
 

 

Math 285.002 
Homework 12 

Solutions 

17.3 #34. 
(a) Notice that 
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Although we could use the methods of the text to find a function f  such that 
f= ∇F , it is clear from a few moments� inspection that if 

( ) 2 2 2, ,f x y z c x y z= − + +  (that is, ( )f c= −r r ), then f= ∇F . Thus, the work 
done in moving an object from a point 1P  along a path C  to a point 2P  in terms of 
the distances 1d  and 2d  from these points to the origin is 
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(b) The work done is 
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(c) The work done is 
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1 1 1 18.985 10 1.6 10 1 14,376 J.
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17.4 #29. From the hypotheses of 16.9.9, the transformation ( , )x g u v= , ( , )y h u v=  has 
continuous first-order partial derivatives on S . We will actually assume that the second-
order partial derivatives of h  are continuous on an open region containing S  so that 
Clairaut�s and Green�s Theorems can be applied at appropriate points. Notice that the 
Jacobian ( , )

( , )
x y y yx x
u v u v v u

∂ ∂ ∂∂ ∂
∂ ∂ ∂ ∂ ∂= −  is also continuous, and therefore always positive or always 

negative (by the Intermediate Value Theorem) since it is never zero. We also need to 
assume that S∂  is a piecewise-smooth simple closed curve. Following the hint, 
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We now let ( )u u t=  and ( )v v t= , where a t b≤ ≤ , be a parametrization of S∂  so that 
S∂  is traced with the positive orientation as t  increases from a  to b . It follows that 

letting ( )( ) ( ), ( )x t g u t v t=  and ( )( ) ( ), ( )y t h u t v t= , where a t b≤ ≤ , traces R∂  as t  



 

 

increases from a  to b , but we cannot be certain of the orientation this gives R∂ . Thus, 
with the plus or minus sign selected to make the area integral 

R
xdy

∂∫�  nonnegative,
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 (2) 

Let ( )( , ) , h
uP u v g u v ∂

∂=  and ( )( , ) , h
vQ u v g u v ∂

∂= , and observe that P  and Q  have 
continuous first-order partial derivatives on an open region containing S . Applying 
Green�s Theorem to this last integral, using Clairaut�s Theorem at the appropriate point, 
and switching notation from partial derivatives of g  and h  to those of x  and y  when 
convenient shows that 
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which when combined with (1) and (2) gives 
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where the plus or minus sign is chosen to make the integral positive. Now ( , )
( , )
x y
u v

∂
∂  does not 

change sign on S , so the last integral, with the appropriate choice of sign, just equals 
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as claimed. 


