PLURICOMPLEX DYNAMICS

Motivation and examples.
Polynomial dynamics on C.
Hénon mappings.

Regular polynomial mappings of C2.
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DYNAMICAL SYSTEMS
(way too) general definition

X phase space.
G group acting on X.

In these lectures:
X = complex manifold (P* or CF)

G={f"}n>0 0of G={f"}cz

Here f : X — X is a holomorphic mapping (or
biholomorphism). Study behavior of iterates
f"=fo---of as n — +oo.

Interesting things to look at:

o Orbits {f"p},>0 O {f"P}necz.
e Invariant “objects” (measures, currents).

Of special interest are ‘recurrent” points,
e.g. periodic points, fp = p.



Different aspects of dynamics.

1. Local dynamics.

Example: linearization at sinks.

f:(C,0) — (C,0) germ.

f(z) = X2+ 0(22), 0 < |\ < 1. Then 3
?(z) = z+ o(1) such that ¢(f(z)) = Ap(2).

2. Global dynamics.

Example: finitely many sinks.

If f: C — C is a rational map of degree d,
then f has at most 2d — 2 attracting periodic
cycles.

3. Semilocal dynamics.
Example: horseshoes.



SYMBOLIC DYNAMICS
> T:={0, 1}+= {(en)n>0}
> :={0,1}* = {(en)nez}
are compact metric spaces (Cantor sets):
d((en), () = 3" 27 Md(en, €),)
We have natural maps
ot: =t st
o 2 —2
defined by left shift:

o T ((en))= (nt1)
o((en))= (en+1)

(=T,07): (full) 1-sided shift on two symbols.
(X,0) : (full)2-sided shift i

Note: o1 and o are continuous. o is invert-
ible (homeomorphism) but o1 is 2—1.



> and X1 carry natural invariant measures
(Bernoulli measures).

Idea: Shift maps are models for behavior of
differentiable or complex dynamics.

Generalizations:
e (Full) shifts on N symbols.
e Subshifts of finite type:

M = N x N binary matrix.

>u = {(en) : Mep,e, 41 = 1}
= {set of paths in finite directed graph}



TOPOLOGICAL MODEL FOR 1-SIDED SHIFT

D

Define f : C — C continuous such that

1. f maps D; affinely onto D, + =0, 1.

2. f(D—-(D1UD>)) CcC—-D.

3. f(C—D)cC-Dand f» - o0 on C—-D.

K :={ze€C: f*z bounded}
Claim. f|x is conjugate to o|sx 4.
Proof. Let x € K. Define ¢(z) = (en)n>0 bY

en =i if f"z € D;,i=0,1.

Then ¢ is a homeomorphism of K onto =T
and st o =¢o f. O



Consequences.

e Periodic points are dense in K.

e f has periodic points of all orders.

e "Most” points in K have dense orbits in K.



TOPOLOGICAL MODEL FOR 2-SIDED SHIFT
(Smale’s horseshoe)

Define f: V — R2.

Ww "

WV nv =Vvyu ;.
f is affine on V;, : =0, 1.



Extend f to a diffeomorphism of R2 such

that:
1. f(Vvt)cvtand f* - o0 on VT.
2. f (Vv )cv-and f "> oc0o0n V.

vt vt
D
v

K* :={pec R?: f bounded as n — +oo}.
K:=KtnK-.



Then

KT NV = Cantor set x interval.
K~ NV = interval x Cantor set.
K = Cantor set x Cantor set.

Define ¢(x) = (en) ez, Where
en =1 if ffleeV;,,i=0,1.

Claim. ¢ conjugates f|x to o|s.
Proof. Same as before.

consequences.
e Periodic points are dense in K.
e f has periodic points of all orders.
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A QUADRATIC POLYNOMIAL ON C

f(2) = 22 4 10.

If |2| > 5, then |f(z)| > 5 and |f"(z)| — oo.
If D := {|z| <5}, then f~1(D) = Dyu D;.

D

Here f : D, — D is univalent (= affine).
K :={ze€C: f*z bounded}

J = 0K (= K) — Julia set of f.
Topological model = f|; ~ oT|x4.

Conclusions.
e Periodic points are dense in J.
e f has periodic points of all orders.
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A QUADRATIC HENON MAPPING

Define f : R?2 — R? (or C2 — C?)
flz,y) =(—2°+a—by,z) O0<bkKlanda>1

Decompose f = fzo foo fy.
fl(xay) — (ZB,by)
fQ(xay) — (_yvx)
fa(z,y) = (z + (=y? + a),y).

Thus f “is” a horseshoe.

K* :={p: f"p bounded as n — +oo}.
K:=KTnK-~.
J = 0K(=K)

Topological model = f|; ~ o|s.

Conclusions.
e Periodic points are dense in J.
e f has periodic points of all orders.
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POLYNOMIAL MAPPINGS OF C

p(z) =2%+ay 12+ ...

Want to understand dynamics of p.

Focus on points with recurrent behaviour.
K :={z¢€ C:p"z bounded as n — oo}.

J := 0K (Julia set).

The picture shows K for p(z) = 22 — 1.

In fact J = {z: {p"} not normal at z}.
What causes {p™} to be non-normal at J?

If z repelling periodic point, p"z = =z and
| Dp™z| > 1, then z € J.

Thm. J = {repelling periodic points}
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Two tools for analyzing global dynamics: Mon-
tel’'s Theorem and Potential Theory.

Montel’s Theorem (Fatou, Julia, ... )

If U ¢ C and G is a family of meromorphic
functions on U with G(U) ¢ C — {0,1, o0},
then G is normal.

Potential Theory (Brolin,Sibony, ... )

1
. . + . n
G(z) = lim o log™ |p"(2)].

G > 0 is continuous, subharmonic, harmonic

off of J and G(z) = log|z| +0o(1) as |z| = oo.

Thus G is the Green function of K and
1
pui=—AG

27
is harmonic measure on K. Since Gop =G,

p is invariant, u(p~1A) = u(A).

Prop. J has no isolated points.

Proof. G is continuous and supp(p) =J. O
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Thm. Periodic points describes u.

_ 1
n“—>mood_n nz 0z = I
plz=z

Remark: Also for repelling periodic points.

Proof. Let

1
Hp(z) = o log [p"z — z|.

Then H, is a potential for LHS. It suffices to

show that H,, — G in Llloc.

First, H, — G on C — K. Suppose Hnj — H

in Lt .. Then H< G and H=G on C- K.

If H #~= G, then by Hartogs we have § > 0 and
2 Cint(K) such that H,; < -4 on €, i.e.

1p""iz — z| < exp(—dd"7)

on 2. One can show this is impossible. O
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Cor. Periodic points are dense in J.
In a similar way one can show:

Thm. For (almost) all w e C

as n — oo. (Exception: p(z) = z¢, w = 0).

Cor. u is ergodic, i.e.
P_1A=A:>/LA=O or nA =1.
Thus, by the Ergodic Theorem.

Cor. For p a.e. w

lim — =
n—)oon Z Pj’w

In particular, the orblt of w is dense in J.

Compare with o7,
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The results presented are very basic. Some
further issues.

1. Classification of Fatou components.
2. Geometry of Julia sets.
3. Parameter space (Mandelbrot set).
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HENON MAPPINGS

Goal. Understand dynamics of polynomial
automorphisms of C2.

Friedland-Milnor showed that the interesting
polynomial automorphisms of C2 are (conju-
gate to) compositions of Hénon mappings.

f(z,w) = (p(2) + bw, 2),

where p(z) = z%4... and b 0. For simplic-
ity we only consider f of this form.

Note that

F1 (e w) = (w, y (= — p(w)).

is of the same type.
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We have a filtration for f = (p(z) + bw, 2).

D
[w]

o f(VT)CVT.

o f I (VHYCV—.

e f" — pi ON VE as n — +oo0.
o If |fx| — o0 @as n — *o0, then fx — p4.

These observations are trivial but cruciall
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K* :={z : f?z bounded as n — +o0}.
K=KtnKk~—.

- +
Filtration = KT C VUV is closed.

K CV is compact.

J* = 9K¥* (Julia set for {f*"},,>0).
J:=JtNnJ~ =09K (Julia set for {f"},,cz?)

What causes {f"} to be non-normal at J*?

Cosider fixed points (or periodic points):
fp = p, A1, eigenvalues of D fp.

p attracting (J\1],|X2| < 1) = p € J nint(KT).

p repelling (JA1], |[X2| > 1) = p € JTNint(K 7).
p saddle (M| <1< |X|) =peJTni =J.
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A saddle point has local stable and unstable
manifolds.

W (p) :={z € C?: d(f"x,p) < é for all n > 0}
WY (p) := {x € C?: d(f"=z,p) < & for all n < 0}

for small § > 0.

By the Stable Manifold Theorem these are
complex disks in C2.

Wi (p)

We also have global stable/unstable mani-
folds.

We(p) .= {z € C?: f"z — pas n — +oo}
W p) ={zeC?: f"z > pasn— —oo}
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These are immersed copies of C in C2.

Wi (p) CWi(p) c JT
Wisc(p) C W4(p) C J~

Thm. (Bedford-Smillie)

Ws(p) = J1 and Wu(p) = J~.

Compare with the horseshoe.

Proof uses pluripotential theory (currents).
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Define Green function as in C.

1
Gt := lim —log™|f".

n—oo dn

e GT is continuous and plurisubharmonic.
e GT>0, {GT=0}=KT.
e Gtof=dGT.

Define positive closed current by

,u+ = dCG+,

(wt,9) == [ GTovy
T
for a (1,1) test form ¢.

Prop. supp(p™) = JT.

Proof. Show x € suDD(u"’) < GT ph at =
r€intKt = GT =0 at z.

z € JT = GT not ph at z (max. princ.).

r¢ KT = GT ~d "™log|z,| ph at z (filtr.) O

Remark Similarly G—, u—, ...
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M submanifold of C2. Current of integration:

(], 9) == [ .

Push-forward of current: (f«S,¢) := (S, f*¢).
Pull-back of current: *S := (f~1).S
Example: f*[M] = [f~1M].

Thm [BS]. For any saddle point p:

P W] - et

as n — oo, Where ¢ > 0.

Cor. Ws(p) = JT.

Proof of Thm (Fornaess-Sibony) in 3 steps.

1
On = d—nfn*[lec(p)]'

1. oy has uniformly bounded mass in C2.
2. Any limit point of {0y} is closed.
3. If S is a positive closed current on C?2 with
supp(S) c Jt+, then S =cu™, ¢> 0.
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Sketch of 1. Let w = 3ddlog(1 + |(z,w)|?)
Kahler form on P2. The mass of o, is

Joull := {on, w) = (Wioc (@), 7 ).

Now 7 flw = »azdd® log(1+]|f~"|?) converges
to dd°G~ = u~. Hence ||lon|l is uniformly
bounded and converges to

(Wioc(@)],n™) = /WS ) dd*(G™ lys
loc

(p))-
Sketch of 2. Suffices to show 9do, — O,
i.e. {opn,0¢0) — 0 for any (0,1) test form in
C2. Use integration by parts and Cauchy-
Schwarz: if S is a positive closed current of
bidegree (1,1) and «, 3 are (1,0) test forms,
then

(o, B) — i(S, . A B)

defines an inner product.

25



Sketch of 3. Let § be the set of positive
closed (1,1)-currents supported on K. Show
that dlnf"*S — uT uniformly for S € S.

Let S € S. Then S = ddu, u psh on C2,
u <log|(z,w)|+0O(1). Define up = d "uo f.
Must show up — GT in LL .
If not, then 3 ng, § > 0 and 2 C int(K) s.t.
up, < —0 on €2, i.e.

FQ C {u < —5d™}Y.

By pluripotential theory, RHS is “small’. By
dynamics, LHS is “not too small”’. Contra-
diction. O
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FURTHER RESULTS ON HENON MAPPINGS

By pluripotential theory

pi=ptApT
iIs a well-defined, invariant measure. Recall
supp(pT) = J*. Hence supp(p) C J.

Open problem: is supp(p) = J7?
Thm (Bedford-Lyubich-Smillie)

1. (f, ) is measurably conj. to 2-sided shift.
2. u describes (saddle) periodic points:

3. u* are laminar currents.

The proof uses Pesin Theory (non-uniform
hyperbolicity).

Misc. Entropy, Fatou components, ... .
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REGULAR POLYN. MAPPINGS OF CZ2.
(with E. Bedford).

Def. A polynomial map f: C2 — C2 of deg.
d > 2 is regular if any of the following holds.
R1 |f(z)| > c|z|? as |z| — o0, ¢ > 0.

R2 f extends continuously (holom.) to P2.

R3 The homogeneous part f; of degree d
satisfies fh_l(O) = 0.

Idea: P2 good compactification of C2.

Examples

1. f(z,w) = (p(2),q(w)), degp = degq =d.
2. Hénon mappings are not regular.

3. Rational maps on C ~ Pl correspond to
homogeneous regular polynomial maps of C2:

C2 — C2

= ]
pl . pl
28



M:=P? — C? ~ P! line at infinity.
fr := fln rational map of degree d.
K := {z € C?: f?z bounded}.

A := Basin of attraction of 1.

P2 = K U A completely invariant partition.

Idea: Approach dynamics on K from I1.
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In C1 all polynomial mappings are regular.

p(z) = 24 -+ ad_lzd_l -+ ..

Dynamics near 'l = oo is described by Bottcher
coordinate ¢(z) = z+ O(1):

3(p(2)) = ¢(2)"
The relation between ¢ and G is log|¢| = G.

External rays := gradient lines of G.

Gradient lines for p(z) = 22—1 and 22 —1 4.
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¢ induces £ := {external rays} ~ St.

Let v~ 2 pe Lebesgue measure on &.

T

Thm There is a.e. defined landing map
e.: & — J and exv = u.

Thus p is a quotient of v.

Thm If J is connected and p is uniformly
expanding on J, thene: & — J is continuous.

Thus J is a topological quotient of S1.
Goal: Prove corresponding result in C2.

Problem: What are external rays.
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Introduce pluripotential theory.

1
G:= lim —log™ |f"|.

n—oo dn

e GG is continuous and psh on C2.
e G>0, {G=0} =K.

T :=dd°G
positive closed current on C2 (and P2).
w:=TANT =dd°(GT)

is an invariant probability measure on C2,
“harmonic measure”, supported on J := 0qp, K.

Thm (F-S, Briend). pu is invariant, ergodic
. and describes (repelling) periodic points:

, 1
n||—>mood2—n Z O0p = pt.
f"p=p
There is a measure un (Lyubich measure)
supported on Jp with similar properties for

fn- In fact un is determined by T

pn = T|n.
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Model case: f = f;, homogeneous. Then

G(Az) = G(z) + 1og ||
for x € A, |A\| > 1. This implies

Lemma. If f = f;, thenon A

7= [ [Lalun(a),

p= /Jn Leb(Lq N 0A) pn(a), (*)

where L, = line through a € 'l and 0.

External rays are rays in Ly for a € Jny and

(*) gives a landing result for external rays.
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Idea in general case: Stable manifolds =
laminarity of T' on A = external rays.

First prove T is laminar on A. Simplifications:
1. Show laminarity near [I1.
2. Assume fp unif. expanding on Jp, i.e.

IDffial > cA™, ¢>0,A>1,a€ Jn,n> 1.

Assume 2. If not, use Pesin Theory (non-
uniform expansion).

Uniform expansion = stable manifolds:

Wisc(a) :={z € P2 : d(f"z, f"a) < & for n > 0}

is a complex disk for a € Jq (and § > 0 small).

i XA
I

— A
A, 1 =— \\ 0

|
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Ao :={G > Rp}, Wg(a) L= WI%c(a) N Ap.

Thm. If Rg > 0, then on Ag

7= [ W@ un(e) (1)
Proof. The formula holds for fy:
Ty = [ Lol pn(a) (2)

Apply d="f"* to (2) and restrict to Ap.
LHS — T because d "Gy o f* — G.

RHS — RHS(1) by the Stable Manifold The-
orem and invariance of up. O

Want laminar formula for T° on all of A.

Problem: Analytic continuations of W§3(a)
can have locally infinite area in A.

Solution: divide into smaller pieces by cutting

along gradient lines. -



Thm. For a € Jq there exists a complex disk
We in A of finite area such that

T = /Jn [Wal pn(a)

on A. There is a “hedgehog domain” H, and
a conformal equivalence vy, : H, — W, with

G(¥a(¢)) = log [¢].

Ya

External rays = q(rays in Hy) for a € Jp.
£ = { external rays } ~ Jn x S1
vi=un® % measure on €£.

e: & — 0K endpoint map.
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Thm e is a.e. well defined and e«v = u.

Ingredients in proof:
1. Laminarity of T on A.
2. dd°max(G,r) ANdd°G — n as r — 0.

Further results:

1. Conjugacy f ~ f;, (Bottcher coordinate).
2. Continuity of e: & — J.
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