Hidden Markov Models 00 Algebraic Representation

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Algebraic Statistics and Hidden Markov Models

Kris Reyes

Hidden Markov Models

Algebraic Representation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic Statistics

Algebraic statistics attempts to frame statistics in an algebraic and combinatorial setting.

- Algebra, Algebraic Geometry and Discrete Geometry.
- Groebner Bases and Polytope Computations.

Hidden Markov Models

Algebraic Representation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Statistical Models

Consider a random variable X on a discrete set $\{1, ..., n\}$. We can represent a distribution of X as a point $P \in \mathbb{R}^n$ where

$$P_i = \mathbb{P}(X = i).$$

where

$$\sum_{i}^{n} P_i = 1 \text{ and } P_i > 0.$$

Such points define the probability simplex Δ_{n-1} .

Algebraic Representation

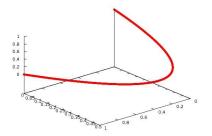
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Statistical Models

If a distribution is parametric, we can view P as a function from a parameter space Ω ,

$$P(\omega): \Omega \longrightarrow \Delta_{n-1}.$$

Then the image $P(\Omega)$ cuts out a curve inside of Δ_{n-1} . Example (*Binom*(p, 2) Model)



Hidden Markov Models • 0 Algebraic Representation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hidden Markov Model

A Hidden Markov Model consists of:

- 1. A set of hidden states. $S = \{1, \ldots, n\}$.
- 2. A set of observables. $\Sigma = \{1, \ldots, m\}$.
- 3. Transition probs. $A(i,j) = \mathbb{P}$ (hidden state *j*|hidden state *i*).
- 4. Emission probs. $B(i,j) = \mathbb{P}(\text{observable } j|\text{hidden state } i)$.

Problems

A Central Problem: Inference Matching

Given an observation sequence $\sigma = (\sigma_1, \ldots, \sigma_T)$ and A, B, what is the most likely hidden sequence that produced it? That is, find the hidden sequence $s = (s_1, \ldots, s_T)$ which maximizes

$$P_{\sigma}(A, B, s) = \left(\prod_{i=1}^{T-1} B(s_i, \sigma_i) A(s_i, s_{i+1})\right) B(s_T, \sigma_T).$$

Such hidden sequences are called *explanations*.

Parametric Questions

- Given a observation sequence σ and a hidden sequence s, are there parameters A, B such that s maximizes P(A, B, s)?
- How does the solution *s* obtain change with respect to *A* and *B*? Is this stable and to what degree?

Hidden Markov Models 00

Algebraic Representation

Let

$$f_{\sigma}(A,B) = \sum_{s} P_{\sigma}(A,B,s).$$

Definition

If Ω is the space of all pairs (A, B), define the map $f: \Omega \to \Delta_{m^T-1}$ as

$$(A,B) \stackrel{f}{\longmapsto} \begin{pmatrix} f_{\sigma_1}(A,B) \\ f_{\sigma_2}(A,B) \\ \vdots \\ f_{\sigma_m \tau}(A,B) \end{pmatrix}$$

Then $f(\Omega)$ is called the Algebraic Hidden Markov Model.

Hidden Markov Models

Algebraic Representation $\circ \bullet$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Newton Polytope

Definition For a polynomial

$$f(x_1,\ldots,x_L)=Ax_1^{\alpha_1}\cdots x_l^{\alpha_L}+Bx_1^{\beta_1}\cdots x_L^{\beta_L}+\cdots+Cx_1^{\gamma_1}\cdots x_L^{\gamma_L}.$$

then $\mathcal{N}(f)$, the Newton Polytope of f, is

$$\mathcal{N}(f) = conv \{ \alpha_1, \cdots, \alpha_L \}, (\beta_1, \cdots, \beta_L), \cdots, (\gamma_1, \cdots, \gamma_L) \}.$$

For a map f with polynomial coordinate functions f_{σ} , $\mathcal{N}(f)$ is the *Minkowski sum* over all f_{σ} .

Hidden Markov Models

Algebraic Representation $\circ \circ$ $\bullet \circ$

Some Key Results

Theorem

For a observation sequence σ the number of explanations s equals the number of vertices of $\mathcal{N}(f_{\sigma})$. Moreover, for a fixed explanation s, the set of parameters (A, B) for which $P_{\sigma}(A, B, s)$ is maximized form a normal cone over a vertex of $\mathcal{N}(f_{\sigma})$.

Theorem

The number of inference matchings (σ, s) equals the number of vertices in $\mathcal{N}(f)$.

Theorem

The number of vertices in $\mathcal{N}(f_{\sigma})$ is $\mathcal{O}(p(T))$ for polynomial p. The number of vertices in $\mathcal{N}(f)$ is $\mathcal{O}(m^{q(T)})$ for polynomial q.

Hidden Markov Models

Algebraic Representation $\circ \circ$ $\circ \bullet$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions

- Not all s can serve as explanations for a fixed σ .
- The number of hidden sequences is n^T a priori. The number of actual explanations is polynomial in T.
- As long as we stay inside the corresponding normal cone, perturbing A and B will result in the same explanation.