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Optical conveyor belts: a new scheme for
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A scheme is proposed for high-bandwidth, robust data transmission in silica fibers in the normal-dispersion
regime. The scheme uses a uniform periodic train of dark solitons to eliminate completely the dispersion of a
data stream encoded in linear pulses of small but otherwise arbitrary amplitude in the orthogonal polarization.
Data pulses carried by dark solitons of differing contrast do not interfere with one another when the solitons
collide. Thus many channels, each associated with a different contrast, can be multiplexed on the same
fiber.  1996 Optical Society of America
Like bright solitons, dark solitons1,2 can be observed
in optical fibers3 – 5 and used in telecommunications
applications.6 – 8 In such applications dark solitons
are potentially useful because they are more robust
than bright solitons. First, at a fixed loss coeffi-
cient g, dark solitons dilate less than bright ones over
the same distance.9 Although in ordinary glass g is
larger in the normal-dispersion regime than in the
anomalous-dispersion regime, one can use dispersion-
shifted fibers in which dark solitons can propagate at
the erbium amplifier wavelength of 1530 nm, where g
is minimized.8 Second, dark solitons feel the effects of
noise less than do bright solitons.7 In particular, Gor-
don–Haus-like jitter of dark solitons is less pronounced
than the classical Gordon–Haus effect for bright soli-
tons.10 These features favor dark solitons as candi-
dates for data bits in fiber communications.

So why has work on sending data with dark solitons
progressed so slowly, the first successful scheme8 be-
ing demonstrated only recently? The problem is that
the phase of the background field differs from one side
of the soliton to the other by a finite angle, say 2pym.
If solitons are to be created arbitrarily in time, then
one requires a coding scheme able to count to m to en-
sure that after m 1’s are sent the background phase is
restored to its original value. Thus, to encode a pseu-
dorandom bit sequence using black solitons sm ­ 2d,
Nakazawa and Suzuki8 used an electronic f lip-f lop in
conjunction with an electro-optic phase modulator to re-
store the phase after sending two 1’s. Unfortunately,
electronics can be used only at relatively low bit rates
s,50 Gbitsysd, so making the leap to Tbitys frequencies
with such a scheme will require all-optical logic gates
to count the solitons. This difficulty arising from the
soliton phase shift would seem to frustrate the pro-
gram of data transmission using dark solitons, unless
an alternative scheme can be found.

In this Letter we propose such an alternative. Uni-
form periodic trains of dark solitons can be created
all-optically in fibers without logic gates to monitor
the phase,11 but then these trains themselves carry
no information. However, such a soliton train also
induces a periodic modulation of the refractive index
0146-9592/96/151132-03$10.00/0
that moves rigidly at a constant velocity. The regions
where the ratio of refractive index to group-velocity dis-
persion is high can trap weak signals in the orthogonal
polarization and carry them along without dispersion.
Thus the soliton train acts as an optical conveyor belt,
moving packets of small, but otherwise arbitrary, en-
ergy along the fiber, as shown in Fig. 1.

This fact can serve as the basis for a new scheme
for optical fiber communications. Because they are
based on dark solitons, optical conveyor belts are robust
with respect to perturbations. Moreover, because the
solitons occur only in an unmodulated train, generating
them requires no counting logic, and the bit rate of
the train of copropagating dispersionless bright pulses
is at least as high as the soliton repetition rate.
Thus all-optical generation of the pulse train can lead
to transmission rates as high as 1 Tbitys. There is
even the possibility of several optical conveyor belts
simultaneously sharing the same fiber.

Let us describe the theory of these optical con-
veyor belts. Imagine an intense pump field and an
orthogonally polarized weak signal field, both at the
same wavelength in the normal-dispersion regime.
Let psz, td and ssz, td be the envelopes of the pump and

Fig. 1. Schematic diagram of the temporal pump and
signal wave trains for a single channel. The intensity of
the pump (signal) is shown with a solid (dashed) curve.
Note that, whereas the dispersionless pulses carried by
the train of dark solitons all have the same width, their
amplitudes are arbitrary.
 1996 Optical Society of America
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the signal, respectively, where z is the distance along
the fiber and t is the retarded time. We take the cou-
pled system
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as a model. Equations (1) and (2) are a linearized
version, obtained by assuming that jsj ,, jpj, of the
Manakov model, which directly describes the propa-
gation of pulses in a special case of uniform elliptical
birefringence.12 The equations that describe general
pulse propagation in a homogenous fiber have addi-
tional terms describing enhanced cross-phase modu-
lation and energy exchange between the components.
However, if the fiber is randomly birefringent, the
Manakov model again describes pulse propagation in
the sense of an average of the nonlinear terms over the
Poincaré sphere.13 In fact, it has been shown experi-
mentally14 that solitons in two orthogonal polarizations
remain orthogonally polarized along the whole fiber, in
agreement with the theoretical predictions of the Man-
akov model.

Because of normal dispersion, the nonlinear
Schrödinger equation (1) for the pump has dark soliton
solutions of contrast 0 # C # 1 of the form

psz, td ­ Ap

np
1 2 C 2 1 iC tanhf msz 2 vtdg

o
3 expfiskpz 2 vpt 1 updg , (3)

with velocity v ­ 1ysvp 1 Ap
p

1 2 C 2 d and inverse
width proportional to m ­ ApC svp 1 Ap

p
1 2 C 2 d,

where Ap, up, vp, and kp ­ Ap
2 1 vp

2y2 are the
amplitude, phase, frequency, and wave number, respec-
tively, of the fixed background field. We allow con-
trast C to be arbitrary rather than restricting it to the
black case, C ­ 1, to reserve a parameter for channel
multiplexing. Linear equation (2) has the correspond-
ing solution:

ssz, td ­ As sechfmsz 2 vtdg expfisksz 2 vst 1 usdg ,

(4)

which moves with the soliton velocity v but has ar-
bitrary amplitude As and phase us. The wave num-
ber is ks ­ 1ys2v2d, and the signal frequency, vs ­
vp 1 Ap

p
1 2 C 2 , is detuned from the pump frequency

vp by an amount that depends on the soliton contrast
C . The pulse [Eq. (4)] is simply a linear pulse whose
group velocity matches the soliton velocity and whose
dispersion is completely suppressed by the presence of
the dark soliton in the orthogonal polarization.

Suppose now that the pump field is taken to be a uni-
form train of well-separated dark solitons, each of the
form of Eq. (3) for fixed contrast C , moving at a speed
close to v in the fiber. Such a periodic train can be cre-
ated all-optically, and we assume that the contrast of
the train is accurately maintained in the fiber. Along
with each soliton in the train the orthogonal polariza-
tion may now contain a dispersionless pulse of the form
of Eq. (4), with As arbitrary. These pulses will remain
trapped as they propagate over distances that are ex-
ponentially long in the pulse separation. Thus each
soliton of the pump carries along the fiber one analog
value, namely, the intensity of the dispersionless pulse
in the orthogonal polarization, as shown in Fig. 1. Al-
though the pump itself carries no data, it serves to
move arbitrary-amplitude pulses along the fiber with-
out dispersion. By quantized amplitude modulation,
each of these pulses can encode as many bits of in-
formation as the available signal-to-noise ratio will
allow, and their repetition rate matches that of the car-
rier train.

Now let us consider how several optical conveyor
belts might simultaneously share a single fiber. For
the purpose of merely dragging along signal pulses in
the orthogonal polarization, one can just as well choose
a wavelength in the anomalous-dispersion regime and
use a periodic train of bright solitons in the pump to
guide the weaker pulses. However, a striking feature
of dark solitons not shared by bright ones is that
pulses carried by solitons with different velocities
do not interact with one another during collisions,
as depicted schematically in Fig. 2. (Note that the
relevant numerical experiments are described in detail
elsewhere15.)

This remarkable fact has been observed numeri-
cally15 and proved analytically.16 This exact result
holds regardless of the number of dark solitons collid-
ing at the same place. Although the refractive-index
pattern induced during the collision can be quite com-
plicated, there is no need to calculate it to show that
the pulses are always restored after the impact. The
elasticity of the linear pulses during collisions per-
mits the multiplexing of several channels (indexed by
i ­ 1, 2, . . .) onto the same fiber. The idea is to replace
the periodic pump field with a pump field composed
of several periodic trains of dark solitons at different
levels of contrast Ci (and hence different velocities vi)
propagating on the same background: a so-called mul-
tiphase solution17 of Eq. (1). Then, when one soliton
overtakes another, the solitons and the signals car-
ried by them maintain their identities exactly after
collision. As the frequency of pulses in the ith sig-
nal channel is detuned from vp by an amount that de-
pends on the contrast Ci of the guiding solitons, the

Fig. 2. Linear pulses carried by dark solitons survive
collisions just as dark solitons themselves do. The curves
are marked as in Fig. 1.
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channels can be separated at the output of the fiber
by simple spectral filtering of the signal polarization,
as with wavelength-division multiplexing of bright soli-
tons. As in the bright case, a coincidence detector with
a fiber memory loop is needed at the point of recep-
tion to prevent channel collisions from occurring there.
Although multiplexing requires the use of gray soliton
trains that can experience jitter, this effect is smaller
than the Gordon–Haus effect for bright soliton wave
trains by a factor of at least 1y

p
2 .10 Jitter decreases

as contrast decreases.
What physical parameter values would be required

for implementing an optical conveyor belt? For rough
estimates, suppose that we use the same dispersion-
shifted fiber as did Nakazawa and Suzuki8; this has
zero dispersion at 1550 nm, and the group-velocity
dispersion at the operating wavelength of 1530 nm
is ,1 psyskmynmd. The loss coefficient at this wave-
length is minimal: g ø 0.2 dBykm. We may have
dark pulses of duration close to 1 ps with soliton pe-
riod ,1 km by using a background power level of
, 0.1 W. The bit rate in such a system can thus be
as high as 1 Tbitys, especially if we assume that sev-
eral bits are coded into each bright pulse by quantized
amplitude modulation. It would be prudent first to
implement the scheme by using black solitons alone,
because both pump and signal then share the same
frequency vp. Multiplexing with gray solitons would
then permit even higher bit rates.

We have thus suggested in this Letter that small-
amplitude pulses trapped in the field of moving po-
tential wells created in an optical fiber by a train of
orthogonally polarized dark solitons can be used for ex-
tremely high-bandwidth data transmission. The ad-
vantages of the proposed scheme are the following:

1. Each dispersionless data pulse carries an analog
value: its amplitude. Amplitude quantization can per-
mit several bits per pulse.

2. Several channels can share the same fiber with-
out interference. The channels are separated by spec-
tral filtering of the signal polarization.

3. Because it is not modulated, the multiphase
pump field can be created all-optically without any
logic gates to keep track of the dark soliton phase
shifts.

4. The scheme enjoys the stability and robustness
of dark solitons. Furthermore, it is not particularly
sensitive to the restriction jsj ,, jpj, because for
finite signal amplitude the soliton-pulse combination
becomes a bright-plus-dark soliton of the Manakov
model, which is stable.18

In particular, features (1) and (4) are clear advan-
tages over coding schemes that use bright solitons,
feature (2) is not shared by coding schemes based
on nonintegrable models (e.g., the dual-wavelength
scheme of Haelterman and Badolo19), and feature (3) is
an advantage over any scheme that used dark solitons
alone. We are confident that data transmission meth-
ods such as the optical conveyor belts proposed here
will be useful in future applications.
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