HYPERBOLIC DYNAMICS OF ENDOMORPHISMS

MATTIAS JONSSON

ABSTRACT. We present the theory of hyperbolic dynamics of endomorphisms
in. Topics covered are hyperbolic sets, stable manifolds, local product struc-
ture, shadowing, spectral decomposition and Q-stability.

0. INTRODUCTION

In this paper we study a smooth mapping f of a manifold M as a dynamical
system. We will discuss both semilocal and global dynamical properties of f, but
always under some hyperbolicity assumption. The main examples we have in mind
are holomorphic endomorphisms of complex projective space P*, k > 1 but we will
state the results in greater generality.

There are many excellent and detailed expositions on differentiable dynamics,
e.g. [S], but they usually consider only invertible systems, such as diffeomorphisms
of a compact manifold. As for noninvertible maps, the attitude seems to be that
most results for diffeomorphisms continue to hold when interpreted correctly, but
it is difficult to find a detailed written account; the purpose of this paper is to
improve upon that. We do not claim that our results are new. Our main references
are [R] and [PS].

The building blocks in hyperbolic dynamics are hyperbolic sets. These are gen-
eralizations of hyperbolic fixed points, i.e. fixed points where the derivative has
no eigenvalue of modulus one. For the precise definition of what it means for a
compact, invariant set A to be hyperbolic, we refer to section 1, but the definition
involves the set

A ={(zi)ico;mi € A, f(@:) = ziya}-
of histories in A.

A hyperbolic set A has local stable and unstable manifolds at each point; see
Theorem 1.2 for details. Another basic feature of hyperbolic sets is persistence
under perturbations. This means that if f is hyperbolic on A = A and g is close to
f, then g has a hyperbolic set A, close to Ay such that f | A and g| i, are conjugate.

Here f is the shift f((z;)) = (f(x;)). For more details see Proposition 1.4. Note
that the sets Ay and A, themselves need not be homeomorphic.

Many results on the dynamics near a hyperbolic set A are best formulated in
terms of A. With this in mind we introduce the concept of local product structure
for A. The definition says that if (5));cz and (§(9);cz are orbits in A and (2));ez
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is an orbit which follows (5(9) in positive time and follows (¢() in negative time,
then £ is in fact an orbit in A.

Under the assumptions of local product structure for A we prove shadowing
results for A and A, saying that an approximate orbit in A (A) is always close to
an honest orbit in A (A). It seems difficult to prove this result for A without first
proving it for A.

Hyperbolicity of a compact set A is a semilocal condition, only involving the
dynamics in a neighborhood of A. Axiom A, however, is a global condition, i.e. a
condition on the dynamics of f on all of M. For most results on Axiom A maps
we will make two assumptions, namely that M is compact, and that f is an open
mapping. These assumptions are needed in some of the proofs; they are always
satisfied for nonconstant holomorphic endomorphisms of P*.

The nonwandering set Q2 of f is, by definition, the set of points x € M having no
neighborhood U such that f*(U)NU = § for all n > 1. If M is compact, then all
orbits of f converge to 2 in forward and backward time. We say that f is Axiom
A if periodic points are dense in 2 and f is hyperbolic on (2.

The first consequence of Axiom A is that () has local product structure; thus the
shadowing results mentioned above apply. We use this to prove versions of Smale’s
spectral decomposition theorem for () and Q, saying that 0 (Q) is the finite disjoint
union of compact invariant sets, called basic sets, on which f (f) is topologically
transitive. Again it seems difficult to prove this for 2 without going via Q.

Finally we address stability. An endomorphism f is called (-stable if f ‘Qf is
conjugate to g|0g for all g sufficiently close to f. Define a relation on the basic sets
of an Axiom A endomorphism f by saying that €; > €, if there is an orbit (z;);cz
such that ; = Q; as i - —oo and z; = Q} as ¢ = oo. Then f is said to have no
cycles if there is no nontrivial sequence of basic sets ;, < €, < -+ < Q;, = Q4
We prove that if f is Axiom A and has no cycles, then f is ()-stable. Axiom A in
itself does not imply Q-stability.

The paper starts by recalling the definition of a hyperbolic set for an endomor-
phism and stating some basic properties, including the stable manifold theorem and
persistence. This is done in section 1. The proofs here are only sketched, as the
(long) details can be found elsewhere. In section 2 we consider local product struc-
ture for a hyperbolic set and prove shadowing results. Then, in section 3, we define
Axiom A endomorphisms, show that their nonwandering sets have the suitable local
product structure and prove the spectral decomposition theorem. Finally, in the
last section we study Q—stability and prove that an open Axiom A endomorphism
f of a compact manifold M with no cycles is (-stable.

1. HYPERBOLIC SETS AND THE STABLE MANIFOLD THEOREM

In this section we will give the definition of a hyperbolic set and state some
basic facts about them. In particular we will be concerned with persistence under
perturbations and existence of local stable and unstable manifolds.

Suppose f is a C'° endomorphism of a C*° finite-dimensional Riemannian man-
ifold M. Let A be a compact subset of M with f(A) = A and define A to be the
set of histories in A, i.e.

~

A ={(@i)i<o; i € A, f(5) = Tiga }-
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Then A is a closed subset of AN hence compact. We will often use the notation
& for a point (z;)i<o in A. Every distance d on A defines a distance on A, also
denoted by d, by
d(#,9) =Y _ 2'd(wi, ys)-
i<0

The restriction f|4 lifts to a homeomorphism f of A given by f((x;)) = (Zi41)-
There is a natural projection 7 from Ato A sending & to xg and the pullback under
m of the restriction to A of the tangent bundle of M is a bundle on A which we call
the tangent bundle T;. Explicitly, a point in T} is of the form (#,v) where & € A
and v is a tangent vector in T, M. The derivative D f lifts to a map D f of T} in
a natural way.

Now f is said to be hyperbolic on A, or that A is a hyperbolic set, if there exists
a continuous splitting T, = E* & E° which is invariant under D f and such that
D f is expanding on E* and contracting on E*. More precisely, D f (Ev/5) C Ev/*
and there exist constants ¢ > 0 and A > 1 such that for all n > 1

IDf™(v)| > eA™|v| ve B
IDf"(v)] < ¢ A "|v| v e E°.

Remark 1.1. It is possible to make a smooth change of metric in a neighborhood
of A and obtain ¢ = 1 in the equation above.

Note that whereas the fiber of the unstable bundle E* at a point # € A depends
on the whole history & of xg, the fiber of E* at & depends only on the point zg.
Hence the dimension of the fiber of E* at a point Z depends only on g, so the
dimensions of the fibers of the bundles E* and E* are locally constant.

As a special case of the above we say that f is ezpanding on A if the bundle
E? is trivial. This means that there exist constants ¢ > 0 and A > 1 such that
|Df™(x)v| > cA™|v] for all z € A, v € T, M and all n > 1.

Perhaps the most fundamental result in hyperbolic dynamics is the stable man-
ifold theorem. For each point p in A and each history ¢ in fX, we define local stable
and unstable manifolds by

W3 (p) = {y € M;d(fi(y), f'(p)) < & Vi >0}
W5u((j) = {y € Maagaﬂ'(g) = yad(yia%’) <46Vi S 0}

for small § > 0. The following theorem asserts that the (un)stable manifolds are
indeed nice objects.

Theorem 1.2. (Stable Manifold Theorem) If § is small enough, then
(i) For allp € A and all G € A, W§(p) and W(§) are embedded C> disks in M
tangent to E°(p) and E*(§) at p and qo, respectively.
(ii) W§(p) and WE(q) depend continuously on p and §, respectively.
(iii) If x € Wi (p), then d(f™(x), f*(p)) = 0 exponentially fast as n — oo. Simi-
larly, every point x in W§*(G) has a unique history & such that z; € Wg‘(fj (q))
for all j <0 and d(z;,q;) — 0 ezponentially fast as j — —oo.

Let us sketch a proof of Theorem 1.2. The idea is to consider the set B(A, M) of

bounded maps of Ainto M. This is a Banach manifold modeled on the Bar}ach space
of bounded sections of T;. Define a map F of B(A, M) by F(h) = foho f~'. Then
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the projection = is a fixed point of F and the assumption that f was hyperbolic on
A means exactly that 7 is a hyperbolic fixed point. By a general stable manifold
theorem for hyperbolic fixed points in Banach spaces it follows that F has a local
(un)stable manifold. The (un)stable manifolds of f are then obtained as {h(z)},
where h runs over the (un)stable manifold of F. To do all of this precisely, and to
verify that (i)—(iii) holds, requires a nontrivial amount of work, which we will not
go into here. A proof of a more general theorem can be found in [PS].

A special case of a hyperbolic set A is a hyperbolic fized point p. This means
that f(p) = p and D f, has no eigenvalue of modulus one. Theorem 1.2 is then
easier to prove and the method of proof yields the following “Lambda Lemma” or
“Inclination Lemma”. For an outline of the proof see [R].

Proposition 1.3. If p is a hyperbolic fixed point of f and ¥ is an embedded C*
submanifold of M intersecting Wi (p) transversely near p, then for n large enough
f™(Z) contains an embedded manifold ¥,,, which is C*-close to W¥(p), where p =
(-..,p,p). Similarly, if ¥' is an embedded C' submanifold of M intersecting W (p)
transversely near p, then f~™(X') contains a submanifold X! , which is C'-close to
W§(p) for large n.

We close this section by stating a persistence property for hyperbolic sets.

Proposition 1.4. If f is hyperbolic on A = Ay and g is C" -close to f, then there
exists a continuous map h : A — M close to the pmjection w(%) = xo such that
goh = ho f and that g is hyperbolzc on Ay := h(Af). The map h lifts to a

homeomorphism h: Af — A with g o h=ho f, and h depends continuously on g
in the C™ topology, 1 <1 < 0.

Let us sketch a proof of this. Consider the Banach manifold C(A, M) of con-
tinuous maps of A into M and define a selfmap F, of C(f\,M ) for each g by
Fy(h) =goho f~1. Again = is a hyperbolic fixed point of Fy¢, so for g sufficiently
close to f, F, has a hyperbolic fixed point hy, depending continuously on g. This
is the map h above.

2. LOCAL PRODUCT STRUCTURE AND SHADOWING

We now use the local stable and unstable manifolds to analyze the dynamics near
a hyperbohc set A. In particular we will define the notion of local product structure
on A and show how this implies that pseudoorbits in A (A) can be shadowed by
real orbits in A (A).

Let A be a hyperbolic set for an endomorphism f. If § is small enough, then by
continuity W¢(p) and W¥(4) are almost flat, i.e. C1-close to the tangent at p and
qo, respectively for all p € A and all ¢ € A. Therefore, by the continuity of E* and
E*, W§(p) and Wj*(§) intersect in at most one point. In particular, if p = go, then
W$(p) N W3 (G) = {qo}, which implies

Proposition 2.1. If f is hyperbolic on A, then f|r is expansive, i.e. there is a
& > 0 such that if (x;)icz and (y;)icz are two orbits in A with d(z;,y;) < § for all
i, then x; = y; for all i. The same result holds if only (x;) is assumed to be in A.

More generally we say that A has local product structure if § can be chosen so
that W3 (p) N Wj(§) C A.
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Ficure 1. Local product structure for A.

If A has local product structure, if p € A, § € A and if p,qo are sufficiently close,
then W3 (p) and Wj*(§) intersect in exactly one point € A and z has a history &
such that z; € Wg‘(fj () for all j < 0. It is not a priori clear that # € A, i.e. that
zj € A for all j < 0. It will be useful in the sequel to assume this, so we state the

following definition.

Definition 2.2. We say that A has local product structure if & can be chosen so
that if the intersection Wj§(p) N W7 (§) is nonempty, then it consists of a unique

point z € A and the unique history & of = with z; € Wg”(fj (q)) for all j < 0 is
completely contained in A. See Figure 1.

If A has local product structure, then there exist & >0and k > 0 such that
ifpe A, G € A and d(p,q) < &', then there is a unique history & € A such that
zo € W§(p) N W(G) and z; € WE(f7(§)) for all j < 0. Furthermore,

d(woap) S Kld(pa QO); (21)
d(j}a Cj) S K'd(pa qO)
We define [p, 4] to be this history z.
Definition 2.3. Let n > 0. An n-pseudoorbit in M is a sequence ()}, +,], where
—00 <ty < ta < 00, such that d(f(z;),ziy1) < d for t1 < i < t2. An g-pseudoorbit
(%5)[¢,,t0] is e-shadowed by an orbit (y;)j, ¢, if d(ys, ;) < e for all i € [t1,t2]. In a
similar way we define (shadowing of) pseudoorbits in M or A.

Theorem 2.4. (Shadowing Lemma for A ). If A is a hyperbolic set for f and
A has local product structure, then for each € > 0 there ezists an n > 0 such that
every n-pseudoorbit in A can be e-shadowed by an orbit in A.

Proof. Since f is uniformly continuous on A it suffices to prove the result for an
iterate of f (we may have to shrink 7). Let (:?:(i))[tl,tZ] be a n-pseudoorbit in A,
where #(9) = (:cg.’)) j<o- Using the compactness of Aanda diagonal process we may
assume that —oo < #1 < ta < oo. After relabeling, then, we may assume that
to =0and —oc0 < t; <0. .
We will construct points §(* € A for t; < i < 0 such that
G, D), -, 5D
e-shadows the n-pseudoorbit
@D, 3040 300,
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FI1GURE 2. Definition of the shadowing orbit.

We define 39 = (y](-i))jsg inductively by
yA(O) — @(0),
= 7w, F@0),

see Figure 2. The idea behind this is that f*(5() is close to f&~1(§®) for k > 1
and close to f*(2(~V) for k < 0.

We have to check that the definition above makes sense. Let ¢, § and k be the
constants in (2.1) and (2.2). After replacing f by an iterate we may assume that
there exists an a < 1/2 such that f contracts stable directions by a factor a and
expands unstable directions by a factor max(k,1)/a. Choose 1,69 > 0 so small that

n+e€ < &
OL(’I] + 60) < €.

Assume inductively that ¢; < i <0, that §® is well-defined, and that

d(z®, §®) ZQJd (Z),yj(l) ) < €o.
7<0

Then

d(ys?, 28y <+ d(l, i)
<n-+eo
<,

S0 [y(()i), F(2G-1)], and hence 4V is well-defined. Since mgi_l) and yj(-i_l) belong
to the same local unstable manifold for all j < 0 it follows that

a(i—1) A(i— Qo pa(ie £roa(i—
d(# 1, 9Y) < —d(£@Y), fa )
ad(z™Y, 55"
Az, 2(0) + d(@§, y§?))

which by assumption is less than €. Hence it follows inductively that §(® is well-
defined for t; <7 <0.
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We complete the proof by proving that (5@, . .., fi(§(?)) e-shadows (29, ..., ).
First, if 1 <4 < 0, then it follows from (2.1) that
dlys”, 9" ) < rd(yg”,2i V)
< n(d(yé”,wé”) +daf’, 2 ™"))
< k(€0 + 1)

Now we let 4 < ¢t < 0 and estimate
t—i—1

d@", f@0) <d@?, g + 30 A "), e,

7=0
The first term is bounded by €¢g. The terms in the last sum can be written as

s t t 1
(f]( (t— J)) fJ+1 H(t—j— 1) 22 y§+JJ)7y§+]J+1))
s<0

= > +> .
—j<s<0 s<—j

Note that ygi_jj ) and ygr_ﬁr_ll) are on the same local stable manifold if s+ j > 0, so

the first sum is bounded by

Z 25a6‘+]'d(y(()t_j)7 yy—j_l)) S

—j<s<0

2-J
1 -2«

k(€0 + 7).

The second sum is bounded by
Z 2S(d(y§fi_]]),a:§z_]])) +d(z gfi—]])’x.(st—i-]—i-l )) +d(z §+]+11)73/§+J+11)))
:;J—j(d(g(t—j)jﬁ(t—j)) +d(&®), (@I 4+ gt gt-i-1y)
<277 (e + 1+ €o)-

Thus d(&®, f=i(5()) < e, where € = 5eg + 21 + 2k(eo + 1) /(1 — 2a) can be made
arbitrarily small by choosing 1 and €, appropriately. O

Once we can shadow orbits in A it is fairly easy to do shadowing in A.

Corollary 2.5. (Shadowing Lemma for A). Suppose that A has local product
structure. Then for each € > 0 there exists an 11 > 0 such that every n-pseudoorbit
in A can be e-shadowed by an orbit in A.

Proof. By Theorem 2.4 there exists an 1’ > 0 such that every #'-pseudoorbit in
A can be (¢/2)-shadowed by an orbit in A. Fix m > 0 so that 2'~™diam(A) <

n'/2. Let A > 2 be larger than the Lipschitz constant for f on A and let 5 <
A m™=1 min(n’',€)/2.

Now suppose (Z;)[¢,,¢,) is an n-pseudoorbit in A. If to < oo, then we define
z; = fimt(z,,) for i >ty and if t; > —oo, then we pick any history § of z;, in A
and declare x; = ¢;—¢, for ¢ < t;. In this way we obtain an 7-pseudoorbit (z;);cz
in A.

Define a sequence (#(9);cz of points in A by

i'(i) = (z(i)af(wi—m)a R fm_l(xi—m): fm(xi—m))a
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where 2(9 is any history of z;_,, in A. We claim that (£() is an 7’-pseudoorbit in
A. Indeed, for any i € Z we have

d(f(@D),80) <2 md(fETY), AN+ Y D), «)

41 0%
1-m<j<0
<2 mdiam(R) + Y 22 A(f (@i ), fE(@im)
1<k<m
<n/2+ > PAHA(f(iom-1), Timm)
1-m<j<0
<n'/2+A™Hy
<7

By Theorem 2.4 we can find an orbit (5®);cz in A which e/2-shadows (2()). If we

let y; = y(()i), then y; is an orbit in A and we have

Ay, 2:) < d(ys?, 287 + (=, z;)
<d(G®,5D) + d(f™ (@i-m), z:)

m—1

<e/2+ Y d(f (@i ), P (@imi))

i=1

m—1
<e€/2+ Z Ai-lp
i=1
< €.

Hence (y;) e-shadows (z;) and we are done. O

Using shadowing we can control the orbits of f staying near A in positive or
negative time. A neighborhood U of A with the properties in the following corollary
will be called a fundamental neighborhood.

Corollary 2.6. (Fundamental neighborhood). Let A be a hyperbolic set for a
map f such that A has local product structure. Then, for any sufficiently small
neighborhood U of A in M we have

(i) Ifz €U and fi(z) € U for all j > 0, then x € W(p) for some p € A.

(i) If x € U and = has a history & with x; € U for all i <0, then x € W{(q) for

some g € A.
(iii) If (zi)icz is a complete orbit in U then x; € A for all i.
(iv) If g is C'-close to f, then the set Ay in Proposition 1.4 is given by

Ay = {z0; (x:)icz is a g-orbit completely contained in U}.
In particular, Ag has local product structure.
Proof. We will apply Corollary 2.5 with € = §/2. Assume that 7 < § and define
U:={z € M;d(z,A) < n/2}, with 5 from Corollary 2.5.
(i) Pick points z; in A for ¢ > 0 with d(z;,2;) < 1/2. Then (z;)i>0 is an 7-
pseudoorbit in A so by Corollary 2.5 there is an orbit (p;);>0 in A which

0/2-shadows (z;). It follows that d(p;,z;) < n/2+ /2 < 6 for all i > 0 so
x € W3 (p), where p = po.
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(i) Asin (i) we construct an n-pseudoorbit (z;)i<o in A such that d(z;, z;) < 1/2
for all 4 < 0. Corollary 2.5 provides us with a point § € A such that d(gi,z;) <
n/2+6/2 < ¢ for all i, so xz € W (§).

(iii) From (i) and (i) we find p € A and § € A such that = € W(p) N W2(§)-
Since A has local product structure this implies that x € A.

(iv) We have A, C U by Proposition 1.4 so we only have to prove the reverse
inclusion. Let (z;);cz be a g-orbit completely contained in U. By shrinking
U we may assume that if g is close to f, then (z;) may be §/2-shadowed by
an f-orbit (y;) in A and hence é-shadowed by the g-orbit (z;) in A, coming
from the conjugacy in Proposition 1.4. Thus

zo € W5 (20) N W' ((2i)i<o) = {20} € Ay.

3. AXIOM A ENDOMORPHISMS

The results up to now have been of a semilocal nature, i.e. they concern the
dynamics near a compact set. In order to study global dynamical properties we
now restrict our attention to Axiom A endomorphisms. Our goal here is to prove
the spectral decomposition theorem, which allows us to understand the dynamics
of f near its nonwandering set. For the proof we will assume that f is an open
mapping.

Let f be an C* endomorphism of a C* manifold M. A point x € M is
nonwandering if it has no neighborhood V' such that f*(V)NV =0 for all n > 1.
The nonwandering set Q of f is the set of all nonwandering points; it is a closed
set.

Definition 3.1. f is said to satisfy Axiom A if its nonwandering set satisfies
(i) Q is compact.
(ii) Periodic points are dense in €.
(iii) f is hyperbolic on Q.
Remark 3.2. If Q satisfies (i) and (ii), then f(2) = Q, so (iii) makes sense. Also,
if f is Axiom A, then periodic points (under f) are dense in ().
The following proposition shows that the results in section 2 apply to open Axiom
A endomorphisms.

Proposition 3.3. If f is an open Aziom A map, then Q) has local product structure.

Proof. Choose 8* > & > 0 so small that if p, § € 2 and W§(po) and W§*(§) intersect
in a unique point, then W. (go) and W (p) intersect in a unique point. Now let p
and § be any two points in ) such that W (po) and W (§) intersect in a unique
point z. Then z has a history & such that z; € W ( fi(g)) for all j < 0. We have
to prove that Z € Q.

We first consider the case when p and ¢ are periodic, say of periods I and m,
respectively. Let g = f'™ and let U be any neighborhood of z. By Proposition 1.3,
¢’ (U) contains a manifold C'-close to W#(g) and g~7(U) contains a manifold C*-
close to W#(po) for all large j. Therefore ¢g/(U) and g~/ (U) intersect in a point
near z* := Wj.(qo) N W (p) for all large j, so = is nonwandering, i.e. € Q.

For general p, § let £ be the history defined above, let ¢ < 0 and let U be any
neighborhood of ;. Then f~%(U) is a neighborhood of z, because f is open. Since
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FIGURE 3. Local product structure for Q.

periodic points are dense in (! we may find periodic points p', ¢’ in Q2 close to p, §
such that W (pf) intersects W(¢') in f~%(U) and W& (fi(¢")) intersects U. Then
the above argument shows that f*(U) intersects f~*(U) for infinitely many & > 0.
Hence z; is nonwandering for all i < 0, so # € Q. See Figure 3 for an illustration
of the proof. O

Theorem 3.4. (Spectral decomposition of (). If f is an open Aziom A endo-
morphism, then Q can be written in a unique way as a disjoint union 0= Uézlfli,
where each ; is compact, satisﬁes f (A i) = Q; and f is transitive on Q;. The sets
Q; are called the basic sets off Morover, each Q; can be further decomposed into
a ﬁmte dzsjomt union Q; = U1<J<mQ i,j, where Q; ; is compact, f( §) = Q; i,j+1
(Q,,nﬁl ={(1) and fm is mizing on each Q”

Proof. From Proposition 3.3 we know that ( has local product structure. Choose
6,0/ > 0 as in the discussion preceding (2.1) and (2.2). If p € Q is a periodic
history, say of period [, then we let W;‘(ﬁ) be the set of histories Z € {2 such that
d(zi,pi) < & for all i < 0. Similarly, we let W¥(p) be the set of histories # €
such that d(z;,p;) — 0 as i = —oo. Then W*(p) = U0 f7(W(p)). Let X, be
the closure of W*(p) in Q.

Suppose that p € Q is periodic of period I. We first prove that if § € Q and
d(g,X;) < &', then § € X;. We may assume that § is periodic, say of period m.
Take any point £ € W“(p) with d(j,#) < 6’ and let 2 = [yo,#]. Then 2 € W*(p),
which implies that f7(2) € W¥(p) if j > 0 and [ divides j. But f7(3) is close to §
if j is large and m divides j, so § € X;.

The next step is to prove that if p and ¢ are two periodic points in Q of periods
! and m, respectively, then either X; = X; or X; N X; = (0. First suppose § €
Xj. By the preceding paragraph X is open, so we may find v € (0,0) such that
W¥(4) C Xp. Then fimWu(g) C X, for all j > 0, so X4 C Xp. On the other
hand, Xj; is open and intersects Xp, so we may find £ € X4 N We(p). But it is
easy to see that f™(X, 3) = X; so fritm(z) € X; for all j > 0, which implies that
P € X;. Therefore ¢ € X; 1mp11es X, = Xy Now suppose p and ¢ are periodic
and that X and X are not disjoint. Then they intersect in an open set, which
contains a periodic history 7, so the previous argument shows that X; = X; = Xj.
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The different sets X form a disjoint open covering of the compact set Q so they
are finite in number. It is clear that f(X;) = X () S° [ induces a permutation

of the different sets Xj;. Let Qi,j, i =1,...,1, 7 = 1,...,n; be the distinct sets
X;, labeled so that f(flw) = Qi’jﬂ, for j = 1,...,n; where Qi,mﬂ = Q,-,l. Let
Qi =um O fori=1,...,0. Then f(€) = Q; and f (s ;) = Qi ; for all 4, 5.
We prove that f"" is mixing on QiJ’ for all 4,5. Let U and V be two open sets
in Qi,j. We have to show that fi"(U) NV # @ for all sufficiently large ¢. Let p be

a periodic point in U, say of period [. Then stn ) = €2;,; so we may find points

i(p
#) in Wu(f*ni(p)) NV for s =0,...,1 — 1. For every sufficiently large ¢ we may
then find 0 < s <1 —1 such that £~ (&(®) € U so ft"(U)NV # 0. Hence f™ is

mixing on Qi,j for all 4, j and this implies that f is transitive on ; for all 7. O

As we see next, the spectral decomposition of () induces one of €.

Corollary 3.5. (Spectral decomposition of Q). If f is an open Aziom A endo-
morphism, then Q can be written in a unique way as a disjoint union Q = UL_, Q;,
where each Q; is compact, satisfies f(Q;) = Q; and f is transitive on Q;. The sets
Q; are called the basic sets of f. Morover, each ; can be further decomposed into
a finite disjoint union Q; = Ui<j<n,; Qi j, where Q;; is compact, f(Q;;) = Qi1
(Qini+1 = Q1) and f™ is mizing on each §; ;.

Proof. We define Q; ; = w(fli,j), where m : 0 — Q is the projection. We claim
that the €; ;’s are pairwise disjoint. If not, then there exist periodic points p and
q of periods | and m, respectively, such that X; N X; = 0 but 7(X;) N7 (X;) # 0.
Let  be a point in Q with two histories 2 € X, #® € X;. If j > 0, then
FmEm) e X5, fm(zE) € X4 and d(f7Fm (M), fm (D)) = 0 as § — oo.
This is a contradiction, because d(f(,»,, Xq) >4

Thus the sets (); ; are pairwise disjoint. They are compact because (2; ; is com-
pact for all ¢, j and 7 is continuous. It remains to be seen that f™¢ is mixing on €, ;.
This is easy, because if U and V' are two open subsets of (); ;, then U= 7~ (U)
and V := 7 1(V) are open subsets of Qi’j and fi"(U) NV # 0 for sufficiently
large t. It follows that fi"(U) NV # 0 for sufficiently large ¢, which completes the
proof. O

It follows easily from the definition of the nonwandering set that if M is compact
and (x;);ez is a complete orbit in M, then z; — Q as i = +oo. In the Axiom A
case we can say more. Using the fact that the basic sets are compact, disjoint and
f-invariant, we easily prove the following result.

Lemma 3.6. Assume that M is compact and that f is an open Axiom A endomor-
phism. If x € M, then there exists a basic set §); such that f*(x) = Q; as i = oco.
Similarly, if & is a history in M, then there exists a (possibly different) basic set
Q; such that x; = Q; as i = —oo.

Combining Lemma 3.6 and Corollary 2.6 we obtain.
Proposition 3.7. Assume that f is an open Axiom A endomorphism and that M
is compact.

1. (i) If z € M, then there exists a unique basic set Q; such that fi(z) — Q;
as j = 0o. Moreover, there exists a (not necessarily unique) p € Q; such that

d(f(z), fi(p)) = 0 as j = 0.
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2. () If & € M, then there exists a unique basic set {); such that x; — Q; as

Jj = —oo. Moreover, there exists a (not necessarily unique) § € fl\, such that
d(zj,q;) = 0 as j — —oo.

4. Q-STABILITY AND THE NO-CYCLE CONDITION

Given a dynamical system we may ask whether it is stable under perturbations.
The answer to this fairly vague question depends on what we mean by stability. In
this section we define the notion of Q-stability and give sufficient conditions for it
in terms of hyperbolicity.

Let f : M — M be an Axiom A endomorphism. For this section we will assume
that f is open and M is compact. Let Q = |J, ., <, Q% be the spectral decomposition
for f. Define a relation < among the basic sets ; by declaring that Q; < Q; if
We(;) NW¥(Q;) # 0. Here

W5(Q,) = {z € M; fi(z) > Q; as i — oo}
W ;) ={z € M;3%,7n(Z) = z,z; - Q; as i - —oo}
Let us first show that there are no trivial cycles for the relation <.
Lemma 4.1. For any i we have W*(£2;) N W*(Q;) = Q;.

Proof. The proof is similar to that of Proposition 3.3. Let (zy)recz be a complete
orbit with z; — Q; as |k| = co. We have to show that z¢ € Q; and it suffices to
show that o is nonwandering. Choose ¢’ as in the discussion preceding (2.1). By
Proposition 3.7 there exist £ > 0, y € Q; and 2 € fl\, such that z, € W§(y) and
z_, € W¥(2). Let U be an open neighborhood of z. Then f*¥(U) is open and
intersects W (y). Now f is transitive on §2; so we may find j > 0 and y' € ; such
that W§(y')NfE(U) # D and d(f(y'), z0) < §'. We may replace f7(y’) by a periodic
point u of period m. Hence W§ (u) N f¥+3(U) # 0. Similarly, we may find a periodic
history © € Q; of period n such that W (@) N f~*U) # 0 and d(vo,u) < §'. By
Proposition 1.3 f¥+i+m (1) contains a manifold C*-close to W#(9) and f~*k—"(U)
contains a manifold C*-close to W (u) for large I. Hence f2k+i+(m+ml(r)nU # ¢
for large I, so xg is nonwandering,. O

We say that f satisfies the no-cycle condition or, simply, that f has no cycles if
there is no nontrivial chain

Qil <Qi2 <"'<Q,’n ZQZ'I.

N

Definition 4.2. An endomorphism f: M — M is (2-stable if there exists a neigh-
borhood U of f and for every g € U a homeomorphism ¢ : Qf — Q, with
go¢ =¢o f. Here Q; and Q, are the nonwandering sets of f and g respectively.

We now come to the main result in this section. For simplicity we restrict our
attention to compact manifolds M.

Theorem 4.3. If M is compact and f : M — M 1is an open Aziom A endomor-
phism with no cycles, then f is Q-stable.

Remark 4.4. The proof will show that the conjugacy ¢ can be chosen close to the
identity. Note that the conjugacy takes place on the level of histories — the sets
Q¢ and Q, need not be homeomorphic.
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FIGURE 4. An Q-explosion.

Let us make some observations before starting with the proof. By spectral
decomposition, 2 is the disjoint union of the basic sets Q;, 1 < ¢ < [ and there
are fundamental neighborhoods U; of €; in the sense of Corollary 2.6.

In particular, if g is C-close to f, then g has hyperbolic sets €; 4, 1 < i <1
contained in U; and there are homeomorphisms ¢; : Q,-, ;= Qi,g conjugating f to
g. Thus Qg ; has local product structure, periodic points for g are dense in €2; 4
and the restriction of g to €; 4 is transitive. In particular €); , is contained in the
nonwandering set ), of g. To prove that f is ()-stable, it therefore suffices to prove
that €, is exactly the union of the sets €; ;. In general, there is no reason for
this to be true. Picture 4 illustrates an Axiom A diffeomorphism f of, say, the
two-dimensional sphere admitting an Q-explosion, meaning that the nonwandering
set for the original map f (a finite set) is much smaller than the nonwandering set
for the perturbed map g (an infinite set). The nonwandering set of f consists of
six sources and sinks, marked with big circles, and three saddle points p, ¢ and r.
These are the basic sets of f. The nonwandering set of g contain perturbations
of these nine points, but also all the transverse intersection between unstable and
stable manifolds in the second picture.

The main tool in proving Theorem 4.3 is the existence of a filtration, which we
now describe. If f is Axiom A and has no cycles, then we may label the basic sets
of f in such a way that €; > €; implies ¢ > j.

Proposition 4.5. Let f: M — M be an open Aziom A map with no cycles, where
M is compact. Then there is an integer m > 1, fundamental neighborhoods U; of
Q; and compact sets ) = Mo C My C --- C M; = M, such that Uy = int(M),
fm™(M;) C int(My) for 1 < j <1, and f™(M; = Uj;) C int(Mj—1) for 2 <j <1

We postpone the proof of Proposition 4.5 and show instead how to deduce 0-
stability.

Proof of Theorem 4.3. Let g be C'-close to f. As mentioned above it suffices to
show that the nonwandering set €, of g is the union of the sets €254, 1 < j <1, s0
let (x;)icz be a g-orbit completely contained in €. If g is close enough to f, then
Proposition 4.5 holds with f replaced by g. Hence there is a j, 1 < j <, such that
x; € U; for all 4. But then z; € Q; 4 for all 4 by Corollary 2.6. O

Thus it remains to construct the filtration in Proposition 4.5. Figure 5 illustrates
the first two steps in the construction of the filtration. Here €, is an attracting set,
by the labeling of €2;, and M; = U; is a neighborhood of ;. Next, W*(£),) is in
the stable set of ; and Ms is the union of M; and a neighborhood of W¥(Qy) —
M;. Tt will take some care to define this neighborhood so that the properties in
Proposition 4.5 hold.
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w*(Q2)

Q

FiGUuRrE 5. Construction of the filtration.

We start the proof of Proposition 4.5 with a preliminary result.

Lemma 4.6. The set Ay, := J,,, W*(Q;) is compact and | J;,, W*(£;) is an open
neighborhood of Ay for 1 <k <T. B

Proof. We first show that Ay is closed, hence compact. Let z € W¥(€;,) for some

io < k. We must show that z € W¥(€;) for some i < k. Pick histories §(#), u > 1,
such that y(()“) — x as p — oo and ygu) — Q;, as s & —oo for all u. By passing to
a subsequence we may assume that §(#) converges to a history 2.

Let I be the set of ¢ such that §(#) accumulates on Q; as i — co. More precisely,
i € I if there exist uy — 0o and s; < 0 such that yg’k““) — Q; as k — oo. The proof

now goes through a number of steps.
Lemma 4.7. There is an i € I such that x € W*(Q;).

Proof of Lemma 4.7. Recall that §(*) — % as p — oo. We have 2y = z and there
is an 4 such that z; — Q; as s & —oo. We claim that i € I. To see this, pick s
with d(z,,, ) < L for k > 0. If p is large enough, then d(y$¥*), ;) < L, which
proves that ¢ € I. O

Lemma 4.8. Ifi € I, i # i, then there is a j € I, j # i such that Q; > Q.
Proof of Lemma 4.8. Pick d9 > 0 such that

1 .
60 < 5 1§g1<1r112§ld(ﬂ“’0“)

By assumption there exist ur — oo and s; < 0 such that yg’:’“) — ;. Choose

tr < s minimal such that d(ygfj ’“), Q;) < 8- This is possible because i # i9. Define

) by wgk) = ygiﬁi By passing to a subsequence we may assume that w®) — &
as k — oo. We claim that w, — ; as s = o0o. To see this we first consider the
case when s — t;, — o0o. Then d(wgk),ﬂz-) < g for 0 < s < s — tg, sO we must
have w; — Q; as s — 00. The second case is when s, — t; is bounded as k — oo.
By passing to a subsequence we may assume that s — tx = r > 0 for all k. But
then d(wik),ﬂi) — 0 as k — oo so w, € Q;. Thus w, — §; is this case too.
Similarly, we have w, — (1 as s = —oo for some j. Hence §2; > Q; and we have
j # i by Lemma, 4.1. Tt remains to be seen that j € I. But for each m > 1 we
may choose u,, < 0 such that d(zy,,,Q;) < L. Then we find p,, — oo such that

d(yii”_gtm,ﬂj) < L. This shows that j € I. O

1
m
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FIGURE 6. Dynamics near ()

We now continue the proof of Lemma 4.6. By Lemma 4.7, Lemma 4.8 and the
no-cycle property there exists a chain

Qio >Qz'1 >"'>Qz'“

such that © € W¥(£;,). Again by the no-cycle property we must have i; < ig <
k so x € Ag. This proves that Ay is compact. Similarly we may prove that
M — U< W2(Q) = Ujsp W*(Q:) is compact so (J;<, W*(§%) is open and it
contains {1 by the labeling of the basic sets. O

Proof of Proposition 4.5. We construct the sets M} and choose the fundamental
neighborhoods U}, inductively. Compare with Figure 5. First note that € is an
attracting set, because

W) = |J W) nWH(Q;) =0

1<5<1

by Lemma 4.1 and the labeling of the 2;. Hence, if U; is small enough and M; = Uy,
then we can find m > 1 such that f™(M;) C U;. Note that A; = Qq C int(My).
Now suppose that 2 < k < | and that we have an integer m' > 1 and compact
sets ) = My C My C --- C My_; such that A; C int(M;), f™ (M;) C int(M;) for
1<j<k—1,and f™ (M; — U;) Cint(M;_;) for 2< j < k —1.

If x € W¥(Qy), then x € W*(£;) for some ¢ < k by Lemma 4.1 and the labeling
of the Q;. Given ¢,6,d',6"” > 0, define the sets W,V,V'.V" as follows. W is the
open e-neighborhood of Qf in W*(Qy), V (V') is the closed §-neighborhood (§'-
neighborhood) of W in M, and V" is the closed §"-neighborhood of W*(Qy) —
(My—1 UW) in M. See Figure 6.

By the hyperbolicity of f on €} we may choose m; > 1 and € > 0 such that
for every m > m; and every §” > 0 there exist ¢’ > ¢ > 0 such that f™(V') C
V Uint(V").

Now W¥()— (W Uint(M},_1)) is compact, so by the induction hypothesis there
is an mg > ms such that f™2(W*(Qg) — W) C int(My_1). Choose 6" so small that
fm2(V") Cint(My_1) and find §' > 6 > 0 such that f™>(V') C V Uint(V").

Hence, if we let m = m'ma, Uy, = int(V') and My = Mi_, UV" UV’ then My, is
an open neighborhood of Ay, f™(My) C int(My), and f™ (M), — Uy) C int(Mg_1).
This completes the induction. O
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