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Abstract 

The Kadomtsev-Petviashvili (KP) hierarchy, a collection of compatible nonlinear equations, each in 2 + 1 independent 
variables, can be consistently constrained in many different ways to yield hierarchies of equations in 1 + 1 independent 
variables. In particular, the N-component vector nonlinear Schr6dinger (VNLS) hierarchies are contained within the KP 
hierarchy in this way. These hierarchies approximate the KP hierarchy in the limit of large N, and this permits the equations 
of the KP hierarchy to be approximated by nonlinear equations in 1 + 1 dimensions. 
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I. Introduct ion 

Virtually every numerical method or approximation scheme applicable to partial differential equations works by 

reducing the dimension of  the problem in some way. In some cases, it is actually the spatio-temporal dimension 

(that is, the number of continuous independent variables) that is reduced by the scheme. The so-called "method 

of lines" is an example of this kind of dimension reduction. With this method a partial differential equation in 

1 ÷ 1 dimensions is spatially discretized to yield a system of differential equations in 0 + 1 dimensions. A further 

discretization in time then reduces the problem to algebraic steps easily carried out by a computer. 

I want to describe an approximation scheme that applies to the nonlinear equations of the Kadomtsev-Petviashvili 

(KP) hierarchy, simulating the behavior of  equations in 2 + 1 dimensions with smaller problems in 1 + 1 dimensions. 

Although it is not a discretization of  one of  the independent variables as in the method of  lines, this scheme preserves 
the integrability of the hierarchy at every level of approximation. And of course, the approximate hierarchies in 1 + 1 
dimensions will have solutions that converge to solutions of  the fully 2 + 1-dimensional hierarchy. Dimensional 
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reductions of  the KP hierarchy have indeed been known for some time, but to my knowledge the issue of how 

closely these reduced hierarchies resemble their parent has not been adequately addressed. 
The KP hierarchy is a collection of nonlinear partial differential equations that can be expressed as compatibility 

conditions for a sequence of linear problems orf lows.  Let us describe this hierarchy using the formalism of pseudo- 
differential operators 11 ]. Take x = (x j ,  x2, x3 . . . .  )T to be a vector 2 of independent variables, and denote by 0~. 

the derivative with respect to xk. Introduce a pseudo-differential operator of  the form 

L = Oi + w(J l (x )Oi  I + tO(2)(X)012 4- " ' "  (1) 

with arbitrary coefficients wI")(x), and for each k = 2, 3 . . . . .  define the associated differential operator 

Bk = ( - -2 i ) J -k (Lk)+ ,  (2) 

where the subscript + indicates the part of  the expression that includes only nonnegative powers of 01. Then, the 
system of linear equations, or flows, for a function 4~(x), 

0k4~ = Bk4~, (3) 

will be consistent only if the coefficients w (nl (x) satisfy certain nonlinear partial differential equations. In particular, 

the pairwise compatibility conditions 

0z Bk - Ok B / +  [Bk, Bt] = 0 (4) 

are, upon separating the various powers of  01, nonlinear partial differential equations in 2 + 1 independent variables, 

xt,  xk, and x/, for a finite number of  the coefficients w(n)(x). They are the equations of the KP hierarchy. The 
simplest case is k = 2 and / = 3, which yields equations for w(J)(x) and w(Z)(x). From these, w(Zl(x) may be 

eliminated to yield the equation for V (x) = w(l) (x): 

3 2 gO2V = OI[03V 4- l ong  4- 3VO1V], (5) 

which is the KP equation of water wave theory from which the hierarchy gets its name. I f  the compatibility 

conditions are all satisfied, then the evolution of q~ with respect to x2, x3 . . . .  is an isospectral deformation of the 

. formal eigenvalue equation 

Lq~ = -2i~q5. (6) 

This equation is only formal because the action of the pseudo-differential operator L cannot be defined on a 
sufficiently broad class of  functions q~(x). There are, however, special conditions under which this eigenvalue 
problem makes sense, as we will see below. Proceeding formally, one finds that the compatibility of  the mth power 

of  Eq. (6) with the individual flows (3) gives rise to a hierarchy of Lax equations 

OkL m = [Bk, Lm],  (7) 

where m is arbitrary. Now, unlike the nonlinear equations (4), these Lax equations are equations in only 1 4- 1 

independent variables, xj and xk, and thus one might prefer to solve them rather than the 2 4- l-dimensional 
equations (4). However, the Lax equations (7) generally involve all of the coefficients w(")(x)  together. Thus, if 
one only wants to consider a finite number of  the coefficients, the KP hierarchy remains a system of genuinely 
2 4- 1-dimensional equations. 

2 Throughout we will denote vector quantilies with small boldface letters, matrices with capital boldface letters, with all other symbols 
representing scalars or scalar operators. 
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In some special cases, it is possible for both sides of  the Lax equation (7) to be pure differential operators, in which 

case only a finite number of the coefficients w ('') (x) are involved; thus the KP hierarchy "comes apart" into a number 

of 1 + 1-dimensional problems. The typical constraint imposed to achieve this reduction [ I ] is that the operator L'" 

is. for some integer m, a differential operator. Then. B,,, = L'" .  and the hierarchy consists of 1 + I-dimensional 

equations of the form 

ilk B,,, = [Bk. B,,, 1. (g) 

where m is considered fixed as k varies. Since the operators are differential, only a finite number of the coefficients 

u,~ ' t (x)  are involved in each equation. There is a generalization of this technique due to Krichever [2] in which 

m is allowed to be rational. One question that arises regarding these 1 + I-dimensional reductions is: Can they be 

considered to approximate the true 2 + l-dimensional dynamics of the unconstrained hierarchy in any precise way'? 

1 think that the answer is yes. One sequence of 1 + l-dimensional hierarchies that can be shown to approximate 

the KP hierarchy is the sequence of N-component vector nonlinear Schr6dinger (VNLS) hierarchies which we now 

describe using a generalization of  the procedure employed in [3]. Let q(x )  and r (x )  be two complex vector functions 

of x, with N components each. Further, introduce a complex scalar u and an N-component vector v that satisfy the 

linear equation 

,,,[:1 
where Z is a parameter and DN is the N x N identity matrix. One may introduce a sequence of linear flows in the 

remaining independent variables xk by choosing matrices M (k) that are polynomials in )~ of degree k, with leading 

term 

M(k)=[--izk 0T 1 
0 iZkt~N + O(Zk- I ) ,  (10) 

where 0 is the N-component zero vector, and taking 

The remaining coefficients of  the various powers of Z in M (k) are then uniquely determined in terms of derivatives 

with respect to .rl of q and r by insisting that the compatibility condition of(1 I) and (9), 

OkM el) - 'ohM Ik) + [M (I), M (k)] = 0 ,  (12) 

not involve the arbitrary parameter ,k. These latter equations (12) are then the I + 1 -dimensional nonlinear equations 

of the hierarchy. In particular, taking k = 2, the system (12) takes the form 

ii~2q + ~i)[q - (qTr)q  = O, --i02r + ~O~r -- (qTr)r  = 0, (13) 

which under the consistent constraint r = i ~  becomes an N-component generalization of the nonlinear Schr6dinger 
equation that gives the hierarchy its name. 

It is interesting to observe that the nonstationary scalar linear Schr6dinger equation with potential V(x) 

1 . 9  
iit2gb 4- ~Oi~b 4- Vq~ = 0 (14) 

plays an important role in both the KP and N-component VNLS hierarchies. On one hand, this problem appears 
obviously in the KP hierarchy as the linear flow (3) for k -- 2, On the other hand, in the VNLS hierarchies it arises 
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as the partial linearization of  (13) in the following way. Let q(x) and r(x) be solutions of the N + l-component 

hierarchy, with the final component of  the vector q(x) being of order ~ << 1. Then, to leading order in ~, this small 

component satisfies an equation of  the form (14) with 

V (x) = --q(x)Tr(x)I~=0. ( 1 5) 

Only the first N field components of  q(x) and r(x) contribute to this potential function; to leading order these 

components satisfy the smaller N-component  hierarchy. 

In [4] it is shown how to find solutions to this partially linearized N + l-component VNLS problem in terms 

of  the auxiliary functions u and v connected through the linear flows (1 1) with the solution q(x) and r(x) of the 

N-component VNLS hierarchy that arises at leading order. In particular, if one sets 

q~ = u exp(--i(,kXl + )v2x2))  , (16) 

then 4, is a solution of  (14) with V(x) = -q(x)Tr(x).  In this paper, we will see how to reinterpret this relation as an 

embedding of  the N-component  VNLS hierarchy within the KP hierarchy. Among other things, it will follow that 

the function V(x) = -q(x)Tr(x),  constructed out of  solutions to the N-component VNLS hierarchy, is a solution 

of  the KP equation (5). Such an embedding has been previously reported by Freeman and West [5] in the scalar 

case of  N = 1. Because the embedding involves what we will see to be a concrete analytic object, namely the 

function 4, or alternatively u, we will be able to promote the notion of  algebraic reductions of  the KP hierarchy to 

an analytic level, where we will prove that a large class of  solutions of  the fully 2 + l-dimensional KP hierarchy can 

be approximated pointwise in x to arbitrary accuracy by solutions of  the 1 + 1-dimensional N-component VNLS 

hierarchy in the limit of  large N. 

2. Alternative definition of the hierarchies via Baker-Akhiezer  functions 

The KP and N-component  VNLS hierarchies are defined above using purely formal calculations of  operator 

algebra; this reasoning manages to avoid any consideration of  the types of  functions u, v, and ~p on which these 

operators act. However, to make the link between the hierarchies transparent, it is useful to develop an alternative, 

equivalent definition. Essentially, rather than starting first from linear differential equations themselves, one begins 

with a set of  well-defined functions, called Baker-Akhiezer functions, and then proceeds to find a set of linear 

equations satisfied by them. These turn out to be the linear flows whose compatibility conditions are the nonlinear 

equations of  the hierarchy. ["or our purposes, it will be more useful to think of the hierarchies as being defined by 

their Baker-Akhiezer functions. 

Let us first describe the Baker-Akhiezer functions of  the N-component VNLS hierarchy. Let F be the N + 1 

sheeted covering of  the complex )v-plane on which the function r defined by 

rN+l _1_ pN()v)r N q_ PN_l()v)r N I nt._ . . .  q_ P 0 ( ~ )  = 0 ,  ( 1 7 )  

where Pk O,) are polynomials in )v, is single valued. Assume that the polynomials are such that there is no branching 

over )v ---= oo, so that there are N + 1 points over )v = oo, which we denote by ooi, for i ----- 0, 1, • • -, N. Denote the 
genus of  F by g. 

We now introduce some functions on F using methods of  algebraic geometry [6]. Begin by specifying 77' = 

P1 + "'" + Pg, a nonspecial integral divisor of degree g on F.  Consider a linear space of  scalar functions u(x, P) 
depending on complex parameters x, all but a finite number of  which are assumed to be equal to zero, as well as a 

N point P ~ F .  Let these functions be meromorphic on F \ Ui=(){OOi }, with all poles confined for all x to the divisor 
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D. Further specify that at P = oo0, these functions u(x, P)  have essential singularities modeled by asymptotic 

expansions of the form 

It(X, P) = A Jr- u(O'J)(x)~.(P) - j  exp - i  x ,)~(P)  '~ , (18) 
j = I ; t  = I 

where A is some constant, while at P = vci,  for i = 1, 2 . . . . .  N, they have essential singularities modeled by 

expansions of the form 

i j )  II (X , P) = t, exp i 2 . _ x , ) ~ ( P ) "  . (19) 
j = 0  \ n = I / 

Here, 7.(P) is the "sheet projection" function on F .  In these expansions, the coefficients ii d'i) (x) are just "place 

holders" that do not need to be given any particular values at this time. We will soon see that they are, however, 

well-defined. It is a consequence of  the complex structure on F that these characteristics are sufficient to restrict the 

space of  functions u(x, P) to be one-dimensional,  the space being swept out by the parameter A. This follows from 

the Riemann-Roch theorem; see [7] for details. We choose to set A = l and thus obtain a unique function u(x, P). 

Likewise, we consider the space of vector functions v(x, P), whose components are also meromorphic away from 

ock with poles in 7), and that at P = oc0 have essential singularities with expansions of  the form 

= v ( ° ' J ) ( x ) ~ . ( P )  - j  exp - i  x ,~ . (P)"  , V(X, P) (21)) 
\ j  = I n = I / 

and at P = o~i. i = 1,2 . . . . .  N, have essential singularities with expansions of the form 

V(X, P)  = ciei)~ + v( i 'J)(x)) . (P)  - j  e x p  i x,)~(P)" , (21) 
j = 0  \ n = 1 

where c l . . . . .  cN are complex constants, and ei are the standard unit vectors in C u.  Once again, v(i'J)(x) represent 

undetermined coefficients. In this case, these conditions restrict the space of such functions v(x, P) to be N- 

dimensional,  the space being parametrized by the constants ci. As was the case with u(x, P), fixing the values of 

these constants determines v(x, P) uniquely. We thus have two functions, a scalar u(x, P) and an N-component  

vector v(x, P) that are uniquely specified by the data set (F, D, cl . . . . .  CN) .  They can be explicitly constructed 

from these data in terms of the Riemann theta function canonically associated with F [7]. These functions are the 

Baker-Akhiezer  functions for the N-component  VNLS problem. In particular, the data set (F,  79, c l . . . . .  cU ) maps 

to explicit  formulas for the coefficients u(i'J)(x) and l:(i'J)(x). TO obtain them one first builds u(x, P) and v(x, P) 

from the data and then expands about P = oci. 

Let us now see how the Baker-Akhiezer  functions determine the equations of the N-component  VNLS hierarchy. 

Let M (k) be a matrix, depending polynomial ly on ~ (P ) ,  with leading behavior as given in (10). We want to determine 

the matrix coefficients so that we can deduce that 

First, note that since M (k) depends polynomial ly on 7.(P), each component of  the left-hand side of this equation 

is meromorphic on F' away from the points ooi, and has poles confined to the g points of  the divisor 7). These 

properties follow directly from the corresponding properties of  u(x, P)  and v(x, P). It still remains to determine 

the coefficients of the various powers of  ~.(P) in the matrix M Ik). This is done by insisting that the left-hand side of 
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(22) behave correctly near the points <x)i. Specifically, one defines the elements of  the coefficient matrices in terms 

of  the expansion coefficients U (i'j) (X) and V (i'j) (X) such that on the left-hand side of  (22), the first component has 

asymptotic expansions about P = o<) i of  the same form as does u(x, P), but with the value A = O, and the vector 

of  N remaining components has asymptotic expansions about P = ~ i  of  the same form as does v(x, P) but with 
the values ci = 0. By the dimension counting used to define the Baker-Akhiezer  functions themselves, then, all 

components of  the left-hand side of (22) vanish identically on F for all x. We are almost finished. Relation (22), 

considered for k = 1 and expanded about the points P = ~ i ,  now provides an infinite number (one for each power 

of  ~.(P)) of relations among the coefficients u(i 'J)(x)  and v(i 'J)(x)  and their xl derivatives. These relations can be 

telescopically solved to express all the coefficients in terms of  uIi'°) (x) for i = 1 . . . . .  N and v/°" I) (x) and their x l 

derivatives. If we define 

U(I'0) (X) U (2'0) (X) u(N'0) (X) r(x)  -2iv(°'l)(x) (23) q(x) = 2i - -  , . . . . .  - - -  , = , 
\ CI C2 CN ] 

then the coefficients of the different powers of  X(P) in the matrices M (k) can be expressed in terms of q(x) and 

r(x) and their x~ derivatives. These matrices turn out to be exactly the same as those derived in Section 1. In this 

way, the N-component  VNLS hierarchy is determined completely by its Baker-Akhiezer  functions. As an added 

bonus, we have also an explicit  construction of a large number of  simultaneous solutions u(x, P)  and v(x, P) of the 

linear problems of  the hierarchy. For generic k, these amount to N + 1 linearly independent solutions of the linear 

problems, and thus the consistency of  these problems is guaranteed regardless of the value of  k. The fact that the 

functions q(x) and r(x) derived from the data (F,  79, ¢1 . . . . .  CN) satisfy all the nonlinear equations of the hierarchy 

follows immediately. 

Note that one particular consequence of  Eq. (9) satisfied by the Baker-Akhiezer  functions is the relation 

-2i01 u(°' l)(x) = q(x)Tr(x). (24) 

We will have use for this relation below. 

An important feature of  this construction is that the Riemann surface F is not completely arbitrary, but is one on 

which there exists a global meromorphic function ~.(P) of  degree N 4- I. The poles of this function on F are the 

points cx~i. This constraint on the surface F is not present when one considers the construction of Baker-Akhiezer  

functions for the KP hierarchy, as we will now see. 

To define the Baker -Akhiezer  function for the KP hierarchy, we summarize the construction appearing in [7]. 

Let F be an arbitrary Riemann surface of  genus g, and choose one point on F ,  calling it oo0. Now, let k ( P )  J be 

any local parameter, defined in a neighborhood U of  oo0, that has a simple zero at ~ 0 .  In this construction, it is 

important that ~ . (P) - I  be considered as much a part of  the set of  data used to build the Baker-Akhiezer  function 

as is the surface F .  Now, let 79 be, as before, a nonspecial integral divisor of degree g on F .  The linear space of  

scalar functions q~(x, P)  of  P c F and depending on parameters x, meromorphic on F away from ~ 0  with poles 

confined to the points of  79, and having essential singularities at P = oo0 with expansions in terms of  the local 
parameter k (P)  - 1 of  the form 

rp(x, P) = A 4- ~p(J)(x)X(P) - j  exp - 2 i  x,,X(P) n (25) 
j = l  \ n=l  / 

is guaranteed by the Riemann-Roch theorem to be exactly one-dimensional,  and is parametrized by the parameter 

A. Taking A = 1, we obtain a unique function ~b(x, P) ,  determined by the data (F,  oo0, X(P) -1 , 79), called the 

Baker -Akhiezer  function of  the KP hierarchy. 
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As was the case with the N-component VNLS hierarchy, we can derive the linear flows of  the KP hierarchy (3) 

directly from its Baker-Akhiezer function. Let Bk be a differential operator in xt of the form 

1 (n) 
8k = ( -2 i )  j-k ~ + 2..,bk (x)~ I , (26) 

n =0 

and consider the scalar function 

Ok(x,  P)  = "Ok4)(x, P)  - Bkck(x, P) .  (27) 

This ['unction is meromorphic on F except at the point ~cc), and its poles are confined to the points of the divisor 

D. These properties lbllow from the form (26) of  the operator Bk and the corresponding properties of  the Baker- 

Akhiezer function 4~(x, P). Now, one uniquely defines the coefficients b~ j) (x) in terms of the coefficients q5/.i)(x) 

so that Ok(x,  P)  has an expansion about P = ~c0 of the form (25) but with A = 0. Since it then lies in a linear 

space of  dimension 1 and has the coefficient A = 0, the ['unction ~Pk (x, P)  vanishes identically for all x and P 6 [ ' .  

We have thus found a sequence of linear flows of the form (3) satisfied by the Baker-Akhiezer function c~(x, P).  It 

may not appear immediately obvious that these equations are the same as the flows (3), since the former are written 

in terms of an infinite number of dependent variables 4)(J)(x) and the latter are written in terms of the dependent 

variables wlJ) (x ) .  The relation between the two sets of dependent variables can be found if desired by examining the 

asymptotic expansion about P = oc0 of the formal eigenvalue equation (6) in terms of the local parameter )~( P)-  I 

This is one context in which the lbrmal problem (6) makes sense: when asymptotically applied to a Baker-Akhiezer 

tunction q5 (x, P ) in the neighborhood of  ~x~0. However, it is not neccessary to do this in order to define the nonlinear 

equations of the KP hierarchy. For example, the operators B2 and B3 constructed in this manner involve only the 

coefficients 4, (t) (x) and 4, (2/(x). The compatibility conditions of the two corresponding linear equations satisfied 

by the Baker-Akhiezer function are two nonlinear equations in these two dependent variables, from which ~b 12) (x) 

may be eliminated to yield the KP equation (5) for the scalar function 

V ( x )  = 2i014~l)(X). (28) 

As was the case with the N-component VNLS hierarchies, we now have not only an alternate lbrmulation of  the 

KP hierarchy, but also a large family of  analytic solutions cb(x, P)  of the flows (3). 

3. Putting the VNLS hierarchies inside the KP hierarchy 

The advantage of re-expressing the N-component VNLS hierarchies and the KP hierarchy in terms of their 

Baker-Akhiezer functions can now be made clear. 

Theorem 1. Let F be an N ÷ 1 sheeted covering of the complex ;~-plane of genus g, with some labeling vco . . . . .  oQ N 

of the points on F above ~. = oc. Let D be a nonspecial integral divisor on F of degree g, and let ct . . . . .  Cu be 

complex constants. These data specify the Baker-Akhiezer functions u(x ,  P)  and v(x ,  P) of the N-component 

VNLS hierarchy. Now set 

4~(x, P)  -- u(x ,  P)exp  - i  Xn~.(P) n . (29) 
n= 1 ! 

Then this ['unction q~(x, P) is the Baker-Akhiezer function of the KP hierarchy corresponding to the data (F, Oco, 

)~(P) J, D), where ,k(P) is the global meromorphic function that identifies F with an N + l-told covering of the 

complex ,~-plane. 
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Remark. By a comparison of expansions (18) and (25), it is evident that (29) implies dpIJ)(x) = u(°,J)(x), and 

thus that all the nonlinear equations of the KP hierarchy are solved in terms of functions solving the N-component 
VNLS hierarchy. In particular, comparing (28) and (24), it is clear that whenever q(x) and r(x) are derived from 

Baker-Akhiezer functions according to (23), and thus satisfy the nonlinear equations of the N-component VNLS 

hierarchy, the function V(x) = -q(x)Tr(x)  is a solution of the KP equation (5). In fact, it is not difficult to verify 

that this statement holds for arbitrary solutions q(x) and r(x) of the N-component VNLS hierarchy, not only for 

those that can be derived from Baker-Akhiezer functions. 

Proof of  Theorem 1. The transformation (29) has the effect of altering the behavior of u(x, P) over the points 
eci without changing the divisor D of its poles. Specifically, the function 4~(x, P) defined by (29) is now holo- 

morphic at P = eci, for i = 1, 2 . . . . .  N, so that the only essential singularity that remains is at the point 

oc0. Moreover its poles are contained in the divisor D, and in the neighborhood of P = ~ 0  it has the 

expansion 

dp(x, P) = I + u(O'J)(x))~(P) - j  exp - 2 i  xn)~(P) n , 
j = l  \ n=l 

(30) 

which is of the form (25). Thus, by uniqueness of the Baker-Akhiezer function, the function defined by (29) must 
coincide with the Baker-Akhiezer function for the KP hierarchy corresponding to the data (F, ~x)0, ~.(P)-J, D). 

This completes the proof. [] 

The KP hierarchy thus contains all of the N-component VNLS hierarchies. It is likely that the latter hierarchies 

can all be considered at the level of the pseudo-differential operator formalism discussed in Section 1 to be rational 
reductions of the KP hierarchy, as this is true for the scalar case of N = 1 [2]. We are now led to the following 

question: Can the definition (29), when solved for u (x, P), be considered to define Baker-Akhiezer functions for the 

N-component VNLS hierarchy in terms of those for the KP hierarchy? That is, is the mapping of the N-component 

VNLS hierarchies to the KP hierarchy surjective? Or perhaps approximately so? 

4. Approximation theory 

To answer this question, we now take the data (F, e~0, ~.(P)-J, D) to be given, so that we have a well-defined 
Baker-Akhiezer function ~p (x, P) of the KP hierarchy. A little thought shows that relation (29) can yield a function 
u (x, P) that is one of the Baker-Akhiezer functions for the N-component VNLS hierarchy only if the local parameter 

~.(p)- l  has an analytic continuation on F to a global meromorphic function with simple zeros. One of these zeros 

is automatically at the point e~0, and the remaining zeros then define the points ~1  . . . . .  eCU, and thus the number 
of components N. That is, when it exists, the global function )~(P) serves to identify the Riemann surface F with 
an N + 1-fold covering of the complex ~.-plane. From the function u(x, P) and the knowledge of)~(P)-~ and its 
zeros, it is possible to reconstruct the function v(x, P) and thus the potentials q(x) and r(x). 

Clearly, the obstruction to inverting the relation (29) is that not every local parameter ,k(P)-l  in the neighborhood 
of P = ~ 0  has such a global analytic continuation. However, every local parameter ~.(p)-t  can be written as a 
convergent (in the neighborhood U) power series, each partial sum of which is a global meromorphic function 
on F. This means that every local parameter ~.(P)-l  can be approximated to arbitrary accuracy by meromorphic 
functions. To show this, we make use of the fact that every Riemann surface has at least one nonconstant meromorphic 
function [8]. Without loss of generality, we can suppose that this function ~p(P) vanishes at the point e~0 and that 
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the differential d~p(P) does not vanish at oo0. Then, if the neighborhood U is sufficiently small, the local parameter 

~,(p)-I can be expressed in the form 

~.(p)-I = )_~n~P(P)" ,  (31) 
1 

n : l  

which converges uniformly in U. If ~ ( P )  is a function of degree d, then it is easy to see that the approximation 

,~M(P)-I obtained by truncating at n = M is a meromorphic function of degree Md, generically having simple 

zeros. If we use the approximate data (F, ~0+ XM(P) --j , D) to build a Baker-Akhiezer/'unction {PM(x, P) fl)r the 

KP hierarchy, then relation (29) can be inverted to yield a Baker-Akhiezer function for the N-component VNLS 

hierarchy, where N = Md - 1. Arbitrary Baker-Akhiezer functions 4,(x, P) of the KP hierarchy can thus be 

approximated by Baker-Akhiezer functions ~bM (x, P) that may be identified with Baker-Akhiezer functions of the 

N-component VNLS hierarchy by relation (29). Throughout this analysis, the vector x was considered to be a fixed 

parameter. This means that the convergence of ~bM(x, P) to ~b(x, P) occurs pointwise in x. Since the nonlinear 

hierarchies are solved in terms of the expansion coefficients that converge pointwise for all x+ and since at each 

level of approximation the Baker-Akhiezer functions of the KP hierarchy and an N-component VNLS hierarchy 

can be identified via (29), arbitral, solutions of the KP hierarchy derived from Baker-Akhie=er Junctions may 
be approximated pointwise to arbitra O, accuracy by solutions of N-component VNLS hierarchies, in lhe limit +~I 

large N. 

5. Conclusions 

Two main ideas have been presented in the above paragraphs. First, the KP hierarchy contains the equations 

of the N-component VNLS hierarchies for all N. Second, solutions of the KP hierarchy that are obtained from 

Baker-Akhiezer functions can be approximated pointwise in x to arbitrary accuracy by solutions of these contained 

hierarchies. 

The transformation (29) can be viewed as a kind of generalized Miura transformation, the classical version of which 

connects the Korteweg~le Vries equation, which is a special case of the KP equation, and the modified Korteweg-de 

Vries equation, which is contained within the l-component VNLS hierarchy. A large class of generalized Miura 

transformations can be obtained at the level of Baker-Akhiezer functions by solving certain Riemann factorization 

problems [9]. A closely related point of view is that the relation (29) is part of a gauge transJormation [ 10[ linking 

the linear flows of two different hierarchies. In this case, the gauge transformation (29) has the unusual feature that 

it is not always invertible. It is also interesting that another N-component VNLS hierarchy, generally different from 

that considered in this paper for N > 1, is contained within a multiple-component version of the KP hierarchy 

itself [11 ]. 
Throughout the paper we have considered solutions of the KP and N-component VNLS hierarchies that are 

generally complex. It is interesting that the reality conditions on the algebro-geometric data required to impose 

that r(x) = ±q(x) are sufficient to also guarantee that the solutions of the KP hierarchy are real, when the two 

hierarchies may be identified via (29). 

Although we have worked with the restricted class of solutions that are derived from Baker-Akhiezer functions, 

it seems likely that the explicit formulas that connect the various coefficients wI">(x) in the pseudo-differential 
operator L to the solutions q(x) and r(x) of the N-component VNLS hierarchy and their xt derivatives should in 

fact hold for arbitrar3, solutions of the hierarchy. This is certainly the case for the coefficient w I1) (x) = --q(x)Tr(x). 
As mentioned above, this function satisfies the KP equation (5) when q(x) and r(x) are any solutions of the 

N-component VNLS hierarchy. 
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In this way, the genuine ly  2 + l -d imens iona l  dynamics  of the equat ions of the KP hierarchy can be approximated by 

the s impler  1 + 1-dimensional  dynamics  of the equat ions of  a sequence of  larger and larger VNLS hierarchies. Being 

integrable themselves,  these approximate KP hierarchies could be used to develop powerful numerical  methods for 

solving the KP equations.  These approximate hierarchies are no t  discretizations of  the KP hierarchy, although such 

integrable discretizations have been reported previously [12]. By contrast  with the VNLS hierarchies, it is not clear 

whether  these discretized KP hierarchies are contained within the KP hierarchy itself. 
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