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Multi-Port Switching in Waveguide Arrays
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A fundamentally new approach to multi-port switching in arrays of nonlinear waveguides is proposed. The idea
is that a high intensity beam will be trapped in a single waveguide of the array due to the transverse periodicity
of the Kerr coefficient. A perturbation can displace the beam, but only an integer number of waveguides,
allowing unambiguous selection of the output channel.

1. INTRODUCTION

All-optical signal processing in integrated nonlinear waveguide optics has has many desirable features.
In particular, it is possible to fabricate components that are small and capable of high speed operation,
only limited in principle by the “turn-off” time of the material nonlinearity [1]. One of the basic tasks
of all-optical signal processing is switching, the ultimate goal being to achieve dynamic, fully controlled
selection of one output channel among many. Here we consider the possibility of multi-port switching in
an array of identical regularly spaced waveguides, as depicted in Fig. 1.

Fig. 1. Schematic diagram of part of an array of waveguides of length L. The width of each waveguide
is 6 and the spacing between waveguides is d.

Assume that the number of waveguides in the array, N, is large and that all exhibit weak cubic
nonlinearity due to the Kerr effect. Further assume the distance between waveguides, d, to be large enough
to allow the field in each waveguide to be treated almost as though in isolation (d > §). By almost we
mean that d should still be sufficiently small to allow the evanescent field tails in neighboring waveguides
to overlap just enough to create a small linear coupling (power leakage). Under these assumptions it
can be shown that to lowest order the stationary envelope of the electric field in the nth waveguide is
governed by the discrete nonlinear Schrédinger (NLS) equation [2],

iazEn = (En—i—l — 2B, + En—l) -k IEnIZEn =0 3 (1)

here given in dimensionless units.

This model was first proposed by Christodoulides and Joseph in 1988 and includes the two-core
coupler [3] and the three-core coupler [4] as special cases. From the very beginning these couplers have
been power-controlled, in that switching among output channels is controlled by changing the power of
the signal in the input channel. Unfortunately, the efficiency (power discrimination) depends critically on
the device length and decreases rapidly as the number of cores increases. Thus a complete power transfer
mto each of the output channels is no longer possible for more than three cores [6]. If the number of
cores exceeds five, the ability to control the switching is lost [6]-

A new approach to switching, different from the power-controlled switching, is thus required if more
than five output channels is desired. To our knowledge the only alternative approach proposed so far was
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by Krélikowski et al. [6]. They use the collective behavior of several waveguides and suppress the inherent
discrete structure of the array by operating it at low intensities, where it behaves like a bulk medium
and can be described by the continuous NLS equation. Switching is achieved by aiming a low-intensity
input beam at an angle; the beam is a spatial NLS-soliton that propagates unhindered and emerges in
a predictable region of the array, thus selecting the output channel. In the following we denote this
approach to switching the continuum approach.

The idea of using the collective behavior of the array is good and we adopt it here also. However, in
contrast to the continuum approach, we propose to exploit the discrete structure of the array by operating
it at high intensities, where continuum models do not apply. In this case a beam cannot propagate
uniformly at an angle through the array, but rather is trapped and confined to essentially a single (input)
waveguide for all z. However, a trapped beam may be switched or displaced in the transverse direction
by an external perturbation, but only an integer number of waveguides, thus unambiguously selecting the
output channel. This quantization of the displacement is due to the discrete structure of the array and
cannot be observed in bulk media.

2. EFFECTS OF THE DISCRETE STRUCTURE OF THE ARRAY

The discrete NLS equation, Eq. (1), can be considered as a Hamiltonian dynamical system in z, with
two conserved quantities, the total power and the Hamiltonian. Thus it is generally only completely
integrable when N < 2: This is the reason why the two-core coupler is so predictable. For more than two
waveguides, N > 2, the model may exhibit chaotic behavior, which e.g. leads to a high sensitivity of the
three-core coupler to the device length. However, even for large NV, the discrete NLS equation may allow
beams to exist that can propagate through the array in a regular and predictable way. In general the
discrete structure of the array introduces novel properties of such beams, that in several ways differ from
those of beams propagating in a bulk medium. Below we briefly outline the effects that are important
for the concept of our approach to switching. For a detailed study we refer to [7].

Without the nonlinear term, Eq. (1) has linear plane wave solutions of the form exp(zkn — iBz),
where the propagation constant § is related to the wavenumber k through the dispersion relation (k) =
4sin®(k/2). A packet of such plane waves, with wavenumbers centered around k, will propagate in the
array at an angle a(k), defined as tan(a) = 88 = 2sin(k), and diffract subject to the linear diffraction
coefficient D(k) = 10?8 = cos(k). At low intensities the primary combined effect of nonlinearity and
diffraction is to allow for steady and uniform propagation of beams at the angle a(k). To lowest order in
the small amplitude +/Tp such a beam will have the form of a spatial NLS soliton [7]

En(2) = V/To sech ( -2% [n — tan(e)] z) exp (i [kn = (ﬁ = %10) z+ egD : (2)

where I, is the maximum intensity of the beam and 6 is a constant phase factor. A beam of the form
given by Eq. (2) will be a good approximate solution to the discrete NLS equation, Eq. (1), provided its
intensity is sufficiently low and its wavenumber is sufficiently less than the zero-diffraction wavenumber
|k| = 7/2 [7]. The quantitative limits will depend on the length scales one is considering.

If the intensity is allowed to increase, the propagation of beams in the transverse direction will become
impeded by the inherent discreteness of the array. In fact, at sufficiently high intensities the beam will be
completely trapped, and confined to essentially a single waveguide, unable to move by itself regardless of
its wavenumber. In this intensity regime Eq. (1) has solutions which are stable and stationary for all z,
and can be found numerically to any degree of accuracy [8]. These solutions are fundamentally different
from the propagating solitary beams described by Eq. (2), and play the dominant role for our approach
to switching in the high intensity regime.

If we consider arrays of length L < 100 the two regimes of regular behavior can be quantified in terms
of the wavenumber k¥ and maximum intensity Io [7]

Well defined angled beams given by Eq. (2) Selp<020, ka2 3)
Strongly trapped beams which can be found numerically : I > 1.7 .

3. CONTROLLED SWITCHING OF A HIGH INTENSITY TRAPPED BEAM

To exploit the effect of trapping it is evident that the beam to be switched must be of high intensity,
i.e. have a maximum intensity higher than I ~ 1.7 according to Eq. (3). In this regime the beam
cannot move transversely in the array by itself. However, external perturbations of the trapped beam
may enable it to be displaced. Let us consider two such perturbations: A) giving the beam profile a
linear phase-chirp at the input, and B) using a second low intensity (solitary) beam, given by Eq. (2), to
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displace the trapped beam by a collision process. Without going into details about initial conditions we
have shown representative examples of the two possibilities in Fig. 2.

In both cases the influence of the perturbation displaces the input beam in the transverse direction
away from the waveguide of its initial confinement. What is important is that the beam can only be
displaced an integer number of waveguides, due to its high intensity and the subsequent strong trapping
imposed by the discrete structure of the array. Furthermore, this displacement happens over a very short
distance tn z. These are properties of the discrete structure of the array, and cannot be observed in bulk
media. We propose to take advantage of this fast and transversely quantized displacement in switching

applications.
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Fig. 2. Examples of two methods to switch a stationary beam of maximum intensity 2.0, incident
on the array at waveguide n = 0. Each plot shows the contour of the intensity |En(z)|* in a switch
of length L = 80, consisting of N = 201 waveguides, as found by numerical integration of Eq. (1).
Left: The beam profile in multiplied by exp(—icon) at z = 0, with co = 0.52. The displacement is 8
waveguides. Right: Collision with a well defined beam of maximum intensity 0.2 propagating at 45°
with respect to the z direction (Eq. (2) with [p = 0.2, k¥ = 0.52 and 6o = 0). The displacement is 2
waveguides.

Fig. 2 shows two ways of designing a switch operating in the high intensity regime, and of course
one can imagine several others. Let us focus on one particular scheme, in order to demonstrate more
quantitatively how switching can be controlled. As the use of a chirp may in some sense be viewed as
a high intensity version of the continuum approach, we examine the collision approach, which is new in
the theory of switching in waveguide arrays.
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Fig. 3. Results of numerical simulation of Eq. (1) showing the number of waveguides a high intensity }'
beam (found numerically) is switched by collision with a low intensity beam (given by Eq. (2)), I
as function of o for different values of I§'®"). Fixed parameters: I = 80, N = 101, I8 = 3.0, i
k= 0.52, An = 40. |
i
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The length of the switch, L, the number of waveguides N and the initial distance An between the
two beams are design parameters that must be fixed. In addition we also treat the wavenumber k of the
angled beam as a design parameter such that a(k) = 45°. Clearly the maximum intensity of the angled
beam, Iélow}, and that of the trapped beam, I{M8®) as well as the constant phase factor, @y, can be used
as tunable control parameters. In Fig. 3 we show the number of waveguides the high intensity beam is

displaced by the collision, as a function of the phase factor fp, for different values of Ié,}ow).

Clearly both 8y and Iélow) can be used to control the switching. The higher the intensity of the angled
beam, the more it is able to displace the trapped beam. The intensity of the trapped beam is chosen to be
very high, I(ghlgh] — 3, because this gives the cleanest set of displacement curves. Of course the parameter
values can be optimized to achieve switching among more output channels than the three indicated by
Fig. 3. Note that with the parameters used in Fig. 3, the number of waveguides the input beam is being

displaced does not depend critically on any of the switching parameters g, Zc(,iow} and Iéhigh).

4. DISCUSSION

In a waveguide array operating in the high intensity regime as described above, the properties of beams
differ drastically from those of beams in a bulk media. In the low intensity regime the array behaves
approximately as a bulk medium, except that its discrete structure limits the angle at which a beam
can propagate uniformly. Correspondingly the approach to switching we have presented 1s fundamentally
different from the continuum approach.

In both designs of the high intensity switch (A) chirp and B) collision) the displacement of the trapped
beam takes place over a short distance in z. Furthermore, the beam which is being switched is extremely
narrow. This means that the efficiency of the switch in some sense is insensitive to small variations of
the control parameters and the array length, and that detection of the center waveguide of the signal at
the output is easy. Looking at the different designs the collision approach requires a longer device with
more waveguides than the chirp approach. Furthermore, because of the second beam, the design may
be more complicated. However, this second beam introduces additional control parameters, such as the
phase of the angled beam. This might be more practical than controlling the intensity and wavenumber,
which are the only available switching parameters in the chirp approach.

In the continuum approach the efficiency of the switching depends critically on the control of the
angle, in that even slight variations changes where the output signal is detected. Furthermore, the beam
is spread out, making detection of the center waveguide of the signal at the output difficult. Finally, this
approach allows only one control parameter, the wavenumber or angle of the beam.
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