
Periodic Optical Waveguides: Exact Floquet
Theory and Spectral Properties

By J. A. Besley, N. N. Akhmedië , and P. D. Miller

We consider the steady propagation of a light beam in a planar waveguide
whose width and depth are periodically modulated in the direction of
propagation. Using methods of soliton theory, a class of periodic potentials
is presented for which the complete set of Floquet solutions of the linear
Schrodinger equation can be found exactly at a particular optical frequency.¨
For potentials in this class, there are exactly two bound Floquet solutions at
this frequency, and they are degenerate, having the same Floquet multiplier.
We study analytically the behavior of the waveguide under small changes in
the frequency and observe a breaking of the degeneracy in the Floquet
multiplier at first order. We predict and observe numerically the disappear-
ance of both bound states at second order. These results suggest applica-
tions to spectral filtering.

1. Introduction

The steady linear propagation of paraxial monochromatic beams in slowly
varying, periodic, planar waveguides is described by the Floquet theory of
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the nonstationary linear Schrodinger equation¨

1if q f q V x , z f s 0, V x , zq L s V x , z , 1Ž . Ž . Ž . Ž .z x x2

Ž .where the given potential function V x, z represents the spatial profile of
Ž .the effective refractive index in the x, z -plane seen by monochromatic light

Ž .of frequency v here, v s1 in normalized units . For this problem, the
Ž . Ž . Ž .period map T z : f x, z ¬f x, zq L is a unitary linear operator whose

Ž .eigenfunctions are beam profiles that evolve under 1 as quasiperiodic
functions of z. The corresponding eigenvalues t are the Floquet multipliers

Ž .written in the form tsexp ibL . The numbers b , determined modulo
2p rL, are then called the quasi-propagative constants analogous to the
propagative constants of the stationary modal theory for potentials indepen-
dent of z. If the operator T can be diagonalized on an appropriate space of

Ž . Ž .functions beam profiles , then the initial value problem for 1 can be
solved, and the effects of slight shifts in the operating frequency v can be
calculated by using perturbative techniques.

Ž .For general potential functions V x, z , constructing the period map T
and finding its subsequent spectral decomposition requires numerical meth-
ods. It is possible, however, to find classes of physically reasonable periodic
potentials for which T admits an exact diagonalization. One such class is

w xfound within the family of so-called separable potentials 1 . In this article, we
examine the periodic waveguides in this class that are additionally even
functions of x. We find exactly two bound states within the spectrum of T.
They are degenerate, having the same Floquet multiplier, and are immersed
in the continuous spectrum. In Section 2 we describe in detail the class of

Ž .potentials V x, z under consideration, present their Floquet solutions, show
that they are complete, and thus diagonalize the period map T. Then, in
Section 3, we study the beam propagation problem for a fixed periodic

Ž .potential V x, z of the type described in Section 2 under small changes e in
the optical frequency v. Numerical simulations show that there are effects
on two scales. First, the degeneracy is broken, resulting in a beating of the
two bound Floquet modes on a length scale ;ey1. Next, there is decay of
both bound modes on a longer scale ;ey2 . We seek to capture these effects

Ž .through a multiple-scale analysis of the propagation problem 1 . We find an
accurate formula for the beat length and indicate the nature of the second-
order calculation necessary to capture the modal decay. We discuss our
results in Section 4.

Ž .Understanding periodic potentials of the linear Schrodinger equation 1¨
is of practical interest in optics principally for applications related to

Ž w x.wavelength filtering wavelength-division multiplexing 2 , such as dispersion
compensation and signal control, and also in applications, such as pulse

w xcompression 3 .
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2. Separable periodic potentials

w xWe recall some facts 1 about separable potentials for the linear Schro-¨
Ž . Ž . Ž .dinger equation 1 . Let F x, z, l and H x, z, l be functions of the general

form

My1
M p 2F x , z , l s l q l g x , z exp y2 i l xq l z ,Ž . Ž . Ž .Ž .Ý pž /ps 0

2Ž .
My1

pH x , z , l s l h x , z .Ž . Ž .Ý p
ps 0

Ž . Ž .These functions have undetermined coefficients g x, z and h x, z . We fixp p

them by first choosing M distinct complex numbers l in the upper halfk

plane, M proportionality constants g , and then imposing the conditionsk

F x , z , l s g UH x , z , l ,Ž . Ž .k k k
3Ž .

U UH x , z , l s yg F x , z , l ,Ž . Ž .k k k

for ks1, . . . , M. Written out explicitly, these are 2 M linear algebraic equa-
Ž . Ž .tions in the 2 M unknowns g x, z and h x, z . From the solution of thesep p

equations, define the potential function

< < 2V x , z s 4 h x , z . 4Ž . Ž . Ž .My1

Ž .Then it turns out that for each complex l, the function F x, z, l is a
solution of the linear Schrodinger equation¨

1if q f q V x , z s 0. 5Ž . Ž .z x x2

Ž .Thus by solving the system of linear algebraic equations 3 for the coeffi-
Ž . Ž . � 4cients g x, z and h x, z , the data set l , . . . , l ,g , . . . ,g yields anp p 1 M 1 M

Ž . Ž .explicit potential function V x, z and a family of solutions F x, z, l ,
Ž .parametrized by l of the linear equation 5 .

The reader may observe that this algebraic procedure is essentially the
Ž . Ž .construction of M-soliton solutions c x, z s2 ih x, z of the nonlinearMy1

Schrodinger equation¨

1 2< <ic q c q c c s 0. 6Ž .z x x2

The numbers l are the soliton eigenvalues, and the numbers g containk k
Ž .information about the soliton phases. The potential function V x, z under
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Ž .consideration is just the self-consistent nonlinear potential in equation 6 .
This fact means that these potentials are especially easy to induce optically

w xin a planar medium 4, 5 . The whole procedure extends easily to nonlinear
w xSchrodinger equations for vector-valued fields with N components 1 .¨

The family of solutions to the linear Schrodinger equation with potential¨
Ž .V x, z is complete, because by superposition with different values of l, the

Ž .formula for F x, z, l really contains the general solution of this equation
Ž . Ž .for absolutely continuous L initial data f x . In fact, for any such f x and1

fixed arbitrary z, we have the expansion

M
R Uf x s lim A l F x , z , l dl q A F x , z , l . 7Ž . Ž . Ž . Ž . Ž .ÝH k k

Rª` y R k s1

Ž .The integral is taken over real l, where the expansion coefficients A l and
A are obtained by using the orthogonality conditionsk

M` U UF x , z , l F x , z , m dx s pd lym ly l ly l ,Ž . Ž . Ž . Ž . Ž .ŁH k k
y` k s1

` `U UUF x , z , l F x , z , l * dxs0, F x , z , l F x , z , m dxs0,Ž . Ž .Ž . Ž .H Hj j
y` y`

8Ž .
` djkUU U U U UF x , z , l F x , z , l dx s l y l l y l l y l .Ž . Ž . Ž . Ž .Ž . ŁH j k k k k m k m2 iy` m/ k

Here, l and m are real, and ks1, . . . , M.
Now let us examine this complete set of solutions of the Schrodinger¨

Ž .equation 1 when we take Ms2 and select the discrete eigenvalues
Ž .l s ib and l s ib without loss of generality, we take b ) b and1 1 2 2 1 2

Ž .proportionality constants g sg s1 to obtain a z-periodic potential V x, z .1 2

As shown previously, this potential function can be written as the square
Ž .modulus of a complex function c x, z ,

c x , zŽ .
2 2 2 24 i b yb b cosh 2b x exp 2 ib z yb cosh 2b x exp 2 ib zŽ . Ž .Ž . Ž . Ž .2 1 1 2 1 2 1 2s ,2 2b y b C x q b q b C x y4b b cos D zŽ . Ž . Ž . Ž . Ž .1 2 q 1 2 y 1 2

9Ž .

Ž . w Ž . x Ž . Ž 2 2 .where C x scosh 2 b " b x , D z s2 b y b z. The potential func-" 1 2 1 2

Ž . Ž 2 2 .tion V x, z is periodic in z with period Lsp r b y b . The choice1 2

g sg s1 ensures that the potential function is an even function of x for1 2

all z. The two free parameters, b and b , control the period and shape of1 2
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the potential and may be considered design parameters for a planar,
periodic waveguide. For a particular choice of b and b , the potential1 2

function is shown in Figure 1.
For this class of potential functions, all of the Floquet solutions of the

Ž .problem are given by the function F x, z, l evaluated at particular values of
Ž . Ž . Ž .l. Both F x, z,y ib and F x, z,y ib are linearly independent bound1 2

Ž 2 . Ž 2 .states with the same Floquet multiplier, tsexp 2 ib L sexp 2 ib L . For1 2
Ž .real l, F x, z, l is an unbound Floquet solution in the continuous spectrum

Ž . Ž 2 .of the period map T with multiplier t l sexp y2 il L . By completeness
w x Ž .1 , these functions diagonalize the period map T z for this problem.

Because the potential is an even function of x, there exist odd and even
combinations of the two degenerate bound states that are themselves bound
Floquet solutions. The even solution is

Feven x , z s ceven F x , z ,y ib q ceven F x , z ,y ib s c x , z , 10Ž . Ž . Ž . Ž . Ž .1 1 2 2

and the odd solution is

Fodd x , zŽ .

s codd F x , z ,y ib q codd F x , z ,y ibŽ . Ž .1 1 2 2

2 2 2 24 b y b b b sinh 2b x exp 2 ib z ysinh 2b x exp 2 ib z' Ž . Ž .Ž . Ž . Ž .2 1 1 2 2 1 1 2s .2 2b y b C x q b q b C x y4b b cos D zŽ . Ž . Ž . Ž . Ž .1 2 q 1 2 y 1 2

11Ž .

Figure 1. Periodic waveguide refractive index distribution and even mode intensity distribu-
tion. The frequency is v s1, and the waveguide parameters are b s0.5 and b s0.2.1 2
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The coefficients are functions of the parameters b and b . They are1 2

2 2even evenc s , c s ,1 2b y b b y b1 2 2 1
12Ž .

b b2 22 1odd oddc s , c s .1 2( (b b y b b b y b1 1 2 2 2 1

The intensity profiles of these two modes are shown in Figures 1 and 2.
Ž . w xExploiting the evenness of the potential V x, z , the expansion formula 1

becomes

R even oddf x s lim A l F x , z , l dl q A F x , z q A F x , z ,Ž . Ž . Ž . Ž . Ž .H even odd
Rª` y R

13Ž .

Ž .where the expansion coefficients are determined in terms of f x using the
orthogonality conditions

` U 2 2 2 2F x , z , l F x , z , m dx s pd lym l q b l q b ,Ž . Ž . Ž . Ž . Ž .H 1 2
y`

` Ueven, oddF x , z , l F x , z dx s 0, 14Ž . Ž . Ž .H
y`

`
2even, odd< <F x , z dx s 4 b q b ,Ž . Ž .H 1 2

y`

and, of course, Feven and Fodd are mutually orthogonal.

Figure 2. Odd mode intensity distributions. The frequency is v s1, and the waveguide
parameters are b s0.5 and b s0.2.1 2
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3. Spectral analysis

There is a structural instability of the bound Floquet modes that suggests
the application of this family of periodic waveguides for spectral filtering.
This is because a fixed refractive index profile gives rise to a different linear
Schrodinger equation for each operating frequency v. We have normalized¨

Ž .the frequency parameter to the value 1 in the Equation 1 , but upon
considering a general frequency v expressed in these units one obtains

1 2ivf q f q v V x , z f s 0. 15Ž . Ž .z x x2

For this periodic Schrodinger equation, the period map T depends paramet-¨
rically on v. We know that for v s1, there is a bound state eigenvalue t of
multiplicity two embedded in the continuous spectrum of T. This situation is
unstable to small changes in the optical frequency v. As illustrated in Figure
3, there are two dominant effects that appear upon introducing a small shift
e in the frequency, so that v s1qe . First, the Floquet multipliers have
split, introducing a slow beating of an asymmetric initial beam profile on a
length scale ;ey1. Next, there is decay of both bound Floquet modes due
to coupling to radiation on the length scale ;ey2 . The figure is meant only

Figure 3. The beam propagation problem at frequency v s1qe with e s0.1 for a periodic
waveguide having parameters b s0.5 and b s0.2. The initial excitation is an asymmetrical1 2
function of x. There appear to be three length scales in the picture. First, there is the scale of
the waveguide period. Then there is the longer scale of the beat length between the even and
odd modes. Finally, there is the yet longer scale of the decay of both modes by coupling to
radiation.
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Figure 4. The inverse beat length of an asymmetric initial condition as a function of e for
numerical beam propagation at frequency v s1qe for a periodic waveguide with parameters
b s0.5 and b s0.2. Dashed line represents a straight line to fit the data.1 2

to illustrate these effects. More convincing evidence is given in Figures 4, 5,
and 6. Figure 4 compiles the results of several numerical simulations of the
type shown in Figure 3, showing that the beat length for small e varies as
< <y1 Že . Figures 5 and 6 show that the bound beam power P which is

< < 2accurately represented by the integral of the field intensity f over the
finite numerical domain y40- x-40 with radiation-field damping at the

.boundaries is slowly decaying exponentially, with decay constant that varies

Ž .Figure 5. a The logarithm of the bound beam power P as a function of propagation
distance for numerical beam propagation at several indicated values of frequency v s1qe for

Ž . Žan even initial excitation. b The numerically observed exponential decay rate i.e., slopes of
Ž .. 2the graphs in part a of the even mode as a function of e for beam propagation at

frequency v s1qe in a periodic waveguide with parameters b s0.5 and b s0.2.1 2
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Ž .Figure 6. a The logarithm of the bound beam power P as a function of propagation
distance for numerical beam propagation at several indicated values of frequency v s1qe for

Ž . Žan odd initial excitation. b The numerically observed exponential decay rate i.e., slopes of
Ž .. 2the graphs in part a of the odd mode as a function of e for beam propagation at frequency

v s1qe in a periodic waveguide with parameters b s0.5 and b s0.2.1 2

as e 2. Thus, the decay via loss to radiation occurs on a much longer length
scale than the modal beating effect.

These numerical results suggest that the periodic waveguides described
previously have no bound Floquet modes at all for most frequencies. Thus
any power introduced into the waveguide will generally be lost to radiation
over a long distance unless its frequency is equal to 1 in normalized units.
We now investigate these multiscale phenomena, related to the structural
instability of the discrete Floquet eigenvalues with respect to small changes
in the operating frequency, by finding and studying the coupled mode
equations.

Set v s1qe , and consider e g1. We use the method of multiple scales
to study the large z behavior of the bound modes. Introduce the slow scale
Zse z, so that the equation becomes

1 2i 1qe f qef q f q 1q2e qe V x , z f s 0. 16Ž . Ž . Ž . Ž . Ž .z Z x x2

Assume the power series expansion,

f s f Ž0. q ef Ž1. q . . . , 17Ž .

and substitute into the Schrodinger equation, collecting like powers of e .¨
The leading order equation is one that we can solve exactly. The general

Ž .solution is obtained by using the expansion formula 13 ,

RŽ0. evenf s lim A Z, l F x , z , l dl q A Z F x , zŽ . Ž . Ž . Ž .H even
Rª` y R

q A Z Fodd x , z . 18Ž . Ž . Ž .odd
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The equation at order e is

1Ž1. Ž1. Ž1. Ž0. Ž0. Ž0.if q f q V x , z f s y if y if y2V x , z f . 19Ž . Ž . Ž .z x x z Z2

By completeness of the Floquet modes for each z, we can express the
solution in the form

RŽ1. evenf s lim B z , l F x , z , l dl q B z F x , zŽ . Ž . Ž . Ž .H even
Rª` y R

q B z Fodd x , z . 20Ž . Ž . Ž .odd

The coefficients in this expansion depend on z and may additionally depend
upon slow scale Z, but we will not need this latter scale for our analysis.

Ž .Substituting into 19 and using the fact that for each l the function
Ž .F x, z, l solves the unperturbed problem gives

R X evenlim iB z , l F x , z , l dl q iB z F x , zŽ . Ž . Ž . Ž .H z even
Rª` y R

q iBX z Fodd x , zŽ . Ž .odd

R
s lim A Z, l y iF x , z , l y2V x , z F x , z , lŽ . Ž . Ž . Ž .Ž .H z

Rª` y R

y iA Z, l F x , z , l dlŽ . Ž .Z

q A Z y iFeven x , z y2V x , z Feven x , zŽ . Ž . Ž . Ž .Ž .even z

y iAX Z Feven x , zŽ . Ž .even

q A Z y iFodd x , z y2V x , z Fodd x , zŽ . Ž . Ž . Ž .Ž .odd z

y iAX Z Fodd x , z . 21Ž . Ž . Ž .odd

The individual modes can be separated by orthogonality. In particular,
even, oddŽ .Umultiplying by F x, z and integrating in x using the evenness of

Ž .V x, z gives

4 i b q b BX zŽ . Ž .1 2 even, odd

`R
s lim A Z, l y iF x , z , l y2V x , z F x , z , lŽ . Ž . Ž . Ž .Ž .H H z

Rª` y R y`

Ueven, odd= F x , z dxdlŽ .
`

even, odd even, oddq A Z y iF x , z y2V x , z F x , zŽ . Ž . Ž . Ž .Ž .Heven, odd z
y`

Ueven, odd=F x , z dxŽ .
y4 i b q b AX Z . 22Ž . Ž . Ž .1 2 even, odd
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Similar equations can be found for the mode amplitudes of the continuous
Ž .spectrum B z, l . The right-hand side of each of these equations is

quasiperiodic in z for fixed Z. Linear growth of the mode amplitudes in z is
Ž .avoided by choosing the dependence of A Z on the slow variable Zeven, odd

Ž .so that the average value in z of the right-hand side vanishes. Because of
generic mismatch of the Floquet multipliers, the average value of the
x-integral appearing within the l-integral vanishes for almost every l. The
discrete spectrum terms, however, are strictly periodic with period Ls

Ž 2 2 .p r b y b , so we obtain as a solvability condition the equations1 2

iAX Z q db A Z s 0, 23Ž . Ž . Ž .even, odd even, odd even, odd

where the shifts in quasi-propagation constant db depend on b andeven, odd 1

b and are given by2

`Lb y b1 2 even, odd even, odddb y y iF x , z y2V x , z F x , zŽ . Ž . Ž .Ž .H Heven, odd z4p 0 y`

Ueven, odd= F x , z dxdz. 24Ž . Ž .

Ž . Ž .Equation 23 , along with a similar set of equations for A Z, l obtained as
Ž .a solvability condition for avoiding secular growth of the amplitude B z, l ,

makes up the coupled-mode equations for the perturbed Schrodinger equa-¨
tion.

Thus, at length scales of order ;ey1, there is no coupling of the bound
states to any other modes. However, the degeneracy in the Floquet multipli-
ers is broken at order e , leading to a beat length for an asymmetric initial
profile that is approximately

y12pe
L s . 25Ž .beat db ydbeven odd

These findings concur with our previous numerical observations displayed in
Figure 4. In fact, for the specific parametric values b s0.5 and b s0.2,1 2

Ž . < <formula 25 predicts an inverse beat length of 1rL s0.0543 e , which isbeat

in excellent agreement with the straight line fit to the numerical results in
Figure 4. In fact, a scaling argument shows that the normalized beat length,
L s L rL, depends only on the ratio of parametric values bs b r bbeat beat 2 1
w x6 . Therefore the normalized beat length is a one parameter function
Ž Ž .. Ž .L b . A plot of the function L b , which can be used to describe thebeat beat

beating between the odd and even Floquet modes of periodic waveguides for
w xany choice of the parameters b and b , is given in 6 .1 2
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The numerical evidence of Figures 5 and 6 suggests that to capture the
decay of the bound modes as they couple to continuous spectrum Floquet
modes of the unperturbed problem, we need to go to higher order, introduc-

˜ 2ing another slow scale Zse z and seeking a solvability condition determin-
˜ing the leading order mode amplitudes as functions of Z. This calculation

w xwill be presented in a future publication 7 . The scaling argument described
previously can be applied in this case also, so that the decay of the bound
modes per waveguide period depends only on the ratio bs b r b .2 1

4. Conclusions

In the previous paragraphs, we have seen that soliton theory leads to a class
Ž .of z-periodic Schrodinger potentials V x, z that have two degenerate bound¨

Floquet modes. Because the potential is equivalent to the self-consistent
nonlinear potential of a two-soliton ‘‘breather’’ solution c of the nonlinear
Schrodinger equation, the existence of the even bound state, Feven sc , can¨
be anticipated. The existence of the odd bound state and its degeneracy with
the even bound state, however, is a new result.

The degeneracy of the modes, an effect that is strictly not possible in a
waveguide with only one transverse dimension whose potential function is
independent of z, means that any superposition of the odd and even bound
modes will be recovered at each period of the waveguide. This fact immedi-
ately suggests an optical application. A linear periodic planar optical wave-
guide of the type described in this article, operating at a frequency v s1 in
normalized units, can be used as a kind of telescope to accurately image a
one-parameter family of beam profiles over long distances z.

Ž .Having any bound Floquet modes at all in a periodic potential V x, z is
somewhat unusual, and one consequence of this is that under perturbation
of the frequency parameter v, the pair of bound modes present for v s1
disappear altogether. If the perturbation is small, the loss of the bound
modes is a second-order effect, dominated by a first-order, unimodular
splitting of the degenerate Floquet multipliers of the modes. Thus, slight
changes in frequency introduce slow modal beating, a fact that suggests that
such a waveguide, when illuminated with an asymmetrical beam, can be used
as a frequency detector. The operating frequency is determined by the
location of the peak intensity of the beam after a fixed number of waveguide
periods. Larger perturbations of the operating frequency will lead to the
immediate destruction of the bound modes. Thus the waveguide can also be
viewed as a narrow bandwidth spectral filter, taking a broad, bandwidth-
bound, input beam and scattering all frequency components not close to
v s1. Some of the optical applications of these periodic structures are

w xdescribed in more detail in 5 .
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We suspect that waveguides that have properties even more remarkable
than the periodic ones described here can be found in the family of
separable potentials connected with soliton theory. We plan to investigate
these waveguides in the future.

References

1. P. D. MILLER and N. N. AKHMEDIEV, Modal expansions and completeness relations for
Ž .some time-dependent Schrodinger equations, to appear in Physica D 1998 .¨

2. F. OUELLETTE, Dispersion cancellation using linearly chirped Bragg grating filters in optical
Ž .waveguides, Opt. Lett. 12:847 1987 .

3. B. J. EGGLETON, P. A. KRUG, and L. POLADIAN, Experimental demonstration of compres-
sion of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings,

Ž .Opt. Lett. 19:877 1994 .

4. P. D. MILLER and N. N. AKHMEDIEV, Transfer matrices for multiport devices from solitons,
Ž .Phys. Re¨ . E 76:4098 1996 .

5. J. A. BESLEY, N. N. AKHMEDIEV, and P. D. MILLER, Modes of periodic waveguides, Opt.
Ž .Lett. 22:1162 1997 .

6. J. A. BESLEY, Modes and solitons in waveguides optics, Ph.D. Thesis, The Australian
Ž .National University, Canberra, in preparation 1998 .

Ž .7. P. D. MILLER, A. SOFFER, and M. I. WEINSTEIN, in preparation 1998 .

AUSTRALIAN NATIONAL UNIVERSITY

Ž .Received May 12, 1998


