced from A%erk
coincides with the tree topology on Vy ~ @A(w). It is also possible to give a more
geometric description of the topology.

For this, consider a blowup 7 € By and a closed point & € 71(0). Define
U(&) €V as the set of semivaluations having center £ on X . This means precisely
that v(m¢) > 0, where mg¢ is the maximal ideal of the local ring Ox, ¢. Thus U(¢) is
open in V. One can in fact show that these sets U (&) generate the topology on V.

If € is a free point, belonging to a unique exceptional prime E of X, then we have
U(§) = U(?) for a tangent direction ¥ at vy in Vy, namely, the tangent direction
for which ordg € U(¥). As a consequence, the open set U(&) is connected and its
boundary is a single point: U (§) = {vg}.

7.10. Relationship to the Berkovich unit disc. Let us briefly sketch how to
relate the valuative tree with the Berkovich unit disc. Fix global coordinates (z1, z2)
on A? vanishing at 0 and let L = K((21)) be the field of Laurent series in 2.
There is a unique extension of the trivial valuation on K to a valuation vy, on L for
which vy (21) = 1. The Berkovich open unit disc over L is the set of semivaluations
v : Lza] — Ry, extending vy, for which v(z2) > 0. If v is such a semivaluation,
then v/ min{1,v(z2)} is an element in the valuative tree Vy. Conversely, if v € V
is not equal to the curve semivaluation ve associated to the curve (z; = 0), then
v/v(z1) defines an element in the Berkovich open unit disc over L.

Even though L is not algebraically closed, the classification of the points in the
Berkovich affine line into Type 1-4 points still carries over, see Curve val-
uations become Type 1 points, divisorial valuations become Type 2 points and ir-
rational valuations become Type 3 points. An infinitely singular valuation v € V)
is of Type 4 or Type 1, depending on whether the log discrepancy A(v) is finite or
infinite. The parametrization and partial orderings on Vy and the Berkovich unit
disc are related, but different. See [FJ04] §3.9, §4.5] for more details.

Note that the identification of the valuative tree with the Berkovich unit disc
depends on a choice of coordinates. In the study of polynomial dynamics in it
would usually not be natural to fix coordinates. The one exception to this is when
studying the dynamics of a skew product

f(z1,22) = (9(21), ¥ (21, 22)),

with ¢(0) = 0, in a neighborhood of the invariant line z; = 0. However, it will
be more efficient to study general polynomial mappings in two variables using the
Berkovich affine plane over the trivially valued field K.

As noted in the Berkovich unit disc over the field K((z1)) of Laurent series
is in fact more naturally identified with the space Vs, where C' = {z; = 0}.

7.11. Other ground fields. Let us briefly comment on the case when the field K
is not algebraically closed.

Let K denote the algebraic closure and G = Gal(K®/K) the Galois group. Using
general theory we have an identification A% | (K) ~ A%, (K%)/G.

First suppose that the closed point 0 € A?(K) is K-rational, that is, Op/mo ~ K.
Then 0 has a unique preimage 0 € A%(K?). Let Vo(K?) C A%_, (K?) denote the
valuative tree at 0 € A?(K®). Every g € G induces an automorphism of A%_, (K%)
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that leaves V(K ®) invariant. In fact, one checks that g preserves the partial or-
dering as well as the parametrizations « and A and the multiplicity m. Therefore,
the quotient Vo(K) ~ Vo(K?) also is naturally a tree. As in we define a
parametrization « of Vy(K) using the corresponding parametrization of Vy(K?) and
the degree of the map Vo(K*) — Vo(K). This parametrization gives rise to the
correct generalized metric in the sense that the analogue of Exercise holds.

When the closed point 0 is not K-rational, it has finitely many preimages 0; €
A?(K®). At each 0; we have a valuative tree Vo, C A3, (K®) and Vo, which is now
the quotient of the disjoint union of the Vy, by G, still has a natural metric tree
structure.

In fact, even when K is not algebraically closed, we can analyze the valuative tree
using blowups and dual graphs much as we have done above. One thing to watch
out for, however, is that the intersection form on Div(w) is no longer unimodular.
Further, when FEj;, E; are exceptional primes intersecting properly, it is no longer
true that (F; - Ej) = 1. In order to get the correct metric on the valuative tree, so
that Proposition holds for instance, we must take into account the degree over
K of the residue field whenever we blow up a closed point £&. The resulting metric
is the same as the one obtained above using the Galois action.

7.12. Notes and further references. The valuative tree was introduced and stud-
ied extensively in the monograph [F.J04] by Favre and myself. One of our original
motivations was in fact to study superattracting fixed points, but it turned out that
while valuations on surfaces had been classified by Spivakovsky, the structure of this
valuation space had not been explored.

It was not remarked in [FJ04] that the valuative tree can be viewed as a subset
of the Berkovich affine plane over a trivially valued field. The connection that was
made was with the Berkovich unit disc over the field of Laurent series.

In [EJ04], several approaches to the valuative tree are pursued. The first approach
is algebraic, using key polynomials as developed by MacLane [Mac36]. While beau-
tiful, this method is coordinate dependent and involves some quite delicate combi-
natorics. In addition, even though there is a notion of key polynomials in higher
dimensions [Vaq07], these seem hard to use for our purposes.

The geometric approach, using blowups and dual graphs is also considered in [F.J04]
but perhaps not emphasized as much as here. As already mentioned, this approach
can be partially generalized to higher dimensions, see [BEJO8b], where it is still
true that the valuation space Vj is an inverse limit of dual graphs. The analogue
of the Laplace operator on Vy is then a nonlinear Monge-Ampere operator, but
this operator is defined geometrically, using intersection theory, rather than through
the simplicial structure of the space. In higher dimensions, the relation between
the different positivity notions on exceptional divisors is much more subtle than in
dimension two. Specifically, Proposition [7.4] is no longer true.

Granja [Gra07] has generalized the construction of the valuative tree to a general
two-dimensional regular local ring.

The valuative tree gives an efficient way to encode singularities in two dimensions.
For example, it can be used to study the singularities of planar plurisubharmonic
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functions, see [FJ05al [FJO5b]. It is also related to many other constructions in sin-
gularity theory. We shall not discuss this further here, but refer to the paper [Pop11]
by Popescu-Pampu for further references. In this paper, the author, defines an in-
teresting object, the kite (cerf-volant), which also encodes the combinatorics of the
exceptional primes of a blowup.

In order to keep notes reasonably coherent, and in order to reflect changing
trends, I have taken the freedom to change some of the notation and terminol-
ogy from [EJ04]. Notably, in [F.J04], the valuative tree is simply denoted V and its
elements are called valuations. Here we wanted to be more precise, so we call them
semivaluations. What is called subharmonic functions here correspond to positive
tree potentials in [F.J04]. The valuation ordy is called vy in [EJ04].
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8. LOCAL PLANE POLYNOMIAL DYNAMICS

Next we will see how the valuative tree can be used to study superattracting fixed
points for polynomial maps of AZ.

8.1. Setup. Let K be an algebraically closed field, equipped with the trivial val-
uation. (See for the case of other ground fields.) Further, R and F' are the
coordinate ring and function field of the affine plane A% over K. Recall that the
Berkovich affine plane A%erk is the set of semivaluations on R that restrict to the
trivial valuation on K.

8.2. Definitions and results. We briefly recall the setup from §1.2| of the intro-
duction. Let K be an algebraically closed field of characteristic zero. Consider a
polynomial mapping f : A2 — A? over K. We assume that f is dominant, since

otherwise the image of f is contained in a curve. Consider a (closed) fixed point
0 = f(0) € A? and define

c(f) = ordo(f*mo),

where mg denotes the maximal ideal at 0. We say that f is superattracting if c¢(f™) >
1 for some n > 1.

Exercise 8.1. Show that if f is superattracting, then in fact ¢(f?) > 1. On the
other hand, find an example of a superattracting f for which ¢(f) = 1.

Exercise 8.2. Show that if f is superattracting and K = C, then there exists a
neighborhood 0 € U C A? (in the usual Euclidean topology) such that f(U) C U,
and f"(z) — 0 as n — oo for any z € U.

As mentioned in the introduction, the sequence (¢(f™))n>1 is supermultiplicative,
so the limit

Coo(f) = lim c(fn)l/" = sup c(fn)l/n

n—00 n—o00

exists.

Exercise 8.3. Verify these statements! Also show that f is superattracting iff
Coo(f) > 1 iff dfy is nilpotent.

Exercise 8.4. In coordinates (22, 22) on A2, let f. be the homogeneous part of f
of degree ¢ = c(f). Show that if f2 # 0, then in fact f? # 0 for all n > 1, so that
c(f™) =" and coo = ¢ = ¢(f) is an integer.

Example 8.5. If f(z1, z2) = (22, 2z122), then ¢(f") is the (n+2)th Fibonacci number
and ¢ = 3(v/5 + 1) is the golden mean.

For the convenience of the reader, we recall the result that we are aiming for:

Theorem B. The number coo = coo(f) is a quadratic integer: there exists a,b € Z
such that >, = acs, +b. Moreover, there exists a constant 6 > 0 such that

6cl, < c(f") < e
for alln > 1.

Here it is the left-hand inequality that is nontrivial.
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8.3. Induced map on the Berkovich affine plane. As outlined in §I.2] we
approach Theorem B by studying the induced map

2 2
f : ABerk - ABerk
on the Berkovich affine plane AQBerk. Recall the subspaces
VO - ]}5 - ]}0 - A]23erk

introduced in ]>0 is the set of semivaluations whose center on A? is the point 0.
It has the structure of a cone over the valuative tree Vy, with apex at trivg. It is
clear that
f(Vo) € Vo and  f(trivg) = trivg.

In general, f does not map the pointed cone )A/f)" into itself. Indeed, suppose there
exists an algebraic curve C' = {¢ = 0} C A? passing through 0 and contracted to 0
by f. Then any semivaluation v € VS‘ such that v(¢) = oo satisfies f(v) = trivg. To
rule out this behavior, we introduce

Assumption 8.6. From now on, and until §8.6] we assume that the germ f is finite.

This assumption means that the ideal f*mg C Oy is primary, that is, mj C
f*mg for some s > 1, so it exactly rules out the existence of contracted curves.
Certain modifications are required to handle the more general case when f is merely
dominant. See §8.6] for some of this.

The finiteness assumption implies that f~!{trivg} = {trivo}. Thus we obtain a
well-defined map

f:Ve =V,
which is clearly continuous and homogeneous.

While f preserves 1>§, it does not preserve the “section” 1y C f/a‘ given by the
condition v(mg) = 1. Indeed, if v(mgp) = 1, there is no reason why f(v)(mg) = 1.
Rather, we define

f)
c(f,v)
The assumption that f is finite at 0 is equivalent to the existence of a constant

C > 0 such that 1 < ¢(f,v) < C for all v € Vy. Indeed, we can pick C as any integer
s such that f*my O mj. Also note that

c(f) = c(f, ordo).
The normalization factors ¢(f,v) naturally define a dynamical cocycle. Namely, we
can look at ¢(f™,v) for every n > 0 and v € V) and we then have

c(fv) = U(f*m[)) and fev :=

n—1
C(fnﬂ U) = H C(f, Ui)7
=0

where v; = flv for 0 < i < n.

Apply this equality to v = ordg. By definition, we have v; = fiordg > ordg for
all 4. This gives c(f,v;) > ¢(f,ordg) = c(f), and hence c(f™) > ¢(f)", as we already
knew. More importantly, we shall use the multiplicative cocycle c¢(f™,v) in order to
study the supermultiplicative sequence (c(f™))n>0-
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8.4. Fixed points on dual graphs. Consider a blowup 7 € By. We have seen
that the dual graph of m embeds as a subspace |A(7)| C Vy of the valuative tree,
and that there is a retraction 7 : Vo — |A(7)|. We shall study the selfmap

rrfo  [A(T)] = |A(m)].

Notice that this map is continuous since r, and f, are. Despite appearances, it does
not really define an induced dynamical system on |A(7)|, as, in general, we may
have (7 fe)? # rxf2. However, the fixed points of r, f, will play an important role.
It is easy to see that a continuous selfmap of a finite simplicial tree always has a
fixed point. (See also Proposition 2.17]) Hence we can find vy € |A(m)| such that
rr feo = vg. There are then three possibilities:
(1) v is divisorial and fevg = vo;
(2) v is divisorial and fevg # vo;
(3) vy is irrational and fevg = vp.
Indeed, if v € Vg \ |A(7)| is any valuation, then ry(v) is divisorial, see Lemma [7.12]
The same lemma also allows us to assume, in cases (1) and (2), that the center of
vg on X is an exceptional prime £ C X.
In case (2), this means that the center of fevg on X, is a free point £ € F, that
is, a point that does not belong to any other exceptional prime of 7.

8.5. Proof of Theorem B. Using the fixed point vy that we just constructed, and
still assuming f finite, we can now prove Theorem B.

The proof that ¢, is a quadratic integer relies on a calculation using value groups.
Recall that the value group of a valuation v is defined as I'y, = v(F'), where F is the
fraction field of R.

Lemma 8.7. In the notation above, we have c(f,vo)l'y, C I'y,. As a consequence,
c(f,vo) is a quadratic integer.

We shall see that under suitable assumptions on the blowup 7 we have ¢(f,vg) =
Coo(f). This will show that co(f) is a quadratic integer.

Proof. In general, I'g,) C Ty and I, () € T, for v € Vi. If we write co = c(f,v0),
then this leads to

COFUO = COFrﬂf.vo - C(]Ff.vo = Fcof.vo = Ff(vo) - Fvoa

which proves the first part of the lemma.

Now vg is quasimonomial, so the structure of its value group is given by .
When vy is divisorial, Iy, >~ Z and the inclusion ¢ol'y,, C I',, immediately implies
that cp is an integer. If instead vy is irrational, I'y, >~ Z @& Z and ¢y is a quadratic
integer. Indeed, if we write I',; = t1Z @ t2Z, then there exist integers a;; such that
coti = 25:1 a;jt; for i = 1,2. But then ¢ is an eigenvalue of the matrix (a;;), hence
a quadratic integer. O

It remains to be seen that ¢(f,v9) = coo(f) and that the estimates in Theorem B
hold. We first consider cases (1) and (3) above, so that fevg = wvg. It follows
from ([7.24]) that the valuations vy and ordy are comparable. More precisely, ordy <
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vo < —agordg, where ag = a(vg). The condition fevg = vg means that f(vy) = cvp,
where ¢ = ¢(f,vp). This leads to

c(f") = ordo(f" mo) < wo(f™mo) = (fi'vo)(mo) = c"vo(mp) = "

and, similarly, ¢ < —age(f™). In view of the definition of ¢, this implies that
Coo = €, SO that

f(vo) = coovp and  —aglc <e(f") < -

00
proving Theorem B in this case.

Case (2) is more delicate and is in some sense the typical case. Indeed, note that
we have not made any restriction on the modification 7. For instance, 7 could be a
simple blowup of the origin. In this case |A(7)| = {ordy} is a singleton, so vy = ordy
but there is no reason why f, ordg = ordg. To avoid this problem, we make

Assumption 8.8. The map 7 : X; — A? defines a log resolution of the ideal f*m.
In other words, the ideal sheaf f*m - Ox_ is locally principal.

Such a 7 exists by resolution of singularities. Indeed our current assumption that
f be a finite germ implies that f*m is an m-primary ideal.

For us, the main consequence of 7 being a log resolution of f*m is that

c(v) = v(f mo) = (rzv)(f*mo) = c(rzv)
for all v € Vj, see Lemma [7.11]

As noted above, we may assume that the center of vg on X is an exceptional
prime E. Similarly, the center of fevg on X, is a free point £ € E. Let U(§) be
the set of all valuations v € Vy whose center on X is the point £. By this
is a connected open set and its closure is given by U(§) = U(§) U {vo}. We have

r=U(§) = {vo}, so c(f,v) = c(f,vo) for all v € U(§) by Lemma
We claim that fo(U(€)) C U(£). To see this, we could use §2.6| but let us give

a direct argument. Note that v > vg, and hence f(v) > f(vo) for all v € U(E).
Since ¢(f,v) = ¢(f,vp), this implies fov > fovg > vg for all v € U(§). In particular,
fev # v for all v € U(E), so that

UE)NfIUE) =U©) N fSHU(©).
It follows that U(€) N folU(€) is a subset of U(€) that is both open and closed.

It is also nonempty, as it contains vg. By connectedness of U (&), we conclude that

1.(T©) C U(©).

The proof of Theorem B can now be concluded in the same way as in cases (1)
and (3). Set v, := flvy for n > 0. Then we have v, € U(€) and hence c(f,v,) =
c(f,vg) =: ¢ for all n > 0. This implies ¢(f", vg) = H?:_ol c(f,vi)) = " for all
n > 1. As before, this implies that ¢ = c5, and —aalcgo < e(f™) < %, where
ap = a(vg) < oo.

8.6. The case of a non-finite germ. Let us briefly discuss the situation when
f : A2 — A? is dominant but not finite at a fixed point 0 = f(0). In other
words, the ideal f*my C mg is not primary. In this case, the subset Iy C Vj given
by ¢(f,:) = 400 is nonempty but finite. Each element of Iy is a curve valuation
associated to an irreducible germ of a curve C' at 0 such that f(C) = 0. In particular,
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Iy does not contain any quasimonomial valuations. Write I =Ry, ﬁf = f)g \
Iy ={c(f,") < +oo} and Dy := Vo \ I; = Dy N V. For v € I; we have f(v) = trivy.
We can view f : f)()k - f/[’)“ as a partially defined map having domain of definition
ﬁf. On Dy we define f, as before, namely fov = f(v)/c(f,v). One can show that f,
extends continuously through Iy to a map fe : Vo — Vo. More precisely, any v € I
is associated to an analytically irreducible branch of an algebraic curve D C A?
for which f(D) = 0. The valuation f(ordp) is divisorial and has 0 as its center on
A2 hence f(ordp) = rvg, where r € N and vg € Vy is divisorial. The continuous
extension of f, across v is then given by fev = vg. In particular, folf NIy =0.

Now we can find a log resolution 7 : X; — A? of the ideal f*my. By this we mean
that the ideal sheaf f*mg- Ox,_ on X, is locally principal and given by a normal
crossings divisor in a neighborhood of 7=!(0). We can embed the dual graph of
this divisor as a finite subtree |A| C V. Note that |A| contains all elements of
I;. There is a continuous retraction map r : Vo — |A|. Thus we get a continuous
selfmap 7 fq : |A| = |A|, which admits a fixed point v € |A]. Note that v ¢ Iy since
fely NIy =0 and r1I ¢ = Iy. Therefore v is quasimonomial. The proof now goes
through exactly as in the finite case.

8.7. Further properties. Let us outline some further results from [EJ07] that one
can obtain by continuing the analysis.

First, one can construct an eigenvaluation, by which we mean a semivaluation v €
Vo such that f(v) = coov. Indeed, suppose f is finite for simplicity and look at the
three cases (1)—(3) in In cases (1) and (3) the valuation v is an eigenvaluation.
In case (2) one can show that the sequence (fJ'vp)r2, increases to an eigenvaluation.

Second, we can obtain local normal forms for the dynamics. For example, in
Case (2) in §8.4] we showed that fo mapped the open set U(§) into itself, where
U(€) is the set of semivaluations whose center of X is equal to &, the center of
fevo on X . This is equivalent to the the lift f : X; --» X being regular at £ and
f(&) = & By choosing X, judiciously one can even guarantee that f : (X ,§) —
(Xx,&) is a rigid germ, a dynamical version of simple normal crossings singularities.
Such a rigidification result was proved in [FJ07] for superattracting germs and later
extended by Matteo Ruggiero [Rug09] to more general germs.

When f is finite, fo : Vo — Wy is a tree map in the sense of so the results
in that section apply, but in our approach here we did not need them. In contrast,
the approach in [FJO7] consists of first using the tree analysis in §2.6| to construct
an eigenvaluation.

Using numerical invariants one can show that f preserves the type of a valuation in
the sense of §7.7] There is also a rough analogue of the ramification locus for selfmaps
of the Berkovich projective line as in §4.71 At least in the case of a finite map, the
ramification locus is a finite subtree given by the convex hull of the preimages of the
root ordy.

While this is not pursued in [FJ07], the induced dynamics on the valuative tree
is somewhat similar to the dynamics of a selfmap of the unit disc over C. Indeed,
recall from that we can embed the valuative tree inside the Berkovich unit
disc over the field of Laurent series (although this does not seem very useful from
a dynamical point of view). In particular, the dynamics is (essentially) globally
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attracting. This is in sharp contrast with selfmaps of the Berkovich projective line
that are nonrepelling on hyperbolic space H.

For simplicity we only studied the dynamics of polynomial maps, but the analysis
goes through also for formal fixed point germs. In particular, it applies to fixed point
germs defined by rational maps of a projective surface and to holomorphic (perhaps
transcendental) fixed point germs. In the latter case, one can really interpret coo(f)
as a speed at which typical orbits tend to 0, see [F.J07, Theorem B].

8.8. Other ground fields. Let us briefly comment on the case when the field K is
not algebraically closed. Specifically, let us argue why Theorem B continues to hold
in this case.

Let K be the algebraic closure of K and G = Gal(K®/K) the Galois group. Then
A%(K) ~ A%(K%)/G and any polynomial mapping f : A%(K) — A?(K) induces a
equivariant polynomial mapping f : A2(K?) — A%(K*%).

If the point 0 € A?(K) is K-rational, then it has a unique preimage in 0 € K¢
and the value of ordg(¢), for ¢ € R, is the same when calculated over K or over K.
The same therefore holds for ¢(f"), so since Theorem B holds over K¢, it also holds
over K.

In general, 0 € A? has finitely many preimages 0; € A?(K?) but if ¢ € R is a
polynomial with coefficients in K, then ordg(¢) = ordo, (¢) for all j. Again we can
deduce Theorem B over K from its counterpart over K%, although some care needs
to be taken to prove that co, is a quadratic integer in this case.

Alternatively, we can consider the action of f directly on A%_, (K). As noted
in the subset of semivaluations centered at 0 is still the cone over a tree and
we can consider the induced dynamics. The argument for proving that co is a
quadratic integer, using value groups, carries over to this setting.

8.9. Notes and further references. In [FJ07] and [FJ11] we used the notation
fxv instead of f(v) as the action of f on the valuative tree is given as a pushfor-
ward. However, one usually does not denote induced maps on Berkovich spaces as
pushforwards, so I decided to deviate from loc. cit. in order to keep the notation
uniform across these notes.

In analogy with the degree growth of polynomial maps (see I would expect
the sequence (c(f"))o2, to satisfy an integral linear recursion relation, but this has
not yet been established.

My own path to Berkovich spaces came through joint work with Charles Favre.
Theorem B, in a version for holomorphic selfmaps of P2, has ramifications for prob-
lem of equidistribution to the Green current. See [F.J03] and also [DS08| [Par11] for
higher dimensions.
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9. THE VALUATIVE TREE AT INFINITY

In order to study the dynamics at infinity of polynomial maps of A2 we will use the
subspace of the Berkovich affine plane A%erk consisting of semivaluations centered
at infinity. As in the case of semivaluations centered at a point, this is a cone over a
tree that we call the valuative tree at inﬁnitym Its structure is superficially similar
to that of the valuative tree at a point, which we will refer to as the local case, but,
as we will see, there are some significant differences.

9.1. Setup. Let K be an algebraically closed field of characteristic zero, equipped
with the trivial valuation. (See for the case of other ground fields.) Further,
R and F are the coordinate ring and function field of the affine plane A2 over K.
Recall that the Berkovich affine plane A%erk is the set of semivaluations on R that
restrict to the trivial valuation on K.

A linear system |9M| of curves on A? is the projective space associated to a nonzero,
finite-dimensional vector space 9t C R. The system is free if its base locus is empty,
that is, for every point & € A2 there exists a polynomial ¢ € 9t with ¢(¢) # 0. For
any linear system || and any v € A%, we write v(|]9M|) = min{v(¢) | ¢ € M}.

9.2. Valuations centered at infinity. We let )>oo - A2Berk denote the set of semi-
valuations v having center at infinity, that is, such that v(¢) < 0 for some polynomial
¢ € R. Note that V. is naturally a pointed cone: in contrast to Vo there is no ele-
ment ‘trive,’.

The valuative tree at infinity is the base of this cone and we want to realize it as
a “section’. In the local case, the valuative tree at a closed point 0 € A2 was defined
using the maximal ideal my. In order to do something similar at infinity, we fix an
embedding A% < P2. This allows us to define the degree of a polynomial in R and
in particular defines the free linear system |£| of lines, associated to the subspace
£ C R of affine functions on A2, that is, polynomials of degree at most one. Note
that v € A%_, has center at infinity iff v(]€]) < 0.

We say that two polynomials z1, 2o are affine coordinates on A? if deg z; = 1 and
R = K|z1, z2]. In this case, F' = K(z1, z2) and v(|£|) = min{v(z1), v(z2)}.

Definition 9.1. The wvaluative tree at infinity V.. is the set of semivaluations v €
A% . such that v(|£]) = —1.

The role of ordg € V is played by the valuation ord., € V.., defined by

ordeo () = —deg(¢). (9.1)
In particular, v(¢) > orde(¢) for every ¢ € R and every v € V,,. We emphasize
that both V., and ords, depend on a choice of embedding A? — P2.

We equip V., and V.. with the subspace topology from A%erk. It follows from
Tychonoff’s theorem that V is a compact Hausdorff space. The space V. is open
in A%erk and its boundary consists of the trivial valuation triva2 and the set of
semivaluations centered at a curve in AZ.

26The notation in these notes differs from [FJO7, [FJ11] where the valuative tree at infinity is
denoted by Vo. In loc. cit. the valuation ords defined in (9.1)) is denoted by — deg.



DYNAMICS ON BERKOVICH SPACES IN LOW DIMENSIONS 113

As in the local case, we can classify the elements of V.. into curve semivaluations,
divisorial valuations, irrational valuations and infinitely singular valuations. We do
this by considering v as a semivaluation on the ring Op2 ¢, where ¢ is the center of
¢ on P2,

9.3. Admissible compactifications. The role of a blowup of A? above a closed
point is played here by a compactification of A2, by which we mean a projective
surface containing A2 as Zariski open subset. To make the analogy even stronger,
recall that we have fixed an embedding A? < P2. We will use

Definition 9.2. An admissible compactification of A2 is a smooth projective surface
X containing A2 as a Zariski open subset, such that the induced birational map
X --» P? induced by the identity on AZ2, is regular.

By the structure theorem of birational surface maps, this means that the mor-
phism X — P? is a finite composition of point blowups above infinity. The set of
admissible compactifications is naturally partially ordered and in fact a directed set:
any two admissible compactifications are dominated by a third.

Many of the notions below will in fact not depend on the choice of embedding
A? — P? but would be slightly more complicated to state without it.

Remark 9.3. Some common compactifications of A2, for instance P! x P!, are
not admissible in our sense. However, the set of admissible compactifications is
cofinal among compactifications of A?: If Y is an irreducible, normal projective
surface containing A? as a Zariski open subset, then there exists an admissible
compactification X of A? such that the birational map X --» Y induced by the
identity on A? is regular. Indeed, X is obtained by resolving the indeterminacy
points of the similarly defined birational map P? --» Y. See [Mor73} Kis02] for a
classification of smooth compactifications of AZ.

9.3.1. Primes and divisors at infinity. Let X be an admissible compactification of
A% A prime at infinity of X is an irreducible component of X \ A2. We often
identify a prime of X at infinity with its strict transform in any compactification X’
dominating X. In this way we can identify a prime at infinity £ (of some admissible
compactification) with the corresponding divisorial valuation ordg.

Any admissible compactification contains a special prime L, the strict transform
of P? \ A2, The corresponding divisorial valuation is ord Lo, = Ordec.

We say that a point in X \ A2 is a free point if it belongs to a unique prime at
infinity; otherwise it is a satellite point.

A divisor at infinity on X is a divisor supported on X \ A%, We write Divo,(X)
for the abelian group of divisors at infinity. If F;, ¢ € I are the primes of X at
infinity, then Dive (X) ~ @, ZE;.

9.3.2. Intersection form and linear equivalence. We have the following basic facts.

Proposition 9.4. Let X be an admissible compactification of A%. Then

(i) Every divisor on X is linearly equivalent to a unique divisor at infinity, so
Divy (X) ~ Pic(X).
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(ii) The intersection form on Diveo(X) is nondegenerate and unimodular. It has
signature (1,p(X) —1).

Proof. We argue by induction on the number of blowups needed to obtain X from
P2. If X = P2 then the statement is clear: Dive,(X) = Pic(X) = ZLs and
(Loo - Leo) = 1. For the inductive step, suppose 7’ = 7 o u, where p is the simple
blowup of a closed point on X \ A2, resulting in an exceptional prime E. Then
we have an orthogonal decomposition Dive(X') = p* Diveo(X) @ ZE, Pic(X') =
p*Pic(X)® ZE and (E - E) = —1.

Statement (ii) about the intersection form is also a consequence of the Hodge
Index Theorem and Poincaré Duality. (]

Concretely, the isomorphism Pic(X) ~ Dive(X) can be understood as follows.
Any irreducible curve C in X that is not contained in X \ A2 is the closure in X of
an affine curve {¢ = 0} for some polynomial ¢ € R. Then C is linearly equivalent
to the element in Dive,(X) defined as the divisor of poles of ¢, where the latter is
viewed as a rational function on X.

Let E;, i € I be the primes of X at infinity. It follows from Proposition that
for each i € I there exists a divisor E; € Dive(X) such that (E; - E;) = 1 and
(E; - Ej) =0 for all j # i.

9.3.3. Invariants of primes at infinity. Analogously to the local case (see we
associate two basic numerical invariants ag and Ag to any prime F at infinity (or,
equivalently, to the associated divisorial valuation ordg € V...

To define o, pick an admissible compactification X of A2 in which E is a prime at
infinity. Above we defined the divisor F = Ex € Diveo(X) by duality: (Ex-E) =1
and (Ex-F) = 0 for all primes F # E of X at infinity. Note that if X’ is an admissible
compactification dominating X, then the divisor Fxs on X' is the pullback of Ex
under the morphism X’ — X. In particular, the self-intersection number

ap = a(ordp) := (E - E)

is an integer independent of the choice of X.

The second invariant is the log discrepancy Ag. Let w be a nonvanishing regular
2-form on A?. If X is an admissible compactification of A2, then w extends as a
rational form on X. For any prime E of X at infinity, with associated divisorial
valuation ordg € ]A)Oo, we define

Ap = A(ordg) := 1+ ordg(w). (9.2)

This is an integer whose value does not depend on the choice of X or w. Note that
Ar.. = —2 since w has a pole of order 3 along L. In general, Ap can be positive
or negative.

We shall later need the analogues of and . Thus let X be an admissible
compactification of A% and X’ the blowup of X at a free point ¢ € X \ A?. Let E’
be the “new” prime of X', that is, the inverse image of £ in X’. Then

A =Agp+1, bgr =bg and E/:EV*E,, (9.3)
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where, in the right hand side, we identify the divisor £ € Diva,(X) with its pullback
to X’. As a consequence,

ap = (E'-EY=(E-E)—1=ag — 1. (9.4)

Generalizing both §7.3.6] and §9.3.3] the invariants ag and Ag can in fact be
defined for any divisorial valuation ordg in the Berkovich affine plane.

9.3.4. Positivity. Recall that in the local case, the notion of relative positivity was
very well behaved and easy to understand, see §7.3.5] Here the situation is much
more subtle, and this will account for several difficulties.

As usual, we say that a divisor Z € Div(X) is effective if it is a positive linear
combination of prime divisors on X. We also say that Z € Div(X) is nef if (Z-W) >
0 for all effective divisors W. These notions make sense also for Q-divisors. It is a
general fact that if Z € Div(X) is nef, then (Z-Z) > 0.

Clearly, the semigroup of effective divisors in Dive, (X)) is freely generated by the
primes E;, ¢ € I at infinity. A divisor Z € Divy(X) is nef at infinity if (Z-W) >0
for every effective divisor W € Divy(X). This simply means that (Z - E;) > 0 for
all i € I. It follows easily that the subset of Divy (X) consisting of divisors that are
nef at infinity is a free semigroup generated by the Ej, i € I.

We see that a divisor Z € Dive(X) is nef iff it is nef at infinity and, in addition,
(Z-C) > 0 whenever C is the closure in X of an irreducible curve in A2. In general,
a divisor that is nef at infinity may not be nef.

Example 9.5. Consider the surface X obtained by first blowing up any closed point
at infinity, creating the prime F1, then blowing up a free point on E7, creating the
prime FE5. Then the divisor Z := Fy = Lo — E5 is nef at infinity but Z is not nef
since (Z-2Z) =-1<0.

However, a divisor Z € Div(X) that is nef at infinity and effective is always nef:
as above it suffices to show that (Z - C) > 0 whenever C is the closure in X of a
curve in A%, But (E; - C) > 0 for all i € I, so since Z has nonnegative coefficients
in the basis E;, i € I, we must have (Z - C) > 0.

On the other hand, it is possible for a divisor to be nef but not effective. The
following example was communicated by Adrien Dubouloz [Dubli].

Example 9.6. Pick two distinct points &, & on the line at infinity Lo, in P2
and let C be a conic passing through & and &. Blow up &1 and let D be the
exceptional divisor. Now blow up &s, creating Ey, blow up C N Ey, creating Fo
and finally blow up C' N Ey creating F. We claim that the non-effective divisor
Z =2D 4 5Ly + 3E1 + Es — F on the resulting surface X is nef.

To see this, we successively contract the primes Lo, 4 and Es. A direct com-
putation shows that each of these is a (—1)-curve at the time we contract it, so
by Castelnuovo’s criterion we obtain a birational morphism p : X — Y, with Y a
smooth rational surface. Now Y is isomorphic to P! x P!, Indeed, one checks that
(F-F)=(C-C)=0and (F-C)=1onY and it is easy to see in coordinates
that each of F' and C' is part of a fibration on Y. Now Z is the pullback of the
divisor W = 2D — F on Y, Further, Pic(Y) ~ ZC @ ZF and (W -C) =1 > 0 and
(W-F)=2>0,s0 W is ample on Y and hence Z = p*W is nef on X.
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Finally, in contrast to the local case (see Proposition it can happen that a
divisor Z € Diveo(X) is nef but that the line bundle Ox(Z) has base points, that
is, it is not generated by its global sections.

Example 9.7. Consider the surface X obtained from blowing P? nine times, as
follows. First blow up at three distinct points on Lo, creating primes F1;, j = 1,2, 3.
On each Ey; blow up a free point, creating a new prime Es;. Finally blow up a free
point on each FEjj, creating a new prime FE3;. Set Z = 3Lo + Z?zl(QEgj + Eyj).
Then Z = Z?:l Egj, so Z is nef at infinity. Since Z is also effective, it must be nef.

However, we claim that if the points at which we blow up are generically chosen,
then the line bundle Ox(Z) is not generated by its global sections. To see this,
consider a global section of Ox(Z) that does not vanish identically along L,. Such
a section is given by a polynomial ¢ € R of degree 3 satisfying ordg,,(¢) = 3 — i,
1 <4,j < 3. This gives nine conditions on ¢. Note that if ¢ is such a section, then
so is ¢ — ¢ for any constant ¢, so we may assume that ¢ has zero constant coefficient.
Thus ¢ is given by eight coefficients. For a generic choice of points blown up, no
such polynomial ¢ will exist. This argument is of course not rigorous, but can be
made so by an explicit computation in coordinates that we invite the reader to carry
out.

9.4. Valuations and dual fans and graphs. Analogously to we can realize
V.. and V., as inverse limits of dual fans and graphs, respectively.

To an admissible compactification X of A2 we associate a dual fan A(X) with
integral affine structure Aff(X) ~ Div,(X). This is done exactly as in the local
case, replacing exceptional primes with primes at infinity. Inside the dual fan we
embed the dual graph A(X) using the integral affine function associated to the
divisor 7 Loe = ), biF; € Diveo(X). The dual graph is a tree.

The numerical invariants Ap and ag uniquely to homogeneous functions A and
a on the dual fan A(X ) of degree one and two, respectively and such that these
functions are affine on the dual graph. Then A and a give parametrizations of the
dual graph rooted in the vertex corresponding to L.,. We equip the dual graph
with the metric associated to the parametrization a: the length of a simplex o;; is
equal to 1/(b;bj). We could also (but will not) use A to define a metric on the dual
graph. This metric is the same as the one induced by the integral affine structure:
the length of the simplex o5 is m;;/(b;b;), where m;; = ged{b;, b;} is the multiplicity
of the segment.

Using monomial valuations we embed the dual fan as a subset |A(X)| of the
Berkovich affine plane. The image |A*(X)| of the punctured dual fan lies in V...
The preimage of V.. C V.. under the embedding |A*(X)| C V.. is exactly |A(X)].
In particular, a vertex o of the dual graph is identified with the corresponding
normalized valuation vg € V,,, defined by

vp = byt ordp  where bp := —ord (] £|). (9.5)

Note that vy, = ordy,_ = ord.
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We have a retraction rx : V,, — |A*(X)| that maps V., onto |A(X)|. The induced
maps
T:Voo—>@|A(X)| and r:VOO—H'&n]A*(Xﬂ (9.6)
X X

are homeomorphisms. The analogue of Lemma remains true and we have the
following analogue of Lemma [7.11]

Lemma 9.8. Ifv € V. and X is an admissible compactification of A%, then

(rxv)(¢) < v(9)

for every polynomial ¢ € R, with equality if the closure in X of the curve (¢ =0) C
A2 does not pass through the center of v on X.

The second homeomorphism in equips V. with an integral affine structure: a
function ¢ on V. is integral affine if it is of the form ¢ = @ xory, where px € Aff(X).

The first homeomorphism in induces a metric tree structure on V_, as well
as two parametrization

a:V, —[—o0,1] and A:V, — [2,0] (9.7)

of V., viewed as a tree rooted in ord,,. We extend A and « as homogeneous
functions on V_, of degrees one and two, respectively.

9.5. Potential theory. Since V., is a metric tree, we can do potential theory on
it, but just as in the case of the valuative tree at a closed point, we need to tweak
the general approach in The reason is again that one should view a function
on V., as the restriction of a homogeneous function on f)oo.

A first guideline is that functions of the form log ||, defined by@
log |2 (v) = —uv(|9M]) (9-8)

should be subharmonic on V.., for any linear system |9| on A2. In particular, the
function log |£| = 1 should be subharmonic (but not harmonic). A second guideline
is that the Laplacian should be closely related to the intersection product on divisors
at infinity.

9.5.1. Subharmonic functions and Laplacian on V.. As in we extend the
valuative tree V., to a slightly larger tree V. by connecting the root ord,, to a point
G using an interval of length one. Let A denote the Laplacian on V,,.

We define the class SH(V..) of subharmonic functions on V., as the set of restric-

tions to V., of functions ¢ € QSH(V,,) such that
©(G) = 2p(ords) and Ag = p — adg,
where p is a positive measure supported on V and a = pgvoo) > 0. In particular,
¢ is affine of slope —p(orde) on the segment [G, ordes[= V., \ V... We then define
Ap = p = (Ap)|y,. For example, if ¢ =1 on V,,, then p(G) = 2, Ap = dord,, — 0
and Ap = dopd, -
From this definition and the analysis in §2.5 one deduces:

2T [FJ04] the parametrization A is called thinness whereas —o is called skewness.
28As in & the notation reflects the fact that |- | := e™” is a seminorm on R.
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Proposition 9.9. Let ¢ € SH(V,,) and write p = Ap. Then:

(i) ¢ is decreasing in the partial ordering of V., rooted in ordee;

(ii) p(ordeo) = p(Vuo);
(ili) |Dgp| < p(Va) for all tangent directions ¥ in V.

As a consequence we have the estimate

a(v)p(orde) < ¢(v) < p(ords) (9.9)

for all v € V. Here a : V., — [—00,+1] is the parametrization in (9.7). It
is important to remark that a subharmonic function can take both positive and

negative values. In particular, is not so useful when a(v) < 0.
The exact sequence in (2.8]) shows that

A :SH(V,) = MT(V.), (9.10)
is a homeomorphism whose inverse is given by
p(v) = / (W Aords, v)dp(w). (9.11)

The compactness properties in carry over to the space SH(V..). In particular,
for any C' > 0, the set {¢ € SH(V..) | ¢(ords) < C} is compact. Further, if (¢;);
is a decreasing net in SH(V,.), and ¢ := lim¢;, then ¢ € SH(V,). Moreover, if
(pi)i is a family in SH(V,,) with sup; p(ords) < oo, then the upper semicontinuous
regularization of ¢ := sup, ¢; belongs to SH(V.,).

While the function —1 on V,, is not subharmonic, it is true that max{¢,r} is
subharmonic whenever ¢ € SH(V,,) and r € R.

9.5.2. Laplacian of integral affine functions. Any integral affine function ¢ on V. is
associated to a divisor at infinity Z € Div(X) for some admissible compactification
X of A2: the value of ¢ at a divisorial valuation ordg, is the coefficient ordg, (Z) of
E; in Z. Using the same computations as in the proof of Proposition [7.15] we show
that
i€l

where b; = —ordg, (|£]) > 1 and v; = b; ' ordp,. In particular, ¢ is subharmonic iff
Z is nef at infinity.

Recall that we have defined divisors F; € Diveo(X) such that (F; - E;) = 1 and
(E; - E;) = 0 for all j # i. The integral affine function ¢; on V. associated to
F; is subharmonic and satisfies Ap; = bidy,. In view of , this shows that
miny_ ¢; = @i(v;) = bja(v;). This implies

ap, = (F; - E;) = ordg, (E;) = ba(v;) = a(ordg,). (9.12)
Proposition 9.10. Let E be a divisor at infinity on some admissible compactifica-
tion X of A%, Let E € Diveo(X) be the associated element of the dual basis and

Vg = bEl ordg € V.. the associated normalized divisorial valuation. Then E is nef
at infinity and the following statements are equivalent:

(i) EV is nef;
(i) (E-E)>0;
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(iii) a(vg) > 0.

Proof. That E is nef at infinity is clear from the definition and has already been
observed. That (ii) is equivalent to (iii) is an immediate consequence of (9.12). If
E is nef, then (E - E) > 0, showing that (i) implies (ii). On the other hand, if
a(vg) > 0, then we have seen above that the minimum on V,, of the integral affine
function ¢ associated to F is attained at vy and is nonnegative. Thus E is effective.
Being nef at infinity and effective, £ must be nef, proving that (ii) implies (i). O

9.5.3. Subharmonic functions from linear systems. Let |9 be a nonempty linear
system of affine curves. We claim that the function log |91, defined by is
subharmonic on V.. To see this, note that log|9t| = maxlog |¢p|, where ¢ ranges
over polynomials defining the curves in |9|. The claim therefore follows from

Exercise 9.11. If ¢ € R is an irreducible polynomial, show that log |¢| is subhar-
monic on V., and that

Alog || = mjd,
j=1

where v, 1 < j < n are the curve valuations associated to the all the local branches
Cj of {¢ = 0} at infinity and where m; = (C} - L) is the local intersection number
of C; with the line at infinity in P2

Example 9.12. Fix affine coordinates (z1, z2) on A? and let 9 C R be the vector
space spanned by z; Then log ||(v) = max{—wv(z1),0} and Alog|M| is a Dirac
mass at the monomial valuation with v(z1) =0, v(z2) = —1.

Example 9.13. Fix affine coordinates (z1,z2) on A? and let 91 C R be the
vector space spanned by z1ze and the constant function 1. Then log|M|(v) =
max{—(v(z1) +v(z2),0} and Alog [IM| = 0y_, , + v, _,, Where vy, 4, is the monomial
valuation with weights vy, 1, (%) =t;, 1 =1,2.

Proposition 9.14. Let |9 be a linear system of affine curves on A?. Then the
following conditions are equivalent:

(i) the base locus of |M| on A2 contains no curves;
(ii) the function log|M| is bounded on V., ;
(iii) the measure Alog|M| on V., is supported at divisorial valuations.

Linear systems |91 satisfying these equivalent conditions are natural analogs of
primary ideals a C R in the local setting.

Sketch of proof. That (iii) implies (ii) follows from (9.11)). If the base locus of |90
contains an affine curve C, let v € V be a curve valuation associated to one of the
branches at infinity of C. Then log|9M|(v) = —v(¢) = —oo so (ii) implies (i).
Finally, let us prove that (i) implies (iii). Suppose the base locus on |9t on A2
contains no curves. Then we can pick an admissible compactification of A2 such
that the strict transform of |9t| to X has no base points at infinity. In this case one
shows that Alog|9| is an atomic measure supported on the divisorial valuations
associated to some of the primes of X at infinity. O
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In general, it seems very hard to characterize the measures on V. appearing
in (iii). Notice that if Alog |91| is a Dirac mass at a divisorial valuation v then a(v) >
0, as follows from @ . There are also sufficient conditions: using the techniques in
the proof of Theorem [0.18 one can show that if p is an atomic measure with rational
coefficients supported on divisorial valuations in the tight tree V. (see then
there exists a linear system |91| such that log|9Mt| > 0 and Alog || = np for some
integer n > 1.

9.6. Intrinsic description of tree structure on V.. We can try to describe the
tree structure on V., ~ lim |A(X)| intrinsically, viewing the elements of V., purely
as semivaluations on the ring R. This is more complicated than in the case of the
valuative tree at a closed point (see §7.9). However, the partial ordering can be

characterized essentially as expected:

Proposition 9.15. If w,v € V., then the following are equivalent:
(i) v < w in the partial ordering induced by V., ~ Jim |A(X)];
(i1) v(¢) < w(ep) for all polynomials ¢ € R;
(iii) v(|9M]) < w(|DM]) for all free linear systems |IM| on AZ.

Proof. The implication (i) = (ii) follows from the subharmonicity of log |¢| to-
gether with Proposition (i). The implication (ii) == (iii) is obvious. It remains
to prove (iii) = (i).

Suppose v £ w in the partial ordering on V., ~ lim |A(X)]. We need to find a
free linear system |9| on A2 such that v(|9|) > w(|9MN]). First assume that v and
w are quasimonomial and pick an admissible compactification X of A? such that
v,w € |A(X)|. Let E;, i € I, be the primes of X at infinity. One of these primes
is Loo and there exists another prime (not necessarily unique) E; such that v; > v.
Fix integers r, s with 1 < r < s and define the divisor Z € Divy(X) by

Z = ZE]- + ’I“Ei + sLoo.
jel
We claim that Z is an ample divisor on X. To prove this, it suffices, by the Nakai-
Moishezon criterion, to show that (Z-Z) > 0, (Z-E;) > O0forall j € I and (Z-C') > 0
whenever C is the closure in X of a curve {¢ =0} C A%

First, by the definition of Ej it follows that (Z - E;) > 1 for all j. Second, we
have (Lo - C) = deg ¢ and (E; - C) = —ordg, (¢) > a(v;) deg ¢ for all j € I in view
of (9.9), so that (Z-C) > 0for 1 <r < s. Third, since (Leo - Loo) = 1, a similar
argument shows that (Z-2) >0 for 1 <r < s.

Since Z is ample, there exists an integer n > 1 such that the line bundle Ox (nZ)
is base point free. In particular, the corresponding linear system || := |Ox(nZ)]
is free on A2. Now, the integral affine function on |A(X)| induced by L, is the
constant function +1. Moreover, the integral affine function on |A(X)| induced
by E; is the function ¢; = ba(- Nords, Vi) Since v; > v and v € w, this implies
¢i(v) < pi(w). For r > 1 this translates into v(|9]) > w(|9MN]) as desired.

Finally, if v and w are general semivaluations in V., with v £ w, then we can pick
an admissible compactification X of A2 such that rx(v) £ rx(w). By the previous
construction there exists a free linear system |90| on A2 such that ry(v)(|9]) >
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rx(w)(|9%]). But since the linear system |9 was free also on X, it follows that
v(IM|) = rx (v)(|9M]) and w(|9M]) = rx(w)(|9N]). This concludes the proof. O

The following result is a partial analogue of Corollary and characterizes
integral affine functions on V.

Proposition 9.16. For any integral affine function ¢ on V.. there exist free linear
systems || and [Ms| on A% and an integer n > 1 such that ¢ = 1(log || —
log M)

Proof. Pick an admissible compactification X of A? such that ¢ is associated to
divisor Z € Divyo(X). We may write Z = Z; — Zg, where Z; € Divy(X) is ample.
For a suitable n > 1, nZ; and nZy are very ample, and in particular base point free.

We can then take || = |Ox(nZ;)|, i =1, 2. O
It seems harder to describe the parametrization a. While implies
a(v) > sup v(9)

~ $ER\O orde (¢)

for any v, it is doubtful that equality holds in general. One can show that equality
does hold when v is a quasimonomial valuation in the tight tree V., to be defined
shortly.

9.7. The tight tree at infinity. For the study of polynomial dynamics in the
full valuative tree at infinity is too large. Here we will introduce a very interesting
and useful subtree.

Definition 9.17. The tight tree at infinity is the subset V. C V. consisting of
semivaluations v for which A(v) <0 < «a(v).

Since « is decreasing and A is increasing in the partial ordering on V., it is clear
that V. is a subtree of V.. Similarly, o (resp. A) is lower semicontinuous (resp.
upper semicontinuous) on V,,, which implies that V/_ is a closed subset of V... It is
then easy to see that V/_ is a metric tree in the sense of

Similarly, we define V/_ as the set of semivaluations v € V. satisfying A(v) < 0 <
a(v). Thus Véo = RV, The subset f)(’)o C A%, does not depend on the choice of
embedding A? < P2, In particular, it is invariant under polynomial automorphisms
of A%, Further, ]A/éo is nowhere dense as it contains no curve semivaluations. Its
closure is the union of itself and the trivial valuation trivz.

9.7.1. Monomialization. The next, very important result characterizes some of the
ends of the tree V/_.

Theorem 9.18. Let ordp be a divisorial valuation centered at infinity such that
A(ordg) < 0= (F-E). Then A(ordg) = —1 and there exist coordinates (z1,z2) on
A? in which ordg is monomial with ordg(z1) = —1 and ordg(z2) = 0.

This is proved in [FJO7, Theorem A.7]. Here we provide an alternative, more
geometric proof. This proof uses the Line Embedding Theorem and is the reason
why we work in characteristic zero throughout (It is quite possible, however, that
Theorem is true also over an algebraically closed field of positive characteristic).
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Proof. Let X be an admissible compactification of A% on which F is a prime at
infinity. The divisor £ € Diveo(X) is nef at infinity. Tt is also effective, and hence
nef, since (E - E) > 0; see Proposition

Let Kx be the canonical class of X. We have (E - Kx) = A(ordg) — 1 < 0. By
the Hirzebruch-Riemann-Roch Theorem we have

X(Ox(E) = X(Ox) + 3 (B B) ~ (B Kx)) > x(Ox) = 1.

Serre duality yields h?(Ox) = h°(Ox(Kx — E)) = 0, so since h'(Ox(E)) > 0 we
conclude that h%(Ox(E)) > 2. Thus there exists a nonconstant polynomial ¢ € R
that defines a global section of (’)X(E’). Since F is effective, ¢ + t is also a global
section for any t € K.

Let C; be the closure in X of the affine curve (¢ +t = 0) C A2 For any t
we have Cy = E in Pic(X), so (Cy - E) = 1 and (Cy - F) = 0 for all primes F at
infinity different from E. This implies that C; intersects X \ A? at a unique point
& € E; this point is furthermore free on E, C; is smooth at &, and the intersection
is transverse. Since ordg(¢) = (E - E) = 0, the image of the map ¢ — & is Zariski
dense in E.

For generic ¢, the affine curve C;NA? = (¢+t = 0) is smooth, hence C; is smooth
for these t. By adjunction, C; is rational. In particular, C; N A? is a smooth curve
with one place at infinity.

The Line Embedding Theorem by Abhyankar-Moh and Suzuki [AMT73] [Suz74)
now shows that there exist coordinates (21, z2) on A? such that ¢ +t = z5. We use
these coordinates to define a compactification ¥ ~ P! x P! of A2, Let F be the
irreducible compactification of Y\ A? that intersects the strict transform of each
curve zp = const. Then the birational map ¥ --» X induced by the identity on A2
must map F onto E. It follows that ordg = ordp. Now ordy is monomial in (z1, z2)
with ordp(z1) = —1 and ordp(z2) = 0. Furthermore, the 2-form dz; A dzs has a pole
of order 2 along F' on Y so A(ordp) = —1. This completes the proof. O

9.7.2. Tight compactifications. We say that an admissible compactification X of A2
is tight if |A(X)| C VL. Let E;, i € I be the primes of X at infinity. Since the
parametrization « and the log discrepancy A are both affine on the simplices of
|IA(X)], X is tight iff A(v;)) < 0 < «a(v;) for all ¢ € I. In particular, this implies
(E; - E;) > 0, so the the divisor F; € Dive(X) is nef for all i € I. Since every
divisor in Dive,(X) that is nef at infinity is a positive linear combination of the Ej,
we conclude

Proposition 9.19. If X is a tight compactification of A?, then the nef cone of X
18 simplicial.

See [CPRO2, [CPRO5, [GMO04] [GM05, Mon(7] for other cases when the nef cone is
known to be simplicial. For a general admissible compactification of A? one would,
however, expect the nef cone to be rather complicated.

Lemma 9.20. Let X be a tight compactification of A? and & a closed point of
X\ A2, Let X' be the admissible compactification of A? obtained by blowing up &.
Then X' is tight unless £ is a free point on a prime E for which ap =0 or Ag = 0.
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Proof. If ¢ is a satellite point, then X’ is tight since |A(X")| = |A(X)].

Now suppose £ is a free point, belonging to a unique prime on E. Let E’ be the
prime of X’ resulting from blowing up &. Then X' is tight iff ap := (E'- E') >
0 > Ag/. But it follows from that Agpr = Agp +1 and agr = ag — 1. Hence
ap > 0> Ap unless ap = 0 or Ag = 0. The proof is complete. O

Corollary 9.21. If X is a tight compactification of A% and v € f/(’)o s a divisorial
valuation, then there exists a tight compactification X' dominating X such that v €
|A*(XT)].

Proof. In the proof we shall repeatedly use the analogues at infinity of the results
in in particular Lemma [7.12

We may assume v = ordg for some prime E at infinity. By Lemma the
valuation w := rx(v) is divisorial and b(w) divides b(v). We argue by induction on
the integer b(v)/b(w).

By the same lemma we can find an admissible compactification Xg dominating
X such that |A*(Xy)| = |A*(X)|, and w is contained in a one-dimensional cone in
|A*(Xy)|. Then the center of v on Xj is a free point &. Let X; be the blowup of
Xo in &. Note that since v # w we have a(w) > a(v) > 0 > A(v) > A(w), so by
Lemma the compactification X is tight.

If v € |A*(X)| then we are done. Otherwise, set v; = rx, (v). If the center &
of v on Xj is a satellite point, then it follows from Lemma that b(v1) > b(vo).
If b(w) = b(v), this is impossible and if b(w) < b(v), we are done by the inductive
hypothesis.

The remaining case is when & is a free point on FE7, the preimage of £ under
the blowup map. We continue this procedure: assuming that the center of v on
X is a free point &;, we let X;; be the blowup of X; in {;. By we have
Ag, = Ag, +n. But Ag, <0 so the procedure must stop after finitely many steps.
When it stops, we either have v € |A*(X,,)| or the center of v on X, is a satellite
point. In both cases the proof is complete in view of what precedes. O

Corollary 9.22. If X is a tight compactification of A? and f : A2 — A? is a
polynomial automorphism, then there exists a tight compactification X' such that
the birational map X' --+ X induced by f is regular.

Proof. Let E;, i € I be the primes of X at infinity. Now f~! maps the divisorial
valuations v; := ordg, to divisorial valuations v; = ordy,. We have v; € V!, so after
a repeated application of Corollarywe find an admissible compactification X’ of
A? such that v} € |A*(X")| for all i € I. But then it is easy to check that f : X’ — X
is regular. O

Corollary 9.23. Any two tight compactifications can be dominated by a third, so
the set of tight compactifications is a directed set. Furthermore, the retraction maps
rx : Voo — |A*(X)| give rise to homeomorphisms

Ve S 1im |AY(X)] and Vi, 5 lim|A(X)),
X X

where X ranges over all tight compactifications of AZ?.
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9.8. Other ground fields. Throughout the section we assumed that the ground
field was algebraically closed and of characteristic zero. Let us briefly discuss what
happens when one or more of these assumptions are not satisfied.

First suppose K is algebraically closed but of characteristic p > 0. Everything
in goes through, except for the proof of the monomialization theorem, Theo-
rem which relies on the Line Embedding Theorem. On the other hand, it
is quite possible that the proof of Theorem can be modified to work also in
characteristic p > 0.

Now suppose K is not algebraically closed. There are two possibilities for studying
the set of semivaluations in A%erk centered at infinity. One way is to pass to the
algebraic closure K*. Let G = Gal(K%/K) be the Galois group. Using general
theory we have an identification A3_, (K) ~ A%_, (K®)/G and G preserves the open
subset V..(K®) of semivaluations centered at infinity. Any embedding A%(K) —
P2(K) induces an embedding A%(K%) < P?(K%) and allows us to define subsets
Vo(K) C Vo(K) and Vo (K%) C V..(K%). Each g € G maps V..(K®) into itself
and preserves the partial ordering parametrizations as well as the parametrizations
a and A and the multiplicity m. Therefore, the quotient V.. (K) ~ V. (K%)/G also
is naturally a tree that we equip with a metric that takes into account the degree of
the map V. (K?%) — V(K).

Alternatively, we can obtain the metric tree structure directly from the dual
graphs of the admissible compactifications by keeping track of the residue fields of
the closed points being blown up.

9.9. Notes and further references. The valuative tree at infinity was introduced
in [EJO7] for the purposes of studying the dynamics at infinity of polynomial map-
pings of C? (see the next section). It was not explicitly identified as a subset of the
Berkovich affine plane over a trivially valued field.

In [FJ07], the tree structure of V., was deduced by looking at the center on P2 of a
semivaluation in V... Given a closed point ¢ € P2, the semivaluations having center
at £ form a tree (essentially the valuative tree at £ but normalized by v(Loo) = 1).
By gluing these trees together along ord,, we see that V. itself is a tree. The
geometric approach here, using admissible compactifications, seems more canonical
and amenable to generalization to higher dimensions.

Just as with the valuative tree at a point, I have allowed myself to change the
notation from [FJO7]. Specifically, the valuative tree at infinity is (regrettably)
denoted Vy and the tight tree at infinity is denoted V;. The notation V., and V.
seems more natural. Further, the valuation ords, is denoted — deg in [FJ07].

The tight tree at infinity V. was introduced in [FJ07] and tight compactifica-
tions in [FJ11]. They are both very interesting notions. The tight tree was stud-
ied in [FJO7] using key polynomials, more or less in the spirit of Abhyankar and
Moh [AMT73]. While key polynomials are interesting, they are notationally cumber-
some as they contain a lot of combinatorial information and they depend on a choice
of coordinates, something that I have striven to avoid here.

As indicated in the proof of Theorem [9.18] it is possible to study the tight tree at
infinity using the basic theory for compact surfaces. In particular, while the proof of
the structure result for V/_ in [EJ07] used the Line Embedding Theorem in a crucial
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way (just as in Theorem one can use the framework of tight compactifications
together with surface theory to give a proof of the Line Embedding Theorem. (It
should be mentioned, however, that by now there are quite a few proofs of the line
embedding theorem.)

One can also prove Jung’s theorem, on the structure Aut(C?) using the tight tree
at infinity. It would be interesting to see if there is a higher-dimensional version
of the tight tree at infinity, and if this space could be used to shine some light on
the wild automorphisms of C3, the existence of which was proved by Shestakov and
Umirbaev in [SU04].

The log discrepancy used here is a slight variation of the standard notion in
algebraic geometry (see [JMI10]) but has the advantage of not depending on the
choice of compactification. If we fix an embedding A? < P? and Ap2 denotes the
usual log discrepancy on P2, then we have A(v) = Ap2(v) — 3v(|£]).
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10. PLANE POLYNOMIAL DYNAMICS AT INFINITY

We now come to the third type of dynamics on Berkovich spaces: the dynamics at
infinity of polynomial mappings of A2. The study will be modeled on the dynamics
near a (closed) fixed point as described in §8 We will refer to the latter situation
as the local case.

10.1. Setup. Let K is an algebraically closed field of characteristic zero, equipped
with the trivial valuation. (See for the case of other ground fields.) Further,
R and F are the coordinate ring and function field of the affine plane A% over K.
Recall that the Berkovich affine plane A%erk is the set of semivaluations on R that
restrict to the trivial valuation on K.

10.2. Definitions and results. We keep the notation from §9)and consider a poly-
nomial mapping f : A? — A2, which we assume to be dominant to avoid degenerate
cases. Given an embedding A? — P2, the degree deg f is defined as the degree of
the curve deg f*¢ for a general line ¢ € |£|.
The degree growth sequence (deg f™),>0 is submultiplicative,
deg f"H™ < deg f" - deg ™,
and so the limit
doo = lim (deg f™)'/™

n—oo
is well defined. Since f is assumed dominant, deg f™ > 1 for all n, hence do, > 1.
Exercise 10.1. Verify these statements!

Example 10.2. If f(z1,22) = (22,2122), then deg f™ is the (n + 1)th Fibonacci
number and do = 3(v/5 + 1) is the golden mean.

Example 10.3. For f(z1,22) = (27, 2123), deg f" = (n + 2)2" ! and d = 2.
Exercise 10.4. Compute dn, for a skew product f(z1,22) = (¢(21),¥(z1, 22)).
Here is the result that we are aiming for.
Theorem C. The number de = doo(f) is a quadratic integer: there exist a,b € Z
such that d>, = ads +b. Moreover, we are in exactly one of the following two cases:
(a) there exists C' > 0 such that diy < deg f™* < CdZ, for all n;
(b) deg f™* ~nd% asn — co.

Moreover, case (b) occurs iff f, after conjugation by a suitable polynomial automor-
phism of A2, is a skew product of the form

Fz1,22) = (6(21), ¥(21) 25 + Oz, (25> 7)),
where deg ¢ = d and deg > 0.

The behavior of the degree growth sequence does not depend in an essential way
on our choice of embedding A% < P2. To see this, fix such an embedding, let g :
A? 5 A2 be a polynomial automorphism and set f := ¢g~!fg. Then f* = ¢g~!f"g,
" =gfrg ! and so

1 < deg f”

~1
deggdeg g1 ~ deg fn < deggdegy
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for all n > 1. As a consequence, when proving Theorem C, we may conjugate by
polynomial automorphisms of A2, if necessary.

10.3. Induced action. The strategy for proving Theorems C is superficially very
similar to the local case explored in Recall that f extends to a map

A2 2
f . ABerk - ABerk7

given by F(v)(0) = v(f*0).

We would like to study the dynamics of f at infinity. For any admissible com-
pactification X of A2, f extends to a rational map f : X --» P2. Using resolution
of singularities we can find X such that f : X — P? is a morphism. There are then
two cases: either f(E) C Lo, for every prime E of X at infinity, or there exists a
prime E such that f(E) N A% # (. The first case happens iff f is proper.

Recall that V.. denotes the set of semivaluations in A2Berk having center at infinity.
It easily follows that f is proper iff f (f/oo) C V.. Properness is the analogue of
finiteness in the local case.

10.3.1. The proper case. When f is proper, if induces a selfmap

f: ]A}OO — ]A/oo.
Now V., is the pointed cone over the valuative tree at infinity V., whose elements
are normalized by the condition v(|£]) = —1. As in the local case, we can break the
action of f on V_ into two parts: the induced dynamics

fo: Voo = Vo,

and a multiplier d(f,-) : V., — R4. Here

d(f,v) = —v(f|€]),
Further, f, is defined by
_ f)
d(f,v)

The break-up of the action is compatible with the dynamics in the sense that (f™)e =
(fo)™ and

Jov

n—1
d(f",v) = H d(f,v;), where v; = flv.
i=0

Recall that orde, € V. is the valuation given by ord.(¢) = —deg(¢) for any
polynomial ¢ € R. We then have

n—1
deg f" =d(f",ords) = H d(f,v;), where v; = f!ords.
i=0

Now v; > ordy on R, so it follows that deg f™ < (deg f)" as we already knew.
The multiplicative cocycle d(f,-) is the main tool for studying the submultiplicative
sequence (deg f™)n>0.
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10.3.2. The non-proper case. When f : A?> — A? is dominant but not necessarily
proper, there exists at least one divisorial valuation v € f)oo - A%erk for which
flv) € A%, \V... We can view f k Ve - V. as a partially defined map. Its
domain of definition is the open set Dy C V., consisting of semivaluations for which
there exists an affine function L with v(f*L) < 0. Equivalently, if we as before
define d(f,v) = —v(f*|£]), then Dy = {d(f,-) > 0}. On D; := D; NV, we define
fe as before, namely fov = f(v)/d(f,v).

Notice that Dy = ﬂ?z_ol ‘D ¢, so the domain of definition of fJ' decreases as
n — 00. One may even wonder whether the intersection (), D» is empty. However,
a moment’s reflection reveals that ord., belongs to this intersection. More generally,
it is not hard to see that the set of valuations v € V_, for which v(¢) < 0 for all
nonconstant polynomials ¢, is a subtree of V,, contained in D and invariant under
f, for any dominant polynomial mapping f.

For reasons that will become apparent later, we will in fact study the dynamics
on the even smaller subtree, namely the tight subtree V/_ C V_, defined in We
shall see shortly that f4V/  C V' | so we have a natural induced dynamical system
on V/_ for any dominant polynomial mapping f.

10.4. Invariance of the tight tree V' . Theorem B, the local counterpart to
Theorem C, follows easily under the additional assumption (not always satisfied)
that there exists a quasimonomial valuation v € Vy such that fev = v. Indeed, such
a valuation satisfies

ordg < v < av,

where a = a(v) < co. If f(v) = cv, then this gives ¢ = co and a leo < e(f7) < .
Moreover, the inclusion cooI'y = I'y(,y C I'y implies that coo is a quadratic integer.
See §8.5]

In the affine case, the situation is more complicated. We cannot just take any
quasimonomial fixed point v for f,. For a concrete example, consider the product
map f(21,22) = (23, 23) and let v be the monomial valuation with weights v(z1) = 0,
v(z2) = —1. Then f(v) = 2v, whereas dos = 3. The problem here is that while
v > ordee, the reverse inequality v < Cordy, does not hold for any constant C' > 0.

The way around this problem is to use the tight tree V' introduced in §9.7
Indeed, if v € V/_ is quasimonomial, then either there exists & = a(v) > 0 such that
alordss < v < ords on R, or v is monomial in suitable coordinates on A2, see
Theorem As the example above shows, the latter case still has to be treated
with some care.

We start by showing that the tight tree is invariant.

Proposition 10.5. For any dominant polynomial mapping f: A% = A? we have
F(VL) C VL. In particular, Vi, C Dy and fJVi, C V..

Sketch of proof. It suffices to prove that if v € V/_ is divisorial, then f(v) € V...
After rescaling, we may assume v = ordg. Arguing using numerical invariants as
in we show that f(v) is divisorial, of the form f(v) = rordg for some prime
divisor £’ on A? (a priori not necessarily at infinity).
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We claim that the formula
A(f(v)) = A(v) +v(Jf) (10.1)

holds, where Jf denotes the Jacobian determinant of f. Note that the assumption
a(v) > 0 implies v(Jf) < 0 by (9.9). Together with the assumption A(v) < 0, we
thus see that A(f(v)) < 0. In particular, the 2-form w on A? has a pole along E’,
which implies that E' must be a prime at infinity.

Hence f(v) € V. and A(f(v)) < 0. It remains to prove that a(f(v)) > 0. Let
X’ be an admissible compactification of A2 in which E’ is a prime at infinity and
pick another compactification X of A? such that the induced map f : X — X' is
regular. The divisors £ € Diveo(X) and E' € Dive(X') are both nef at infinity
and satisfies f,E = rE'. Since (E - E) = a(v) > 0, E is effective (and hence
nef). As a consequence, E' = r~1f,E is effective and hence nef. In particular,
a(f(v)) = r?(E'- E') > 0, which completes the proof.

Finally we prove (10.1). Write Ag = A(ordg) and Ags = A(ordg). Recall that
w is a nonvanishing 2-form on A%. Near E’ it has a zero of order Ap — 1. From
the chain rule, and the fact that f(ordg) = r ordgy, it follows that f*w has a zero of
order r—1+47r(Ag —1) = rAp—1 along E. On the other hand we have f*w = Jf -w
in A? and the right hand side vanishes to order ordg(Jf) + Ag — 1 along E. This
concludes the proof. O

10.5. Some lemmas. Before embarking on the proof of Theorem C, let us record
some useful auxiliary results.

Lemma 10.6. Let ¢ € R be a polynomial, X an admissible compactification of A2
and E a prime of X at infinity. Let Cx be the closure in X of the curve {¢ = 0} in
A? and assume that Cx intersects E. Then degp > bg, where bg := —ordg(|£]).

Proof. This follows from elementary intersection theory. Let m : X — P2 be the
birational morphism induced by the identity on A% and let Cp2 be the closure in P2
of the curve {¢ = 0} C A% Then ordg(n*Ls) = bp. Assuming that C'x intersects
E, we get

bp <bp(Cx - E) < (Cx - 7" Le) = (Cp2 - Loo) = degp,

where the first equality follows from the projection formula and the second from
Bézout’s Theorem. (]

Applying Lemma and Lemma[9.8/to ¢ = f*L, for L a general affine function,

we obtain

Corollary 10.7. Let f : A2 — A? be a dominant polynomial mapping, X an
admissible compactification of A% and E a prime of X at infinity. Assume that
deg(f) < bg. Then d(f,v) =d(f,vg) for allv € V., such that rx(v) =vg.

10.6. Proof of Theorem C. If we were to follow the proof in the local case, we
would pick a log resolution at infinity of the linear system f*|£| on P2. By this we
mean an admissible compactification X of A? such that the strict transform of f*|£|
to X has no base points on X \ A2. Such an admissible compactification exists by
resolution of singularities. At least when f is proper, we get a well defined selfmap
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rx fo 1 |A(X)| — |A(X)|. However, a fixed point v of this map does not have an
immediate bearing on Theorem C. Indeed, we have seen in that even when v is
actually fixed by fe, so that f(v) = dv for some d > 0, it may happen that d < de.

One way around this problem would be to ensure that the compactification X
is tight, in the sense of Unfortunately, it is not always possible, even for f
proper, to find a tight X that defines a log resolution of infinity of f*|£|.

Instead we use a recursive procedure. The proof below in fact works also when f
is merely dominant, and not necessarily proper. Before starting the procedure, let
us write down a few cases where we actually obtain a proof of Theorem C.

Lemma 10.8. Let X be a tight compactification of A% with associated retraction
rx : Voo — |A(X)|. Consider a fixed point v € |A(X)| of the induced selfmap rx fo :
|IA(X)| = |A(X)|. Assume that we are in one of the following three situations:

(a) fev =v and a(v) > 0;
(b) fev # v, a(v) >0, v is divisorial and b(v) > deg(f);
(¢) a(v) =0 and (rx fo)"w — v as n — oo for w € |A(X)]| close to v.

Then Theorem C holds.

Proof. Case (a) is treated as in the local situation. Since o := «(v) > 0 we have
a1y <ords < von R. Write f(v) = dv, where d = d(f,v) > 0. Then

deg f" = —ordeo (f™|€]) < —a to(f™|L]) = —a~1d"v(|L]) = a~1d"

Similarly, deg f™ > d"™. This proves statement (a) of Theorem C (and that d = d).
The fact that d = d, is a quadratic integers is proved exactly as in the local case,
using value groups. Indeed, one obtains dI', C I',. Since I'y ~Z or 'y ~Z ® Z, d
must be a quadratic integer.

Next we turn to case (b). By the analogue of Lemma|7.12| we may assume that the
center of fev on X is a free point £ of E. By Corollary we have d(f,") =d :=
d(f,v) on U(§). As in the local case, this implies that foU(§) C U(§), d(f™,v) = d",
d" < deg(f™) < a~'d", so that we are in case (a) of Theorem C, with ds, = d. The
fact that d = d is a quadratic integer follows from dI', C I'y, ~ Z. In fact, d € N.

Finally we consider case (c). Recall that the statements of Theorem C are invari-
ant under conjugation by polynomial automorphisms. Since X is tight and a(v) = 0,
we may by Theorem choose coordinates (z1,22) on A? in which v is monomial
with v(z1) = 0, v(z2) = —1. Since v is an end in the fe-invariant tree V. and
rx fov = v, we must have fov = v. In particular, fev(z1) = 0, which implies that f
is a skew product of the form

fz1,22) = (¢(21), ¥(21)28 + Oz, (257 1)),

where d > 1 and ¢, are nonzero polynomials. The valuations in |A(X)| close
to v must also be monomial valuations, of the form wy, with w(z;) = —t and
we(z2) = —1, where 0 <t < 1. We see that f(w:)(z1) = —tdeg¢ and f(w:)(z2) =
—(d+tdegq). When t is irrational, few; must be monomial, of the form wy, where
th =t ffgggq. By continuity, this relationship must hold for all real ¢, 0 < t < 1.
By our assumptions, ¢’ < t for 0 < ¢ < 1. This implies that either degp < d or that

degp = d, degq > 0. It is then clear that do, = d is an integer, proving the first
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statement in Theorem C. Finally, from a direct computation, that we leave as an
exercise to the reader, it follows that deg f™ ~ nd". O

The main case not handled by Lemma is the case (b) but without the as-
sumption that by > deg f. In this case we need to blow up further.

Lemma 10.9. Let X be a tight compactification of A% with associated retraction rx :
V.. = |A(X)|. Assume that v = vg = by' ordg € |A(X)]| is a divisorial valuation
such that rx fevp = vE but fevr # vg. Then there exists a tight compactification X'
of A? dominating X and a valuation v € |A(X")|\ |A(X)| such that rx fov' = '
and such that we are in one of the following cases:

(a) fov' =" and a(v') > 0;

(b) fev' # ', v is divisorial, a(v') > 0 and b(v') > b(v);

(¢) a(v') =0 and (rx: fo)"w —v" asn — oo for w € |A(X)]| close to v'.

It is clear that repeated application of Lemma and Lemma leads to a
proof of Theorem C. The only thing remaining is to prove Lemma [10.9

Proof. Write vg = v. By (the analogue at infinity of) Lemma we may find an
admissible compactification Xy dominating X, such that |Ag| := |A(Xo)| = |A(X)],
ro := rx, = rx and such that the center of v9 = v on Xy is a prime Ey of Xy
at infinity. Since feug # vg, the center of fevy must be a free point £, € Fy. Let
X1 be the blowup of Xy at &, Fp the exceptional divisor and v; = bl_1 ordg, the
associated divisorial valuation. Note that b; = by and a(v1) = a(vg) — by by (9-4).
In particular, X is still tight. Write |A;| = |A(X1)] and 1 = rx,. We have
r1feto € |A1] \ |Ag| =]vo, v1]. Thus there are two cases:

(1) there exists a fixed point v" € Jvg, v1] for 71 fe;

(2) (rifo)™ = v1 = r1fovy as n — 00;
Let us first look at case (1). Note that a(v') > a(vy) > 0. If fov' =/, then we are
in situation (a) and the proof is complete. Hence we may assume that fev' # v'.
Then v’ is necessarily divisorial. By Lemma we have b(v') > by = b(v). We are
therefore in situation (b), so the proof is complete in this case.

It remains to consider case (2). If a(vy) = 0, then we set X’ = X1, v/ = v; and
we are in situation (c). We can therefore assume that a(vi) > 0. If fov1 = vy, then
we set X' = X3, v/ = v; and we are in situation (a). If fev1 # v1, so that the center
of fev1 is a free point & € Ep, then we can repeat the procedure above. Let Xy be
the blowup of X; at &, let > be the exceptional divisor and ve = by 1 ordg, the
associated divisorial valuation. We have by = b = b and a(v) = a(vy) — b~ =
a(v) —2b~1 by (9.4).

Continuing the procedure above must eventually lead us to the situation in (a)
or (c). Indeed, all of our compactifications are tight, so in particular all valuations
vy, satisfy a(v,) > 0. But a(v,) = a(v) — nb=2. This completes the proof. O

10.7. Further properties. The presentation above was essentially optimized to

give a reasonably short proof of Theorem C. While it is beyond the scope of these

notes to present the details, let us briefly summarize some further results from [F.JO7,

FJ11]. Let f: A2 — A2 be a polynomial mapping and write f also for its extension
A2 2

f : ABerk - ABerk'
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To begin, f interacts well with the classification of points: if v € V. and flv) € Vo
then f(v) is of the same type as v (curve, divisorial, irrational or infinitely singular).
This is proved using numerical invariants in the same way as in

At least when f is proper the induced map fo : V., — V. is continuous, finite
and open. This follows from general results on Berkovich spaces, just as in Propo-
sition As a consequence, the general results on tree maps in apply.

In [FJO7, [FJ11], the existence of an eigenvaluation was emphasized. This is a
valuation v € V,, such that f(v) = dsv. One can show from general tree arguments
that there must exist such a valuation in the tight tree V.. The proof of Theorem C
gives an alternative construction of an eigenvaluation in V/_.

Using a lot more work, the global dynamics on V. is described in [FJ11]. Namely,
the set 7; of eigenvaluations in V. is either a singleton or a closed interval. (The
“typical” case is that of a singleton.) In both cases we have fl'v — Ty as n — oo,
for all but at most one v € V.. This means that the dynamics on the tight tree V,,
is globally contracting, as opposed to a rational map on the Berkovich projective
line, which is globally expanding.

Using the dynamics on V., the cocycle d(f™,v) can be very well described: for any
v € V. the sequence (d(f™,v))n>0 satisfies an integral recursion relation. Applying
this to v = ordy, we see that the degree growth sequence (deg(f™)) satisfies such a
recursion relation.

As explained in the introduction, one motivation for the results in this section
comes from polynomial mappings of the complex plane C?, and more precisely
understanding the rate at which orbits are attracted to infinity. Let us give one
instance of what can be proved. Suppose f : C?> — C? is a dominant polynomial
mapping and assume that f has “low topological degree” in the sense that the
asymptotic degree do(f) is strictly larger than the topological degree of f, i.e. the
number of preimages of a typical point. In this case, we showed in [FJ11] that the
functions .

aw log™ [/
converge uniformly on compact subsets of C? to a plurisubharmonic function G+
called the Green function of f. Here ||-|| is any norm on C? and we write log™ || || :=
max{log| - |,0}. This Green function is important for understanding the ergodic
properties of f, as explored by Diller, Dujardin and Guedj [DDGI], DDG2, [DDG3].

10.8. Other ground fields. Throughout the section we assumed that the ground
field was algebraically closed and of characteristic zero. Let us briefly discuss what
happens when one or more of these assumptions are not satisfied.

First, the assumption on the characteristic was only used for the monomializa-
tion result Theorem Granted this theorem, everything in holds over any
algebraically closed field.

Second, the assumption above that K be algebraically closed is unimportant for
Theorem C, at least for statements (a) and (b). Indeed, if K is the algebraic closure
of K, then any polynomial mapping f : A%(K) — A?(K) induces a polynomial
mapping f : A2(K®) — A%(K*%). Further, an embedding A?(K) < P2(K) induces
an embedding A?(K?%) — P?(K%) and the degree of f" is then independent of
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whether we work over K or K. Thus statements (a) and (b) of Theorem C trivially
follow from their counterparts over an algebraically closed field.

10.9. Notes and further references. The material in this section is adapted from
the papers [FJO7, [F.J11] joint with Charles Favre, but with a few changes in the
presentation. In order to keep these lecture notes reasonably coherent, I have also
changed some of the notation from the original papers. I have also emphasized a
geometric approach that has some hope of being applicable in higher dimensions
and the presentation is streamlined to give a reasonably quick proof of Theorem C.

Instead of working on valuation space, it is possible to consider the induced dy-
namics on divisors on the Riemann-Zariski space. By this we mean the data of one di-
visor at infinity for each admissible compactification of A2 (with suitable compatibil-
ity conditions when one compactification dominates another. See [F'J11] for more de-
tails and [BEJ08a] for applications of this point of view in a slightly different context.
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