PLURICOMPLEX DYNAMICS

- 1. Motivation and examples.
- 2. Polynomial dynamics on C.
- 3. Hénon mappings.
- 4. Regular polynomial mappings of \mathbb{C}^2 .

DYNAMICAL SYSTEMS

(way too) general definition

X phase space. G group acting on X.

In these lectures:

$$X = \text{complex manifold } (\mathbf{P}^k \text{ or } \mathbf{C}^k)$$

 $G = \{f^n\}_{n \geq 0} \text{ or } G = \{f^n\}_{n \in \mathbf{Z}}.$

Here $f: X \to X$ is a holomorphic mapping (or biholomorphism). Study behavior of iterates $f^n = f \circ \cdots \circ f$ as $n \to \pm \infty$.

Interesting things to look at:

- Orbits $\{f^np\}_{n>0}$ or $\{f^np\}_{n\in \mathbf{Z}}$.
- Invariant "objects" (measures, currents).

Of special interest are "recurrent" points, e.g. periodic points, $f^n p = p$.

Different aspects of dynamics.

1. Local dynamics.

Example: linearization at sinks.

$$f:(\mathbf{C},0)\to(\mathbf{C},0)$$
 germ.

$$f(z) = \lambda z + O(z^2)$$
, $0 < |\lambda| < 1$. Then \exists

$$\phi(z) = z + o(1)$$
 such that $\phi(f(z)) = \lambda \phi(z)$.

2. Global dynamics.

Example: finitely many sinks.

If $f: \widehat{\mathbf{C}} \to \widehat{\mathbf{C}}$ is a rational map of degree d, then f has at most 2d-2 attracting periodic cycles.

3. Semilocal dynamics.

Example: horseshoes.

SYMBOLIC DYNAMICS

$$\Sigma^{+} := \{0, 1\}^{\mathbb{Z}_{+}} = \{(\epsilon_{n})_{n \geq 0}\}$$

 $\Sigma^{-} := \{0, 1\}^{\mathbb{Z}_{+}} = \{(\epsilon_{n})_{n \in \mathbb{Z}_{+}}\}$

are compact metric spaces (Cantor sets):

$$d((\epsilon_n),(\epsilon'_n)) = \sum 2^{-|n|} d(\epsilon_n,\epsilon'_n)$$

We have natural maps

$$\sigma^+: \Sigma^+ \to \Sigma^+$$

 $\sigma: \Sigma \to \Sigma$

defined by left shift:

$$\sigma^{+}((\epsilon_n)) = (\epsilon_{n+1})$$

 $\sigma((\epsilon_n)) = (\epsilon_{n+1})$

 (Σ^+, σ^+) : (full) 1-sided shift on two symbols. (Σ, σ) : (full) 2-sided shift ".

Note: σ^+ and σ are continuous. σ is invertible (homeomorphism) but σ^+ is 2–1.

 Σ and Σ^+ carry natural invariant measures (Bernoulli measures).

Idea: Shift maps are models for behavior of differentiable or complex dynamics.

Generalizations:

- \bullet (Full) shifts on N symbols.
- Subshifts of finite type: $M = N \times N$ binary matrix.

$$\Sigma_M = \{(\epsilon_n) : M_{\epsilon_n, \epsilon_{n+1}} = 1\}$$

= {set of paths in finite directed graph}

TOPOLOGICAL MODEL FOR 1-SIDED SHIFT

Define $f: \mathbf{C} \to \mathbf{C}$ continuous such that

- 1. f maps D_i affinely onto D, i = 0, 1.
- 2. $f(D (D_1 \cup D_2)) \subset \mathbf{C} D$.
- 3. $f(\mathbf{C} D) \subset \mathbf{C} D$ and $f^n \to \infty$ on $\mathbf{C} D$.

 $K := \{z \in \mathbf{C} : f^n z \text{ bounded}\}\$

Claim. $f|_K$ is conjugate to $\sigma^+|_{\Sigma^+}$. Proof. Let $x \in K$. Define $\phi(x) = (\epsilon_n)_{n>0}$ by

$$\epsilon_n = i$$
 if $f^n x \in D_i, i = 0, 1$.

Then ϕ is a homeomorphism of K onto Σ^+ and $\sigma^+ \circ \phi = \phi \circ f$.

Consequences.

- ullet Periodic points are dense in K.
- ullet f has periodic points of all orders.
- ullet "Most" points in K have dense orbits in K.

TOPOLOGICAL MODEL FOR 2-SIDED SHIFT (Smale's horseshoe)

Define $f: V \to \mathbf{R}^2$.

$$f^{-1}(V) \cap V = V_0 \cup V_1$$
.
 f is affine on V_i , $i = 0, 1$.

Extend f to a diffeomorphism of ${f R}^2$ such that:

- 1. $f(V^+) \subset V^+$ and $f^n \to \infty$ on V^+ .
- 2. $f^{-1}(V^-) \subset V^-$ and $f^{-n} \to \infty$ on V^- .

 $K^{\pm} := \{ p \in \mathbf{R}^2 : f^n p \text{ bounded as } n \to \pm \infty \}.$ $K := K^+ \cap K^-.$ Then

$$K^+ \cap V = \text{Cantor set} \times \text{interval}.$$

$$K^- \cap V = \text{interval} \times \text{Cantor set}.$$

 $K = \text{Cantor set} \times \text{Cantor set}.$

Define
$$\phi(x) = (\epsilon_n)_{n \in \mathbb{Z}}$$
, where

$$\epsilon_n = i$$
 if $f^n x \in V_i, i = 0, 1$.

Claim. ϕ conjugates $f|_K$ to $\sigma|_{\Sigma}$.

Proof. Same as before.

Consequences.

- ullet Periodic points are dense in K.
- ullet f has periodic points of all orders.

A QUADRATIC POLYNOMIAL ON C

$$f(z) = z^2 + 10.$$

If $|z| \ge 5$, then $|f(z)| \ge 5$ and $|f^n(z)| \to \infty$. If $D := \{|z| \le 5\}$, then $f^{-1}(D) = D_0 \cup D_1$.

Here $f: D_i \to D$ is univalent (\approx affine).

 $K := \{z \in \mathbf{C} : f^n z \text{ bounded}\}\$

 $J := \partial K (= K)$ — Julia set of f.

Topological model $\Rightarrow f|_J \simeq \sigma^+|_{\Sigma^+}$.

Conclusions.

- ullet Periodic points are dense in J.
- \bullet f has periodic points of all orders.

A QUADRATIC HÉNON MAPPING

Define $f: \mathbf{R}^2 \to \mathbf{R}^2$ (or $\mathbf{C}^2 \to \mathbf{C}^2$)

$$f(x,y) = (-x^2 + a - by, x)$$
 $0 < b \ll 1$ and $a \gg 1$

Decompose $f = f_3 \circ f_2 \circ f_1$.

$$f_1(x,y) = (x,by)$$

$$f_2(x,y) = (-y,x)$$

$$f_3(x,y) = (x + (-y^2 + a), y).$$

Thus f "is" a horseshoe.

 $K^{\pm} := \{p : f^n p \text{ bounded as } n \to \pm \infty\}.$

 $K := K^+ \cap K^-.$

 $J := \partial K (= K)$

Topological model $\Rightarrow f|_J \simeq \sigma|_{\Sigma}$.

Conclusions.

- ullet Periodic points are dense in J.
- f has periodic points of all orders.

POLYNOMIAL MAPPINGS OF C

$$p(z) = z^d + a_{d-1}z^{d-1} + \dots$$

Want to understand dynamics of p. Focus on points with recurrent behaviour. $K := \{z \in \mathbf{C} : p^n z \text{ bounded as } n \to \infty\}.$ $J := \partial K$ (Julia set).

The picture shows K for $p(z) = z^2 - 1$.

In fact $J = \{z : \{p^n\} \text{ not normal at } z\}$. What causes $\{p^n\}$ to be non-normal at J?

If z repelling periodic point, $p^nz=z$ and $|Dp^nz|>1$, then $z\in J$.

Thm. $J = \overline{\{\text{repelling periodic points}\}}$

Two tools for analyzing global dynamics: Montel's Theorem and Potential Theory.

Montel's Theorem (Fatou, Julia, ...) If $U \subset \widehat{\mathbf{C}}$ and \mathcal{G} is a family of meromorphic functions on U with $\mathcal{G}(U) \subset \widehat{\mathbf{C}} - \{0, 1, \infty\}$, then \mathcal{G} is normal.

Potential Theory (Brolin, Sibony, ...)

$$G(z) := \lim_{n \to \infty} \frac{1}{d^n} \log^+ |p^n(z)|.$$

 $G \geq 0$ is continuous, subharmonic, harmonic off of J and $G(z) = \log |z| + o(1)$ as $|z| \to \infty$.

Thus G is the Green function of K and

$$\mu := \frac{1}{2\pi} \Delta G$$

is harmonic measure on K. Since $G \circ p = G$, μ is invariant, $\mu(p^{-1}A) = \mu(A)$.

Prop. J has no isolated points. **Proof**. G is continuous and $supp(\mu) = J$. **Thm**. Periodic points describes μ .

$$\lim_{n\to\infty}\frac{1}{d^n}\sum_{p^nz=z}\delta_z=\mu.$$

Remark: Also for repelling periodic points.

Proof. Let

$$H_n(z) = \frac{1}{d^n} \log |p^n z - z|.$$

Then H_n is a potential for LHS. It suffices to show that $H_n \to G$ in L^1_{loc} .

First, $H_n \to G$ on $\mathbf{C} - K$. Suppose $H_{n_j} \to H$ in L^1_{loc} . Then $H \le G$ and H = G on $\mathbf{C} - K$.

If $H \neq G$, then by Hartogs we have $\delta > 0$ and $\Omega \subset \operatorname{int}(K)$ such that $H_{n_j} \leq -\delta$ on Ω , i.e.

$$|p^{n_j}z-z|<\exp(-\delta d^{n_j})$$

on Ω . One can show this is impossible. \square

Cor. Periodic points are dense in J.

In a similar way one can show:

Thm. For (almost) all $w \in \mathbb{C}$

$$\frac{1}{d^n} \sum_{p^n z = w} \delta_z \to \mu$$

as $n \to \infty$. (Exception: $p(z) = z^d$, w = 0).

Cor. μ is ergodic, i.e.

$$p^{-1}A = A \Rightarrow \mu A = 0$$
 or $\mu A = 1$.

Thus, by the Ergodic Theorem.

Cor. For μ a.e. w

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\delta_{p^jw}=\mu.$$

In particular, the orbit of w is dense in J.

Compare with σ^+ ,

The results presented are very basic. Some further issues.

- 1. Classification of Fatou components.
- 2. Geometry of Julia sets.
- 3. Parameter space (Mandelbrot set).

HENON MAPPINGS

Goal. Understand dynamics of polynomial automorphisms of \mathbb{C}^2 .

Friedland-Milnor showed that the interesting polynomial automorphisms of ${\bf C}^2$ are (conjugate to) compositions of *Hénon mappings*.

$$f(z,w) = (p(z) + bw, z),$$

where $p(z) = z^d + \dots$ and $b \neq 0$. For simplicity we only consider f of this form.

Note that

$$f^{-1}(z, w) = (w, \frac{1}{b}(z - p(w)).$$

is of the same type.

We have a filtration for f = (p(z) + bw, z).

- $f(V^+) \subset V^+$.
- $f^{-1}(V^{-}) \subset V^{-}$.
- $f^n \to p_{\pm}$ on V^{\pm} as $n \to \pm \infty$.
- If $|f^nx| \to \infty$ as $n \to \pm \infty$, then $f^nx \to p_{\pm}$.

These observations are trivial but crucial!

$$K^{\pm} := \{x : f^n x \text{ bounded as } n \to \pm \infty\}.$$

 $K := K^+ \cap K^-.$

$$\text{Filtration} \Rightarrow \frac{K^{\pm} \subset V \cup V^{\pm} \text{ is closed.}}{K \subset V \text{ is compact.}}$$

$$J^{\pm} := \partial K^{\pm}$$
 (Julia set for $\{f^{\pm n}\}_{n \geq 0}$). $J := J^{+} \cap J^{-} = \partial K$ (Julia set for $\{f^{n}\}_{n \in \mathbb{Z}}$?)

What causes $\{f^n\}$ to be non-normal at J^{\pm} ?

Cosider fixed points (or periodic points): fp = p, λ_1, λ_2 eigenvalues of Df_p .

$$p$$
 attracting $(|\lambda_1|, |\lambda_2| < 1) \Rightarrow p \in J^- \cap \operatorname{int}(K^+)$.
 p repelling $(|\lambda_1|, |\lambda_2| > 1) \Rightarrow p \in J^+ \cap \operatorname{int}(K^-)$.
 p saddle $(|\lambda_1| < 1 < |\lambda_2|) \Rightarrow p \in J^+ \cap J^- = J$.

A saddle point has *local stable and unstable manifolds*.

$$W^s_{\text{loc}}(p) := \{x \in \mathbf{C}^2 : d(f^n x, p) < \delta \text{ for all } n \ge 0\}$$

 $W^u_{\text{loc}}(p) := \{x \in \mathbf{C}^2 : d(f^n x, p) < \delta \text{ for all } n \le 0\}$
for small $\delta > 0$.

By the Stable Manifold Theorem these are complex disks in \mathbb{C}^2 .

We also have *global* stable/unstable manifolds.

$$W^{s}(p) := \{x \in \mathbf{C}^{2} : f^{n}x \to p \text{ as } n \to +\infty\}$$

$$W^{u}(p) := \{x \in \mathbf{C}^{2} : f^{n}x \to p \text{ as } n \to -\infty\}$$
21

These are immersed copies of ${\bf C}$ in ${\bf C}^2$.

$$W^s_{\mathsf{loc}}(p) \subset W^s(p) \subset J^+$$

 $W^u_{\mathsf{loc}}(p) \subset W^u(p) \subset J^-$

Thm. (Bedford-Smillie)

$$\overline{W^s(p)} = J^+ \text{ and } \overline{W^u(p)} = J^-.$$

Compare with the horseshoe.

Proof uses pluripotential theory (currents).

Define Green function as in C.

$$G^+ := \lim_{n \to \infty} \frac{1}{d^n} \log^+ |f^n|.$$

- \bullet G^+ is continuous and plurisubharmonic.
- $G^+ \ge 0$, $\{G^+ = 0\} = K^+$.
- $\bullet \ G^+ \circ f = d \, G^+.$

Define positive closed current by

$$\mu^+ := dd^c G^+,$$

i.e.

$$\langle \mu^+, \phi \rangle = \frac{i}{\pi} \int G^+ \partial \overline{\partial} \phi$$

for a (1,1) test form ϕ .

Prop. supp $(\mu^+) = J^+$.

Proof. Show $x \in \text{supp}(\mu^+) \Leftrightarrow G^+$ ph at x.

$$x \in \text{int}K^+ \Rightarrow G^+ = 0 \text{ at } x.$$

 $x \in J^+ \Rightarrow G^+$ not ph at x (max. princ.).

$$x \notin K^+ \Rightarrow G^+ \approx d^{-n} \log |z_n|$$
 ph at x (filtr.) \square

Remark Similarly G^- , μ^- , ...

M submanifold of \mathbb{C}^2 . Current of integration:

$$\langle [M], \phi \rangle := \int_M \phi.$$

Push-forward of current: $\langle f_*S, \phi \rangle := \langle S, f^*\phi \rangle$.

Pull-back of current: $f^*S := (f^{-1})_*S$.

Example: $f^*[M] = [f^{-1}M]$.

Thm [BS]. For any saddle point p:

$$\frac{1}{d^n} f^{n*}[W^s_{\mathsf{loc}}(p)] \to c\mu^+$$

as $n \to \infty$, where c > 0.

Cor. $\overline{W^s(p)} = J^+$.

Proof of Thm (Fornæss-Sibony) in 3 steps.

$$\sigma_n := \frac{1}{d^n} f^{n*} [W^s_{\mathsf{loc}}(p)].$$

- 1. σ_n has uniformly bounded mass in ${f C}^2$.
- 2. Any limit point of $\{\sigma_n\}$ is closed.
- 3. If S is a positive closed current on \mathbb{C}^2 with $\operatorname{supp}(S) \subset J^+$, then $S = c\mu^+$, c > 0.

Sketch of 1. Let $\omega = \frac{1}{2}dd^c\log(1+|(z,w)|^2)$ Kähler form on \mathbf{P}^2 . The mass of σ_n is

$$\|\sigma_n\| := \langle \sigma_n, \omega \rangle = \langle [W^s_{\mathsf{IOC}}(p)], \frac{1}{d^n} f^n_* \omega \rangle.$$

Now $\frac{1}{d^n}f_*^n\omega=\frac{1}{2d^n}dd^c\log(1+|f^{-n}|^2)$ converges to $dd^cG^-=\mu^-$. Hence $\|\sigma_n\|$ is uniformly bounded and converges to

$$\langle [W^s_{\text{loc}}(p)], \mu^- \rangle = \int_{W^s_{\text{loc}}(p)} dd^c (G^-|_{W^s_{\text{loc}}(p)}).$$

Sketch of 2. Suffices to show $\partial \sigma_n \to 0$, i.e. $\langle \sigma_n, \partial \phi \rangle \to 0$ for any (0,1) test form in ${\bf C}^2$. Use integration by parts and Cauchy-Schwarz: if S is a positive closed current of bidegree (1,1) and α,β are (1,0) test forms, then

$$(\alpha,\beta) \to i\langle S, \alpha \wedge \overline{\beta} \rangle$$

defines an inner product.

Sketch of 3. Let S be the set of positive closed (1,1)-currents supported on K^+ . Show that $\frac{1}{d^n}f^{n*}S \to \mu^+$ uniformly for $S \in S$.

Let $S \in \mathcal{S}$. Then $S = dd^c u$, u psh on \mathbb{C}^2 , $u \leq \log |(z, w)| + O(1)$. Define $u_n = d^{-n}u \circ f^n$. Must show $u_n \to G^+$ in L^1_{loc} .

If not, then $\exists n_k$, $\delta > 0$ and $\Omega \subset \operatorname{int}(K)$ s.t. $u_{n_k} \leq -\delta$ on Ω , i.e.

$$f^{n_k}\Omega \subset \{u \leq -\delta d^{n_k}\}.$$

By pluripotential theory, RHS is "small". By dynamics, LHS is "not too small". Contradiction.

FURTHER RESULTS ON HENON MAPPINGS

By pluripotential theory

$$\mu := \mu^+ \wedge \mu^-$$

is a well-defined, invariant measure. Recall $supp(\mu^{\pm}) = J^{\pm}$. Hence $supp(\mu) \subset J$.

Open problem: is $supp(\mu) = J$?

Thm (Bedford-Lyubich-Smillie)

- 1. (f,μ) is measurably conj. to 2-sided shift.
- 2. μ describes (saddle) periodic points:

$$\lim_{n\to\infty}\frac{1}{d^n}\sum_{f^np=p}\delta_p=\mu.$$

3. μ^{\pm} are *laminar* currents.

The proof uses *Pesin Theory* (non-uniform hyperbolicity).

Misc. Entropy, Fatou components,

REGULAR POLYN. MAPPINGS OF ${f C}^2$.

(with E. Bedford).

Def. A polynomial map $f: \mathbb{C}^2 \to \mathbb{C}^2$ of deg. d > 2 is *regular* if any of the following holds.

R1 $|f(x)| \ge c|x|^d$ as $|x| \to \infty$, c > 0.

R2 f extends continuously (holom.) to P^2 .

R3 The homogeneous part f_h of degree d satisfies $f_h^{-1}(0) = 0$.

Idea: \mathbf{P}^2 good compactification of \mathbf{C}^2 .

Examples

- 1. $f(z, w) = (p(z), q(w)), \deg p = \deg q = d.$
- 2. Hénon mappings are not regular.
- 3. Rational maps on $\widehat{\mathbf{C}} \simeq \mathbf{P}^1$ correspond to homogeneous regular polynomial maps of \mathbf{C}^2 :

 $\Pi:=\mathbf{P}^2-\mathbf{C}^2\simeq\mathbf{P}^1$ line at infinity.

 $f_{\Pi} := f|_{\Pi}$ rational map of degree d.

 $K:=\{x\in {\bf C}^2: f^nx \text{ bounded}\}.$

 $A := Basin of attraction of \Pi$.

 $\mathbf{P}^2 = K \cup A$ completely invariant partition.

Idea: Approach dynamics on K from Π .

In C^1 all polynomial mappings are regular.

$$p(z) = z^d + a_{d-1}z^{d-1} + \dots$$

Dynamics near $\Pi = \infty$ is described by Böttcher coordinate $\phi(z) = z + O(1)$:

$$\phi(p(z)) = \phi(z)^d.$$

The relation between ϕ and G is $\log |\phi| = G$.

External rays := gradient lines of G.

Gradient lines for $p(z) = z^2 - 1$ and $z^2 - 1 + i$.

 ϕ induces $\mathcal{E} := \{ \text{external rays} \} \simeq S^1$.

Let $u \simeq \frac{d\theta}{2\pi}$ be Lebesgue measure on \mathcal{E} .

Thm There is a.e. defined landing map $e: \mathcal{E} \to J$ and $e_*\nu = \mu$.

Thus μ is a quotient of ν .

Thm If J is connected and p is uniformly expanding on J, then $e: \mathcal{E} \to J$ is continuous.

Thus J is a topological quotient of S^1 .

Goal: Prove corresponding result in \mathbb{C}^2 .

Problem: What are external rays.

Introduce pluripotential theory.

$$G := \lim_{n \to \infty} \frac{1}{d^n} \log^+ |f^n|.$$

- G is continuous and psh on ${\bf C}^2$.
- $G \ge 0$, $\{G = 0\} = K$.

$$T := dd^c G$$

positive closed current on C^2 (and P^2).

$$\mu := T \wedge T = dd^c(GT)$$

is an invariant probability measure on ${\bf C}^2$, "harmonic measure", supported on $J:=\partial_{Sh}K$.

Thm (F-S, Briend). μ is invariant, ergodic ... and describes (repelling) periodic points:

$$\lim_{n\to\infty} \frac{1}{d^{2n}} \sum_{f^n p=p} \delta_p = \mu.$$

There is a measure μ_{Π} (Lyubich measure) supported on J_{Π} with similar properties for f_{Π} . In fact μ_{Π} is determined by T:

$$\mu_{\Pi} = T|_{\Pi}.$$

Model case: $f = f_h$ homogeneous. Then

$$G(\lambda x) = G(x) + \log|\lambda|$$

for $x \in A$, $|\lambda| \ge 1$. This implies

Lemma. If $f = f_h$, then on A

$$T = \int_{J_{\Pi}} [L_a] \, \mu_{\Pi}(a),$$

$$\mu = \int_{J_{\Pi}} Leb(L_a \cap \partial A) \, \mu_{\Pi}(a), \qquad (*)$$

where $L_a = \text{line through } a \in \Pi \text{ and } 0.$

External rays are rays in L_a for $a \in J_{\Pi}$ and (*) gives a landing result for external rays.

Idea in general case: Stable manifolds \Rightarrow laminarity of T on $A \Rightarrow$ external rays.

First prove T is laminar on A. Simplifications:

- 1. Show laminarity near Π .
- 2. Assume f_{Π} unif. expanding on J_{Π} , i.e.

$$|Df_{\Pi}^n a| \ge c\lambda^n, \quad c > 0, \lambda > 1, a \in J_{\Pi}, n \ge 1.$$

Assume 2. If not, use Pesin Theory (non-uniform expansion).

Uniform expansion \Rightarrow stable manifolds:

 $W^s_{\text{loc}}(a) := \{x \in \mathbf{P}^2 : d(f^n x, f^n a) < \delta \text{ for } n \geq 0\}$ is a complex disk for $a \in J_{\Pi}$ (and $\delta > 0$ small).

$$A_0 := \{G > R_0\}, \ W_0^s(a) := W_{loc}^s(a) \cap A_0.$$

Thm. If $R_0 \gg 0$, then on A_0

$$T = \int_{J_{\Pi}} [W_0^s(a)] \, \mu_{\Pi}(a). \tag{1}$$

Proof. The formula holds for f_h :

$$T_h = \int_{J_{\Pi}} [L_a] \,\mu_{\Pi}(a). \tag{2}$$

Apply $d^{-n}f^{n*}$ to (2) and restrict to A_0 .

LHS $\to T$ because $d^{-n}G_h \circ f^n \to G$.

RHS \rightarrow RHS(1) by the Stable Manifold Theorem and invariance of μ_{Π} .

Want laminar formula for T on all of A.

Problem: Analytic continuations of $W_0^s(a)$ can have locally infinite area in A.

Solution: divide into smaller pieces by cutting along gradient lines.

Thm. For $a \in J_{\Pi}$ there exists a complex disk W_a in A of finite area such that

$$T = \int_{J_{\Pi}} [W_a] \, \mu_{\Pi}(a)$$

on A. There is a "hedgehog domain" H_a and a conformal equivalence $\psi_a: H_a \to W_a$ with $G(\psi_a(\zeta)) = \log |\zeta|$.

External rays = ψ_a (rays in H_a) for $a \in J_{\Pi}$.

 $\mathcal{E} := \{ \text{ external rays } \} \simeq J_{\Pi} \times S^1$

 $\nu := \mu_{\Pi} \otimes \frac{d\theta}{2\pi}$ measure on \mathcal{E} .

 $e: \mathcal{E} \to \partial K$ endpoint map.

Thm e is a.e. well defined and $e_*\nu = \mu$.

Ingredients in proof:

- 1. Laminarity of T on A.
- 2. $dd^c \max(G, r) \wedge dd^c G \rightarrow \mu \text{ as } r \rightarrow 0.$

Further results:

- 1. Conjugacy $f \simeq f_h$ (Böttcher coordinate).
- 2. Continuity of $e: \mathcal{E} \to J$.