
 

 

Math 285.002 
Homework 13 

Solutions 

17.5 #34. We are to prove Green�s second identity: If D  and C  satisfy the hypotheses of 
Green�s theorem and f  and g  have partial derivatives with the amount of continuity needed to 
satisfy Green�s first identity, then 
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It turns out that there is almost nothing to this, since applying Green�s first identity twice shows 
that 
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where the fact that ⋅ = ⋅x y y x  for any two vectors x  and y  was used at one point to cancel two 
equal integrals. 

17.6 #48 (a). With θ  and α  as shown in the figure in the text, we notice that the point ( ), ,0x y  
lies at distance cosr b a α= +  from the origin, so the parametric representation of a point 
( ), ,x y z  on the torus is ( cos ) cosx b a α θ= + , ( cos )siny b a α θ= + , sinz a α= , where 
0 2θ π≤ ≤ , 0 2α π≤ ≤ . 

(c). We compute that 

 , , ( cos )sin , ( cos ) cos , 0x y z b a b aθ α θ α θ
θ θ θ

∂ ∂ ∂= = − + +
∂ ∂ ∂

r  

and 

 , , sin cos , sin sin , cos .x y z a a aα α θ α θ α
α α α

∂ ∂ ∂= = − −
∂ ∂ ∂
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It is then easy to compute that 

 ( cos ) cos cos ,cos sin ,sin ,a b aθ α α α θ α θ α× = +r r  

from which it follows that 

 2 2 2 2 2( cos ) cos cos cos sin sin ( cos ).a b a a b aθ α α α θ α θ α α× = + + + = +r r  

 



 

 

Therefore the surface area of the torus is 
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