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Effects of surface roughness on gratings
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The correlation length for sidewall roughness in planar waveguides is comparable to the period of Bragg grat-
ings written in such structures and thus might influence the performance and the spectral properties of such
gratings. Using a coupled-mode formalism, we calculate the effect of roughness or inhomogeneity for an ar-
bitrary grating and present specific results for uniform and phase-shifted gratings. The broad spectral char-
acteristics of most gratings are insensitive to roughness. However, narrow spectral features (such as trans-
mission resonances) that rely on interference effects are affected by the presence of roughness. © 1997
Optical Society of America [S0740-3224(97)00606-1]

PACS number(s): 42.82.Gw, 42.40.Eq, 42.25.Fx, 70.20.Bh
1. INTRODUCTION
Roughness in most types of planar optical waveguides is
due to random deviations of the waveguide sidewalls from
perfect uniformity (see Fig. 1) and is caused by the
deposition/etching process used during fabrication.1 The
standard deviation of these nonuniformities is typically
;1% of the waveguide width. In a previous paper2 we
showed that the effects of surface roughness in uniform
waveguides can be neglected in most circumstances.
However, the measured correlation length of the surface
roughness is of the order of a few tenths of microns, which
is comparable to the spatial period of reflection Bragg
gratings operating at communication wavelengths (see
Fig. 1). Therefore we might expect the roughness to in-
fluence the coupling properties of these gratings.
In this paper we investigate the possible impact of the

surface roughness on Bragg gratings. We use a pertur-
bative analysis of the coupled-mode equations linking the
forward- and backward-traveling modes of the grating.
Although we concentrate on surface roughness, the same
approach can deal with bulk inhomogeneities.

2. SIDEWALL ROUGHNESS AND MODE
COUPLING
We assume that the sidewall roughness can be described
by local deviations of the waveguide sidewalls from per-
fect linearity. This is represented mathematically by
a random function f(z), with zero average ^ f(z)& 5 0
and standard deviation d f 5 @^ f 2(z)&#1/2, where z is the
distance along the grating and ^ & indicates an ensem-
ble average. Typically, for silica-based technology, d f
; 0.05–0.1 mm. The roughness f(z) possesses a well-
defined autocorrelation function

C~z 2 z8! 5 ^f~z !f~z8!&. (1)
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Roughness correlations have been measured exper-
imentally1 and are well represented by an exponential
model of the form

C~z ! 5 d f
2 exp~2uzu/Lc!, (2)

where Lc is the correlation length. Lc is a measure of the
correlation existing in the random signal f(z) and, for
silica-based technology, is of the order of 0.5 mm and is
thus comparable to the period of commonly used reflec-
tion gratings.
The coupling coefficient K(z) between forward and

backward modes that is due to roughness can be calcu-
lated for arbitrary waveguides3 and is proportional to the
roughness function f(z). As an example, and in order to
quantify the analysis of later sections, we give an explicit
expression for K(z) for a step-index slab waveguide in Ap-
pendix A. We define s to be the standard deviation of
K(z) and write K(z) 5 ss(z), where s(z) possesses a nor-
malized correlation function given by

G~z8 2 z9! 5 ^s~z8!s~z9!& 5 exp~2uz8 2 z9u/Lc!. (3)

In the following analysis we have neglected coupling
between bound modes and radiation modes. This is
justified4 because the coupling between bound and radia-
tion modes that is due to scattering from inhomogeneities
is maximal for correlation lengths of the order of ;1/(b
2 kncl), where b is the propagation constant of the
bound mode, k is the free-space wave number, and ncl is
the cladding index. Typically, for weakly guiding silica-
based waveguides this length is of the order of 100 mm.
This is more than two orders of magnitude longer than ei-
ther the grating period or the actual roughness correla-
tion length (which are the length scales of interest in this
problem). Furthermore, this radiation coupling typically
leads to an attenuation of a fraction of a decibel per cen-
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timeter. Considering the length of typical gratings, this
should have a negligible effect on grating performances.

3. COUPLED-MODE FORMALISM
Using the standard approximations of coupled-mode
theory, we obtain the two following coupled-mode
equations5:

ia18~z ! 1 da1~z ! 1 ka2~z !

5 s exp@2i~2p/d !z#s~z !a2~z !, (4a)

2ia28~z ! 1 da2~z ! 1 ka1~z !

5 s exp@1i~2p/d !z#s~z !a1~z !, (4b)

where a1(z) and a2(z) are the slowly varying amplitudes
of the forward- and backward-propagating modes defined
by

E~x, z ! 5 $a1~z ! exp@i~p/d !z#

1 a2~z ! exp@2i~p/d !z#%c~x !, (5)

and c (x) is the modal profile. The terms on the right-
hand side of the coupled-mode equations are the contribu-
tions from the roughness. The detuning is defined by d
5 kn̄ 2 p/d, where d is the period and n̄ is the average
modal index in the grating. The grating strength is
given by k 5 pDn/l, where Dn is the amplitude of the in-
dex modulation and l is the free-space wavelength. The
coupled-mode equations above and the analysis that fol-
lows also apply to nonuniform gratings represented by pa-
rameters d and k, which vary slowly as a function of z.

4. PERTURBATION ANALYSIS
If we assume a small standard deviation in the rough-
ness, i.e., s ! k, the coupled-mode equations can be
solved by a perturbation series in s,

ai
~0 !~z ! 1 sai

~1 !~z ! 1 s2ai
~2 !~z ! 1 ..., (6)

by a Green-function technique. Successive terms in the
perturbation series are related by the Green function as
follows:

Fig. 1. Schematic representation of typical surface roughness
along the vertical core–cladding interface of an etched silica-
based waveguide. The correlation length of the surface rough-
ness is Lc . The periodic shading indicates the variations in the
refractive index that produce a Bragg grating with period d.
Note that d and Lc are comparable in magnitude.
Fa1~n11 !~z !

a2
~n11 !~z !G 5 E

0

L

s~z8!FG11~z, z8! G12~z, z8!

G21~z, z8! G22~z, z8!G
3Fexp@2i~p/d !z8#a2

~n !~z8!

exp@1i~p/d !z8#a1
~n !~z8!Gdz8. (7)

The Green function can be represented in terms of the so-
lutions to the original unperturbed grating as given in
Appendix B. With the Green function (which implicitly
contains the grating boundary conditions) the reflection
coefficient r can be shown to be

r 5 a2~0 ! 5 r ~0 ! 1 sE
0

L

s~z8!F~z8!dz8

1 s2E
0

LE
0

L

s~z8!s~z9!J~z8, z9!dz8dz9 1 O~s3!,

(8)

where F and J are given in Appendix B. From the re-
flection coefficient, the reflectance R 5 uru2 can be calcu-
lated. The phase of the reflected wave and information
such as the group delay of reflected pulses can also be ob-
tained from the expression for r; the details are given in
Appendix C.

5. ENSEMBLE AVERAGES
We obtain the ensemble average for the reflectance R by
taking the norm of Eq. (8), applying the ensemble aver-
age, and using Eq. (3):

^R& 5 R ~0 ! 1 s2 Re E
0

LE
0

L

G~z8 2 z9!@F~z8!F~z9!*

1 2r ~0 !*J~z8, z9!#dz8dz9 1 O~s3!, (9)

where * mean complex conjugate. In order to proceed
further, we explicitly separate rapidly and slowly varying
parts as follows:

^R& 5 R ~0 ! 1 s2 Re E
0

LE
0

L

G~z8 2 z9!

3$A~z8, z9!exp@i~2p/d !~z8 2 z9!#

1B~z8, z9!exp@i~2p/d !~z8 1 z9!#%dz8dz9

1O~s3!, (10)

where A and B are extracted from the expressions for F
and J such that they depend only on the field amplitudes
and are therefore slowly varying functions of z8 and z9,
whereas the correlation function and the exponentials are
rapidly varying functions. We have also exploited the
symmetry between z8 and z9. We introduce the more
convenient variables y 5 z8 2 z9 and z 5 (z8 1 z9)/2,
and since G(y) has a sharp peak near y 5 0, the slowly
varying quantities and the inner integration can be ap-
proximated by their values at y 5 0. Thus

^R& ' R ~0 ! 1 s2 Re E
2L

L

G~y !E
0

L

A~z, z !exp@i~2p/d !y#

1 B~z, z !exp@i~4p/d !z#dzdy. (11)
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Since G(y) also decays very rapidly with y, the range of
integration can be extended to infinity and performed as a
Fourier integral, giving the power spectrum S(k) of the
roughness. Also, the rapidly oscillating factor in the sec-
ond integral allows it to be neglected. Therefore

^R& ' R ~0 ! 1 s2S~2kB!LA~d!, (12)

where kB 5 p/d is the Bragg wave number of the grating
and
A~d! 5
1
L E

0

L

A~z, z !dz

5
1
L
Re E

0

LH ~1 2 R !@Pi~z !2 1 P2~z !2# 1 4r* 2a1
2~z !a2

2~z ! 2 2r*a1~z !a2~z !@P1~z ! 1 P2~z !#

1 2 R J dz (13)
and Pi(z) 5 uai(z)u2. Note that A(d) is a dimensionless
quantity that describes the spectral variations of the per-
turbations that are due to roughness but can be com-
pletely calculated from the solutions ai(z) of the unper-
turbed grating. The expression for the time delay given
in Appendix C has an analogous form.

6. DEPENDENCE ON CORRELATION
LENGTH
The power spectrum S(k) can be easily calculated for the
exponential model

S~k ! 5
2Lc

1 1 k2Lc
2 . (14)

Thus

^R& ' R ~0 ! 1
2s2LcL

1 1 4kB
2Lc

2 A~d!. (15)

As a function of correlation length, the perturbation is
maximal when Lc 5 d/2p. This agrees with our expec-
tations that the effects of roughness will be strongest
when the correlation length and the grating period are
comparable. The spectral dependence of the perturba-
tions that are due to roughness are completely deter-
mined by the factor A(d), and this dependence is exam-
ined in more detail in the following sections. As we shall
see, in most cases A(d) is of the order of unity; thus an
order of magnitude estimate of the perturbation is

2s2LcL

1 1 4kB
2Lc

2 < s2LLc , (16)

where the expression on the right is the maximum pos-
sible value with Lc 5 d/2p. We can rewrite this as

~s/k!2~kL !2~Lc /L !. (17)

Thus, although the strength of the effect increases as the
square of the grating strength kL, it is also proportional
to the square of the size of the perturbation (s/k)2

' 1024 and to the ratio of the correlation length to the
length of the grating Lc /L ' 1025. Thus even for very
strong gratings with kL ' 100 the perturbation in the re-
flectance is still only of the order of 1025. A similar re-
sult is obtained for the size of perturbations to the delay
properties of the grating. A more rigorous calculation in-
cluding the spectral variation of the perturbation is pre-
sented in the following sections.

7. RESULTS FOR A UNIFORM GRATING
The spectral variations of the perturbations in ^R& are
given by A(d) and depend on the specific structure of the
grating. The expression for A(d) for a uniform grating
can be evaluated exactly and is given by

A~d! 5
1

4~a2 cosh2 aL 1 d 2 sinh2 aL !3
F ~3k4 2 4a4!d 2

1 k4~2a2 1 3k2!cosh2 aL 1 2k4~2a2 2 3k2!

3 cosh4 aL 2 d 2k2~4a2 1 9k2!
sinh 2aL

2aL

1 k4~9k2 2 8a2!cosh2 aL
sinh 2aL

2aL G , (18)

where a 5 (k2 2 d 2)1/2. The complicated expression
above is shown graphically in Fig. 2. Note that A(d) is
small and negative inside the band gap (udu , k), tends to
unity far from the band gap, and has a series of peaks on
either side of the band gap. A careful examination re-
veals that these peaks occur where the reflectance of the
unperturbed grating is zero (R 5 0), corresponding to
Fabry–Pérot resonances. Here we give some simplifica-
tions of the above result for four different regions: far
from the Bragg resonance, in the center of the gap, at the
band edge, and at the zeros of the reflectance.

Fig. 2. Spectral dependence of roughness perturbation for a uni-
form grating of strength kL 5 5.
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A. Large Detuning
For large detunings, i.e., when ud u @ k, the reflectance is
given by

^R& ' R ~0 ! 1 s2LS~2kB!, (19)

which agrees with the result in our previous paper for
backscattering in the absence of any grating2 and shows
that the roughness leads to linear attenuation with dis-
tance.

B. Zero Detuning
At zero detuning, i.e., when d 5 0, the reflectance is

^R& ' R ~0 ! 1
s2L

4 cosh4~kL !
S 4 2 cosh 2kL 1

sinh 2kL

2kL D
3 S~2kB!

; R ~0 ! 2 2s2L exp~22kL !S~2kB!. (20)

The final expression gives the asymptotic behavior for
strong gratings. Thus the effect of roughness inside the
band gap becomes smaller as the grating gets stronger.
This can be explained simply by noting that a strong grat-
ing reflects almost all the light at the front of the grating,
and therefore very little of it samples the roughness.

C. Band Edge
At the band edge, i.e., when d 5 6k, the reflectance is

^R& ' R ~0 ! 1
s2L

48~1 1 k2L2!3
~48 1 32k2L2 2 13k4L4

2 9k6L6!S~2kB! ; R ~0 ! 2
9s2L

48
S~2kB!. (21)

D. Zeros of Reflectance
For the weak Fabry–Pérot resonances that occur at d
5 6(k2 1 n2p2/L2)1/2 the perturbed reflectance is given
approximately by

^R& ' s2LF1 2 S kL
np D 2 1

3
4 S kL

np D 4GS~2kB!

;
3
4

s2LS kL
np D 4S~2kB!. (22)

Although the size of the perturbation scales with the
fourth power of the grating strength, the prefactor is so
small, for typical parameters, that the effect on the reso-
nances is significant only if kL . 40. The first zero for a
uniform grating of strength kL 5 50 is shown in Fig. 3,
and the visibility of the fringe is reduced by only 10%.
Nevertheless, this suggests that gratings with very strong
Fabry–Pérot resonances and corresponding narrow spec-
tral features may be more strongly affected by roughness.

8. RESULTS FOR A PHASE-SHIFTED
GRATING
Many grating-based devices rely on the presence of very
narrow spectral features such as transmission reso-
nances. The sidelobes of a uniform grating arise from a
rather weak interference effect of reflections from the
ends of the grating. A much stronger interference effect
occurs for a uniform grating with a single-phase disconti-
nuity in the center of the grating. Such a structure will
exhibit a sharp transmission fringe in the spectrum.
For the unperturbed phase-shifted grating the reflec-

tion at the center of the reflection band is zero. Rough-
ness produces a reflection at this point given by

^R& ' s2LS~2kB!
exp~2kL !

32kL
. (23)

This expression grows exponentially with grating
strength and is appreciable even for kL ' 10. A closeup
of the narrow transmission fringe is shown in Fig. 4 for a
moderate-strength grating (kL 5 10). Note the contrast
of the fringe is reduced by almost 20% by the roughness.

9. CONCLUSION
Thus we can conclude that in most practical situations
the effect of roughness on uniform gratings is negligible.
For broad spectral features the size of the roughness per-
turbation on the reflection coefficient is of the order of

~s/k!2~kL !2~Lc /L ! (24)

and can be estimated to be of the order of 1025 for silica-
based grating structures. The strongest effects occur
near transmission resonances and even then very strong
gratings (kL @ 10) are necessary to produce a noticeable
change. Thus, sidewall roughness does not significantly
alter the overall features of the reflectance.

Fig. 3. Reflectance including roughness perturbation for a uni-
form grating of strength kL 5 50 shown in closeup near the first
Fabry–Pérot resonance.

Fig. 4. Reflectance including roughness perturbation for a
phase-shifted grating of strength kL 5 10 shown in a closeup
near the central transmission resonance. The dashed curve is
for the unperturbed grating, and the solid curve includes the ef-
fects of roughness.
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On the other hand, as we have shown for a phase-
shifted grating, narrow spectral features that are due to
strong Fabry–Pérot resonances can be strongly affected
by roughness. Thus the ensemble analysis suggests that
it might be difficult to reproducibly implement structures
with narrow spectral features in planar waveguide tech-
nology. This is not the case for fiber-based gratings,
since sidewall roughness is insignificant.

APPENDIX A: STEP-INDEX
SLAB-WAVEGUIDE COUPLING
COEFFICIENT
Using a standard technique,3 we can show that the rough-
ness coupling coefficient is given by

K~z ! 5 f~z !F U2W

2r3b~1 1 W !
G , (A1)

where the quantities in the bracket are all standard
waveguide and modal parameters:

U 5 r~k2nco
2 2 b2!1/2, (A2a)

W 5 r~b2 2 k2ncl
2!1/2, (A2b)

where r is the waveguide half-width, b is the propagation
constant of the mode, k is the free-space wave number,
and nco and ncl are the core and the cladding indices, re-
spectively. Thus the random variations in the coupling
are proportional to the surface roughness. The standard
deviation of K(z) is simply related to that of f(z) by

s 5 d f F U2W

2r3b~1 1 W !
G . (A3)

APPENDIX B: GREEN FUNCTION AND
RELATED EXPRESSIONS
The Green function for an arbitrary nonuniform grating
can be expressed in terms of the grating spectra and the
fields in the grating by the standard method of variation
of parameters and is given by

Gjk~z, z8! 5
2i

1 2 R ~0 !
@u~z 2 z8!aj

~0 !~z !ak
~0 !~z8!*

1 u~z8 2 z !a32j
~0 ! ~z !*a32k

~0 ! ~z8!

2 r ~0 !*aj
~0 !~z !a32k

~0 ! ~z8!#, (B1)

where r and R 5 uru2 are the reflection coefficients and u
is the Heaviside or unit step function.
The kernel functions appearing in the perturbation in-
tegrals for r are given by

F~z8! 5 G21~0, z8!exp@2i~2p/d !z8#a2
~0 !~z8!

1 G22~0, z8!exp@1i~2p/d !z8#a1
~0 !~z8!

(B2a)

5 2i$a1
~0 !~z8!2 exp@1i~2p/d !z8#

1 a2
~0 !~z8!2 exp@2i~2p/d !z8#%, (B2b)

J~z8, z9! 5 G21~0, z8!G21~z8, z9!exp@2i~2p/d !

3 ~z8 1 z9!#a2
~0 !~z9! 1 G21~0, z8!G22~z8, z9!

3 exp@2i~2p/d !~z8 2 z9!#a1
~0 !~z9!

1 G22~0, z8!G11~z8, z9!

3 exp@1i~2p/d !~z8 2 z9!#a2
~0 !~z9!

1 G22~0, z8!G12~z8, z9!

3 exp@1i~2p/d !~z8 1 z9!#a1
~0 !~z9! (B3a)

5 2i$a2
~0 !~z8!a2

~0 !~z9!G21~z8, z9!exp@2i~2p/d !

3 ~z8 1 z9!# 1 a2
~0 !~z8!a1

~0 !~z9!G22~z8, z9!

3 exp@2i~2p/d !~z8 2 z9!# 1 a1
~0 !~z8!a2

~0 !~z9!

3 G11~z8, z9!exp@1i~2p/d !~z8 2 z9!#

1 a1
~0 !~z8!a1

~0 !~z9!G12~z8, z9!

3 exp@1i~2p/d !~z8 1 z9!#%. (B3b)

APPENDIX C: EXPRESSIONS FOR THE
TIME DELAY
The phase of the reflected wave can be calculated from
f 5 Im@ln(r)#. A more interesting related quantity is the
time delay, which is the derivative of the phase and de-
fined by

T 5
n̄
c
ImF ddd

ln~r !G , (C1)

where c is the speed of light in free space.
The perturbation expression for the phase delay is

^T & 5 T ~0 ! 1 s2
n̄

c
Im

d

dd
E
0

LE
0

L

G~z8 2 z9!

3 FJ~z8, z9!

r ~0 !
2

F~z8!F~z9!

2r ~0 !2 Gdz8dz9 1 O~s3!,

(C2)

which, by a similar sequence of steps as for ^R&, yields

^T & ' T ~0 ! 1 s2S~2kB!LC~d!, (C3)

where
C~d! 5
1
L
n̄
c
Im

d
dd E

0

LH ~1 1 2R !a1
2~z !a2

2~z ! 2 ra1~z !a2~z !@P1~z ! 1 P2~z !#

r2~1 2 R ! J dz. (C4)
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