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Algebraic Statistics

Algebraic statistics attempts to frame statistics in an algebraic and
combinatorial setting.

• Algebra, Algebraic Geometry and Discrete Geometry.

• Groebner Bases and Polytope Computations.
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Statistical Models

Consider a random variable X on a discrete set {1, . . . , n}. We can
represent a distribution of X as a point P ∈ R

n where

Pi = P (X = i) .

where
n
∑

i

Pi = 1 and Pi > 0.

Such points define the probability simplex ∆n−1.
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Statistical Models
If a distribution is parametric, we can view P as a function from a
parameter space Ω,

P(ω) : Ω −→ ∆n−1.

Then the image P(Ω) cuts out a curve inside of ∆n−1.

Example (Binom(p, 2) Model)
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Hidden Markov Model

A Hidden Markov Model consists of:

1. A set of hidden states. S = {1, . . . , n}.

2. A set of observables. Σ = {1, . . . ,m}.

3. Transition probs. A(i , j) = P (hidden state j |hidden state i).

4. Emission probs. B(i , j) = P (observable j |hidden state i).
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Problems

A Central Problem: Inference Matching

Given an observation sequence σ = (σ1, . . . , σT ) and A,B , what is
the most likely hidden sequence that produced it? That is, find the
hidden sequence s = (s1, . . . , sT ) which maximizes

Pσ(A,B , s) =

(

T−1
∏

i=1

B (si , σi )A (si , si+1)

)

B (sT , σT ) .

Such hidden sequences are called explanations.

Parametric Questions

• Given a observation sequence σ and a hidden sequence s, are
there parameters A,B such that s maximizes P(A,B , s)?

• How does the solution s obtain change with respect to A and
B? Is this stable and to what degree?
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Algebraic Representation

Let
fσ(A,B) =

∑

s

Pσ(A,B , s).

Definition
If Ω is the space of all pairs (A,B), define the map
f : Ω → ∆mT

−1 as

(A,B)
f

7−→











fσ1(A,B)
fσ2(A,B)

...
fσ

mT
(A,B)











.

Then f (Ω) is called the Algebraic Hidden Markov Model.
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Newton Polytope

Definition
For a polynomial

f (x1, . . . , xL) = Axα1
1 · · · xαL

l + Bx
β1
1 · · · xβL

L + · · · + Cx
γ1
1 · · · xγL

L .

then N (f ), the Newton Polytope of f , is

N (f ) = conv {α1, · · · , αL), (β1, · · · , βL), · · · , (γ1, · · · , γL)} .

For a map f with polynomial coordinate functions fσ, N (f ) is the
Minkowski sum over all fσ.
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Some Key Results

Theorem
For a observation sequence σ the number of explanations s equals

the number of vertices of N (fσ). Moreover, for a fixed explanation

s, the set of parameters (A,B) for which Pσ(A,B , s) is maximized

form a normal cone over a vertex of N (f σ).

Theorem
The number of inference matchings (σ, s) equals the number of

vertices in N (f ).

Theorem
The number of vertices in N (fσ) is O(p(T )) for polynomial p.

The number of vertices in N (f ) is O(mq(T )) for polynomial q.
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Conclusions

• Not all s can serve as explanations for a fixed σ.

• The number of hidden sequences is nT a priori. The number
of actual explanations is polynomial in T .

• As long as we stay inside the corresponding normal cone,
perturbing A and B will result in the same explanation.
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