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Modes of periodic waveguides
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We calculate exactly the two bound Floquet modes of a periodic linear waveguide induced in a medium
by a second-order soliton of the nonlinear Schrödinger equation. The modes are degenerate at the writing
frequency, having the same quasi-propagation constant, which suggests applications of our method to spectral
filtering.  1997 Optical Society of America
Periodic waveguides are used in many practical
applications such as dispersion compensation in
wavelength-division multiplexing systems1 and pulse
compression.2 From the point of view of perturbation
theory,3 a small periodic modulation of a channel wave-
guide generally serves to couple power between bound
and unbound modes of the unperturbed channel. Now
it can be shown that there is an operating frequency
at which the coupling between any given bound mode
and the continuum vanishes to leading order. This
fact suggests that true bound modes may exist to all
orders for the periodic structure. However, it is not at
all clear a priori whether more than one such bound
mode can coexist within the periodic waveguide.

The mathematical setting for beam propagation in
planar waveguides with slow periodic modulations
is the Floquet theory of the nonstationary linear
Schrödinger equation
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1
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fxx 1 Dnsx, zdf ­ 0,

Dnsx, z 1 Ld ­ Dnsx, zd . (1)

The period map T szd:fsx, zd ° fsx,z 1 Ld is a uni-
tary linear operator whose discrete eigenfunctions are
bound states of the periodic waveguide specified by
the refractive-index distribution Dnsx, zd. The cor-
responding eigenvalues are the Floquet multipliers,
which can be written in the form expsibLd; the num-
bers b are then called the quasi-propagation constants.
This theory reduces to the usual modal theory if the re-
fractive index does not depend on z; the Floquet modes
and their quasi-propagation constants go over to bound
modes of the waveguide and their propagation con-
stants, respectively.

In general the construction of the period map T
and its subsequent spectral decomposition require nu-
merical methods. However, certain aspects of the the-
ory of nonlinear optics permit the design of periodic
waveguides with useful properties in a self-consistent
way4 that sidesteps these calculations. For example,
the induced refractive-index distribution of a second-
order soliton in a Kerr medium is a self-induced pe-
riodic waveguide for which all Floquet eigenfunctions
can be found explicitly. Below we show that this pe-
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riodic linear waveguide has exactly two bound Flo-
quet modes. Of course, superpositions of these two
modes, which are true modes of the structure, have zero
scattering loss. Our main tools are the linearization
theorems,5 which are intimately related to the integra-
bility of the nonlinear Schrödinger equation (NLSE),
and which we use to construct exact solutions of Eq. (1).
The two bound Floquet modes are degenerate in the
sense that their quasi-propagation constants are equal,
and so the symmetry properties of an initial condition
built up from these modes will be preserved along the
waveguide. There are also implications of this degen-
eracy for the behavior of the waveguide when the op-
erating frequency is varied. The techniques that we
describe can be used to calculate the bound modes
of quasi-periodic higher-order soliton waveguides, al-
though we concentrate here on the two-mode case, as it
admits of simple exact solutions in closed form.

Since the linear waveguides that we study have in-
dex profiles that coincide with the intensity distribu-
tions of f ields that satisfy the NLSE, there are two
interpretations of our results. On the one hand, the
index profile can be considered to be permanently writ-
ten in the planar medium, say, by a photolithographic
process. Such a device is completely passive. On the
other hand, we can exploit the fact that the NLSE it-
self describes the propagation of intense light in a Kerr
medium and use a pump beam to induce the device that
then guides a weak probe beam of a nearby frequency
or in the orthogonal polarization. Such a device would
be active, since one can change the shape of the wave-
guide dynamically by controlling the pump. Slow non-
linear effects such as the photorefractive effect can also
be used to write waveguides with light that can later
be used passively, as the medium retains some memory
of previous excitations.

The NLSE is

icz 1
1
2

cxx 1 jcj2c ­ 0 , (2)

where x is the transverse variable and z is the axis
of propagation. The two-soliton solution6 of Eq. (2)
with solitons of unequal amplitudes b1 and b2 that are
bound together at x ­ 0 propagating along the z axis is
csx, zd ­
4isb2

2 2 b1
2d fb1 coshs2b2xdexps2ib1

2zd 2 b2 coshs2b1xdexps2ib2
2zdg

sb1 2 b2d2C1sxd 1 sb1 1 b2d2C2sxd 2 4b1b2 cos fszd
, (3)
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Fig. 1. Periodic waveguide-squared refractive index and
even-mode intensity distribution.

where C6sxd ­ coshf2sb2 6 b1dxg and fszd ­ 2sb2
2 2

b1
2dz. Without loss of generality, we take b2 . b1.

This solution has the Floquet form in z. This means
that the solution can be written in the form

csx, zd ­ usx, zdexpsibzd , (4)

where usx, zd is periodic in z with period L ­
pysb2

2 2 b1
2d and the quasi-propagation constant is

b ­ 2b1
2 ; 2b2

2 smod 2pyLd. The periodicity of the
function usx, zd can be interpreted as the nonlinear
interference between the two soliton components of
the solution. The periodic refractive-index profile
jcsx, zdj2 self-induced by the two-soliton bound state
is shown in Fig. 1. The two free parameters, b1 and
b2, can be varied to meet design specif ications of the
periodic waveguide.

We wish to f ind the bound Floquet modes of a peri-
odic linear waveguide with a refractive-index distribu-
tion given by Dnsx, zd ­ jcsx, zdj2. To find the explicit
expressions for these modes we use a technique related
to the integrability of the NLSE. The NLSE is the
compatibility condition for the set of two linear differ-
ential equations7
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These two linear problems, with the arbitrary complex
parameter l, are said to form a Lax pair for the
NLSE. By compatibility, two linearly independent
simultaneous solutions can be found for all complex l
whenever csx, zd satisfies the NLSE and in particular
when csx, zd is the two-soliton bound-state solution
given by Eq. (3).

We now set Dnsx, zd ­ jcsx, zdj2, where csx, zd is
the particular solution of Eq. (3). The task at hand
is to f ind solutions of linear Schrödinger equation (1).
Comparison of this linear equation with Eq. (2) shows
immediately that there is always a particular solution
f that coincides with csx, zd. This solution is the
even Floquet mode of the periodic waveguide. It turns
out that there is also an odd bound Floquet mode;
let us now find an expression for this mode. It has
been shown5 that many solutions of linear equation (1)
can be found from simultaneous solutions of the Lax
pair. The solution formula is simple. Take the f irst
component rsx, z, ld of any simultaneous solution of
Eqs. (5) and set

fsx,z, ld ­ rsx, z, ldexps2ilx 2 il2zd . (6)

For Eq. (6) to yield a solution to Eq. (1) it is suff icient
that r satisfy

irz 1
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2

l2r 1
1
2

rxx 2 ilrx 1 rjcj2 ­ 0 . (7)

But Eq. (7) holds for all complex l, as a consequence of
the compatible systems of Eqs. (5), so that the function
f given by Eq. (6) is a solution of Eq. (1) for all l. This
result makes it possible to solve linear Schrödinger
equation (1) for a large class of nonstationary poten-
tials of the form Dnsx, zd ­ jcsx, zdj2, where c solves
the NLSE. The Floquet theory of the periodic wave-
guide of interest in this Letter is a special case of this
general theory.

Exact simultaneous solutions of Eqs. (5) correspond-
ing to the second-order soliton solution (3) can be ob-
tained by algebraic techniques, after which finding a
particular solution fsx,zd of Eq. (1) then amounts to
substituting rsx, z, ld into Eq. (6), instantiating Eq. (6)
on particular values of l, and then applying linear
superposition.5 We choose l ­ ib1 and l ­ ib2 and
then use superposition to isolate the odd and the even
parts of the field. This procedure yields an even Flo-
quet mode f

even
b1,b2

sx, zd, which is proportional to so-
lution (3) of the NLSE that generates the periodic
waveguide, and an odd Floquet mode proportional to
f
odd
b1,b2

sx, zd ­
sb2

2 2 b1
2d fsinhs2b2xdexps2ib1

2zd 2 sinhs2b1xdexps2ib2
2zdg

sb2 2 b1d2C1sxd 1 sb2 1 b1d2C2sxd 2 4b1b2 cos fszd
. (8)
The intensity profiles of these two modes are shown in
Figs. 1 and 2.

Since these are Floquet modes their field profiles
are recovered periodically along the waveguide, mod-
ulo phase factors (the Floquet multipliers) that can
be read off from the exact solution formulas. Exami-
nation of these Floquet multipliers reveals that the
quasi-propagation constants beven and bodd of the two
Floquet modes are equal, modulo 2pyL. To our knowl-
edge this is the first example in the optics literature of
a periodic waveguide with degenerate Floquet modes,
or indeed of a planar waveguide with degenerate bound
modes. Now, as in any linear problem, the general
bound solution of the waveguide problem is given by
a superposition of the individual bound modes, in this
case one even and one odd mode:

fsx, zd ­ Aevenf
even
b1,b2

sx, zd 1 Aoddf
odd
b1 ,b2

sx, zd , (9)
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Fig. 2. Odd-mode intensity distribution.

Fig. 3. Contour plot of the intensity distribution resulting
from propagation of an initially asymmetric beam at k ­
1.0 and k ­ 1.1.

Fig. 4. Even mode-intensity distribution for k ­ 1.25.

with arbitrary coeff icients Aeven and Aodd. Owing to
the degeneracy of the quasi-propagation constants, this
bound solution has the property that any phase differ-
ence between the two components is reproduced exactly
after one period of the waveguide, as is the field pro-
file (modulo phase). Thus, the bound mode [Eq. (9)]
propagates without losses, and its intensity has the
same periodicity as the waveguide itself. An initially
asymmetric pulse would therefore maintain its form
along the device, as is shown in Fig. 3 for k ­ 1.0.
This suggests applications of the periodic waveguide
in optical imaging: The problem of beating between
modes of a standard multimode waveguide is elimi-
nated, and so it is possible to transmit extra informa-
tion (i.e., the source asymmetry) along the waveguide
without accumulative interference effects. Further,
since one can also use the techniques described here to
construct periodic and quasi-periodic waveguides with
an arbitrary number of Floquet modes, this method of
imaging could be extended to permit transmission of
more-complicated information along the waveguide.

A second potential application of this periodic
waveguide is related to spectral f iltering. If we fix
the induced refractive-index profile from a second-
order soliton at one frequency, then linearly propagate
a f ield at a different frequency, the diffraction co-
efficients in Eqs. (1) and (2) will no longer agree,
and the above exact results will no longer be valid.
The appropriate equation to solve is now the linear
Schrödinger equation given by

ikfz 1
1
2

fxx 1 k2jcsx, zdj2f ­ 0 , (10)

where k is the ratio of the propagating frequency to
the writing frequency. We have used perturbation
methods and numerical techniques to study the effects
of slightly changing the parameter k.8 The effects
take place on two scales. First, the degeneracy of
the even and odd Floquet modes is broken, leading
to beating phenomena on longitudinal length scales
that are inversely proportional to jk 2 1j, as illustrated
in Fig. 3. This beating could be used as a sensitive
method of frequency detection around the writing
frequency sk ­ 1d, where the beat length is infinite.
Second, the Floquet modes decay, radiating power into
the surrounding medium as shown in Fig. 4. The
scattering of power is clearly visible over five periods
of the device at k ­ 1.25 and in general will occur
on length scales that are inversely proportional to
jk 2 1j2. This decay process would permit the design
of a spectral bandpass filter.

It should be said that, as we are using Schrödinger
equation (10) to model propagation in periodic
waveguides, backward ref lections are neglected.
Thus, although the above analysis shows that at the
writing frequency there is no scattering of the light
into forward-propagating radiation modes, a complete
analysis of these structures requires the use of the
scalar Helmholtz equation. However, the smooth and
slow periodic profile of this waveguide, when trans-
formed from paraxial coordinates back to unscaled
laboratory coordinates, is one for which ref lections are
negligible.
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