Local Singularities of Planar Plurisubharmonic Functions

Mattias Jonsson (UM) and Charles Favre (CNRS)

Introduction

Setup: u psh function near origin in \mathbb{C}^2 , $u(0) = -\infty$.

Goal: study (logarithmic) singularity of u.

Examples:

1.
$$u(x, y) = \log |(x, y)| = \log \max\{|x|, |y|\}$$

2. $u(x, y) = \log |y|$
3. $u(x, y) = \log |\log |(x, y)||$

Invariants:

- 1. Lelong number.
- 2. Kiselman numbers.
- 3. Demailly-Lelong numbers.
- 4. Arnold multiplicity.
- 5. Multiplier ideal.

Connections between invariants?

Invariants

1. Lelong number

$$\nu^{\mathrm{L}}(u) = \lim_{r \to 0} \frac{1}{\log r} \sup_{\Delta_r \times \Delta_r} u$$

2. Kiselman numbers

$$\nu_{1,t}^{\mathrm{K}}(u) = \lim_{r \to 0} \frac{1}{\log r} \sup_{\Delta(r) \times \Delta(r^t)} u$$

where $t \geq 1$.

3. Demailly-Lelong numbers

$$u^{\mathrm{D}}_{arphi}(u) = (dd^{c}u \wedge dd^{c}arphi)\{0\},$$

for φ psh, $\varphi^{-1}\{-\infty\} = \{0\}$, e^{φ} Hölder cont, i.e. a Hölder weight.

4. Arnold multiplicity

$$\lambda(u) = \inf\{\lambda > 0 \mid e^{-u/\lambda} \in L^2_{\text{loc}}\}.$$

5. Multiplier ideal

$$J(u) = \{\phi \text{ analytic germ } \mid |\phi|e^{-u} \in L^2_{\text{loc}}\}.$$

Main Results

Thm A. (Criterion for equisingularity) If u, v psh, then

$$J(tu) = J(tv) \; \forall t > 0 \quad \Leftrightarrow \quad \nu_{\varphi}^{\mathrm{D}}(u) = \nu_{\varphi}^{\mathrm{D}}(v) \; \forall \varphi.$$

Thm B. If u psh, then

$$\lambda(u) = \sup\left\{\frac{\nu_{1,t}^{\mathsf{K}}(h^*u)}{1+t} \mid t \ge 1, h \text{ local biholomorphism}\right\}.$$

Cor (Skoda). $\nu^{L}(u) < 1 \implies \lambda(u) < 1 \implies e^{-u} \in L^{2}_{loc}$.

Thm (Mimouni). If $\nu^{L}(u) = 1$, then $e^{-u} \in L^{2}_{loc}$ unless $dd^{c}u$ puts mass on a curve.

Thm C. If
$$\nu^{L}(u) = 1$$
, then exactly one of the following holds:
• $e^{-u} \in L^{2}_{loc}$;
• $u = \log |\phi| + v$, where $(\phi = 0)$ is smooth and $\nu^{L}(v) = 0$.

Thm D. (Openness conjecture) If $\lambda = \lambda(u)$, then $e^{-u/\lambda} \notin L^2_{loc}$. Thus the interval $\{\lambda > 0 \mid e^{-u/\lambda} \in L^2_{loc}\}$

is open.

Main Tools

Valuations.

- Give information on singularities of curves and ideals.
- Action extends to psh functions.
- Generalize Kiselman numbers.
- The set of all valuations has a nice (tree) structure.

Demailly approximation.

- Approximate a general psh function by log-singular psh functions.
- Well adapted to valuations.
- Construction uses multiplier ideals!

The Valuative Tree

A subtree:

 $\mathcal{V}_{ ext{tor}} = \{ ext{``toroidal'' normalized valuations on } \mathbf{C}[x,y]\}$

 $=\{(\phi,t)~|~(\phi=0) \text{ local irreducible curve},~t\geq 1\}/\sim,$

where $(\phi,t) \sim (\psi,t)$ iff ϕ,ψ "sufficiently tangent" (depending on t).

Natural tree structure:

- partial ordering.
- metric
- topologies

The full tree:

 $\mathcal{V} =$ "completion" of \mathcal{V}_{tor}

- $= \mathcal{V}_{tor} \cup \{\mathsf{endpoints}\}$
- = {normalized valuations on $\mathbf{C}[x, y]$ }.

Special elements:

- Root: $\nu_{\mathfrak{m}} = \nu_{\phi,1}$. Acts on $\mathbf{C}[x,y]$ by $\nu_{\mathfrak{m}}(\psi) = m(\psi) =$ multiplicity of ψ .
- Curves: $\nu_{\phi} = \nu_{\phi,\infty}$. Act on $\mathbf{C}[x,y]$ by $\nu_{\phi}(\psi) = \phi \cdot \psi/m(\phi)$.

Characteristic Regions

Def. A toroidal valuation $\nu = \nu_{\phi,t}$ defines a characteristic region in \mathbb{C}^2 :

$$\Omega_{\nu}(r) = \{ |(x,y)| \le r, |\phi(x,y)| \le |(x,y)|^{m(\phi)t} \}$$

Essentially independent of representative ϕ .

Def. Thinness $A(\nu)$ of ν defined by $|\Omega_{\nu}(r)| \sim r^{2A(\nu)}$.

Def. Action of ν on psh functions: $\nu(u) := \lim_{r \to 0} \frac{1}{\log r} \sup_{\Omega_{\nu}(r)} u$.

Prop. This is well-defined.

Proof. Consider two cases. Case 1: ϕ smooth. WLOG $\phi = y$. Then $\nu(u) = \nu_{1,t}^{K}(u)$. Case 2: ϕ singular. Desingularize by birational map π . Reduce to Case 1. Then $\nu(u) = \text{const} \cdot \nu_{1,s}^{K}(\pi^{*}u)$, s > 0.

Rem. Consistent with alg. def. if we identify $\phi \in \mathbf{C}[x, y]$ with $\log |\phi|$ psh.

The Tree Transform I

• Any u psh has a tree transform $\hat{u}: \mathcal{V}_{tor} \rightarrow [0, \infty)$ given by

$$\hat{u}(
u) :=
u(u)$$

- What properties does \hat{u} have?
- Kiselman: $t \mapsto \nu_{1,t}^{\mathrm{K}}(u)$ is concave.
- Must understand concavity on the tree $\mathcal{V}_{\rm tor}.$
- Parameterizations of $\mathcal{V}_{\mathrm{tor}}$ (or \mathcal{V}):
 - Thinness $A: \mathcal{V} \to [2, \infty]$.
 - Skewness $lpha:\mathcal{V}
 ightarrow [1,\infty]$;
 - $\alpha(\nu_{\phi,t}) = t.$
 - Intrinsically: $\alpha(\nu) = \sup \frac{\nu(\phi)}{m(\phi)}$.
 - For ϕ irreducible: $\nu(\phi) = m(\phi)\alpha(\nu \wedge \nu_{\phi})$
 - Relation: $A(\nu) = 2 + \int_{\nu_m}^{\nu} m(\mu) \, d\alpha(\mu)$, where $m(\mu) = \min\{m(\psi) \mid \nu_{\psi} \ge \mu\}$
- Use skewness to define concavity.

Potential Theory

- On R: (normalized) concave fcns \leftrightarrow positive Borel measures. Identification given by $\Delta = -\partial^2/\partial x^2$.
- Do something similar on the valuative tree $\ensuremath{\mathcal{V}}.$
- $\Phi:\mathcal{V}\rightarrow [0,\infty]$ is a tree potential if
 - Φ is increasing;
 - $-~\Phi$ has directional derivatives everywhere;
 - At $\nu \neq \nu_{\mathfrak{m}}$: \sum outgoing derivatives \leq incoming derivative.
 - At $\nu_{\mathfrak{m}}$: \sum outgoing derivatives $\leq \Phi(\nu_{\mathfrak{m}})$.

Thm. \exists homeomorphism $\Delta : \{ \text{tree potentials} \} \rightarrow \{ \text{Borel measures} \}.$

Ex.
$$\Phi := \alpha(\nu \wedge \cdot)$$
 has $\Delta \Phi = \delta_{\nu}$.

Ex. If Φ is as in the example below, then $\Delta \Phi = \delta_{\nu_{y,2}} + \delta_{\nu_y} + \delta_{\nu_{y+x^2}}$

Demailly Approximation

Consider u psh on B = B(0,1) and $m \ge 1$. Define Hilbert space \mathcal{H}_m by

$$\mathcal{H}_m := \left\{ \phi \in \mathcal{O}(B) \ \middle| \ \int_B |\phi|^2 e^{-2mu} < \infty \right\}.$$

Define psh function u_m by

$$\begin{split} u_m(p) &= \frac{1}{2m} \log \sum_{j=1}^{\infty} |h_{mj}(p)|^2 \quad \text{where } (h_{mj})_j \text{ is an ON basis for } \mathcal{H}_m \\ &= \frac{1}{m} \sup \left\{ \log |\phi(p)| \mid \|u\|_m \leq 1 \right\}. \end{split}$$

Then u_m is log-singular and approximates u well:

Prop. For any u psh, $\nu \in \mathcal{V}_{tor}$, $m \ge 1$ we have

$$|\hat{u}(\nu) - \hat{u}_m(\nu)| = |\nu(u) - \nu(u_m)| \le \frac{A(\nu)}{m}.$$

Proof. Adaptation of the case $\nu = \nu_{\mathfrak{m}} = \nu^{L}$.

Prop. If u is a Hölder weight, then the Demailly approximation is better:

$$|\hat{u}(\nu) - \hat{u}_m(\nu)| = |\nu(u) - \nu(u_m)| \le \frac{C}{m}.$$

The Tree Transform II

Thm. If u is psh, then its tree transform \hat{u} defines a tree potential.

Proof. Use that {tree pot's} closed under sums, minima and pointwise limits. Step 1: $u = \log |\phi|$, ϕ irreducible. Then $\Delta \hat{u} = m(\phi)\delta_{\nu_{\phi}}$ using the formula

$$\hat{u}(\nu) = \nu(\phi) = m(\phi)\alpha(\nu \wedge \nu_{\phi}).$$

Step 2: $u = \log |\phi|$, $\phi = \prod \phi_i$ reducible. Then $\hat{u} = \sum \hat{u}_i$.

Step 3: $u = \log \frac{1}{2} \sum |\phi_j|^2$ log-singular. Then $\hat{u} = \min_j \hat{u}_j$.

Step 4: u general psh. Then $\hat{u} = \lim \hat{u}_m$ pointwise.

Question. Which measures on \mathcal{V} appear as $\Delta \hat{u}$ for u psh? (Partial answers.)

Intersection Formula I

• Have natural intersection pairing on \mathcal{V} :

$$\nu \cdot \mu := \alpha(\nu \wedge \mu) \in [1, \infty].$$

• Extend to Borel measures on ${\mathcal V}$ by linearity:

$$\rho \cdot \rho' := \iint_{\mathcal{V} \times \mathcal{V}} \nu \cdot \nu' \, d\rho(\nu) d\rho'(\nu')$$

• Could hope that for u, v psh

$$(dd^{c}u \wedge dd^{c}v)\{0\} = \rho_{u} \cdot \rho_{v} = \iint_{\mathcal{V} \times \mathcal{V}} \mu \cdot \nu \, d\rho_{u}(\mu) d\rho_{v}(\nu), \qquad (\star)$$

where $\rho_u = \Delta \hat{u}$ and $\rho_v = \Delta \hat{v}$.

• However, (*) fails for $u = \log \max\{|x|, \log |y|\}$, $v = \log |y|$:

$$\nu_{\mathfrak{m}}(u) = \nu^{\mathrm{L}}(u) = 0 \implies \hat{u} \equiv 0 \implies \rho_u = 0 \implies \iint = 0$$

but $dd^c u \wedge dd^c v = dd^c(u|_{y=0}) = \delta_0.$

• Still, (*) holds in many cases, e.g. if $u = \log |\phi|$, $v = \log |\psi|$.

Intersection Formula II

Thm. If u is psh and v is a Hölder weight then (\star) holds:

$$(dd^{c}u \wedge dd^{c}v)\{0\} = \rho_{u} \cdot \rho_{v} = \iint_{\mathcal{V} \times \mathcal{V}} \mu \cdot \nu \, d\rho_{u}(\mu) d\rho_{v}(\nu). \tag{(\star)}$$

Proof. Four steps.

Cor. If φ is a Hölder weight then

$$\nu_{\varphi}^{\rm D} = \int_{\mathcal{V}} \nu \, d\rho_{\varphi}(\nu)$$

i.e. a Demailly-Lelong number is an average of valuations.

Thm. For any u, v psh one inequality in (*) holds: $(dd^c u \wedge dd^c v) \{0\} \ge \rho_u \cdot \rho_v$.

A Valuative Criterion of Integrability

Recall that $J(u) := \{ \psi \mid |\psi|e^{-u} \in L^2_{\text{loc}} \}.$

Def. $\lambda(u;\psi) := \inf\{\lambda > 0 \mid |\psi|e^{-u/\lambda} \in L^2_{\text{loc}}\}.$

Thm. For any u psh and any analytic germ ψ we have

$$\lambda(u;\psi) = \sup_{\nu \in \mathcal{V}} \chi(\nu;u,\psi) := \sup_{\nu \in \mathcal{V}} \frac{\nu(u)}{\nu(\psi) + A(\nu)}.$$

Proof. Three steps.

- 1. $\lambda = \chi(\nu; u, \psi)$ for $\nu \in \mathcal{V}_{tor}$ implies $|\psi|e^{-u/\lambda} \notin L^2_{loc}$. Indeed, $|\Omega_{\nu}(r)| \sim r^{2A(\nu)}$ and in $\Omega_{\nu}(r)$ we have (roughly) $|\psi|^2 e^{-2u/\lambda} \sim r^{2(\nu(\psi) - \lambda^{-1}\nu(u))} = r^{-2A(\nu)}.$
- 2. $u \text{ log-singular}, \lambda > \sup_{\nu} \chi(\nu; u, \psi) \text{ implies } |\psi|e^{-u/\lambda} \in L^2_{\text{loc}}.$ "Standard": resolve sings of u, ψ and compute in local coords.
- 3. u general. Use Demailly approximation and Hölder's ineq. Note that:

$$|\chi(
u; u, \psi) - \chi(
u; v, \psi)| \leq rac{1}{m}$$
 for all u . \Box

Proof of Main Results I

Thm D. (Openness conjecture) If $\lambda = \lambda(u)$, then $e^{-u/\lambda} \notin L^2_{\text{loc}}$. Thus the interval $\{\lambda > 0 \mid e^{-u/\lambda} \in L^2_{\text{loc}}\}$ is open.

Proof. The supremum in

$$\lambda(u;1) = \sup_{\nu \in \mathcal{V}} \chi(\nu;u,1)$$

is attained at some $\nu \in \mathcal{V}$ (essentially usc fcn on compact set). If $\nu \in \mathcal{V}_{tor}$, then Step 1 in previous proof gives $e^{-u/\lambda} \notin L^2_{loc}$. The other cases are easier.

Proof of Main Results II

Thm A. (Criterion for equisingularity) If u, v psh, then

$$J(tu) = J(tv) \ \forall t > 0 \quad \Leftrightarrow \quad \nu_{\varphi}^{\mathrm{D}}(u) = \nu_{\varphi}^{\mathrm{D}}(v) \ \forall \varphi.$$

Proof. One direction follows immediately:

$$\begin{split} \nu_{\varphi}^{\mathrm{D}}(u) &= \nu_{\varphi}^{\mathrm{D}}(v) \text{ for all } \varphi \implies \nu(u) = \nu(v) \text{ for all } \nu \in \mathcal{V} \\ \implies \lambda(u;\psi) &= \lambda(v;\psi) \text{ for all } \psi \\ \implies J(tu) &= J(tv) \text{ for all } t. \end{split}$$

The other direction follows from

Prop. For u psh and t > 0 set

$$\Phi_t(\nu; u) := \min\{\nu(\psi) \mid \psi \in J(tu)\}$$

Then Φ_t is a tree potential and $t^{-1}\Phi_t \rightarrow \hat{u}$ pointwise as $t \rightarrow 0$.

Proof. Demailly approximation.

Proof of Main Results III

Thm B. If u psh, then

$$\lambda(u) = \sup\left\{\frac{\nu_{1,t}^{\mathrm{K}}(h^*u)}{1+t} \mid t \ge 1, h \text{ local biholomorphism}\right\}$$

Proof. We have

$$\lambda(u) = \lambda(u; 1) = \sup_{\nu} \frac{\nu(u)}{A(\nu)}.$$

If $\nu = \nu_{\phi,t}$ has $m(\nu) = 1$ (i.e. $(\phi = 0)$ smooth). then

$$A(
u) = 1 + t$$
 and $u(u) =
u_{1,t}^{\mathrm{K}}(h^*u)$

where h is local biholomorphism sending $(\phi = 0)$ to (y = 0).

Using relation between skewness and thinness, can show that

$$u \mapsto rac{
u(u)}{A(
u)}$$

is decreasing (and piecewise Möbius) when $m(\nu) > 1$.

Proof of Main Results IV

Thm C. If $\nu^{L}(u) = 1$, then exactly one of the following holds: • $e^{-u} \in L^{2}_{loc}$;

• $u = \log |\phi| + v$, where $(\phi = 0)$ is smooth and $\nu^{L}(v) = 0$.

Proof. Suppose $u = \log |\phi| + v$ with ϕ smooth, v psh. WLOG $\phi = y$. Then

$$e^{-u} \ge |y|^{-1} \notin L^2_{\text{loc}}$$

Now suppose $\nu_{\mathfrak{m}}(u) = \nu^{\mathrm{L}}(u) = 1$ but $e^{-u} \notin L^2_{\mathrm{loc}}$. Then $\lambda(u) = 1$. But

$$\lambda(u) = \lambda(u; 1) = \sup_{\nu} \frac{
u(u)}{A(
u)}.$$

Consider the tree potential $\hat{u}: \mathcal{V}_{tor} \to [1, \infty]$. The measure $\rho_u = \Delta \hat{u}$ has mass $\nu_{\mathfrak{m}}(u) = 1$. This implies

$$\nu(u) = \hat{u}(\nu) = 1 + \int_{\nu_m}^{\nu} \rho_u \{\mu' \ge \mu\} \, d\alpha(\mu) \le \alpha(\nu).$$

Also $A(\nu) \ge 1 + \alpha(\nu)$ with equality iff $m(\nu) = 1$. Thus if $\lambda(u) = 1$, then there exists $\nu_k \in \mathcal{V}_{tor}$ with

$$m(\nu_k) = 1, \quad \alpha(\nu_k) \to \infty \quad \text{and} \quad \rho_u \{\mu \ge \nu_k\} \to 1.$$

This implies $\nu_k \to \nu_{\phi}$ and $\rho_u = \delta_{\nu_{\phi}}$ where $(\phi = 0)$ is a smooth curve. Demailly approximation gives $u = \log |\phi| + v$.