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Abstract 
A new approach to multiport switching in arrays of nonlinear waveguides 
is proposed. While other schemes have relied on suppressing the inherent 
transverse discreteness, this approach takes advantage of th is  feature of the 
array. One of the effects of discreteness is to keep intense beams trapped in 
a single waveguide for the length of the array. Switching may be achieved 
by using a controlled perturbation to displace such a trapped beam in the 
transverse direction. This displacement is quantized to an integer number 
of waveguides, thus allowing unambiguous selection of the output channel. 

1. Introduction 

All-optical signal processing using integrated nonlinear 
waveguide optics has many desirable features. In particular, 
it is possible to fabricate components that are small and 
capable of high speed operation, only limited in principle by 
the “turn-off” time of the material nonlinearity [l]. One of 
the basic tasks of all-optical signal processing is switching, 
the ultimate goal being to achieve dynamic, fully controlled 
selection of one output channel among many. Here we con- 
sider the possibility of multiport switching in an array of 
identical regularly-spaced nonlinear waveguides, as depicted 
in Fig. 1. 

Assume that the number of waveguides in the array, N, is 
large and that all exhibit weak cubic nonlinearity due to the 
Kerr effect. Further assume the distance between wave- 
guides, d, to be large enough to allow the field in each wave- 
guide to be treated almost as though in isolation (d % 6). By 
almost we mean that d should still be sufficiently small to 
allow the evanescent field tails in neighboring waveguides to 
overlap just enough to create a small linear coupling (power 
leakage). Under these assumptions it can be shown that to 
lowest order the stationary envelope of the electric field in 
the nth waveguide is governed by the discrete nonlinear 

Fig. 1. Schematic diagram of part of an array of waveguides of length L. 
The width of each waveguide is 6 and the spacing between waveguides is d. 
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Schrodinger (DNLS) equation [2] 

i&E, + (E,+1 - 2E, + En-l) + IE, I’E, = 0, (1) 
here given in dimensionless units. 

The N-core coupler is a device described by eq. (1) [2], in 
which switching is controlled by changing the power of a 
single-core input signal. Unfortunately, the power discrim- 
ination depends on the device length and decreases rapidly 
as the number of cores increases. In fact a complete power 
transfer into each of the output channels is no longer pos- 
sible for more than three cores [3], and if the number of 
cores exceeds five, the ability to control the switching is lost 
[4]. A new approach is thus required if more than five 
output channels is desired. One alternative is to use the col- 
lective properties of the array and suppress its inherent dis- 
creteness by operating it with low intensity beams extending 
over several waveguides [4]. In this regime the array 
behaves essentially like a bulk medium and correspondingly 
beams are approximate spatial solitons of the continuous 
NLS equation. Thus a beam can propagate unhindered and 
emerge in a predictable region of the array, thereby selecting 
the output channel. In contrast to this approach, which we 
refer to as the continuum approach, we propose to exploit 
the discrete structure of the array by operating it at high 
intensities, where the effects of discreteness become espe- 
cially apparent. 

2. Properties of a single beam 

The DNLS equation, eq. (l), has two conserved quantities, 
the total power and the Hamiltonian. Thus it is generally 
only completely integrable for N < 2, which explains the 
predictability of the two-core coupler [SI. For more than 
two cores the model may exhibit chaotic behavior, which 
e.g. leads to a high sensitivity of the three-core coupler to 
the device length [6]. However, even for large N, eq. (1) 
allows beams to exist that can propagate through the array 
in a regular and predictable way. These beams have proper- 
ties that in several ways differ from those of beams propa- 
gating in a bulk medium. 

Let us briefly outline the beam properties that are impor- 
tant for multiport switching in arrays. Without the nonlin- 
ear term, eq. (1) has linear plane-wave solutions of the form 
exp (ikn - iflz), where the propagation constant f l  is related 
to the wavenumber k by fl(k) = 4 sin2(k/2). A packet of such 
plane-waves, with wavenumbers centered around k, will 
propagate in the array at an angle a(k), defined as 
tan (a) = afl/dk = 2 sin (k), and diffract subject to the linear 
diffraction coefficient D(k) E )a’fl/ak’ = cos (k). At low 
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maximum intensity I, the primary combined effect of non- 
linearity and positive diffraction is to allow for steady and 
uniform propagation of beams at the angle a(k). Neglecting 
terms of order O ( I 3  the low intensity solution to eq. (1) can 
be found by multiple-scale techniques [7] 

80 
(A) 

E,(z) N &, sech (Jk [ n  - tan 

x exp (i[kn - (j - f Z 3 z  + e]). (2) 
The diffraction coefficient D(k) does not appear if the second 
difference in eq. (1) is naively replaced by a second deriv- 
ative, and indicates correctly how this approximate solution 
breaks down for wavenumbers above and close to the zero- 
diffraction wavenumber I k I = n/2. Thus 4 4 2 )  N 63.4” rep- 
resents an upper limit of the propagation angle of beams in 
the array, a fact that is not considered in the continuum 
approach. The constant phase 8 will play the role of a 
switching parameter. 

If the intensity is allowed to increase, the propagation of 
beams at angles a #  0 will become impeded by collisions 
with the periodic transverse structure of the array. In fact, at 
sufficiently high intensities any beam will quickly become 
completely trapped and forced to propagate at an angle 
a = 0, regardless of its initial wavenumber. In this regime eq. 
(1) has exact stationary solutions that are remarkably stable 
and very localized. These solutions are fundamentally differ- 
ent from the solitary beams described by eq. (2) and play a 
key role in our approach to switching. No analytical formu- 
las exist for such high intensity solutions. However, in the 
limit of large intensity, asymptotic methods can be applied 
to h d  the approximate solution E&) = r, U ,  
exp ( -ijz), where j and U, are given by 

j = 2 - Z,[1 + z,2 + O(z:4)], 

(3) 
1 - fz;’ + O(Zi4) , n = O  

nl  [ 1 + 41;’ + 0(1;~)], n # 0’  

To improve this formula for finite values of I ,  we use eq. (3) 
as an initial guess in a Newton-Raphson iteration scheme. 
This yields numerically exact solutions, trapped beams, in 
the whole intensity range of interest. 

It is thus apparent that two distinct intensity regimes 
exist, in which beams can propagate through the array in a 
predictable way, and for switching applications it is impor- 
tant to identify them quantitatively. For arrays of length 
L 6 100 the regimes 

Angled beams : I, 6 0.2, I k I < 4 2 ,  
Trapped beams: I, 2 1.7, 

can be identified from numerical simulations of eq. (1). Here 
and in the following the number of waveguides N is chosen 
to be large enough to avoid boundary effects. 

(4) 

3. Controlled switching in the high intensity regime 

To exploit the effect of trapping for switching purposes the 
scheme must involve beams of maximum intensity higher 
than I, z 1.7. As pointed out above, such a trapped beam 
cannot move transversely in the array by itself. However, it 
may be displaced by a sufficiently large perturbation. Let us 
consider two such perturbations : 

(A) Imposing a linear phase gradient at the input. Here 
the initial beam profile is a numerically exact solution close 
to eq. (3) with maximum intensity I:, which is then multi- 
plied by exp (ikn) to initiate transverse propagation. 

(B) Colliding with a low intensity angled beam given by 
eq. (2) with parameters (Zk, k,  e), launched An waveguides 
away from the trapped beam of maximum intensity I:. 

Figure 2 shows representative examples of these two pos- 
sibilities. In both cases the perturbation displaces the 
trapped beam in the transverse direction, but only an 
integer number of waveguides, due to its high intensity and 
the subsequent strong trapping imposed by the discrete 
structure of the array. We propose to take advantage of this 
transversely quantized displacement in switching applica- 
tions. 

Let us look closer at the switching process and how it can 
be controlled by making many simulations of the type pre- 
sented in Fig. 2. In each simulation the trapped beam is 
incident on the array at n = 0 and has the power 
Pin = cT3 I E,(O) 1’. At the output z = L we measure the 
position n, as the waveguide of maximum intensity, and 
define the contrast C = 1 Enc(L) l’/( I Eric- ,(L) 1’ + I EnC(L) 1’ 
+ I Enc+l(L) / ’ )  and the power loss AP E (Pin - PouJ/Pin, 
where Pout 

Method A includes two control parameters, the 
maximum intensity I: and the wavenumber k. The length of 
the array and the number of waveguides in the array are 
k e d  design parameters. Figure 3 shows the displacement of 
the trapped beam as function of Z:, with k as a parameter. 
Clearly, the array can be operated as a power-controlled 
switch by using the plateaus on the displacement curves. 
Thus switching among up to 7 waveguides can be achieved 
fork = -0.5. 

Generally the displacement depends on the strength of the 
perturbation compared to the strength of the trapping 
exerted on the beam by the discrete structure of the array. 
Thus the higher the value of I k I and the lower the value of 
Z:, the more the beam is displaced and the more sensitive 
the switching is to the control parameters. The contrast of 
the output beam lies between 0.43 and 0.82, and the power 
loss is positive, varying between 3% and 11%. Note that in 
all simulations, including the one in Fig. 2A, most of the loss 

E;?: I E,@) 1’. 
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Fig. 2. Examples of methods A and B to displace a trapped beam. Each 
plot shows the contour of the intensity I E&) 1’ found by numerical integra- 
tion of eq. (1) with initial condition as explained in the text. Common 
parameters: L = 80, N = 101 and 1: = 2.0. Individual parameters: (A) 
k = -0.52 and (B) I; = 0.2, k = 0.52, 0 = 0 and An = 40. The displace- 
ment is (A) 8 waveguides and (B) 2 waveguides. 
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Fig. 3. Displacement of a trapped beam of maximum intensity I,“ after 
being given a linear phase gradient exp (ikn) at the input, as function of 1: 
for different values of k. Results of numerical simulation of eq. (1) with 
initial condition as explained in the text. Fixed parameters: L=40, 
N = 101. 
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Fig. 4. The number of waveguides a trapped beam of maximum intensity 
1: is displaced after collision with an angled beam of maximum intensity 
I: = 0.05 (a), 0.1 (b), 0.15 (c) and 0.2 (d), as function of (top) the phase 
constant f3 and (bottom) I,”. Results of numerical simulation of eq. (1) with 
initial condition as explained in the text. Fixed parameters: L = 80, 
N = 101, An = 40, k = 0.52, and (top) I,” = 3 and (bottom) 0 = 0. 
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in power is converted into a low intensity beam that propa- 
gates through the array at an angle that increases with I k 1. 

Due to the presence of the colliding beam, method B has 
four control parameters, the maximum intensities I: and 
It, the wavenumber k and the phase 8. The array must be 
longer than with method A because the center of action of 
the perturbation is no longer at the input, but at some dis- 
tance determined by k and the initial separation An (see Fig. 
2B). Thus we consider L, N ,  k and An all as fixed design 
parameters. 

The top set of curves in Fig. 4 shows the displacement of 
the trapped beam as function of 8 for different values of I:. 
Due to the relatively high intensity of the trapped beam, 
I: = 3, switching can only be achieved among three wave- 
guides, but the displacement curves are “cleaner” than in 
Fig. 3. Furthermore, the contrast is extremely good, lying 
between 0.74 and 0.89. The power loss is now generally 
negative, - 10% < AP < 0%, and thus the input beam is 
amplified by the collision process. This amplification seems 
to be a general mechanism in discrete systems [SI. The 
bottom set of curves in Fig. 4 shows how power-controlled 
switching can be achieved with method B. The oscillatory 
behavior is due to resonances between the intensity- 
dependent propagation constants of the two beams. Con- 
trasts range between 0.46 and 0.91, and the input beam is 
still amplified by the collision, - 16% < AP < 0%. 

4. Discussion 

Controlled switching can thus be achieved in arrays of non- 
linear waveguides operated in the high intensity regime, 
where the properties of beams differ drastically from those 
of beams in bulk media. Correspondingly, the approaches to 
switching presented here are fundamentally different from 
the continuum approach [4]. 
In the continuum approach the displacement of the input 

beam happens gradually over the whole length of the array. 
Thus the efficiency of the switching depends critically on the 
control of the angle, in that even slight variations change 
where the output signal is detected. The input contrast is 
C = 0.45 for the maximum intensity I, = 1.1 used in [4]. 
The output contrast will be somewhat less, in part because 
the maximum intensity is outside the regime, defined by eq. 
(4), for solitary beams. 

By contrast, in both methods A and B the displacement of 
the trapped beam takes place in a small region in (n, z)- 
space, which means that the efficiency of the switch can be 
insensitive to variations of the array length. The input beam 
is extremely localized, and this sharp contrast is maintained 
at the output, 0.43 < C < 0.91. As has been noted [SI, maxi- 
mizing the contrast is important for practical implementa- 
tions. In addition, the two-beam method B provides the 
constant relative phase 8 as a novel control parameter. 
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