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Abstract 

The standard quantum discrete nonlinear Schrodinger equation with periodic 
boundary conditions and an arbitrary number of freedoms (f) is solved 
exactly at the second and third quantum levels. I f f  -+ x at a sufficiently 
small level of anharmonicity c j ) ,  the value for soliton binding energy from 
quantum field‘theory (QFT) in the continuum limit is recovered. For fixed 

however, the QFT result always fails for y sufficiently large and also for y 
sufficiently small. Corresponding calculations are discussed for the quantized 
Ablowitz-Ladik equation at  the second quantum level with periodic bound- 
ary conditions. 

1. Introduction 

In this paper we consider two quantum discrete nonlinear 
Schrodinger equations. The first of these is 

where j = 1, 2, 3, . . . , f and $,($:) are boson lowering 
(raising) operators acting on products of number states, which 
(for typographical convenience) will be written in the form 

b I ) b 2 ) l ~ 3 )  * ’ ’ In/> = h n z n 3  ’ ’ ’ 4. (2) 
We note that this is a special case of the quantum discrete 
self-trapping equation [3, 10, 22, 231 that includes only 
nearest neighbor coupling along a linear chain; thus it can be 
applied to studies of small molecules [5, 23, 241, polymer 
chains [5, 201, quasi-one-dimensional molecular crystals 
[6, 91, and (possibly) biological polymers [ 1 1, 17, 181. We call 
eq. (1) the quantum discrete nonlinear Schrodinger (QNLDS) 
equation. 

For y / s  < 1 andf % 1, a perturbation analysis of eq. (1) 
has suggested an expression for soliton binding energy that 
differs from the result of quantum field theory (QFT) [19]. 
Our aim here is to resolve this discrepancy and to show how 
large the number of degrees of freedom ( f )  must be for the 
results of QFT to be valid. 

The quantum theory that we use to study eq. (1) is not 
standard, thus the salient features are reviewed in the follow- 
ing section. Our main results for the QDNLS equation are 
presented in Section 3 for the second and third quantum 
levels with some general comments on the case of an arbitary 
quantum level. 

The second equation that we consider, in Section 4, is the 
quantum Ablowitz-Ladik (QAL) equation [ 1, 21 

which can be solved using methods that are based upon its 
integrability [14, 161. In this case we have results only for the 
second quantum level. 

Finally, in Section 5, we discuss implications of this work 
for the interpretation of spectra in molecular crystals. 

2. Quantum analysis 

Since the classical system corresponding to eq. (1) is Hamil- 
tonian and conserves the standard norm, an eigenfunction of 
the quantum problem I$) must be an eigenfunction of both 
the energy operator 

and the number operator 
f 

fi = 1 $,’$,. 
j =  1 

If we impose periodic boundary conditions, 11)) must also be 
an eigenfunction of the translation operator F for which 

F[n,n2n3 . . . 5.1 = [n/n,n2 . . . n / _ l ] .  (6) 
Thus ai$) = El$), ai$> = ai$), and PI$) = t i$ )  where 
E, n,  and t are (respectively) the energy, number, and trans- 
lation eigenvalues of I$). 

For a particular value of n the most general eigenfunction 
of N is 

D 

(7) 

where n ) )  is a product state having the form indicated 
in eq. (2) with n, + n2 + * + nr = n and the index k 
ranges over the p ways that n quanta can be placed on f 
degrees of freedom. Thus 

(f + n - l)! 
(f - l)!n! * 

P =  

In eq. (7) the ck are arbitrary constants that are determined by 
requiring I $>  to be an eigenfunction of H with eigenvalue E. 
Then 

He = Ec 

where H is a real, symmetric, p x p matrix with elements 
(hjk)  that are easily determined as 

(9) 

h ik  = ( ~ ) ( i ,  ~ ) I A I $ ( ~ ,  n>> (10) 
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y 2 J z  0 

2@ 0 2E 0 

and 

c = col (C], c2, . . . , Ck, . . . , cp).  (1 1) 

I 2E 0 * .  

3. Binding energies 

For y > 0 we define the binding energy of an energy eigen- 
state as the displacement of its energy level below the mini- 
mum energy eigenvalue for y = 0. At n = 0 there is only one 
state, I$) = [000 . . . 01; thus the question of binding energy 
does not arise. For n = 1 the action of the y term in eq. (4) 
on I$> is zero; thus, again, there is no binding energy. In this For both of these cases (fodd or even), perturbation analysis 
section we consider in detail two cases: n = 2 and n = 3, and for y 4 1 shows that the lowest energy eigenvalue is 
we include some general comments on the case of arbitrary n. ~ ..2 

3.1. n = 2 (16) 
Y Y _ -  uo - -4  - I, - - I - - R(y, E , f )  

E E E2 

From eq. (8)p = f(f + 1)/2 which determines the size of the 
matrix H in eq. (9). With periodic boundary conditions, this 
matrix can be block diagonalized: each block corresponding 

blocks Q(2, t )  where the “2” indicates the eigenvalue of n,  
and t is an eigenvalue of f taking values equal to thefroots I 2  = - (1 - +) , 
of unity. For f even and t = 1 (corresponding the state of 
zero momentum) the wavefunction is [ 191 

where 

E”, = 
to an eigenvalue of the translation operator i? We call these f’ 

1 
24 

and the residual 

R(Y, E , f )  = 0 f . (19) 
( y 3 )  

I$>, = c,([200. . . 001 + [020. . . 001 + . . . 
+ [OOO . . . 021) + c,([110 . . . 001 

+ [oil . . . 001 + . . . + [loo . . . 011) + . . . + 
+ c,+fl,([loo. . * 0010..  .OOO] 

This result has been demonstrated for evenfin [8] (the N in 
that paper corresponds to (1 + f/2) here); the result for odd 
f can be obtained in a similar manner. 

At this point we must consider whether the convergence of 
Eo as y + 0 is uniform inS. That this is not the case can be 
seen from Fig. 1 where the second, third, and fourth terms on 

+ . . . + [OOO . . . 0100 . . . 0011) (12) 

the right hand side of eq. (16) are plotted as functions offfor 
y = 0.2 and E = 1. It is possible to do this because Eo can be 
computed from eq. (13) or (15). Evidently there is a critical 

and Q,(2, 1) is the square, nonsymmetric, tridiagonal matrix, 
of dimension (1 + 5’2) by (1 + 5’2) 

0 

0 

Similarly for f odd 

= c,([200 . . . 001 + [020 . . . 001 + * . . 
+ [OOO * . . 021) + C2([11O. . .OO] + [Oll . . . 001 

+ . . . + [ l o o . .  . O l ] )  + . . . + 
+ c,,,,([100 * . . 010.  . . 0001 

+ . . . + [OOO . . . 100 . . * 0011) (14) 

.1 , 1 

n = 2  

f -  
and Q O ( 2 ,  1) is the symmetric, tridiagona! matrix of dimen- 
sion (1 + f ) /2  by (1 + f ) /2  
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Fig. 1. Binding energies for the QDNLS Equation in eq. (15) as a function 
of the number of freedoms. 
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value off, in this case f ,  % 40, below which 

For f % f,, on the other hand, 

E, + - 4 ~  - 0.005 

a s f +  CO. 

From eq. (1 6) we see that the minimum energy eigenvalue 
for y = 0 is -46. Thus with y = 0.2 and E = 1 the binding 
energy (Eb)  of a soliton is equal to 0.005, in agreement with 
the quantum field theory result that [15, 251 

(21) 

This resolves the discrepency noted in [19] and mentioned in 
the Introduction. Only one third of the total soliton binding 
energy comes from the y2/c2  term in the perturbation expan- 
sion of eq. (16). The other two thirds comes from the residual 
term, which (although of order y3/c3) does not converge to 
zero uniformly in f as y + 0. 

Next we consider how to determine the critical number of 
freedoms ( f , )  above which eq. (21) can be used with confi- 
dence and below which the binding energy is given by 

Consider first the classical version of eq. (1) in which the 4, 
are complex numbers rather than operators. Assuming that 
the continuum approximation is valid, we find that the bind- 
ing energy of a single, classical soliton is 

+ (1 - k 2 )  - E 2  

where n = Xlq5j12, and K = K ( k )  and E = E(k)  are com- 
plete elliptic functions of the first and second kind of modulus 
k [4].  The corresponding number of freedomes can be com- 
puted from 

As k -, 1, the classical waveform becomes “solitonic” and 
the binding energy reduces to 

n3 y2 
488 

E = -  

in agreement with the first (classical) term of eq. (22). As 
k + 0, the classical waveform becomes uniformly distributed 
over the system (IC$~I’ = n l f )  and the binding energy reduces 
to 

Thus it is convenient to define a classical critical or “corner” 
number of freedoms, for which the asymptotic expressions in 
eqs. (26) and (27) are equal, as 

248 
W f, = -. 

The value off, can be understood as follows: The width of a 

classical soliton (defined between half values of 141’) is 

E 
W = 7.051 -; 

n* 
thus when f is much larger than about three times W, the 
soliton is fully formed and eq. (26) holds. Iffis much less than 
about three times W, then the classical waveform is uniformly 
distributed over the system. 

A similar situation holds for the quantum case. Equating 
the first term of eq. (23) to eq. (22) with n = 2, we obtain a 
quantum critical number of freedoms (for n = 2) of 

8~ 
Y 

f, = -. 

For the quantum field theory result - eq. (22) - to be used 
with confidence at the second quantum level ( n  = 2), the 
number of degrees of freedom must therefore be 

f b 2 w .  (31) 

where W is the width of a classical soliton. 
Another perspective on the situation may be obtained with 

reference to Fig. 2. In this figure the number of freedoms 
f = 50 and we plot the binding energy for n = 2 and E = 1 
as a function of anharmonicity (y). We see that the binding 
energy agrees with the QFT result - eq. (22) - over about 
a decade below y = 1. At lower values of y the binding 
energy is given by the perturbation theory - eq. (23) - 
which diverges from the QFT calculation. This is because the 
classical soliton eventually becomes larger than f as y is 
decreased as is indicated in eq. (29). Thus for a larger number 
of freedoms (than 50) the divergence of the QDNLS curve 
from the QFT curve would be displaced to lower values of y.  
For finitef, however there will always be some value of y 
below which the perturbation theory gives the correct binding 
energy. 

1 
+-l 

9 
$ 
w c 
a c 
a 

.r( 

.3 

loo0 

I 0 0  

IO 

I 

1 

.01 

,001 

.cm1 

. m 1  

,001 .Ol . I  1 IO loo loo0 

Y- 
Fig. 2. Total binding energy as a function of y for the QDNLS equation with 
n = 2 , f  = 50, and E = 1. 
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For y 9 1 the QFT result no longer holds because the 

is evident from eq. (13) that the asymptotic expression for 
binding energy is then 

+ Cf+’([0O * . . OllOl] + 1 0 .  . . 01101 

+ . . . + [ O O . .  . OllOlO]) + . * . + 
+ C’f-,([OllO . . . 011 + [lo110 . . . 001 

energy is becoming localized at a single degree of freedom. It 

Eb Y - 4, (32) 
which is independent of the number of freedoms. 

3.2. n = 3 
In this case, eq. (8) gives p = f(f + l)(f + 2)/6 as the size 
of the matrix H i n  eq. (9). Again, the symmetry of the Hamil- 
tonian under translation permits the block diagonalization of 
H according to the eigenvalues of the translations operator f. 
The block corresponding to a particular eigenvalue t (equal 
to one of the f roots of unity) we call Q(3, t) .  For t = 1 the 
wavefunction is 

11)) = c,([300 . . . 001 + [030 . . . 001 

+ . . . + [000 . . . 031) + ~2([210.  . . 001 

+ [021 . . . 001 + . . . + [loo . . . 021) 

+ c,([2010 . . . 001 + [02010 . . . 001 

+ . . * + [110 . . . 0101) + C’f-’([OO . . . 010 1011 

+ [ lo  , . , 01 0101 + . . . + [OO . . . 0 101 0101) 

+ CZf-,([0O . . . 0 101 0011 + [lo . . . 010 1001 

+ * . . + [ O O . .  . ololoolo])  + * . . + 
+ c,,([OOlOlO . . . 011 + [lo01 010 . . . 001 

+ . . . + [OlOlO.. .OlO]) + . * . + 
+ CDV,([lO.. .OlO.  * .OlO.  . .OO] 

+ [OlO..  .OlO.  * . O l O . .  . O O ]  

+ . . * + [OO * . .OlO.  * * 0 1 0 . .  .Ol]) (33) 
where for f(mod 3) = 0 the dimension of Q (3, 1) is 

(34) 
f ’  + 3f+ 6 

6 D ( f )  = 

+ . . . + [OlO * . .02]) + . * . + and forf(mod3) = 1, 2 

f 2  + 3f + 2 + Cf([2O . . * 011 + [120 . . . 001 

+ . . . + [OO . . . 0121) + C f + , ( [ 0 O  * . . 01111 6 D ( f )  = (35) 

+ [ l o . .  * 0111 + . . . + [ O O . .  . OlllO]) The matrix Q(3, 1) is asymmetric if f(mod3) = 0 and 
symmetric otherwise. In particular, for f = 6, 

Q(3, 1) = --E 

forf = 7, 

Q(3, 1) = - - E  

$ 3  1 1 2  

$ 3  1 1 1  1 
\ 1 2 1 2  
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1 

1 1  

1 1  

1 

and forf = 8, 

Q(3, 1) = - E  

Algorithms for generating the matrices Q(3, 1) for arbi- 
trary values offare given in Appendix A. In the special case 
of y = 0, the matrix Q(3, 1) has Eo = - 6 ~  as its lowest 
eigenvalue. For f(mod 3) # 0, the corresponding eigenvector 
is 

xo = col (1, $,$,. . . , $,$, $, . . . ,$) (39) 
where the entry 8 appearsf - 1 times. Forf(mod 3) = 0, 
on the other hand, the corresponding eigenvector is 

(40) 
where again the entry $ appearsf - 1 times. In both cases 
[f(mod 3) = 0 andf(mod 3) = 1, 21 the adjoint eigenvector 
is equal to eq. (39). Corrections to this solution of these 
eigenproblems can be obtained for y 4 E and f fixed in the 
form of formal asymptotic power expansions in ? / E :  

(41) 

and 

x = x,+ L, E + o ( $ )  
where the residual 

(43) 

A solvability condition for x, at order O ( ~ / E )  gives the first 
eigenvalue correction explicitly as 

3 
(44) 

= 7 
for any value off. The eigenvalue correction x, can then be 
solved for numerically, allowing 1, to be calculated for any 

1 

1 1 

1 

1 1 

1 

1 1 1  

1 1  

value o f f a s  a solvability condition for x2 at order O(~ ' /E ' ) .  
We have done this for many different values offup tof = 59 
and the results of these calculations agree with the formula 

E"2 = ' 1 1  -+I. 
8 (45) 

Again, the convergence of Eo as ? / E  + 0 is not uniform inf. 
This is evident from Fig. 3, which shows the binding energy 
as a function of y for f = 50 and E = 1. The large y asymp- 

10,ooO 

loo0 

100 

10 

1 

, I  

.01 

,001 

.ooOI 

,001 .01 . I  1 10 100 loco 

Y- 
Fig. 3. The same as Fig. 2 but with n = 3. 
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tote (Eb N 3 y )  occurs when all the energy is localized at a 
single site [3 ,  20, 211. The small y asymptote (& - 3ylf) is 
obtained from eq. (44). Just as in Fig. 2 the effect of increasing 
the number of freedoms is to displace the lower asymptote 
(Eb N 3 y l f )  downward. In principle we can construct a dia- 
gram corresponding to Fig. l ,  but the matrices involved 
become inconveniently large. 

3.3. Arbitrary n 
In this subsection we suggest how the log-log plots for n = 2 
and n = 3 in Figs. 2 and 3 might be generalized to an 
arbitrary value of n. Apart from the “fillets” these figures are 
constructed from three straight line asymptotes. The middle 
one, where QFT holds, is given for general n by eq. (22). The 
upper asymptote corresponds to a “local mode” in which all 
the energy is concentrated at a single site and I$) = [n, 0, 0, 
. . . , 01 + O ( E / ~ )  [3]. From eq. (4) the binding energy is 
n(n - l)/y. The lower asymptote corresponds to a state in 
which the energy is evenly distributed over the f freedoms. In 
the classical limit the binding energy is given by eq. (27). A 
quantum correction to this equation that gives zero binding 
energy for n = 0 and n = 1 is 

Since eq. (46) agrees with our detailed calculations for n = 2 
and n = 3 ,  we are led to the conjecture that it gives the 
correct lower asymptote for all values of n. If this conjecture 
is correct, then the QFT expression for binding energy holds 
only for values of anharmonicity that lie within the range 

2 4 ~  c y < -  
(n + 1)’ 

248 
(n + IF- (47) 

4. The quantized Ablowitz-Ladik equation 

In this section we present corresponding results eq. (3 ) ,  which 
is a quantum version of the Ablowitz-Ladik equation [l,  21. 
Since the classical version of eq. ( 3 )  is integrable [14], it can 
be quantized but not by the method sketched in Section 2 
[ 161. For an even number of freedoms, f, and periodic boun- 
dary conditions, the binding energy for the second excited 
level (n = 2) is given by 

where ym is the largest real root of 

yJ+2 - y J - y  2 + 1  = 2 (YJ + Y 2 ) .  (49) 2E 

Perturbation analysis of eq. (49) for y -4 E leads to 

x (;)1/1+ o(5).  

The ( y / ~ ) ” ~  term clearly shows a lack of uniformity asf + CO. 
Proceeding as in the previous section we write 

(51) Y Y L  - -  - AI E + 1 2  7 + R(Y, E , f )  
Eb 

E 

where 

1 11 = - 
f ’  

and 

In this case the residual has the form 

+ o($), (54) 

which does not converge uniformly inf. It is possible to show 
this explicitly by expanding y ,  up to terms in ( y / ~ ) ’ / ’  and 
hence calculating the O ( Y ~ / E ~ )  term for Eb/&, which is O(f) as 
f -  Co. 

For large f we find the asymptotic formula 

2 Y Y / E  + Y2/4E 
2.5 (1 + y/2E)f72 ym = I + - +  

f ( Y / E  + Y2/44 + . . .], [I - 2(1 + Y/2E)fl2+1 (55) 

which converges rapidly for large f at a fixed value of y. The 
derivation of this result is given in Appendix B. From eq. (48) 
and (55) we see that as f + CO 

Thus if the number of freedoms is arbitrarily large, Eb + y2/8e 
as y - 0. Again this is in agreement with the quantum field 
theory result of eq. (22). 

n = 2  
y= 0.2 

\ 

10 100 11 

-0.002876... 

-0.001666... 

f- 
Fig. 4. Binding energies for the QAL equation in eq. (47) as a function of the 
number of freedoms. 
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Figure 4 has been prepared in a manner similar to Fig. 1 tonian matrix Q ( 3 ,  1) with anharmonicity measured by y and 
to show the nonuniform convergence of the residual graphi- dispersion measured by E .  

cally. In this case the sum of the residual and 1/24 approaches 
the value given by eq. (56). For y = 0 . 2  and E = 1, eq. (56) subroutine m ~ e m a t r i x ( Q . G ~ a . E P s i l o n D ~ , D )  
gives a limit of 0.004 542 875, so the residual approaches 
0.002876208 as f -+ CO. Thus y = 0 .2  is too large for the 
QFT expression for the soliton binding energy to hold. For 
large y eq. (56 )  reduces to 

real Q D 

integer DDf DbaSeDlimit Dj 

case (f mod 3)  of 

sr2 D sr3 

0: limit = D-4 
1: limit = D-5 

(57) 2: limit = D-2 
endcase 
sr2 = -Epsilon*sqrt (2) 
sr3 = -Epsilon*sqrt(d) 
for j = 2 to f-2 

5. Discussion Q(j,j> = -Camma 

That the above considerations are of more than theoretical 
interest has been pointed out by Bruinsma, Maki and Wheat- 
ley who suggest that eq. (1) can be used to study the binding 
energies of local modes in small molecules, such as benzene, 
and in low dimensional solids, such as polyacetylene [5]. In 
these examples the fundamental boson (number) states of eq. endfor 
(1) correspond to C-H stretching oscillations. Since Bruinsma 

Q( 

et al. do not use the exact quantum theory outlined above, Q( 12) = sr3 
their results are approximate, but they state: “For general n Q(2, l )  = sr3 
and weak anharmonicity the Hamiltonian [our eq. (4)] can be 

Q(f , = sr3 
diagonalized by the Bethe Ansatz, and the binding energy of Q( , f) = sr3 
the n-boson bound state . . . below the n-particle [normal Q(fD2) = -2*Epsilon 
mode] band edge is [their eq. (5)].” The intent is clear and the Q(2,f) = -2*Epsilon 
differences between the quantum field theory (AFT) result 

Q (f- 1, - 
[our eq. (22)] and their eq. ( 5 )  are probably typographical Q(f-l,f) = -Epsilon 

q(f ,f-l) = -Epsilon errors. 
From the perspective of our exact quantum theory we see Q(f+l ,f -1) = sr2 

that the situation is somewhat more complex. For a fixed Q(f-lDf+l) = sr2 
number of freedoms (however large) the QFT result will Q(f,i) = 
always fail for sufficiently small y (when the perturbation Q(f ,f +1) = sr2 

Q(f+l,f) = sr2 expansion becomes valid) and for sufficiently large y (when 
the soliton becomes “pinned” to a single lattice site as a local base = mode) [3 ] .  This effect is shown in Fig. 2 for n = and in Fig. 3 

while base < limit do for n = 3 .  
Recently Fillaux and Carlile have used quantum field 

theory results for the sine-Gordon breather [7] to interpret 
the inelastic neutron scattering spectra of isotopic mixtures of 
4-methyl-pyridine crystals (4MP) [12, 131. These crystals sus- 
pend methyl (CH,) groups in one dimensional chains that can 
be approximately described by the Hamiltonian for a discrete 
sine-Gordon equation. Since sine-Gordon breathers are simi- 
lar to solitons of the nonlinear Schrodinger equation, we 
expect that eq. (1) should also be useful in interpreting these 
spectra. This, in turn, suggests that there may be correspond- 
ing limits to the range of validity of quantum field theory 
results. We expect to address this question in the near future. 

Finally we note that several energy eigenvalues lie between 
the lowest level for y > 0 and the lowest level for y = 0. We 
suppose that these intermediate states correspond to quantum 
levels for “N-soliton interactions,” and again we expect to 
consider this in a future publication. 

3 E - *E(& - l J ,  

which differs from eq. (32 ) .  

Q(j,j+l) = -Epsilon 
Q(j+lDj) = -Epsilon 
Q(j+f-l,j) = sr2 
Q(j+f-l,j+l) = sr2 
Q(jDj+f-l) = sr2 
Q(j+i,j+f-l) = sr2 

l )  = -3*Gma 

= 

= f -3  

for j = 1 to f -2  
Q(base+j ,base+j+l) = -Epsilon 
Q(base+j+l ,base+j) = -Epsilon 
Q(base+j+f-1 ,base+j) = -Epsilon 
Q(base+ j+f -1 base+ j+l) = -Epsilon 
Q(base+j ,base+j+f-l) = -Epsilon 
Q(base+ j + 1, base+ j +f -1 ) = -Epsilon 

endf or 
Q(base+f-l,base+f) = -Epsilon 
Q(base+f ,base+f-1) = -Epsilon 
Q(base+f-1 ,base+f+l) = -Epsilon 
Q(base+f+l ,base+f-1) = -Epsilon 
Q(base+f ,base+f+l) = -Epsilon 
Q(base+f+l ,base+f) -Epsilon 
base = base + f 
f = f  - 3  

enduhil e 
case (f mod 3 )  of 

0: 
begin A. Appendix: Construction of Q(3, 1) 

In this appendix we list a pseudocode to build the Hamil- Q(base+l ,base+2) = -Epsilon 
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Q(base+l ,base+3) 
Q (base+2 , bas e+ 1 ) 
q(base+3,base+l) 
q(base+2 base+3) 
q(base+2 ,base+4) 
Q(baset3 , base+2) 
Q(base+4, baset2) 
Q(base+3, base+4) 
Q (bas e+4 bas e+3) 

end 
1: 
begin 

Q(base+5 , base+5) 
q(base+l,base+2) 
Q(base+i ,base+4) 
Q(base+2 ,base+l) 
Q (base+4 , base+ 1) 
q(base+2 , base+3) 
Q(base+2,base+4) 
Q(base+2,base+5) 
Q(base+3,base+2) 
Q(base+4, base+2) 
Q (bas e+5 , bas e+2) 
Q(base+3,base+4) 
Q(base+3,base+5) 
Q(base+4,base+3) 
Q(base+5,base+3) 
Q(base+4,base+5) 
Q(base+5 ,base+4) 

end 
2: 
begin 

q(base+2 ,base+2) 
Q(base+l ,base+2) 
q(base+2,base+l) 

= -Epsilon 
= -Epsilon 
= -Epsilon 
= -2*Epsilon 
= -3*Epsilon 
= -2*Epsilon 
= -Epsilon 
= -3*Epsilon 
= -Epsilon 

= -2*Epsilon 
= -Epsilon 
= -Epsilon 
= -Epsilon 
= -Epsilon 
= -Epsilon 
= -Epsilon 
= -Epsilon 
= -Epsilon 
= -Epsilon 
= -Epsilon 
= -Epsilon 
= -2*Epsilon 
= -Epsilon 
= -2*Epsilon 
= -Epsilon 
= -Epsilon 

= -2*Epsilon 
= -2*Epsilon 
= -2*Epsilon 

end 
endcase 
return(9) 
end 

B. Appendix: Derivation of eq. (55) 

In this Appendix we derive the asymptotic formula (55) for 
the largest real root y ,  of eq. (49). Fix U = ( Y / ~ E )  > 0 so that 
(49) takes the form 

h ( y )  = y f [ y 2  - (1 + U)] - (1 + .)y2 + 1 = 0. ( 5 8 )  

A straight forward calculus argument shows that (58) has a 
unique real root larger than 1 so that ym = y,(f) > 1. 

Since h(1) = 2a, the sequence of roots { y m ( f ) }  is bounded 
away from 1. Hence y; -+ CO as f-+ CO so that 
yk = 1 + a + O(1). Using this in (58) gives 

y; = 1 + a + (2a + a2)(1 + a)-% (59) 

with U = u ( f )  -+ 1 asf -+ 00. To obtain more terms in the 
asymptotic series we consider the equation for U obtained by 
substituting (59) into (58): 

[I + u(2a + .’)(I + a)-fiZ-’ 1 f i 2  - ( I +  a)-fiZ+lu = 0. 

(60) 
For largef, (60) takes the form 

[l + i u ( 2 a  + a2)(1 + a)-fiz+l u + 0[(1 + a)-fi21 = o 

(61) 
1 

from which eq. (55) follows. 
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