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Abstract

Modulation theory is used to study the Ablowitz-Ladik equations.
Exact multiphase wavetrain solutions are found, and local conserva-
tion laws are averaged to obtain a macroscopic description of this
lattice problem.

1 Transport in Nonlinear Lattices

Physical systems like organic polymers and waveguide arrays that are nec-
essarily spatially discrete and yet translationally symmetric are lattices that
may be modeled by an infinite number of coupled ODEs, indexed by integers
n, that are invariant under the substitution n — n 4+ 1. One interesting
question to ask about such systems is: to what degree is it possible for the
microscopic dynamics (as described by the coupled ODEs) to contribute to
collective phenomena on scales much larger than the lattice spacing? Such
collective phenomena that can be described by closed sets of effective equa-
tions are called macroscopic dynamics. The hope is that robust macroscopic
dynamics can be understood as a mechanism for coherent energy transport
over very long scales. One way to seek macroscopic dynamics is to assume
that all dynamical variables vary slowly along the lattice; this is the usual
idea of the continuum limit. However, such a limit ignores the possibility that
essential effects of the spatial discreteness can contribute to the macroscopic
dynamics. We want to explore this possibility as well.



As a mathematical model of a lattice, we consider here the system of
ODEs
10 An + f(|An)?) (Apgr + A1) + F(|AL))A, = 0. (1)

The complex numbers A, (t) can be considered to be complex mode ampli-
tudes of the form ¢, + ip, for a system of oscillators with displacements g,
and momenta p,. By choosing the real-valued functions f(p) and F(p) ap-
propriately, it is possible to obtain a variety of effects. Nonconstant terms in
the function F' give rise to anharmonicity in the individual oscillators, and
nonconstant terms in the function f introduce anharmonic coupling between
these oscillators. For example, choosing f(p) = 1 and F'(p) = £2p—2 results
in the discrete nonlinear Schrodinger system (DNLS)

10, An + (Apyr — 24, + A1) £2|A4,%A, =0. (2)

On the microscopic level, the DNLS is a description of a lattice of anharmonic
oscillators, each linearly coupled to its two nearest neighbors. On the other
hand, choosing F'(p) = —2 and f(p) = 1 £ p results in the Ablowitz-Ladik
system (AL)

10 An + (Apgr — 2A, + A1) £ AP (An + A1) =0, (3)

In contrast with the DNLS, AL describes on the microscopic level a lattice of
harmonic oscillators, each coupled to its two nearest neighbors by nonlinear
interactions. In spite of the differences on the microscopic level, these two
systems of differential equations can both be scaled to yield NLS in the
continuum limit. However, the fact that the two agree in this limit is no
reason to believe that there should be any correspondence for general initial
data.

The system of equations Eq. (1) is Hamiltonian. The conservation of
energy can be written in local form, where the time derivative of the energy
density is equal to a pure difference in n of an energy flux. There is also
an additional local conservation law that follows from the gauge symmetry
group A,, — exp(ia)A, for real a. There are many more local conservation
laws for the special case of AL, which will allow us to obtain a very complete
picture of macroscopic dynamics for this system.

2 Modulation Equations for Harmonic Plane
Waves

As an initial example of the kind of transport mechanisms we have in mind,
and to provide a demonstration of the way that spatial discreteness can



contribute to macroscopic phenomena, we briefly describe the behavior of

slowly varying harmonic wavetrains in the lattice system Eq. (1). The results

of this section first appeared in the work of Hays, Levermore, and Miller[5].
The lattice system Eq. (1) has exact solutions of the simple form

A, (t) = /pexp(i(kn — wt)), (4)
for constants p, k, and w satisfying the dispersion relation
w+2f(p)cosk + F(p)=0. (5)

We now consider approximate solutions, for which p and k are taken to
be slowly varying, w being determined locally from the dispersion relation
Eq. (5). To obtain dynamical equations for the quantities p and k, we con-
sider the solution Ansatz Eq.(4) with p, k, and w depending on n and ¢,
insert the Ansatz into the two local conservation laws for Eq. (1), and pass
to the continuum limit, not in the field A,(¢), but in the quantities p and
k. This procedure yields two quasilinear PDEs for the quantities p(X,T)
and k(X,T) on the scales X = en and T = et as ¢ | 0. These PDEs
are called the modulation equations for the harmonic plane waves given by
Eq.(4). If the characteristic speeds for these PDEs are real and distinct,
the PDEs are strictly hyperbolic, and the corresponding Cauchy problem at
T = 0 is well-posed, which is interpreted as indicating modulational stabil-
ity of the underlying wavetrain. Otherwise, the PDEs are elliptic, and the
Cauchy problem at T" = 0 is ill-posed, which is interpreted as indicating
modulational instability of the wavetrain. As a result of nonlinearity, the
characteristic speeds depend on the values of p and k. Thus, it is possible
for the modulation equations, posed for globally hyperbolic initial data, to
evolve the fields p(X,T) and k(X,T) forward in T in such a way that the
speeds cease to be real for some X and T" > 0. We call this phenomenon dy-
namic change of type. It is also possible for 0xp and dxk to become infinite
for some X and T > 0, even though the speeds are real. Both of these catas-
trophes are interpreted as the local breakdown of the modulational Ansatz,
Eq. (4).

These macroscopic limits, unlike the usual continuum limit, are able to
distinguish qualitatively between different discretizations of the same equa-
tion. Figure 2 summarizes the results of the analysis described for the two
discretizations of NLS discussed above, and gives the analogous results for
harmonic plane wave modulation in NLS for comparison.

One may ask whether the analysis described above can be generalized. Is
is possible to replace the exact solutions, Eq. (4), with a more complicated
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Figure 1: Harmonic plane wave modulation for two discretizations of NLS.

family of exact solutions, and obtain modulation equations describing the
slow evolution of the parameters that index these solutions? If one is content
to work with the Ablowitz-Ladik equations, then the answer to this question
is in the affirmative.

3 Wavetrains in AL

The Ablowitz-Ladik equations, Eq. (3), deserve special treatment in the study
of macroscopic limits of Eq. (1) because in this case there exists an inverse
scattering transform (IST) that can be used to linearize Eq. (3) to obtain
exact solutions and also to identify an inexhaustible number of local conser-
vation laws. Eq. (3) is the reduction of

—10,Q(n,t) — [Q(n+1,t) —2Q(n,t) + Q(n— 1,1)]
+ Qn,t)R(n,t)[Q(n+1,t) +Q(n—1,t)] =0, )
—10R(n,t) + [R(n+1,t) —2R(n,t) + R(n — 1,1)]

— Q(n,t)R(n,t)[R(n+1,t) + R(n —1,t)] =0,

where n has been promoted from a subscript to an argument, when R = FQ
for t € R. These ODEs were found by Ablowitz and Ladik [1], who were
looking for lattice systems that could be solved with an IST. We refer to
Eq. (6) as the complex Ablowitz-Ladik equations (CAL).

The goal of the rest of this paper is to describe the use of the machinery
of the IST to find classes of exact wavetrain solutions that will play the role




of generalizations of the plane wave Ansatz, Eq.(4), and to provide tools
for describing the modulational behavior of these solutions. As we are only
interested in producing functions that solve CAL and not in solving an initial
value problem, we will use this machinery in a way that differs in appearance
and structure, though certainly not in spirit, from its traditional usage in
solving initial value problems. The details not mentioned here can be found
in the paper of Miller, Ercolani, Krichever, and Levermore [6].
We use the following Lax pair representation of CAL:

u(n + 1,t,z) = L(n, t, z)u(n,t, z), (7)

where
z Q(n,t)
L(n,t,z) = ) (8)
zR(n,t) 1

and

—idu(n,t, z) = B(n,t, 2)u(n,t, z), (9)
where

z2—1-=Q(n,t)R(n —1,t)  Q(n,t) —27'Q(n — 1,t)
B(n,t,z) =

zR(n—1,t) — R(n,t) 1—2z"'+R(n,t)Q(n — 1,t)
(10)
The consistency of these two linear problems is a condition on the potentials
@ and R that is equivalent to CAL. This Lax pair is more useful for our
purposes than that given for a vector v(n,t, A) in the paper of Ablowitz and
Ladik [1]. The latter Lax pair can be obtained from the one above by the
transformation

(11)

va(n, t,N) = X" lug(n,t,z = A\?).

3.1 Constructing Finite Genus Solutions

The motivation for the Riemann surface method to be used below to pro-
duce multiphase wavetrain solutions to Eq. (6) stems from the study of the



solutions satisfying periodic boundary conditions in n. If one uses Floquet
theory to study Eq.(7) when @ and R are periodic in n with period N, it
is possible to deduce that the Floquet multipliers are independent of both
n and t. Because the spatial linear system for u is second order, the Flo-
quet multipliers satisfy a quadratic equation with coefficients that turn out
to have the simple structure of polynomials in z. The graph of this algebraic
equation is the Floquet multiplier curve, I". It is a finite genus Riemann
surface that is a two-sheeted branched cover of the z-plane. The vector u is
most naturally considered as a function of n, t, and a point on I'. For values
of z different from the branch points, there are two linearly independent si-
multaneous solutions u of the linear problems making up the Lax pair. The
two solutions fail to be linearly independent when z is a branch point of I'.
Formulas for u can be found using the Riemann theta function, which is the
central object of analytic function theory on Riemann surfaces. From u, it
is easy to recover the potentials () and R. As it happens in the focusing
and defocusing cases, the corresponding formulas for the potentials can be
written in such a way that it is clear that they depend periodically on a
number of phase variables of the form kn —wt. Thus the potentials have the
form of multiphase waves, but since spatial periodicity has been imposed the
wavenumbers satisfy certain quantization conditions.

It is reasonable that to relax the constraint of spatial periodicity in an
appropriate way should yield a family of multiphase wavetrain solutions of
similar form, but without the quantization conditions on the wavenumbers.
The analytic manifold of the spectral parameter should still be a finite genus
Riemann surface, but we can no longer interpret this surface as a Floquet
multiplier curve. Below, we will show how to construct simultaneous solu-
tions u of the two linear problems of the Lax pair, Eq. (7) and Eq. (9), by
first selecting an arbitrary set of branch points in the z-plane to determine
an appropriate hyperelliptic Riemann surface. Because we are interested in
general solutions, we must proceed without the Floquet scattering theory of
the periodic problem. From u we will see exactly how to obtain a solution
(Q, R) of Eq. (6).

The main idea here is that it is difficult to produce exact solutions to
the nonlinear system Eq. (6), and it is easier to produce two linearly inde-
pendent simultaneous solutions u(n, ¢, z) to the two linear problems, Eq. (7)
and Eq. (9). The existence of two linearly independent solutions, u*(n,t, z),
even for an arbitrary value of the complex parameter z, guarantees the com-
patibility of the two linear problems, and thus guarantees that the potentials
Q(n,t) and R(n,t) solve Eq. (6).

Let us proceed to find some solutions u of the Lax pair. In particular,



we must make sure that u simultaneously satisfies Eq. (7) and Eq. (9) in the
asymptotic limits z | 0 and z T co. When z is small, there are two possible
dominant balances in the two problems:

( " ) — expli(l — = 1)) ( gg; ) 7 (12)

(m)=(00) 13

In order to distinguish these two kinds of expansions, we refer to the former
as 07 and the latter as 0. When z is large, there are also two possible
dominant balances:

( u ) — mexpli(z — 1)) ( gg; ) , (14)

(2)-(28)

Once again, to distinguish these two kinds of expansions, we refer to the
former as oo™ and the latter as oco™.

These facts, along with the analytic dependence of u on z suggest build-
ing the two linearly independent solutions u*(n,t, 2) as projections of a sin-
gle vector function u(n,t, P), where P denotes a point on a two-sheeted
branched cover, I'; of the z-sphere. The manifold I' consists of two copies
of the Riemann sphere, ramified at an even number of fixed but arbitrary
points 21, . .., za412. Each copy of the sphere may be identified with the com-
plex z-plane through stereographic projection. This is how we recover from
u(n,t, P) two different vector functions u(n,t, z), both solving Eq. (7) and
Eq. (9) for all complex z. As long as I' does not branch at z = 0 or z = o0,
there are two points of I" over each of these z values. We may thus insist that
the function u(P) have behavior determined by the expansions 0% at the two
points above z = 0 and likewise that u(P) have behavior determined by the
expansions coT at the two points above z = co. We will label these points
on I' as 0F and oo™ according to the kind of expansion u has at these points.
There is an ambiguity stemming from the way one chooses points 0% above
z = 0 with respect to the choice of points oo™ over z = oo that results in
two essentially different kinds of asymptotic behavior for the function u(P)
for a given choice of branch points z,. This is a feature of the construction
of finite genus solutions to the Ablowitz-Ladik equations that distinguishes
it from constructions in which the Lax pair becomes singular for only one
value of the parameter z.



So let I" be such a Riemann surface, branched at the n and ¢ independent
distinct z-values z1, ..., 2242, having the interpretation of constants of mo-
tion or action variables. Next, assume that u;(P) and us(P) both have their
poles in I'\ {0%, co*} confined to the n and ¢ independent points Py, ..., P,
having the interpretation of initial (n = 0, ¢t = 0) values of angle variables.

Finally, normalize the functions u;(P) and uy(P) so that

uy = 2" exp(i(z — 1)75){1 + O(Z_l)} ; (16)
near oo, and
ug = exp(i(l — z_l)t){l + O(Z)} ; (17)
near 0*. Then we have the following (for most sets of ¢ points P, ..., P,).

Lemma 1 The function u(n,t, P) with the above properties exists and is
constructed uniquely from the data z1, ..., 22442, Pi,..., Py, and the choice
of expansions over z = 0 and z = oo. Furthermore, the function u(n,t, P)
solves both the linear problems Eq. (7) and Eq. (9) globally in n, t, and P as
long as the potentials Q(n,t) and R(n,t) are such that

uy = exp(i(1 — z_l)t){Q(n —1,t) + (9(2)} :
near 0% and
us = expl(i(z — 1)t){R(n 1)+ O(Z—l)} :

near oo™ .

The compatibility of the two linear problems Eq.(7) and Eq.(9) for these
potentials then gives the following theorem.

Theorem 1 The functions Q(n,t) and R(n,t) derived from the expansions
for u solve the complex Ablowitz-Ladik equations Eq. (6).

These solutions of CAL have the form of multiphase wavetrains:
O((by,...,0,)T)
(61 + Bry- -, 0, + B,)T)

where 0; = kjn — w;t — ¢; are phase variables and © is the Riemann theta
function defined by

Q(n,t) = Aexp(it) (18)

1
O(w) = Z exp {imTBm +m'w| | (19)

meZ9



and B is a symmetric matrix with negative definite real part obtained by
integrating holomorphic differentials around closed loops on I'. This indicates
that, while the function u and the corresponding potentials () and R are
unique given the data, the representations of these in terms of theta functions
are not well defined, depending on a choice of homology cycles on the surface
I'. This is a gauge symmetry that may be used to our advantage in simplifying
final formulas.

If the genus ¢ is less than 3, the procedure we have outlined above is
equivalent to substitution of an Ansatz of the form given by Eq.(18) into
Eq. (6) and solving for relations among the various parameters. If g > 3, it is
no longer possible to find solutions without employing the complex geometry
of the Riemann surface I'; the dispersion relations become transcendental.

The solutions we have described all obey the constraint Q(—1,0) = 1.
It is easy to free up this constraint by using the following symmetry group
of CAL: if (@, R) is a solution of CAL, then for each complex number &,
(£Q, ¢ 1R) is also a solution of CAL.

It is also possible to relax the constraint that the branch points be distinct,
although this requires more complicated tools[6]. These degenerate solutions
can correspond to homoclinic orbits and solitons as described by Ercolani
and Miller [3].

3.2 Focusing and Defocusing Solutions

Imposing reality means isolating data leading to solutions satisfying R =
+Q@ for real t. These solve the restricted problem of interest, Eq. (3). The
potentials as given by formulas like Eq. (18) may not be periodic functions
of each of the 6; individually unless reality is imposed on the data. We want
to impose reality in order to have a family of multiphase wavetrains.

The difficulty in restricting the class of solutions found above to the focus-
ing and defocusing subclasses is that the simple condition R = £ must be
translated into conditions on the data that we used to generate the potentials
@ and R, namely the branch points z;, the points P;, the scaling parameter
¢, and the choice of the asymptotic behavior of u over z = 0 and z = oo.
A convenient tool for carrying out this translation is the system of squared
eigenfunctions associated to the function u. These squared eigenfunctions
can be imagined as a kind of intermediate level between the potentials (Q, R),
where the reality conditions are trivial, and the data for specifying the func-
tion u, where the corresponding conditions are transcendental. In fact, at
the level of the squared eigenfunctions, the reality conditions are algebraic.

Let us introduce the squared eigenfunctions. Recall the notation u*(z) for



the two vector solutions to the Lax pair obtained by stereographic projection
from the function u(P) on I'. Define

p(z) = u{(0,0,2)u;(0,0,2),

x(z) = ud(0,0,2)u;(0,0,2), (20)
f(z) = %[uf(o,o,m;(o,o,z)+u;(o,o,z)u;(o,o,z>].

It is possible to deduce from properties of u(P) described in the last subsec-
tion that the squared eigenfunctions are polynomials that can be normalized
so that f is monic. Thus, they take the form

0(z) = pg2% + SOg—lzg_l + -+ o,
x(2) = z[xg2? + Xg—lZg_1 + -+ x|, (21)
fz) = 2 fo2f 4 frzt o

This construction can be viewed as a transformation from the problem data
to the 3g + 3 complex coefficients of these polynomials. However, it is also
possible to invert the mapping by operations no more complicated than root
finding.

The advantage of this change of variables is that the reality conditions
on the polynomial coefficients are easy to deduce from the linear problems
Eq. (7) and Eq. (9). Namely for focusing (—) and defocusing (4) potentials,

) = ST, (22)
x<z>:i% ). (23)

These relations imply that in both the focusing and defocusing cases, the
branch points must, as a set, be symmetric in reflection through the unit
circle in the z-plane. In fact, more detailed investigations[6] suggest the
following conjectures':

Conjecture 1 In the focusing case, the branch points cannot lie on the unit
circle unless they have multiplicity greater than 1.

Conjecture 2 In the defocusing case, the branch points all lie on the unit
circle as long as |Q(n,t)| <1 for all n.

!The first conjecture has been proved[6] when Q and R are periodic in n. The sec-
ond conjecture is suggested by the fact that the defocusing system preserves the sign of
|Q(n,t)] — 1 for each n, and that only the potentials for which |Q(n,t)| <1 for all n con-
tribute to the continuum limit, in which all branch points are fixed by the antiholomorphic

involution z — z 1.



4 Modulation Equations for Multiphase Waves
in AL

When we were concerned with modulation of harmonic plane waves, we in-
serted the plane wave Ansatz into local conservation laws and passed to the
continuum limit in the parameters of the motion. We have a large set of
oscillatory solutions available, as constructed in the last section. These ex-
act solutions generalize the plane wave Ansatz Eq.(4). Let us now present
a compact representation of the infinite number of local conservation laws
implied by Eq. (6). Define

. ul(n + ]., t, P)
F(n,t, P) = dlog it D) (24)
G(n,t, P) = Oidloguy(n,t, P). (25)

Then, it follows from the compatibility of differentiation in ¢ with spatial
differencing in n that

0, F(n,t, P) = G(n+1,t, P) — G(n,t, P), (26)

which has the form of a local conservation law with parameter P € I'. As
trivial as it may appear, this expression contains an infinity of nontrivial
local conservation laws obtained by expanding with respect to P.

The idea in obtaining modulation equations in integrable systems (as
described by Flaschka, Forest, and McLaughlin [4] for KdV and Bloch and
Kodama [2] for the Toda lattice) is to imagine a slowly deforming Riemann
surface I'(X = en,T = et) for ¢ | 0. Let z;, depend on the slow scales X and
T. Substitute the theta function representation of u; into the conservation
law generator and use angled brackets to denote an average over n and t
sufficient to remove dependence on n and t. Then one obtains the modulation
equations for the finite genus solutions of Eq. (6) in homology gauge form?:

Orwisy + O <d10g O(A(P)—Z+U(n+ 1)+Vt)> _

A(P)

O(A(P) —Z +Un+ Vi)
OO(A(P)—Z+U(n+1)+ Vi) >
O(A(P)—Z+U(n+1)+ Vi)

(27)

an(Q) + GX <d

2We use this terminology because the appearance of these modulation equations may
be altered by changing the basis of homology cycles on I'.



The Abel mapping, A(P), is a vector of integrals of normalized holomorphic
differentials along a contour ending at the point P. The differentials w3y and
w(gjg control the asymptotic behavior of the function u near the points 0% and
oo™. The vectors U and V contain wavenumbers and frequencies obtained
from these two differentials. Only the vector Z depends on the initial phase
information encoded in the points P;.

In the focusing and defocusing cases, it is usually® possible to choose the
homology cycles on I' in such a way that the modulation equations take the
simple form

6Tw(3) = an(g) . (28)

This kind of cosmetic improvement is an application of the homology gauge
symmetry of the finite genus formulas mentioned above. All initial phase
information in the vector Z is lost in this representation. It turns out that
the branch points 24 (X, T) are Riemann invariants of these equations, and
that the characteristic speed of z; is real if z; is on the unit circle. Then, our
conjectures of the previous section lead us to the following conclusions:

e In the focusing case, these modulation equations are never hyperbolic
and there are no stable multiphase wavetrains.

e In the defocusing case, there exist both stable and unstable multiphase
wavetrains. The stable wavetrains are those whose amplitudes are ev-
erywhere less than 1.

5 Resonances

If there are resonances in the underlying focusing or defocusing wavetrain,
corresponding to commensurate frequencies or wavenumbers, then the mod-
ulation equations must be written in a form more general than Eq. (28). The
terms involving the phase vector Z cannot be made to vanish by any choice
of homology cycles, and in fact Z must be taken to depend on X and 7', thus
introducing the phenomenon of phase modulation. The modulation equa-
tions for the branch points z;(X,7") must be supplemented by modulation
equations for certain functions of the pole positions P;. In these resonant
cases, the modulation equations need not have the stability properties given
at the end of the last section. Indeed, Miller, Ercolani, and Levermore [7] dis-
cuss a simple modulationally stable resonance in the focusing Ablowitz-Ladik
equations.

3Here, “usually” means in the case that none of the frequencies or wavenumbers of the
underlying wavetrain are commensurate.
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