
Topic 5: The Inverse-Scattering Transform for the Defocusing Nonlinear Schrödinger
Equation

Lax pair and zero-curvature representation. The defocusing nonlinear Schrödinger (NLS) equation

(1) iψt +
1

2
ψxx − |ψ|2ψ = 0

for a complex-valued field ψ(x, t) can be viewed as a compatibility condition for the simultaneous linear
equations of a Lax pair:

(2)
∂w

∂x
= Uw, U = U(x, t, λ) :=

[
−iλ ψ
ψ∗ iλ

]
and

(3)
∂w

∂t
= Vw, V = V(x, t, λ) :=

[
−iλ2 − i 1

2 |ψ|
2 λψ + i 1

2ψx
λψ∗ − i 1

2ψ
∗
x iλ2 + i 1

2 |ψ|
2

]
.

In other words, the defocusing NLS equation is equivalent to the zero-curvature condition

∂U

∂t
− ∂V

∂x
+ [U,V] = 0,

i.e., the left-hand side is independent of λ ∈ C and vanishes when the defocusing NLS equation holds for
ψ. Original references for these facts include Zakharov and Shabat [4] and Ablowitz, Kaup, Newell, and
Segur [1]. We may consider at the same time several different vector solutions w of (2) and/or (3) simply by
building a matrix W whose columns are those vectors and then writing the matrix equations Wx = UW
and/or Wt = VW. Recall that such a matrix solution W is called fundamental if its columns are linearly
independent vector solutions.

We are now interested in general initial-value problems in which we seek ψ(x, t) solving (1) for x ∈ R and
t ≥ 0, such that ψ(x, t) is smooth and decays to zero for large |x| and satisfies a specified initial condition

ψ(x, 0) = ψ0(x),

for some given function ψ0(·) in a suitable function space.

Quick review of the linearized theory. Consider first the initial-value problem for the linear Schrödinger
equation:

(4) iψt +
1

2
ψxx = 0, ψ(x, 0) = ψ0(x).

This problem may be viewed formally as a limiting case of the nonlinear problem in which the initial data
ψ0 is a “small” function (because then |ψ|2ψ should be even smaller, and negligible by comparison with the
linear terms in (1)). Taking the (direct) Fourier transform via

ψ̂(λ, t) :=

∫ ∞
−∞

ψ(x, t)e2iλx dx,

the initial value problem (4) becomes

iψ̂t − 2λ2ψ̂ = 0, ψ̂(λ, 0) = ψ̂0(λ).

This ordinary differential equation is solved in closed form as follows:

ψ̂(λ, t) = e−2iλ2tψ̂(λ, 0) = e−2iλ2tψ̂0(λ).

Thus, the time evolution of the Fourier transform is given by multiplication by a simple and explicit oscillatory
factor. To complete the solution of the initial-value problem (4) we have to invert the Fourier transform by
evaluating another integral:

ψ(x, t) =
1

π

∫ ∞
−∞

ψ̂(λ, t)e−2iλx dλ.

Even though the formulae look simple one should keep in mind that only rarely can the direct and inverse
transform integrals be evaluated in closed form.

Nonetheless we have an algorithmic way to solve general initial-value problems for the linear Schrödinger
equation:
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(1) Map the given initial condition ψ0(x) to the direct transform thereof: ψ0 7→ ψ̂0.

(2) Evolve the transform explicitly in time: ψ̂0(λ) 7→ ψ̂(λ, t) := ψ̂0(λ)e−2iλ2t.

(3) Since ψ̂(λ, t) is the direct transform of ψ(x, t), find ψ(x, t) at a later time t by applying the inverse

transform to ψ̂(λ, t).

For the corresponding initial-value problem for the nonlinear equation (1) we will have instead an inverse-
scattering transform; it has the same kinds of benefits and shortcomings as the Fourier transform method
for the linear problem (4):

• It gives an algorithmic way to solve initial-value problems with arbitrary given initial data.
• Just as the Fourier integrals can rarely be computed in closed form, the individual steps in the

solution algorithm can rarely be carried out in closed form.

If the steps of the algorithm cannot be carried out in closed form, then what is the use? Well, in the case of
Fourier transforms, we can analyze the solutions of initial-value problems with great precision in asymptotic
regimes like long time limits due to the existence of analytical tools like the method of steepest descents and
the method of stationary phase for asymptotic expansions of integrals. It turns out that similar methods
exist at the integrable nonlinear level, so similar questions can be addressed as in the linear case.

The direct transform for the defocusing NLS equation. Suppose that t is fixed and ψ(x) = ψ(x, t)
is a rapidly decreasing function of x ∈ R. We will impose more specific conditions on ψ(x) as we go. We
are interested in the properties of solutions w = w(x;λ) of the equation (2) when λ is assumed to be a real
number. Since ψ(x) decays rapidly for large |x|, we have the following asymptotic behavior for the coefficient
matrix:

U(x, t, λ) = −iλσ3 + o(1), |x| → ∞, σ3 :=

[
1 0
0 −1

]
.

This in turn suggests that when |x| is large, we could approximate solutions w(x;λ) by the solutions w0(x;λ)
of the ψ ≡ 0 system:

w0(x;λ) = c1

[
e−iλx

0

]
+ c2

[
0

eiλx

]
,

where c1 and c2 are arbitrary constants. The reason we are interested especially in real λ is that this makes
up the continuous spectrum for the equation wx = Uw when ψ is rapidly decreasing for large |x| because
λ ∈ R if and only if w0(x;λ) is oscillatory rather than exponentially growing or decaying.

Jost solutions. We can isolate particular solutions of (2) for λ ∈ R by insisting on certain values of the
constants c1 and c2 in the limit x→ −∞ or x→ +∞. For example, we can look for a solution w = j−,1(x;λ)
that satisfies a boundary condition of the form

j−,1(x;λ) =

[
e−iλx

0

]
+ o(1), as x→ −∞

which corresponds to insisting that j−,1(x;λ) is asymptotically of the form w0(x;λ) with c1 = 1 and c2 = 0
as x→ −∞. Similarly, we can look for a solution w = j−,2(x;λ) that satisfies the boundary condition

j−,2(x;λ) =

[
0

eiλx

]
+ o(1), as x→ −∞

so we’re taking c1 = 0 and c2 = 1 as x → −∞. These two solutions are called Jost solutions normalized
as x → −∞. The Jost solutions j−,1(x;λ) and j−,2(x;λ) are linearly independent. Indeed, forming a 2 × 2
solution matrix from the column vectors:

J−(x;λ) := [j−,1(x;λ), j−,2(x;λ)]

the Wronskian of the Jost solutions j−,1(x;λ) and j−,2(x;λ) is just the determinant of J−(x;λ). Since
the trace of the coefficient matrix U is zero, Abel’s Theorem says that Wronskians for the system (2) are
independent of x. Therefore we may compute the Wronskian of the Jost solutions for any x we like, and a
good choice is the limit x → −∞ since this is where we have information about the columns of J−(x;λ).
Therefore,

det(J−(x;λ)) = lim
x→−∞

det(J−(x;λ)) = lim
x→−∞

det
(
e−iλxσ3 + o(1)

)
= 1.
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Thus, for all λ ∈ R for which the Jost solutions exist they are linearly independent1 of each other, and the
matrix J−(x;λ) is therefore a fundamental solution matrix for the system. We can express the normalization
condition for the Jost solutions in terms of J−(x;λ) by the equation

lim
x→−∞

J−(x;λ)eiλxσ3 = I, λ ∈ R.

In a similar way, we can also construct Jost solutions that are normalized in the limit x → +∞, where
again the coefficient ψ(x) decays to zero and the coefficient matrix U can be approximated by −iλσ3. Thus,
we may seek a solution w = j+,1(x;λ) that satisfies the boundary condition

j+,1(x;λ) =

[
e−iλx

0

]
+ o(1), as x→ +∞

and a solution w = j+,2(x;λ) that satisfies the boundary condition

j+,2(x;λ) =

[
0

eiλx

]
+ o(1), as x→ +∞

and we will find that for real λ the Wronskian determinant of the solution matrix

J+(x;λ) := [j+,1(x;λ), j+,2(x;λ)]

is exactly equal to 1, so J+(x;λ) is also a fundamental solution matrix for our system of equations. Its
normalization condition can be written in the form

lim
x→+∞

J+(x;λ)eiλxσ3 = I.

Scattering matrix. The Jost solution matrices J±(x;λ) are necessarily both nonsingular matrices satisfying
the differential equation

∂J±

∂x
= UJ±.

This is a 2 × 2 linear system of equations, and so can only have two linearly independent column vector
solutions. We have, however, discussed four solutions: the two columns of J−(x;λ) and the two columns of
J+(x;λ). These cannot all four be independent of each other. But, the columns of J+(x;λ) form a basis of
the space of solutions, as do those of J−(x;λ). Therefore, we may write any column of J+(x;λ) as a linear
combination of the columns of J−(x;λ). The constants involved in the linear combinations may depend on
λ ∈ R. We may write the linear combinations compactly in the form

(5) J+(x;λ) = J−(x;λ)S(λ),

for some 2× 2 matrix S(λ). Indeed, the first column of this formula simply says that

j+,1(x;λ) = S11(λ)j−,1(x;λ) + S21(λ)j−,2(x;λ),

and the second column says

j+,2(x;λ) = S12(λ)j−,1(x;λ) + S22(λ)j−,2(x;λ),

so the matrix S(λ) contains the four constants involved in the linear combinations. The matrix S(λ) is called
the scattering matrix associated with the coefficient ψ(x) in the matrix U.

Let us now draw a premature analogy with Fourier transform theory for the linear initial-value problem (4).

The first step of the solution algorithm in the linear case is the association of a function ψ̂0(λ) with the given
initial condition ψ0(x), via the Fourier transform. Here we see another way, via the Lax pair for defocusing
NLS, to associate some functions of an auxiliary variable λ with a given initial condition ψ0(x): make ψ0(x)
the known function in the coefficient matrix U and solve the linear ODE system subject to the appropriate
boundary conditions to find the Jost matrices J±(x;λ). Then the matrix S(λ) := J−(x;λ)−1J+(x;λ) is
guaranteed to be independent of x and its elements are four functions of the “dual variable” λ that can be
viewed as “transforms” of ψ0(x).

1Observe how the conclusion that det(J−(x;λ)) = 1 relies on the fact that λ ∈ R. If λ 6∈ R, either eiλx or e−iλx is

exponentially growing as x → −∞ depending on whether λ is in the upper or lower half-plane, and one cannot conclude that
the product of the growing exponential with the unspecified decaying error term represented by the symbol o(1), as will arise

in computing the determinant, decays to zero.
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Elementary properties of the scattering matrix. First consider taking determinants in the defining relation
(5) and using the fact that the Jost matrices have determinant 1. Thus,

det(S(λ)) = 1, λ ∈ R.

Next, note that the coefficient matrix U(x, t, λ) of the linear system (2) has the following symmetry2

U(x, t, λ)∗ = σ1U(x, t, λ)σ1, λ ∈ R, σ1 :=

[
0 1
1 0

]
.

It follows that if w(x;λ) is a solution of (2) for λ ∈ R, then so also is σ1w(x;λ)∗. Considering the asymptotic
behavior of the Jost solutions, this means that (assuming, as will be shown, that the Jost solutions are
uniquely determined by their asymptotic behavior and the fact that they solve (2))

j±,2(x;λ) = σ1j
±,1(x;λ)∗, λ ∈ R.

From this it follows that the Jost matrices J±(x;λ) satisfy

J±(x;λ)∗ = σ1J
±(x;λ)σ1.

Taking conjugates in the relation S(λ) = J−(x;λ)−1J+(x;λ) we therefore get

S(λ)∗ = σ1S(λ)σ1.

This latter relation implies that S(λ) can be written in the form

S(λ) =

[
a(λ)∗ −b(λ)∗

−b(λ) a(λ)

]
, λ ∈ R

for some complex-valued functions a(λ) and b(λ). The condition that det(S(λ)) = 1 then implies that

|a(λ)|2 − |b(λ)|2 = 1 or, equivalently |R(λ)|2 + |T (λ)|2 = 1

where the quantity T (λ) := 1/a(λ) is sometimes called the transmission coefficient and the ratio R(λ) :=
b(λ)/a(λ) is sometimes called the reflection coefficient. Indeed, from

J−(x;λ) = J+(x;λ)S(λ)−1 = J+(x;λ)

[
a(λ) b(λ)∗

b(λ) a(λ)∗

]
,

we have in particular that

j−,1(x;λ) = a(λ)j+,1(x;λ) + b(λ)j+,2(x;λ),

which means, upon dividing through by a(λ), that there is for each λ ∈ R a solution w(x;λ) = a(λ)−1j−,1(x;λ)
satisfying

w(x;λ) =

[
e−iλx

0

]
+R(λ)

[
0

eiλx

]
+ o(1), x→ +∞

and also

w(x;λ) = T (λ)

[
e−iλx

0

]
+ o(1), x→ −∞.

Therefore, interpreting eiλx (e−iλx) as a “wave” propagating to the right (left), we see that a unit wave
traveling to the left incident on the disturbance modeled by the potential ψ(x) causes a reflected wave of
complex amplitude R(λ) and admits a transmitted wave of complex amplitude T (λ). In the inverse-scattering
transform theory, the reflection coefficient R(λ) is a nonlinear analogue of the Fourier transform of ψ(x).

Definition 1 (Direct transform for defocusing NLS). For a suitable function ψ : R → C decaying as
x → ±∞, the direct transform for the defocusing NLS equation is the mapping ψ 7→ R associating to ψ its
reflection coefficient R = R(λ), λ ∈ R.

2We use an asterisk to indicate complex conjugation, and when the asterisk appears on a matrix or a vector we mean
complex conjugation of the individual elements (without any kind of transposition of matrix elements). We use the “dagger”

superscript † to indicate simultaneous complex conjugation and transposition of vectors and matrices.
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Example 1: zero potential. The simplest example is to consider (2) in the special case that ψ(x) = 0 for all
x ∈ R. Then it is easy to see that the only matrix solutions of (2) that are consistent with the required
asymptotic behavior of the Jost matrices as x → ±∞ are simply J−(x;λ) = J+(x;λ) = e−iλxσ3 . Therefore
S(λ) = J−(x;λ)−1J+(x;λ) = I. Thus when ψ(x) ≡ 0, a(λ) ≡ 1 and b(λ) ≡ 0, so the reflection coefficient is
R(λ) = b(λ)/a(λ) ≡ 0.

Example 2: barrier potential. As a simple nontrivial example, suppose that ψ(x) is the piecewise-constant
function

ψ(x) =

{
0, |x| > L,

B, |x| ≤ L.
Thus, ψ represents a barrier of width 2L and complex “height” B ∈ C. Then, for |x| > L we have the simple
diagonal system:

∂w

∂x
= −iλσ3w, |x| > L,

and for |x| ≤ L we have a non-diagonal but still constant-coefficient system:

∂w

∂x
= UB(λ)w, UB(λ) :=

[
−iλ B
B∗ iλ

]
.

We may construct the Jost solutions piecewise, and join them at x = ±L by continuity.
The general solution for |x| > L is as we found earlier, w = w0(x;λ). Thus, the Jost matrix J−(x;λ)

satisfies exactly

J−(x;λ) = e−iλxσ3 , x < −L.
Similarly, the Jost matrix J+(x;λ) satisfies exactly

J+(x;λ) = e−iλxσ3 , x > L.

The general solution of the differential equation for |x| < L can be written in terms of the matrix exponential
exp(xUB(λ)). Thus, for some constant matrix C = C(λ), we may write the Jost matrix J−(x;λ) for |x| < L
in the form

J−(x;λ) = exUB(λ)C(λ), |x| < L,

and we may find C(λ) by demanding continuity of J−(x;λ) at x = −L:

lim
x↑−L

J−(x;λ) = eiλLσ3 and lim
x↓−L

J−(x;λ) = e−LUB(λ)C(λ)

so matching gives

C(λ) = eLUB(λ)eiλLσ3 .

Now, J−(x;λ) and J+(x;λ) are both known at x = L, so the scattering matrix may be calculated explicitly:

S(λ) = J−(L;λ)−1J+(L;λ) = C(λ)−1e−LUB(λ) · e−iλLσ3 = e−iλLσ3e−2LUB(λ)e−iλLσ3 .

An interesting calculation is to consider the expansion of the scattering matrix elements in the small-
amplitude limit, B → 0. Expanding the matrix exponential in Taylor series gives:

S(λ) = e−iλLσ3

{ ∞∑
n=0

1

n!

(
2iλLσ3 −

[
0 2LB

2LB∗ 0

])n}
e−iλLσ3

= e−iλLσ3

{
e2iλLσ3 −

∞∑
n=1

1

n!

n∑
k=1

(2iλLσ3)k−1

[
0 2LB

2LB∗ 0

]
(2iλLσ3)n−k

}
e−iλLσ3 +O(B2)

= e−iλLσ3

{
e2iλLσ3 −

[
0 2LB

2LB∗ 0

] ∞∑
n=1

1

n!
(2iλLσ3)n−1

n∑
k=1

(−1)k−1

}
e−iλLσ3 +O(B2)

= I−
[

0 2LB
2LB∗ 0

] ∞∑
m=0

(−1)m(2λL)2m

(2m+ 1)!
+O(B2)

= I−
[

0 B sin(2λL)/λ
B∗ sin(2λL)/λ 0

]
+O(B2).
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Therefore, in the limit B → 0, the conjugate reflection coefficient takes the form

R(λ)∗ =
b(λ)∗

a(λ)∗
= −S12(λ)

S11(λ)
=
B

λ
sin(2λL) +O(B2).

Noting the Fourier transform of the “barrier” initial condition ψ(x):

ψ̂(λ) :=

∫ ∞
−∞

ψ(x)e2iλx dx = B

∫ L

−L
e2iλx dx =

B

λ
sin(2λL),

we see that

R(λ)∗ = ψ̂(λ) +O(B2), B → 0.

Therefore, just as in the small-amplitude limit the defocusing NLS equation (1) formally goes over into the
linear Schrödinger equation, the nonlinear direct transform associating R(λ) with ψ(x) goes over into the
familiar Fourier transform (up to scale factors and complex conjugation) in the same limit. This suggests
that the reflection coefficient could be thought of as a nonlinear analogue of the Fourier transform of ψ(x).

Many properties of the mapping ψ 7→ R have been carefully investigated. From the paper [2] one can
deduce that if ψ ∈ S (R) (the Schwartz space of infinitely continuously differentiable functions for which
the function and all derivatives vanish as |x| → ∞ more rapidly than any negative power of |x|) then also
R ∈ S (R) and R satisfies |R(λ)| < 1. See Proposition 1 below. Of course the Fourier transform also
famously maps S (R) to itself.

Time evolution of the reflection coefficient. If the potential ψ(x) is replaced by a time-dependent
potential ψ(x, t) that satisfies the defocusing NLS equation (1), then, as ψ(x, t) evolves in time (within a
suitable function space), the reflection coefficient R(λ) becomes time dependent as well: R(λ) = R(λ; t).
The analogy with Fourier transforms is further strengthened at this point because it turns out that R(λ; t)
evolves in time in the same elementary way as does the (complex conjugate of the) Fourier transform under
the linear Schrödinger equation.

To see this, we consider how the Jost matrices vary in time with ψ(x, t); we now write them as J±(x, t;λ).

Lemma 1. Let ψ(x, t) be a suitable solution of the defocusing NLS equation (1) that in particular decays to
zero along with its x-derivative as |x| → ∞, and let J±(x, t;λ) be the corresponding Jost matrices defined for

each t. Then, the matrices W±(x, t;λ) := J±(x, t;λ)e−iλ2tσ3 are simultaneous fundamental matrix solutions
of the compatible linear problems (2) and (3) of the Lax pair.

Proof. Obviously we have det(W±(x, t;λ)) = 1 as a consequence of det(J±(x, t;λ)) = 1. Since e−iλ2tσ3 is
independent of x, it is equally obvious that the matrices W±(x, t;λ) satisfy the “x-part” of the Lax pair (2) as
this is true by definition of J±(x, t;λ). Since the zero-curvature (compatibility) condition holds, there exists
a simultaneous fundamental solution matrix of (2) and the “t-part” of the Lax pair (3) for every complex λ
and in particular for λ ∈ R. Every such matrix must have the form W = W+(x, t;λ) = J+(x, t;λ)C+(t;λ)
or W = W−(x, t;λ) = J−(x, t;λ)C−(t;λ) because the Jost matrices J±(x, t;λ) already are fundamental
solution matrices of the “x-part” (2). Substituting these forms W±(x, t;λ) into the “t-part” (3) one sees
that the matrices C±(t;λ) must satisfy the differential equations

(6)
∂C±

∂t
(t;λ) = J±(x, t;λ)−1V(x, t, λ)J±(x, t;λ)C±(t;λ)− J±(x, t, λ)−1 ∂J±

∂t
(x, t;λ)C±(t;λ).

Since C±(t;λ) are matrices independent of x, we can choose any value of x in this equation (they are all
equivalent by compatibility). We will consider the limit x→ ±∞. First note that we can write

J±(x, t;λ) = e−iλxσ3 + E±(x, t;λ),

where E±(x, t;λ) decays to zero as x → ±∞. Provided that ψ(x, t) is a suitable solution of (1) it will also
be true that

lim
x→±∞

∂E±

∂t
(x, t;λ) = 0.

Therefore for such ψ(x, t),

(7) lim
x→±∞

∂J±

∂t
(x, t;λ) = lim

x→±∞

∂E±

∂t
(x, t;λ) = 0
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because e−iλσ3x is obviously independent of t. We also observe that, as long as ψ and ψx decay as |x| → ∞,

lim
x→±∞

V(x, t, λ) = −iλ2σ3.

So, taking the limit x→ ±∞ in (6) assuming that ψ(x, t) is a suitable solution of (1) we see that the matrices
C±(t;λ) satisfy

∂C±

∂t
(t;λ) = −iλ2σ3C

±(t;λ).

A particular solution of the latter equation is obviously C±(t;λ) = e−iλ2tσ3 , which completes the proof. �

Since the matrices W±(x, t;λ) = J±(x, t;λ)e−iλ2tσ3 solve the “t-part” of the Lax pair (3), by substitution
it follows that the Jost matrices themselves satisfy

∂J±

∂t
= iλ2J±σ3 + VJ±.

This turns out to be enough information to obtain a differential equation in t for the scattering matrix
S(λ; t). Solving (5) for S(λ) = S(λ; t) and differentiating with respect to t gives

∂S

∂t
=

∂

∂t
((J−)−1J+) = (J−)−1 ∂J+

∂t
− (J−)−1 ∂J−

∂t
(J−)−1J+

= (J−)−1
(
iλ2J+σ3 + VJ+

)
− (J−)−1

(
iλ2J−σ3 + VJ−

)
(J−)−1J+

= iλ2Sσ3 − iλ2σ3S

= iλ2[S, σ3],

or, in terms of the functions a = a(λ; t) and b = b(λ; t),[
a∗t −b∗t
−bt at

]
=

[
0 2iλ2b∗

−2iλ2b 0

]
⇔ a(λ; t) = a(λ; 0), b(λ; t) = b(λ; 0)e2iλ2t.

In particular, it follows from the definition R(λ) := b(λ)/a(λ) that the reflection coefficient R(λ; t) evolves
explicitly in time.

Theorem 1 (Time evolution of the reflection coefficient). Suppose that ψ = ψ(x, t) is a suitable smooth
solution3 of (1). Then the corresponding reflection coefficient R(λ; t) satisfies

R(λ; t) = R(λ; 0)e2iλ2t, λ ∈ R.

Note the striking similarity to the Fourier formula ψ̂(λ, t)∗ = ψ̂(λ, 0)∗e2iλ2t appropriate for the linear
problem (4). In the appropriate “transform domain” adapted to the problem at hand, both the linear and

the nonlinear dynamics are reduced to multiplication by exactly the same Fourier multiplier e2iλ2t.
Another key point is that if R(·; 0) ∈ S (R) and the condition |R(λ; 0)| ≤ 1 holds, then clearly also

R(·; t) ∈ S (R) and |R(λ; t)| ≤ 1 holds for all t ∈ R.

The inverse transform for the defocusing NLS equation.

Integral equations for Jost solutions. While we’ve constructed the Jost solutions explicitly in a simple exam-
ple, we have not yet understood how they can be found more generally. The Jost solutions are supposed to be
particular vector solutions, for λ ∈ R, of the linear differential equation (2) that also satisfy certain boundary
conditions as x → ±∞. How can we specify such solutions precisely? The central idea is the same as that
which arises in the proof of existence of unique solutions for initial-value problems for differential equations:
replace the differential equations by integral equations that build in the required auxiliary conditions.

Let us describe how to find j−,1(x;λ) in some detail. Recall that the relevant boundary condition is in
this case that

j−,1(x;λ) =

[
e−iλx

0

]
+ o(1), as x→ −∞

3A smooth solution of (1) is “suitable” if the Jost matrices satisfy (7) and if ψ and ψx tend to zero as |x| → ∞. Later it

will be shown (Lemma 2 below) that the Jost matrices exist and satisfy (7) provided ψ and ψt (or equivalently 1
2
ψxx − |ψ|2ψ)

lie in the function space L1(R).
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for each real λ. The key idea is to recall the Fundamental Theorem of Calculus∫ b

a

f ′(x) dx = f(b)− f(a)

and use this to integrate both sides of the differential equation (2) satisfied by w = j−,1(x;λ) taking into
account the boundary condition at x = −∞. The problem is that j−,1(x;λ) oscillates rapidly but has no
limit as x → −∞, so the boundary terms will not be well-defined. However, if we write the components of
j−,1(x;λ) exactly in the form

j−,1(x;λ) =

[
e−iλxu(x;λ)
eiλxv(x;λ)

]
then from the differential equation (2) satisfied by w = j−,1(x;λ) we deduce the differential equations

(8)
∂u

∂x
(x;λ) = e2iλxψ(x)v(x;λ),

∂v

∂x
(x;λ) = e−2iλxψ(x)∗u(x;λ),

and now we have

lim
x→−∞

u(x;λ) = 1, lim
x→−∞

v(x;λ) = 0,

for all real λ. Now we are in a position to apply the Fundamental Theorem of Calculus. Integrating from
−∞ to x we have

u(x;λ) = 1 +

∫ x

−∞
e2iλyψ(y)v(y;λ) dy, v(x;λ) =

∫ x

−∞
e−2iλyψ(y)∗u(y;λ) dy.

Let’s substitute the second equation into the first:

u(x;λ) = 1 +

∫ x

−∞
e2iλyψ(y)

∫ y

−∞
e−2iλzψ(z)∗u(z;λ) dz dy

This gives us a closed equation for u(x;λ) that incorporates the boundary condition at x = −∞. To analyze
this equation, it is useful to exchange the order of integration using the formula∫ x

−∞

∫ y

−∞
f(y, z) dz dy =

∫ x

−∞

∫ x

z

f(y, z) dy dz,

which gives a so-called Volterra integral equation for u(x;λ):

(9) u(x;λ) = 1 +

∫ x

−∞
K(x, z;λ)u(z;λ) dz

where the kernel is

K(x, z;λ) := ψ(z)∗
∫ x

z

e2iλ(y−z)ψ(y) dy, x > z.

A general reference that includes properties of Volterra integral equations is the book by Tricomi [3]. One
way to think about solving the Volterra equation (9) is to use iteration. That is, we think of the integral
equation as a mapping turning a function un(x;λ) into another function un+1(x;λ):

un+1(x;λ) := 1 +

∫ x

−∞
K(x, z;λ)un(z;λ) dz.

A reasonable way to start the iteration, in view of the boundary condition at x = −∞, is to choose
u0(x;λ) ≡ 1. Then, it is easy to see that

u1(x;λ) = 1 +

∫ x

−∞
K(x, z1;λ) dz1,

u2(x;λ) = 1 +

∫ x

−∞
K(x, z1;λ) dz1 +

∫ x

−∞
K(x, z2;λ)

∫ z2

−∞
K(z2, z1;λ) dz1 dz2,

and so on. Based on these calculations, we may make an inductive hypothesis that

(10) un(x;λ) =

n∑
k=0

Ik(x;λ),
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where Ik denotes the k-fold integral

Ik(x;λ) :=

∫ x

−∞
K(x, zk;λ)

∫ zk

−∞
K(zk, zk−1;λ) · · ·

∫ z2

−∞
K(z2, z1;λ) dz1 · · · dzk.

By definition I0 = 1. This certainly gives the correct iterates for n = 1 and n = 2. It is a direct matter to
check that the recurrence step is consistent with the formula (10) for un(x;λ), which completes an inductive
proof that un(x;λ) is indeed given by the claimed formula.

It is obvious from the formula (10) that the iterates un(x;λ) form partial sums of an infinite series, which
is called the Neumann series for the solution u(x;λ) of (9). The question at hand is the convergence of this
infinite series. Now, since λ ∈ R,

|K(x, z;λ)| = |ψ(z)|
∣∣∣∣∫ x

z

e2iλ(y−z)ψ(y) dy

∣∣∣∣
≤ |ψ(z)|

∫ x

z

|e2iλ(y−z)||ψ(y)|dy

= |ψ(z)|
∫ x

z

|ψ(y)|dy

≤ |ψ(z)| · ‖ψ‖1,

(11)

where ‖ψ‖1 denotes the L1-norm:

‖ψ‖1 :=

∫
R
|ψ(y)|dy.

For this upper bound on K to be useful, we have to introduce the first technical assumption we will make
on ψ(x): that it is an absolutely integrable function on (−∞,∞), i.e., ψ ∈ L1(R). This is a restriction on
the rate of decay we will require on ψ(x) as x → ±∞. This estimate gives us a corresponding estimate for
the terms Ik(x;λ): by the triangle inequality,

|Ik(x;λ)| ≤
∫ x

−∞
|K(x, zk;λ)|

∫ zk

−∞
|K(zk, zk−1;λ)| · · ·

∫ z2

−∞
|K(z2, z1;λ)|dz1 · · · dzk

≤ ‖ψ‖k1
∫ x

−∞
|ψ(zk)|

∫ zk

−∞
|ψ(zk−1)| · · ·

∫ z2

−∞
|ψ(z1)|dz1 · · · dzk.

Now, the last line can be simplified. We claim that∫ x

−∞
|ψ(zk)|

∫ zk

−∞
|ψ(zk−1)| · · ·

∫ z2

−∞
|ψ(z1)|dz1 · · · dzk =

∫ m

0

∫ mk

0

· · ·
∫ m2

0

dm1 · · · dmk,

where

m :=

∫ x

−∞
|ψ(y)|dy.

This can be verified easily by making the change of variables

mj :=

∫ zj

−∞
|ψ(y)|dy, j = 1, . . . , k

in each of the integrals on the right-hand side. Furthermore, a direct calculation shows that∫ m

0

∫ mk

0

· · ·
∫ m2

0

dm1 · · · dmk =
mk

k!
.

Therefore, we have the estimate

|Ik(x;λ)| ≤ 1

k!

(
‖ψ‖1

∫ x

−∞
|ψ(y)|dy

)k
.

It follows that the infinite series

(12) u(x;λ) =

∞∑
k=0

Ik(x;λ)
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converges absolutely by comparison with an exponential series; indeed we have

(13) |u(x;λ)| ≤
∞∑
k=0

|Ik(x;λ)| ≤ exp

(
‖ψ‖1

∫ x

−∞
|ψ(y)|dy

)
.

Note that by replacing x by +∞ in the estimates for |Ik(x;λ)| we can even show that the convergence is
uniform for all x ∈ R, and by doing so in the above upper bound for |u(x;λ)| we see that the function u(x;λ)
is uniformly bounded as a function of x ∈ R:

‖u‖∞ := sup
x∈R
|u(x;λ)| ≤ exp

(
‖ψ‖21

)
for each λ ∈ R. It is easy to use the uniform convergence of the Neumann series to prove that u(x;λ) is in
fact a solution of the Volterra equation (9) whenever λ ∈ R. This solution is the unique bounded solution
of (9). Indeed suppose ũ(x;λ) is another bounded solution of (9) for the same value of λ ∈ R. Then the
function ∆u(x;λ) := ũ(x;λ)− u(x;λ) must be a solution of the homogeneous equation

∆u(x;λ) =

∫ x

−∞
K(x, z;λ)∆u(z;λ) dz.

Substituting this equation into itself n− 1 times yields

∆u(x;λ) =

∫ x

−∞
K(x, zn;λ)

∫ zn

−∞
K(zn, zn−1;λ) · · ·

∫ z2

−∞
K(z2, z1;λ)∆u(z1;λ) dz1 · · · dzn.

Since u and ũ are both bounded functions (by construction and by hypothesis, respectively), there is a
positive constant M > 0 such that

‖∆u‖∞ = sup
x∈R
|∆u(x;λ)| = M.

Then, by the triangle inequality, the estimate of K(x, z;λ), and similar arguments as above,

|∆u(x;λ)| ≤M‖ψ‖n1
∫ x

−∞
|ψ(zn)|

∫ zn−1

−∞
|ψ(zn−1)| · · ·

∫ z2

−∞
|ψ(z1)|dz1 · · · dzn ≤M

‖ψ‖2n1
n!

.

Now, since ‖ψ‖2n1 /n! is the nth term in the convergent Taylor series of exp(‖ψ‖21), it tends to zero as n→∞.
From this it easily follows that for every ε > 0, independent of x, |∆u(x;λ)| ≤ ε. Therefore ∆u(x;λ) = 0 for
all x ∈ R, i.e., ũ(x;λ) = u(x;λ). See also [3, pgs. 14–15].

So, u(x;λ) defined from the Neumann series (12) is, for each λ ∈ R, the unique uniformly bounded solution
of the Volterra integral equation (9). From the Lebesgue Dominated Convergence Theorem, it follows that
u(x;λ) has well-defined limiting values as x→ ±∞:

(14) lim
x→−∞

u(x;λ) = 1, lim
x→+∞

u(x;λ) = 1 +

∫
R
K(+∞, z;λ)u(z;λ) dz,

where

K(+∞, z;λ) := ψ(z)∗
∫ +∞

z

e2iλ(y−z)ψ(y) dy.

Indeed, letting χS denote the characteristic function of a set S ∈ R, i.e.,

χS(x) :=

{
1, x ∈ S
0, x ∈ R \ S,

we may write

u(x;λ) = 1 +

∫
R
K(x, z;λ)χ(−∞,x)(z)u(z;λ) dz

and we note that for (Lebesgue) almost every z ∈ R the integrand converges to 0 as x → −∞ (in fact it
is exactly zero for x < z) and to K(+∞, z;λ)u(z;λ) as x → +∞. Since |K(x, z;λ)χ(−∞,x)(z)u(z;λ)| ≤
|ψ(z)| · ‖ψ‖1 · ‖u‖∞ which is integrable on R and is independent of x, the Lebesgue Dominated Convergence
Theorem allows us to take the limit x→ ±∞ under the integral sign, yielding the formulas (14).
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It follows from the uniform boundedness of u(x;λ) that e−2iλxψ(x)∗u(x;λ) is an absolutely integrable
function. Therefore, the function v(x;λ) defined as an antiderivative thereof:

(15) v(x;λ) :=

∫ x

−∞
e−2iλyψ(y)∗u(y;λ) dy

is an absolutely continuous (i.e., having an absolutely integrable derivative) and uniformly bounded function
that by a Lebesgue Dominated Convergence Theorem argument has well-defined limiting values as x→ ±∞:

lim
x→−∞

v(x;λ) = 0, lim
x→+∞

v(x;λ) =

∫
R

e−2iλyψ(y)∗u(y;λ) dy.

Putting back the exponential factors:

j−,1(x;λ) =

[
e−iλxu(x;λ)
eiλxv(x;λ)

]
we see that we have constructed, for each λ ∈ R, the unique vector solution w = j−,1(x;λ) of the differential
equation (2) satisfying

j−,1(x;λ) =

[
e−iλx

0

]
+ o(1), x→ −∞,

and

j−,1(x;λ) = a(λ)

[
e−iλx

0

]
+ b(λ)

[
0

eiλx

]
+ o(1), x→ +∞,

where

a(λ) = 1 +

∫
R
K(+∞, z;λ)u(z;λ) dz, b(λ) =

∫
R

e−2iλyψ(y)∗u(y;λ) dy.

With these formulae we can detail a Fourier-like mapping property of the direct transform ψ 7→ R.

Proposition 1. Suppose that ψ ∈ S (R). Then also R ∈ S (R) and supλ∈R |R(λ)| < 1.

Proof. Since |a(λ)| ≥ 1, to prove R ∈ S (R) it suffices to prove that a(λ)−1 and b(λ) are Schwartz functions.
We merely indicate how this can be done using the above formulae for a(λ) and b(λ) in terms of ψ and u.
By differentiating under the integral sign with respect to λ and repeated integration by parts one expresses

λP∂Qλ (a(λ)−1) and λP∂Qλ b(λ) explicitly in terms of integrals of mixed derivatives of u with respect to x and
λ integrated against functions of x guaranteed to lie in S (R). Then one shows that the mixed derivatives
of u are uniformly bounded for (x, λ) ∈ R2 by repeated differentiation of the Volterra equation (9). This

gives uniform (over λ ∈ R) bounds of λP∂Qλ acting on both a(λ) − 1 and b(λ). Finally to show the strict
inequality |R(λ)| < 1 one notes that |T (λ)|2 = 1/|a(λ)|2 cannot vanish so |R(λ)|2 = 1 − |T (λ)|2 < 1. We
refer to [2] for further details. �

Similar results hold for the other three columns of the Jost matrices: they are uniquely determined for
each λ ∈ R by the differential equation (2) and associated boundary conditions at x = ±∞, provided only
that ψ ∈ L1(R). If ψ = ψ(x, t) is a solution of the defocusing nonlinear Schrödinger equation (1) lying in
L1(R) for each t ∈ R, we may ask for additional conditions under which (7) holds.

Lemma 2. Suppose that ψ and ψt lie in L1(R) as functions of x for each t ∈ R. Then (7) holds.

Proof. We prove the result for j−,1(x, t;λ), the first column of J−(x, t;λ). Let λ ∈ R be fixed. Then the
condition ψ ∈ L1(R) guarantees the existence of j−,1(x, t;λ). Since

∂j−,1

∂t
(x, t;λ) =

[
e−iλxut(x, t;λ)
eiλxvt(x, t;λ)

]
,

because the factors e±iλx are independent of t, the condition λ ∈ R implies that it is sufficient to prove that
ut(x, t;λ) and vt(x, t;λ) tend to zero as x→ −∞.

Differentiating (9) with respect to t gives a Volterra equation for ut(x, t;λ):

(16) ut(x, t;λ) = F (x, t;λ) +

∫ x

−∞
K(x, z, t;λ)ut(z, t;λ) dz, F (x, t;λ) :=

∫ x

−∞
Kt(x, z, t;λ)u(z, t;λ) dz.
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The forcing term F (x, t;λ) is known once u(x, t;λ) is determined for each t ∈ R from the Neumann series
(12). In obtaining the terms in the latter series and in particular in constructing the kernel K, the potential
ψ(x) is replaced with ψ(x, t). Therefore, the differentiated kernel Kt(x, z, t;λ) is given by

Kt(x, z, t;λ) = ψt(z, t)
∗
∫ x

z

e2iλ(y−z)ψ(y, t) dy + ψ(z, t)∗
∫ x

z

e2iλ(y−z)ψt(y, t) dy.

The analogue of (11) for Kt is (here we first use ψt ∈ L1(R))

(17) |Kt(x, z, t;λ)| ≤ |ψt(z, t)| · ‖ψ(·, t)‖1 + |ψ(z, t)| · ‖ψt(·, t)‖1.
The Neumann series corresponding to the new Volterra equation (16) is

ut(x, t;λ) =

∞∑
k=0

Ĩk(x, t;λ)

where Ĩ0(x, t;λ) := F (x, t;λ) and, for k ≥ 1,

Ĩk(x, t;λ) :=

∫ x

−∞
K(x, zk, t;λ)

∫ zk

−∞
K(zk, zk−1, t;λ) · · ·

∫ z2

−∞
K(z2, z1, t;λ)F (z1, t;λ) dz1 · · · dzk.

By similar estimates as for Ik,

|Ĩk(x, t;λ)| ≤ ‖ψ(·, t)‖2k1
k!

‖F (·, t;λ)‖∞.

Hence ut(x, t;λ) exists for a given t ∈ R by uniform convergence of its Neumann series provided F (·, t;λ) is
uniformly bounded. But the latter holds because (using (13) and (17))

(18) |F (x, t;λ)| ≤ ‖u(·, t;λ)‖∞
∫ x

−∞
|Kt(x, z, t;λ)|dz ≤ 2 exp(‖ψ(·, t)‖21)‖ψ(·, t)‖1‖ψt(·, t)‖1.

Summing the upper bound on Ĩk, it then follows that an additional exponential factor is produced, so

(19) ‖ut(·, t;λ)‖ ≤ 2 exp(2‖ψ(·, t)‖21)‖ψ(·, t)‖1‖ψt(·, t)‖1.
The estimate (17) combined with the intermediate inequality in (18) shows also that F (x, t;λ) → 0 as
x → −∞. Using this fact and the estimates (11) and (19) in the integral equation (16) then proves that
ut(x, t;λ)→ 0 as x→ −∞, as desired.

Differentiating the equation (15) with respect to t yields

vt(x, t;λ) =

∫ x

−∞
e−2iλyψt(y, t)

∗u(y, t;λ) dy +

∫ x

−∞
e−2iλyψ(y, t)∗ut(y, t;λ) dy

and therefore for any λ ∈ R,

|vt(x, t;λ)| ≤ ‖u(·, t;λ)‖∞
∫ x

−∞
|ψt(y, t)|dy + ‖ut(·, t;λ)‖∞

∫ x

−∞
|ψ(y, t)|dy,

where ‖u‖∞ and ‖ut‖∞ are finite from (13) and (19) respectively. Therefore the assumptions that ψ ∈ L1(R)
and ψt ∈ L1(R) also guarantee that vt(x, t;λ)→ 0 as x→ −∞. �

Analytic properties of Jost solutions. So far, we have been considering λ ∈ R. But when we go back and
look at what we have done, we can see that some of the steps are also valid for certain complex λ. Suppose
that λ = α + iβ. Then our convergence analysis for the infinite series (12) representing u(x;λ) begins as
before with an estimate of the kernel K:

|K(x, z;λ)| = |ψ(z)|
∣∣∣∣∫ x

z

e2iλ(y−z)ψ(y) dy

∣∣∣∣
≤ |ψ(z)|

∫ x

z

∣∣∣e2iλ(y−z)
∣∣∣ |ψ(y)|dy

= |ψ(z)|
∫ x

z

e−2β(y−z)|ψ(y)|dy.

Now, in the integrand y ≥ z, so if β ≥ 0, we will have again the estimate (cf., (11))

|K(x, z;λ)| ≤ |ψ(z)| · ‖ψ‖1.
12



Therefore, the existence of u(x;λ) as a uniformly bounded function of x satisfying (cf., (13))

‖u‖∞ ≤ exp
(
‖ψ‖21

)
is guaranteed as long as Im(λ) = β ≥ 0 by the same arguments as before. Moreover, the formulae (14) for the
limiting values of u as x→ ±∞ remain valid. The formula (15) for v(x;λ) in terms of u(x;λ) also remains
valid for Im(λ) ≥ 0 since the exponential factor in the integrand is decaying in the direction of x → −∞.
The statement that v(x;λ)→ 0 as x→ −∞ therefore also remains valid for Im(λ) ≥ 0. In fact, we even get
an exponential rate of decay for v:

|v(x;λ)| ≤
∫ x

−∞
e2βy|ψ(y)||u(y;λ)|dy

≤ e2βx

∫ x

−∞
|ψ(y)||u(y;λ)|dy

≤ e2βx‖ψu‖1
≤ e2βx‖u‖∞‖ψ‖1
≤ e2βx‖ψ‖1 exp

(
‖ψ‖21

)
.

This is O(e2βx) as x → −∞. However, if Im(λ) > 0 we can no longer deduce a limiting value for v(x;λ) in
the limit x→ +∞. (Why not?)

The Jost solution j−,1(x;λ) therefore exists for all λ in the upper half-plane as well as for real λ. From
the conditions that u(x;λ) → 1 as x → −∞ and v(x;λ) = O(e2βx) that hold true for Im(λ) > 0, we see by
putting back in the exponential factors e±iλx that

j−,1(x;λ) = O(eβx), x→ −∞,

and therefore represents a vector solution of (2) that, for Im(λ) > 0, decays exponentially to zero as x→ −∞.
Now other important features of j−,1(x;λ) arise from thinking of the dependence of u(x;λ) on λ with

Im(λ) ≥ 0 for fixed x ∈ R. We begin by determining two key properties of the kernel K(x, z;λ).

Lemma 3. Let ψ ∈ L1(R). Then for all x ∈ R and (Lebesgue) almost every z ≤ x, K(x, z;λ) is a continuous
function of λ ∈ C.

Proof. Pick λ0 ∈ C. Obviously e2iλ(y−z)ψ(y)→ e2iλ0(y−z)ψ(y) as λ→ λ0 for almost every y ∈ [z, x]. Letting
D0 denote the closed unit disk centered at λ0, we also observe that e2iλ(y−z) is continuous on the compact
set (λ, y) ∈ D0× [z, x] so there is a constant C such that |e2iλ(y−z)| ≤ C for all (λ, y) ∈ D0× [z, x]. Therefore
λ ∈ D0 implies |e2iλ(y−z)ψ(y)| ≤ C|ψ(y)| for y ∈ [z, x], an upper bound that is independent of λ ∈ D0 and
integrable. Therefore by the Lebesgue Dominated Convergence Theorem,

lim
λ→λ0

∫ x

z

e2iλ(y−z)ψ(y) dy =

∫ x

z

e2iλ0(y−z)ψ(y) dy

for all real z ≤ x. Putting back the factor ψ(z)∗ which is defined for almost all z completes the proof. �

Lemma 4. Let x ≥ z be fixed real numbers and suppose that ψ ∈ L1(R). Then K(x, z;λ) is an entire
function of λ ∈ C (i.e., analytic in the whole complex plane).

Proof. Let Γ be any piecewise-smooth closed curve in the complex plane. Then∮
Γ

K(x, z;λ) dλ = ψ(z)∗
∮

Γ

∫ x

z

e2iλ(y−z)ψ(y) dy dλ.

Now |e2iλ(y−z)ψ(y)| ≤ e−2Im(λ)(y−z)|ψ(y)| which is integrable on the product (y, λ) ∈ [z, x]× Γ (here we are
using the facts that [z, x] is a bounded interval and ψ ∈ L1(R)). Therefore Fubini’s Theorem allows us to
exchange the order of integration:∮

Γ

K(x, z;λ) dλ = ψ(z)∗
∫ x

z

ψ(y)

∮
Γ

e2iλ(y−z) dλ dy.
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But by Cauchy’s Integral Theorem, for each y, z ∈ R,∮
Γ

e2iλ(y−z) dλ = 0

because e2iλ(y−z) is entire in λ. So, K(x, z;λ) is a continuous function of λ ∈ C by Lemma 3 that satisfies∮
Γ

K(x, z;λ) dλ = 0

for every nice closed curve Γ in the complex plane. Hence the analyticity of K(x, z;λ) for all λ ∈ C follows
by Morera’s Theorem. �

With these results in hand, we can establish corresponding properties of the summand Ik(x;λ) of the
Neumann series (12). Note that these functions satisfy the recursion relation

Ik(x;λ) =

∫ x

−∞
K(x, z;λ)Ik−1(z;λ) dz, k ≥ 1

with the “initial condition” I0(x;λ) ≡ 1.

Lemma 5. Let x ∈ R be fixed and suppose that ψ ∈ L1(R). Then for each k ≥ 0, Ik(x;λ) is a continuous
function of λ for Im(λ) ≥ 0.

Proof. The result is obvious for k = 0. Suppose now that for some k ≥ 1 that Ik−1(x;λ) is continuous on
the set Im(λ) ≥ 0. Suppose that Im(λ0) ≥ 0. For almost every z ≤ x, we have K(x, z;λ)Ik−1(z;λ) →
K(x, z;λ0)Ik−1(z;λ0) as λ → λ0 with Im(λ0) ≥ 0, according to Lemma 3 and the inductive hypothesis.
Also, whenever Im(λ) ≥ 0, we have

|K(x, z;λ)Ik−1(z;λ)| ≤ |ψ(z)| · ‖ψ‖1 ·
‖ψ‖2(k−1)

1

(k − 1)!

an upper bound that is integrable on (−∞, x) and independent of λ. Therefore by the Lebesgue Dominated
Convergence Theorem again,

lim
λ→λ0

λ,λ0∈C+

∫ x

−∞
K(x, z;λ)Ik−1(z;λ) dz =

∫ x

−∞
K(x, z;λ0)Ik−1(z;λ0) dz.

This proves the desired continuity of Ik(x;λ). �

Lemma 6. Let x ∈ R be fixed and suppose that ψ ∈ L1(R). Then for each k ≥ 0, Ik(x;λ) is analytic on the
open upper half-plane Im(λ) > 0.

Proof. Again the result is obvious for k = 0. Suppose that Ik−1(x;λ) is analytic for Im(λ) > 0. Let Γ be a
piecewise-smooth closed curve contained in the open upper half-plane. Then∮

Γ

Ik(x;λ) dλ =

∮
Γ

∫ x

−∞
K(x, z;λ)Ik−1(z;λ) dz dλ.

By the estimate

|K(x, z;λ)Ik−1(z;λ)| ≤ |ψ(z)| · ‖ψ‖1
‖ψ‖2(k−1)

1

(k − 1)!
,

the integrand lies in L1((−∞, x)× Γ) so by Fubini’s Theorem,∮
Γ

Ik(x;λ) dλ =

∫ x

−∞

∮
Γ

K(x, z;λ)Ik−1(z;λ) dλ dz.

Since K(x, z;λ) is entire in λ by Lemma 4 and since Ik−1(z;λ) is analytic for Im(λ) > 0 by the inductive
hypothesis, it follows from Cauchy’s Integral Theorem that∮

Γ

K(x, z;λ)Ik−1(z;λ) dλ = 0.

14



Therefore Ik(x;λ) is a continuous function of λ in the upper half-plane (Lemma 5) that satisfies∮
Γ

Ik(x;λ) dλ = 0

for every piecewise-smooth closed curve Γ in the open upper half-plane. By Morera’s Theorem, Ik(x;λ) is
therefore analytic in the same domain. �

The latter two results can be combined to yield the following.

Lemma 7. Assume ψ ∈ L1(R), let u(x;λ) be defined for Im(λ) ≥ 0 by the convergent Neumann series (12),
and let v(x;λ) be defined in terms of u by (15). Then for each x ∈ R, u(x;λ) and v(x;λ) are continuous
functions of λ in the closed upper half-plane and analytic functions of λ in the open upper half-plane.

Proof. From the continuity and analyticity properties of the summands Ik(x;λ) formulated in Lemma 5 and
Lemma 6 respectively, the uniform convergence of the Neumann series on Im(λ) ≥ 0 implies the continuity
of u(x;λ) for Im(λ) ≥ 0 and its analyticity for Im(λ) > 0. With these properties of u(x;λ) in hand, one can
analyze the integral formula (15) to deduce the corresponding properties of v(x;λ). Indeed, starting from

(20) e2iλxv(x;λ) =

∫ x

−∞
e2iλ(x−y)ψ(y)∗u(y;λ) dy

we see that if Im(λ0) ≥ 0 then the integrand converges pointwise to e2iλ0(x−y)ψ(y)∗u(y;λ0) as λ→ λ0 with
Im(λ) ≥ 0 for almost every y ≤ x by continuity of u(x;λ). Also, since x ≥ y and Im(λ) ≥ 0, we have
|e2iλ(x,y)ψ(y)∗u(y;λ)| ≤ |ψ(y)| exp(‖ψ‖21) which is integrable on (−∞, x) and independent of λ, so continuity
of e2iλxv(x;λ) and hence of v(x;λ) follows from the Lebesgue Dominated Convergence Theorem. To prove
analyticity of v(x;λ) for Im(λ) > 0 given the corresponding property of u(x;λ) is then another application
of Morera’s Theorem. �

We conclude that, if ψ ∈ L1(R), both components of the Jost solution vector j−,1(x;λ) are analytic
functions of λ in the upper half-plane for each fixed x ∈ R, and they extend continuously to the real axis
λ ∈ R.

Next we ask: if x ∈ R is fixed, how does j−,1(x;λ) behave as λ → ∞ with Im(λ) > 0? To answer this
question, we can start with the uniform upper bound for u(x;λ):

sup
x∈R,Im(λ)≥0

|u(x;λ)| ≤ exp
(
‖ψ‖21

)
.

Then, from (20) we get the estimate

|e2iλxv(x;λ)| ≤ exp
(
‖ψ‖21

) ∫ x

−∞
e2β(y−x)|ψ(y)|dy.

The integrand tends to zero as β → +∞ for almost every y ≤ x, and since β ≥ 0 guarantees that

e2β(y−x)|ψ(y)| ≤ |ψ(y)|, y ≤ x,

with the upper bound being independent of β and absolutely integrable, the Lebesgue Dominated Conver-
gence Theorem says that

lim
Im(λ)→+∞

e2iλxv(x;λ) = 0

for each x ∈ R. Note also that if we make the further assumption that ψ ∈ L∞(R), that is, ψ(x) is a
uniformly bounded function, then we can also see that

|e2iλxv(x;λ)| ≤ exp
(
‖ψ‖21

) ∫ x

−∞
e2β(y−x)|ψ(y)|dy ≤ ‖ψ‖∞ exp

(
‖ψ‖21

) ∫ x

−∞
e2β(y−x) dy =

1

2β
‖ψ‖∞ exp

(
‖ψ‖21

)
,

so we get a rate of decay of O(1/β). Under some additional conditions on ψ it is also true that e2iλxv(x;λ)
decays like 1/λ as λ → ∞ with Im(λ) ≥ 0, even in directions parallel to the real axis. To see this, assume
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that ψ(·) is a continuously differentiable function of x with compact support (which also implies ψ′ ∈ L1(R)).
Then integrate by parts:

e2iλxv(x;λ) = − 1

2iλ

∫ x

−∞

d

dy

(
e2iλ(x−y)

)
ψ(y)∗u(y;λ) dy

= − 1

2iλ

[
ψ(x)∗u(x;λ)−

∫ x

−∞
e2iλ(x−y)ψ′(y)∗u(y;λ) dy −

∫ x

−∞
e2iλ(x−y)ψ(y)∗u′(y;λ) dy

]
where we used compact support of ψ to eliminate the boundary term at y = −∞. Now substitute for u′(y;λ)
from (8):

e2iλxv(x;λ) = − 1

2iλ

[
ψ(x)∗u(x;λ)−

∫ x

−∞
e2iλ(x−y)ψ′(y)∗u(y;λ) dy −

∫ x

−∞
e2iλ(x−y)|ψ(y)|2e2iλyv(y;λ) dy

]
.

Now using |e2iλ(x−y)| ≤ 1 for y ≤ x and Im(λ) ≥ 0, it is easy to get the estimate

|e2iλxv(x;λ)| ≤ 1

2|λ|

[
|ψ(x)||u(x;λ)|+

∫ x

−∞
|ψ′(y)||u(y;λ)|dy +

∫ x

−∞
|ψ(y)|2|e2iλyv(y;λ)|dy

]
≤ 1

2|λ|

[
‖ψ‖∞‖u‖∞ + ‖ψ′‖1‖u‖∞ + ‖ψ‖22 sup

x∈R
|e2iλxv(x;λ)|

]
.

Since the upper bound on the right doesn’t depend on x, we can take a supremum over x ∈ R and arrive at(
1− ‖ψ‖

2
2

2|λ|

)
sup
x∈R
|e2iλxv(x;λ)| ≤ ‖u‖∞

2|λ|
(‖ψ‖∞ + ‖ψ′‖1), Im(λ) ≥ 0.

If |λ| ≥ ‖ψ‖22, then the multiplier on the left-hand side is bounded below by 1/2, so

sup
x∈R
|e2iλxv(x;λ)| ≤ ‖u‖∞

|λ|
(‖ψ‖∞ + ‖ψ′‖1), Im(λ) ≥ 0, |λ| ≥ ‖ψ‖22.

Note that for ψ with compact support and ψ′ ∈ L1, ‖ψ‖1 is certainly finite, and as before ‖u‖∞ ≤ exp(‖ψ‖21),
and also

‖ψ‖∞ = sup
x∈R

∣∣∣∣∫ x

−∞
ψ′(y) dy

∣∣∣∣ ≤ ‖ψ′‖1 and ‖ψ‖22 =

∫
R
|ψ(y)|2 dy ≤ ‖ψ‖∞‖ψ‖1 ≤ ‖ψ‖1‖ψ′‖1.

These ideas can be used to prove the following.

Lemma 8. Suppose that ψ ∈ L1(R). Then u(x;λ) → 1 and e2iλxv(x;λ) → 0 uniformly over x ∈ R as
λ→∞ with Im(λ) ≥ 0.

Proof. Let ε > 0 be given, arbitrarily small, and let ψ̃ε(x) be a differentiable function of compact support
that approximates ψ(x) in the L1-sense:

‖ψ − ψ̃ε‖1 =

∫
R
|ψ(x)− ψ̃ε(x)|dx < ε

2
exp(−‖ψ‖21).

Then, since ψ(x) = (ψ(x)− ψ̃ε(x)) + ψ̃ε(x),

e2iλxv(x;λ) =

∫ x

−∞
e2iλ(x−y)(ψ(y)− ψ̃ε(y))∗u(y;λ) dy +

∫ x

−∞
e2iλ(x−y)ψ̃ε(y)∗u(y;λ) dy.

For the first term on the right-hand side, we simply use |e2iλ(x−y)| ≤ 1 and |u(y;λ)| ≤ ‖u‖∞ ≤ exp(‖ψ‖21) to
get∣∣∣∣∫ x

−∞
e2iλ(x−y)(ψ(y)− ψ̃ε(y))∗u(y;λ) dy

∣∣∣∣ ≤ ∫ x

−∞
|e2iλ(x−y)||ψ(y)− ψ̃ε(y)||u(y;λ)|dy ≤ ‖u‖∞‖ψ − ψ̃ε‖1 ≤

ε

2
.

For the second term, we use the fact that ψ̃ε has compact support and ψ̃′ε ∈ L1(R) and apply the integration-
by-parts argument to obtain that∣∣∣∣∫ x

−∞
e2iλ(x−y)ψ̃ε(y)∗u(y;λ) dy

∣∣∣∣ ≤ ‖u‖∞|λ| (‖ψ̃ε‖∞ + ‖ψ̃′ε‖1) ≤ 2
‖ψ̃′ε‖1 exp(‖ψ‖21)

|λ|
16



holds for Im(λ) ≥ 0 with |λ| ≥ ‖ψ̃ε‖1‖ψ̃′ε‖1 ≥ ‖ψ̃ε‖22. Therefore, provided that Im(λ) ≥ 0 and

|λ| > max

{
‖ψ̃ε‖1‖ψ̃′ε‖1,

4

ε
‖ψ̃′ε‖1 exp(‖ψ‖21)

}
,

we will have supx∈R |e2iλxv(x;λ)| < ε, proving the desired uniform convergence to zero.
Next, consider the difference u(x;λ) − 1 as given in terms of v(x;λ) (this is just the original integral

equation for u before v was eliminated to give a closed equation):

u(x;λ)− 1 =

∫ x

−∞
e2iλyψ(y)v(y;λ) dy.

It follows easily that

sup
x∈R
|u(x;λ)− 1| ≤

∫
R
|ψ(y)||e2iλyv(y;λ)|dy ≤ ‖ψ‖1 sup

x∈R
|e2iλxv(x;λ)|.

Since the right-hand side tends to zero as λ → ∞ with Im(λ) ≥ 0, we have shown the desired uniform
convergence of u(x;λ) to 1. �

Therefore, it follows under the hypothesis that ψ ∈ L1(R) that

lim
λ→∞

Im(λ)≥0

eiλxj−,1(x;λ) =

[
1
0

]
in the sense of uniform convergence over x ∈ R. If ψ satisfies additional conditions, the rate of decay in the
second row is O(1/λ).

Other Jost solutions. Analyticity properties of the scattering matrix elements. Parallel analysis applies to
the other Jost solutions: j−,2(x;λ), j+,1(x;λ), and j+,2(x;λ). Namely, under the same hypotheses on ψ as
above:

• j−,2(x;λ) is continuous for Im(λ) ≤ 0 and analytic for Im(λ) < 0, and satisfies

j−,2(x;λ) = O(e−Im(λ)x), as x→ −∞

for Im(λ) < 0 (exponential decay for negative x) and

lim
λ→∞

Im(λ)≤0

e−iλxj−,2(x;λ) =

[
0
1

]
in the sense of uniform convergence over x ∈ R.

• j+,1(x;λ) is continuous for Im(λ) ≤ 0 and analytic for Im(λ) < 0, and satisfies

j+,1(x;λ) = O(eIm(λ)x), as x→ +∞

for Im(λ) < 0 (exponential decay for positive x) and

lim
λ→∞

Im(λ)≤0

eiλxj+,1(x;λ) =

[
1
0

]
in the sense of uniform convergence over x ∈ R.

• j+,2(x;λ) is continuous for Im(λ) ≥ 0 and analytic for Im(λ) > 0, and satisfies

j+,2(x;λ) = O(e−Im(λ)x), as x→ +∞

for Im(λ) > 0 (exponential decay for positive x) and

lim
λ→∞

Im(λ)≥0

e−iλxj+,2(x;λ) =

[
0
1

]
in the sense of uniform convergence over x ∈ R.
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Now consider the first column of the scattering relation J−(x;λ) = J+(x;λ)S(λ)−1:

j−,1(x;λ) = a(λ)j+,1(x;λ) + b(λ)j+,2(x;λ).

Let’s make both sides of this equation into 2× 2 matrices by adjoining as a second column to both sides the
same vector, j+,2(x;λ):[

j−,1(x;λ), j+,2(x;λ)
]

=
[
a(λ)j+,1(x;λ) + b(λ)j+,2(x;λ), j+,2(x;λ)

]
.

Now take determinants of both sides using linearity of the determinant in the first column to simplify the
right-hand side:

det
[
j−,1(x;λ), j+,2(x;λ)

]
= a(λ) det

[
j+,1(x;λ), j+,2(x;λ)

]
+ b(λ) det

[
j+,2(x;λ), j+,2(x;λ)

]
= a(λ)

with the final result obtained by noting that the coefficient of b(λ) is obviously the determinant of a singular
matrix and that the coefficient of a(λ) is simply det(J+(x;λ)), which we previously evaluated by taking a
limit as x → +∞. This gives a formula for the scattering coefficient a(λ) in terms of the Jost solutions
j−,1(x;λ) and j+,2(x;λ). Since both of these have analytic continuations into the upper half-plane, we learn
that a(λ) is an analytic function in the upper half-plane as well. Moreover, from the asymptotic behavior of
the relevant Jost solutions for large λ, we have

lim
λ→∞

Im(λ)≥0

a(λ) = 1.

A formula for b(λ) may also be obtained by taking determinants, this time after adjoining j+,1(x;λ) as a
first column to both sides of the scattering relation. This gives

b(λ) = det
[
j+,1(x;λ), j−,1(x;λ)

]
.

Now as one of the relevant Jost functions is analytic in the upper half-plane while the other is analytic
in the lower half-plane, we learn that, generally speaking, the scattering coefficient b(λ) while defined and
continuous for λ ∈ R, generally does not have an analytic continuation into either of the half-planes. We do
learn, however, that b(λ)→ 0 as λ→ ±∞ on the real axis.

We now have the following important result.

Lemma 9. Suppose that ψ ∈ L1(R), and let a(λ) = S22(λ) be the corresponding element of the scattering
matrix. Then a(λ) 6= 0 for Im(λ) ≥ 0.

Proof. For real λ, from the identity S(λ)∗ = σ1S(λ)σ1 and the fact that det(S(λ)) = 1 one easily obtains
the inequality |a(λ)|2 ≥ 1.

Now suppose that a(λ0) = 0 for some λ0 with Im(λ0) > 0. From the Wronskian formula for a(λ) it follows
that the Jost solutions j−,1(x;λ0) and j+,2(x;λ0) are proportional to each other. But because Im(λ0) > 0,
j−,1(x;λ0) is exponentially decaying as x → −∞ while j+,2(x;λ0) is exponentially decaying as x → +∞.
This implies the existence of a nonzero solution w of (2) that decays exponentially as |x| → ∞. Now the
linear system (2) can be written in the form of an eigenvalue problem:

Lw = λw, L := iσ3
d

dx
+

[
0 −iψ(x)

iψ(x)∗ 0

]
and a key point is that the matrix differential operator L is self-adjoint on the space of square-integrable
vector functions w(x) equipped with the Euclidean inner product

〈w,v〉 :=

∫
R

[w1(x)v1(x)∗ + w2(x)v2(x)∗] dx.

However, λ = λ0 is a complex eigenvalue of L, which contradicts selfadjointness. �

That b(λ) is continuous and tends to zero for large real λ together with Lemma 9 implies that under the
assumption that ψ ∈ L1(R), the reflection coefficient R(λ) := b(λ)/a(λ) is a continuous function of λ ∈ R
that decays to zero as λ → ±∞, a fact that is a nonlinear analogue of the Riemann-Lebesgue Lemma from
Fourier transform theory.
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Riemann-Hilbert problem. Let’s recombine the columns of the Jost matrices in order to obtain matrices
whose columns extend together into the same half-plane:

(21) M(λ;x) :=



[
eiλx

a(λ)
j−,1(x;λ), e−iλxj+,2(x;λ)

]
, Im(λ) > 0,

[
eiλxj+,1(x;λ),

e−iλx

a(λ∗)∗
j−,2(x;λ)

]
, Im(λ) < 0.

The notation we are using is meant to suggest that we are now changing our point of view and viewing λ as
the basic (complex) variable, and x as the parameter. From the relations

j±,2(x;λ)∗ = σ1j
±,1(x;λ), λ ∈ R,

we get by analytic continuation that

j−,2(x;λ∗)∗ = σ1j
−,1(x;λ), Im(λ) ≥ 0,

and
j+,2(x;λ∗)∗ = σ1j

+,1(x;λ), Im(λ) ≤ 0.

From these it follows easily that (by definition, really)

M(λ;x) = σ1M(λ∗;x)∗σ1.

From the definition (21) it follows that det(M(λ;x)) = 1 at each point where M is defined.

Lemma 10 (Analyticity of M(λ;x)). For every x ∈ R, the elements of the matrix M(λ;x) are all analytic
functions of λ for Im(λ) 6= 0.

Proof. This follows from the analyticity properties of the Jost solutions and of the function a(λ), because
a(λ) 6= 0 for Im(λ) > 0 according to Lemma 9. �

Note that M(x;λ) has not actually been defined for λ ∈ R. This is not an omission, but rather reflects
the reality of the situation; the matrix M(λ;x) generally does not extend to the real λ-axis as an analytic
(or even continuous) function. Indeed, there is a mismatch in the boundary values taken by M(λ;x) as λ
approaches the real axis from the upper and lower half-planes. Let

M±(λ;x) := lim
ε↓0

M(λ± iε;x), λ ∈ R,

and let m1
±(λ;x) and m2

±(λ;x) denote the corresponding columns. (The subscript notation on M and its
columns differs in meaning from the superscript notation on J and its columns.) Thus,

m1
+(λ;x) =

eiλx

a(λ)
j−,1(x;λ), m2

+(λ;x) = e−iλxj+,2(x;λ),

and

m1
−(λ;x) = eiλxj+,1(x;λ), m2

−(λ;x) =
e−iλx

a(λ)∗
j−,2(x;λ),

all for λ ∈ R. From the scattering relation

J−(x;λ) = J+(x;λ)

[
a(λ) b(λ)∗

b(λ) a(λ)∗

]
,

it easily follows that

m1
+(λ;x) =

eiλx

a(λ)

(
a(λ)j+,1(x;λ) + b(λ)j+,2(x;λ)

)
= m1

−(λ;x) + e2iλx b(λ)

a(λ)
m2

+(λ;x),

and

m2
−(λ;x) =

e−iλx

a(λ)∗
(
b(λ)∗j+,1(x;λ) + a(λ)∗j+,2(x;λ)

)
= e−2iλx b(λ)∗

a(λ)∗
m1
−(λ;x) + m2

+(λ;x).

Recalling the definition of the reflection coefficient R(λ) := b(λ)/a(λ), these can be written respectively as

M+(λ;x)

[
1

−e2iλxR(λ)

]
= M−(λ;x)

[
1
0

]
and M+(λ;x)

[
0
1

]
= M−(λ;x)

[
−e−2iλxR(λ)∗

1

]
,
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which can be combined into a single matrix equation as

M+(λ;x)

[
1 0

−e2iλxR(λ) 1

]
= M−(λ;x)

[
1 −e−2iλxR(λ)∗

0 1

]
.

We therefore arrive at the following result:

Lemma 11 (Jump condition for M(λ;x)). M(λ;x) takes continuous boundary values M±(λ;x) on the real
line λ ∈ R that are related by the following jump condition:

M+(λ;x) = M−(λ;x)D(λ;x), λ ∈ R,
where the so-called jump matrix is

D(λ;x) =

[
1− |R(λ)|2 −e−2iλxR(λ)∗

e2iλxR(λ) 1

]
, λ ∈ R.

Finally, we have the following property of M(λ;x).

Lemma 12 (Normalization of M(λ;x)). For every x ∈ R, the matrix M(λ;x) satisfies

lim
λ→∞

M(λ;x) = I.

Here the limit can be taken in any direction in the complex plane, including along one or the other side of
the real line.

Proof. This follows from the definition of M(λ;x) with the use of the asymptotic conditions satisfied by the
Jost solutions and the function a(λ) as λ→∞. �

In Lemma 10, Lemma 11, and Lemma 12, we have isolated three properties of the matrix M(λ;x) that
we have deduced from scattering theory. The remarkable thing is that these properties are sufficient (in
most cases) to determine the matrix M(λ;x) from the reflection coefficient R(λ), and from M(λ;x) it is easy
to extract the potential ψ(x) whose reflection coefficient is R(λ). This is the process of inverse scattering.
Indeed, if the matrix M(λ;x) can be recovered for each x, then from the differential equation (2) satisfied
by j+,2(x;λ) we can easily deduce a differential equation satisfied by m2(λ;x) for Im(λ) > 0:

∂

∂x
m2(λ, x) =

[
−2iλ ψ(x)
ψ(x)∗ 0

]
m2(λ, x).

Recalling that m2(λ;x)→ [0, 1]T as λ→∞, we see from the first row that

o(1) = −2iλM12(λ;x) + ψ(x)(1 + o(1)), λ→∞.
Taking the limit λ→∞ gives us a formula for ψ(x) in terms of M(λ;x):

ψ(x) = 2i lim
λ→∞

λM12(λ;x).

The problem of finding the matrix M(λ;x) satisfying the three properties listed in Lemmas 10–12 given a
suitable reflection coefficient R(λ) is called a Riemann-Hilbert problem.

Summary: the inverse-scattering transform solution algorithm for the initial-value problem
for the defocusing NLS equation.

Theorem 2. Let ψ0(x) be a suitable complex-valued function of x decaying to zero as x→ ±∞. Let R0(λ)
denote the corresponding reflection coefficient under the direct transform: ψ0 7→ R0. Then, the solution of
the initial value problem for the defocusing NLS equation

iψt +
1

2
ψxx − |ψ|2ψ = 0, lim

x→±∞
ψ(x, t) = 0, ψ(x, 0) = ψ0(x)

is given by the formula
ψ(x, t) = 2i lim

λ→∞
λM12(λ;x, t),

where M(λ;x, t) is the solution of the following Riemann-Hilbert problem: find a 2×2 matrix M(λ;x, t) with
the following properties:

• Analyticity: M(λ;x, t) is an analytic function of λ for λ ∈ C \ R.
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• Jump Condition: The matrix M(λ;x, t) takes continuous boundary values M±(λ;x, t) on the real
axis from C±, and they are related by the condition

M+(λ;x, t) = M−(λ;x, t)D(λ;x, t), λ ∈ R,
where

D(λ;x, t) :=

[
1− |R0(λ)|2 −e−2i(λx+λ2t)R0(λ)∗

e2i(λx+λ2t)R0(λ) 1

]
.

• Normalization: As λ→∞, M(λ;x, t)→ I.

Later, after we develop the theory of Riemann-Hilbert problems, we will see that this problem has a
unique solution for all (x, t) ∈ R2 if R0 is a suitable function of λ ∈ R.
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