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Abstract

With the use of a variant of the method of separation of variables, the initial value problem for the time-dependent linear
Schibdinger equation is solved exactly for a large class of potential functions related to multisoliton interactions in the vector
nonlinear Schidinger equation. Completeness of states is proved for absolutely continuous initial dataCiopyright ©
1998 Elsevier Science B.V.
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1. Introduction

The nonperturbative solution of the initial value problem for the linear &tihger equation
i, f +202f -V, f =0 6y

subject to the initial conditiorf (x, 0) = fo(x) is a central problem of quantum mechanics in one space dimension,
whereV (x, t) is the potential energy of a particle moving along thaxis. In such quantum applications, the
problem (1) for time-dependent potentials has not received nearly as much attention as the stationary case where
V = V(x). One reason for this is that if the potential is time-dependent at all, then often the physical mechanism
responsible for the dynamics of the potential energy function coupliesthe wave functiory in a symmetrical
way that leads to a nonlinear system. For example, the Maxwell-Bloch equations of quantum optics arise in this
way. Exact solutions can be found for some of these nonlinear problems [1].

On the other hand, the linear equation (1) also comes up in the study of the classical optics of paraxial beams in
planar waveguides. Here,and: are both spatial coordinates in a planar dielectric medium; the fungtionr) is
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the slowly varying envelope of an electric field for a stationary monochromatic light beam propagating primarily in
ther direction, and-V (x, t) is proportional to the spatial variation of the refractive index. In this case, unlike in one-
dimensional quantum mechaniesjependence i (x, ) without coupling to another system is natural because
V represents fixed inhomogeneities in a macroscopic medium. The time-dependétirBmm equation (1) is
used frequently to model the behavior of passive linear integrated optical devices like waveguide tapers, waveguide
junctions, and power splitters. Althoughiependence in the potential functi®nis quite natural from the modern
point of view of optical applications, it seems that many of the techniques currently used in optics are derived
perturbatively from the more classical quantum mechanical theory of stationary potentials. These perturbative
techniques are all variants of coupled mode theory. There would indeed be some value in developing alternative
methods that could be used to study the time-dependenb@ioiger equation without introducing any more small
parameters than are necessary to derive the equation to begin with.

A general strategy in treating the linear problem (1) nonperturbatively is to consider separating the time evolution
from the spatial structure by seeking a family of particular solutipts 7, 1) of (1) that for each. satisfy inde-
pendent ordinary differential equationsirandz. When they exist, these particular solutions are calledrtbdes
of the potential functiorV (x, ¢). This procedure does not work for all potential functidnge, r). However, it is
known to apply when the Sabdinger equation is stationary, that is, when the potential does not depentein
us review the usual procedure of separation of variables, introducing a suggestive formalism. There are three steps:
1. Make an assumption about the form of the potential. Take ¢) = g(x, t) + h(x, t).
2. Use this assumption to split the partial differential equation (PDE) into two ordinary differential equations

(ODESs) with a parameter? playing the role of a separation constant. Thus, take

3020 — g(x, 0 = 222, i — h(x,)$p = 2%. @)
Introducing the vectou(x, 7, 1) = (¢, 3,¢)", these ODESs can be written in the form

a,u = Lu, 9;u = Bu, (3)
where the matricek andB are given by

0 1 1|:
L = s B=——

5 4
—402 4+ 2g(x,1) O

4i7% + 2ih(x, 1) 0
29, h(x, 1) 4ik2+2ih(x,t)]'
It is obvious that if for some. both ODEs can be simultaneously solved for a functian, ¢, A), then this
function will also satisfy the PDE (1).

3. Demand thatthese two ODEs can be simultaneously solved fofféils will place constraints on the components
g(x, t) andh(x, t) of the potential. The compatibility condition & d;u = 9,9, u, or in terms of the matrices
andB,

8tl—_axB'f‘[l_,B]IO. (5)
For the particular matrices above, this condition is equivalent to
3;g(x,t)=0, axh(x,l‘)ZO (6)

Thus, asis well-known, separation of variables in the usual sense works when the potential has¥he foyra
g(x)+h(r). Usuallya(z) is taken to be zero, and we then recover the family of stationaryo8eiger equations.
The main features of this familiar procedure are the following. First, the modes of the proliem i) satisfy

the PDE (1) but are obtained rather by finding simultaneous solutions to two compatible ODEs. Second, the modes
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are indexed by a complex parameierThe dependence on the paraméteneans that there are often enough of

these solutions to use superposition to construct the solution to the initial value problem for arbitrary initial data in

some class. Thisompleteness of statissone of the mostimportant features of the separation of variables procedure.
Our aim is to present an alternative separation procedure within the same framework that applies to more in-

teresting potential functiong (x, t) and preserves the essential features of modes being obtained from ODEs and

being complete. This means that the splitting of the 8dimger equation must be such that the compatibility con-

dition (5) admits a broader class of solutions. This can be accomplished by redesigning the separation scheme as

follows:

1. Make adifferent assumption about the form of the potential. Choose any positive iNtdgenduceN complex
functionsg, (x, t) making up a vectoq(x, #), and suppose that the potential can be expressed as

N
V(x, 1) =—q(x, 07q0, 0" ==Y lgu(x, 0% 7
n=1

2. Splitthe PDE into two ODEs, one in space and one in time, with a paramétetu(x, ¢, A) be a vector ofv +1
components, whose first componendis, ¢, A). Again consider the system (3) where this time the matiices
andB are given by

L[ -2 qex, )" B_ 1 4r2 +iV(x, 1)  —@r+i0)q(x, )"
| —qx, 0)* 0 ’ T2l @v—idnqx, D iql 0, 0T

Itis not hard to see that if these two ODESs can be simultaneously solve@far, 1), then the functiomp (x, 7, 1)
solves the Sclidinger equation with potentidd (x, ¢).

3. Require that the ODESs can be simultaneously solved far atis places nonlinear constraints on the functions
gn(x, ). In this case, the compatibility condition (5) yields the vector nonlinear&@thger equation for the
componentg, (x, t)

(8)

N

, 1

|a,qn+§a§qn+ > lgj*lan=0. n=1,....N. 9)
j=1

This is the system studied by Manakov [2] in the cAse- 2. The nonlinear system (9) is integrable forlby
virtue of its representation as the compatibility condition of the two linear problems of its Lax pair (3) with the
matrices (8). Note that this Lax pair differs from the usual Lax pair for Eq. (9), posed for a v&etar 1), by
an exponential gauge transformationt, 7, 1) = u(x, ¢, 1) exp(i(Ax + A2r)). The reason we choose the gauge
we do is precisely so that the first componenuothe functiong (x, ¢, 1), satisfies (1). By contrast, the first
component of the vectar does not satisfy any simple linear equations that do not coatain
We will call time-dependent potential functions of the form (7) wiege, ¢) satisfies (9separable The three steps
of the separation scheme above show that for separable potential functions it is again possible to identify a family
of modesyp (x, ¢, A) that satisfy the linear Sctdinger equation (1) for each and whose spatial and temporal be-
haviors are independently specified by ODEs. Unlike those potentials satisfying (6), for which the more traditional
method of separation of variables works, separable potential functions (7) can have complicated time dependence.
The complexity available in the family of separable potentials increases with the number of compdhdnts,
fact, there is some evidence [3] that a quite general (nonseparable) attractive pétéentialcan be approximated
pointwise inx andt by a sequencgV, (x, t)} of separable potentials. This pointwise convergence relies on allowing
the number of components to increase.
Having a family of mode® (x, ¢, A) satisfying the time-dependent Sédinger equation (1) is certainly useful,
but it is not necessarily the case that these modes may be superposed to form the general solution for initial data



516 P.D. Miller, N.N. Akhmediev/Physica D 123 (1998) 513-524

fo(x) in some desired class. Of course, for well-behaved stationary poteiitjat@mpleteness of states follows

from the spectral theorem for self-adjoint operators [4]. Below, we intend to show that for a large sub-class of
separable potentials, the scheme described above yields the solution of the initial value problem for (1) for absolutely
continuous initial datgp(x) in L1. This result will play the same role for these separable potentials that the spectral
theorem plays for stationary potentials. It thus places a large set of time-dependétisgdar equations on the

same footing as their stationary analogs.

The rest of this paper is organized as follows. In Section 2 the particular sub-class of separable potentials (7)
corresponding td/-soliton solutions of the nonlinear system (9) will be introduced, and the corresponding modes
¢ (x, t, 1) will be constructed as well. Section 3 contains the main result of this paper, a proof that far, filked
modesp (x, t, 1) may be uniquely superposed to expand any absolutely continuofisiction of x. In Section 4
we briefly show how to use this completeness relation to solve the initial value problem for (1), giving a modal
expansion formula expressing the solution in terms of the initial data. We conclude in Section 5 by discussing some
extensions to more general separable potentials of the form (7).

Some, but not all, of our results have been obtained by others using different methods. Nogami and Warke [5]
have found several particular solutions to the linear equation (1) in their approach to multisoliton solutions of
the nonlinear problem (9). Indeed, superpositions of the funcijQus, ) themselves form amw-dimensional
manifold of particular solutions of (1) whén(x, ) is separable. Other authors [1,6] have exploited the well-known
connection [7-10] between the time-dependent &tihger equation (1) and the Kadomtsev—Petviashvili (KP)
equation to present families of particular solutions of (1) for certain poteritigts¢). The reason that both the
vector nonlinear Sckidinger system (9) and the KP equation can be used to solve (1) is that the integrable dynamics
of the former can be embedded within the latter for any number of compoNdBi{sThe works developing inverse-
scattering machinery for the two-dimensional operator in (1) with a view toward linearizing the KP equation [7—10]
suggest that there are enough eigenfunctions to expand many more functiormof than just the potential
itself, and thus these techniques could likely reproduce or even extend our results. However, the advantage of
using the vector nonlinear Sédinger system (9) as the source of integrability of the potential is that its Lax pair
representation allows the temporal evolution of each mgde:, 1) to be separated from its corresponding spatial
description in a way that obviously generalizes the simple procedure that applies to stationary potentials.

2. Algebraic construction of multisoliton separable potentials and modes

In this section, we will present a sub-class of separable poteritiglsr) that can be specified along with
their modesp (x, ¢, 1) by algebraic operations only. These correspond taWhsoliton solutions of the nonlinear
system (9). A basis of simultaneous solutions of the Lax pair is constructed in the following manner, a generalization
for arbitrary N of the familiar procedure foN = 1 andN = 2. Fix the number of componend$, and choose an
unrelated positive integeW. A fundamental solution matrix of (3) is sought in the form

M-1 o 2 T
Fe 0 = [ 1M 1yy1+ 3 APF0 (r, gy | | SPCAGE A7)0 (10)
Z 0 1y

Here, the symbol denotes theD x D identity matrix. We denote the first column Bfby u(x, ¢, A) and the
submatrix of remaining columns Qy(x, ¢, »). The matrix coefficient&”) (x, r) are determined by choosing
distinct complex numbers; in the upper half planel complex vectord® of N components each, and then
insisting that

u(x, £, Ax) = U(x, £, A)b®*, Ux, 1, A5) = —u(x, 1, AHb®T, (11)
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fork =1, ..., M. Dimension counting arguments based on Liouville’s theorem can then be employed to show that
the columns of will be simultaneous solutions of the Lax pair as long as one defines

qn(x, 1) = 2iF" P x, ). (12)

More precisely, the argument begins with the observation that the matid¢es L)F and (3; — B)F satisfy
the relations (11) becausedoes. Liouville’s theorem is used to show that the linear space of matrices having the
form (10) up to a scalar multiple and satisfying relations (11) is one-dimensional. Wihthe) chosen according
to (12), one then finds that botld, — L)F and (3; — B)F are in this one-dimensional linear space with leading
coefficient zero (the latter part of the statement is shown by asymptotic analysis of (3) fox)lafgés implies that
the two matrices vanish identically, and tlvais a simultaneous solution of the two linear problems. It then follows
that the functiong,, (x, r) satisfy the compatibility condition of (3), the vector nonlinear Sclimger equation (9).

The first element oli(x, ¢, A) is, for eachi, a solution of the linear Sctdinger equation (1) with potential
function

N

2

Ve =—4% ‘F{fj;ﬁ(x, t)’ . (13)
n=1

Explicitly, this element takes the form

M-1
¢, r.0) = | AN+ 3T APFD (o) | exp(—2iGu + 2%0)). (14)
p=0
The data seDy 3 = {A1, ..., Ay, bD, ..., b} thus yields, by solving the system of linear algebraic equa-

tions (11) for the elements 617 (x, ¢), both an explicit separable potentiaix, r) and a family of mode# (x, ¢, 1)
parametrized by.

A separable potential constructed in this manner generically models the interaciiomoting potential wells.
By straightforward asymptotic analysis of the defining relations (11) in a frame of reference moving with fixed
velocity, one can show that as—> +oo, the potential takes the form

M
V.t~ Vi, (15)

k=1
with

VE(x, 1) = —4pf secR(2pk(x + 20kt) — 55), (16)

wherei, = oy + ip; and WheraSki are constants that depend on the elements of the vextdrdhis asymptotic
expression holds as long as the velocitigsre distinct; some results for nondistinct velocities appear in [11,12].
Each of the asymptotic component WGH,& (x, t) has a single bound state. The way that these bound states interact
as the wells come together for finitecan be investigated [13,14], yielding the result that a superposition of the
isolated bound states prior to interaction is always converted into a superposition of isolated bound states after the
interaction, with no loss. Explicit asymptotic calculations carried out for larpgive expressions for the field
amplitude in each well as — +o0 in terms of the corresponding amplitudesras> —oo. Waves that are not
confined to the potential wells as— —oo are scattered and lost.

On the other hand, this asymptotic analysis says nothing about the behavior of waves moving in the potential
V (x, t) for finite x and¢, especially in regions where tidé solitons inq(x, r) are interacting nonlinearly. During the
interaction, it is not clear what kind of waves are bound states that will ultimately be captured by th@,j?\(ails*),
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and what kind of waves will ultimately be scattered. The problem of understanding wave propagation far finite
andr is of special interest because we expect separ@abboliton potentials to uniformly approximate arbitrary
attractive potentials in compact subsets of ther) plane. Solving the initial value problem for the Sgtinger
equationinthese regions will be possible after we have established the completeness relation for théxmaodes

in the next section.

3. Completeness of states

In this section, we will show that, for fixed there are enough modesgx, ¢, ») to expand any absolutely
continuous functionf (x) in L1. We will also give explicit formulas for the unique expansion coefficients. This
completeness relation is the tool that we will need to be able to express an arbitrary initial condition as a superposition
of modes and hence solve the initial value problem for the lineard8ahyer equation (1).

Define the weight functiomw (1) by

1 M
w) =~ [To—rto—ap~t 17)
k=1

Also, denote the residues by

wr = lim (L — AHwR). (18)
)\%)\I"f

Theorem 1.Lett be fixed but arbitrary, and lef(x) € L1 be absolutely continuous. For reglset

foy = f F@)@(x, 1, )% dx, (19)
andfork =1,..., M, set
fio = f F@)P(x, 1, Ae)* dr. (20)
Then
R M
f(x):RIi_EnOO/f(k)w(k)¢(x,t,k)dk+2niZﬂwk¢(x,t,kz). (21)
R k=1

Remark. The fact that the modes(x, 7, A) form a complete set in this sense is suggested by the fact that for large
A, @ (x, 1, 1) behaves as a family of exponential functions:

(x,1,2) =AM exp(—2i(Ax + 2%0) (L + O(A™Y)), (22)

which are known to be complete. Roughly speaking, the proof is based on this observation. Similar arguments have
been used successfully to prove completeness of other families of functions [15].
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Proof. For fixedx andt¢, ¢ (x, ¢, A) is an entire function of, with behavior for large. given by (22). Thus, for
finite z, both integrals

I_(t,z,)) = / fF)P(x, 1, A*)* dx, I.(t,z,)) = f f)P(x,t, —A")* dx, (23)
are analytic for Ingx) < 0. Now, forR > max|A| set
gr(x,t,z) = f[w(k)qﬁ(x, L, I (t, 2, M) +Fw(=N)p(x,t, —A)I-(t, z, A)]dA, (24)
Cr

whereCy, is the contour from-R to R along the circle of radiu® in the lower half plane.
Lemma 1.The functiongr(x, ¢, z) is independent of.

Proof of Lemma 1.Using Fubini's theorem to exchange the order of integration, we have

22
gr(x.1.22) — gr(x.1.21) =ff(y)1(x,y,r> dy. (25)
21
where
I(x,y,1) = /¢(x,t,k)¢(y,t,k*)*w(k) dx, (26)
Cr

andCry, is the positively oriented circular closed contour of radRusentered ak = 0. Let us show thai (x, y, t)
vanishes by evaluating the integral using the residue theorem. Begatise 1) is entire, all poles of the integrand
are contributed by the weight functian(i). Explicitly

M M-1 M-1
Iy, n=21iy |+ Y D@ | [+ 3 W FD 50" | wiexp(—2iicx — y))
k=1 p=0 p=0
M-1 M-1
+ (M + D EP @ | [ M+ Y PR Gt | weexp=2ix (e — ). (27)
p=0 p=0
Eliminating F{Z)(x, £, ..., Fl(f;\),+1(x, t) from relations (11) gives

M-1
WM+ N AP FD (x| exp=2i(x + 321)
p=0

M M M-1
== D DMy | MM DD MR () | exp=2iGix + 2%), (28)
m=1k=1 p=0

whereh,,; are the elements of the inverse of the Vandermonde matrix
1 A .- kgl—l
A=|1 : , (29)

1 Ay .- x%*l
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andgy; = b®Th)™ are the elements of a Hermitean matrix. Then, we can write

M M
ICey 1) =2m10) Y fakm + o vk (X, 3. 1), (30)
k=1m=1
where
M .
o = —wf YA, (31)
j=1
and
M-1 M-1
p=0 p=0
x exp(—2i(A5 x 4+ A% 21) expi(ux + A21)). (32)

Thus, it suffices to show tha#,, + «;, = 0, a condition that depends only on the numBersThis condition is
equivalent to the statement that the matrix

ATdiagws, ..., wi)A (33)

is skew-Hermitean. But this matrix is obviously symmetric, and it can be shown that its elements are all imaginary.
This ends the proof of Lemma 1.0

Now definefg(x) by

1 r _ r .
fer == | { [ rorexm-2ine—mar+ [ o exp(zu»(x—y))dy} 1. (34)
CE —00 X
It follows from the Fourier inversion theorem that
Jim /@)~ fr()] =0. (35)

Lemma 2.Let x, ¢, andz be fixed. Then
lim |gr(x,t,2) — frR(x)| = 0. (36)
R—00

Proof of Lemma 2By Lemma 1, it suffices to consider= x. We have

Q(x,y. 1, 2) f(y) exp(—2ir(x — y)) dy

gr(x 1, x) — fR<x)=f
&

+ / Q(x, y, 1, =) f(y) eXp2ir(x — y))dyi| di, (37)

where

. 1
OCx,y, 1, 2) =¢(x, 1, )P (y. 1, 1) w(R) exp2ir(x — y)) — p (38)
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It follows from relations (11) that botl® (x, y, ¢, ) andd, Q(x, y, t, ) are Q|r|~1) uniformly in y for largex.
Integrating by parts,

gr(x,1,x) — fR(x):/ |:{Q(x,x,t,)») + 0, x, 1, =)} f(x)

Cr

- f (0,00, y, 1,2 - fFO) + QCx, y, 1, 1) f' (1)} exp(—2ir(x — y)) dy

2ir°
(39)

i . .
+ /{ayQ(.X, . 1, _)‘) ' f()’)+ Q(xv Y. 1, _)‘)f/(y)}exqzu‘(x —)’))d)’i| iy

From our choice of = x, the exponentials are all bounded by 1, ahid= R on the contouC, of lengthnR, so
since f (x) is an absolutely continuous; function,

|gR(-x’ t»x) - fR(x)| = % {'f(-x” Sup{'Q(-xsxv tv)‘)| + |Q(.X,.X, z, _)‘)|}

reCp

+ 1 fll1 sup sug|dy Q(x, y, t, M)+ |9y Q(x, y, £, —A)[}
reCp Y

+ 11/ sup sup|Q(x, y, £, M| + 1Q(x, y, 1, —?»)I}:| , (40)
reCp Y

which vanishes for larg& by our uniform estimates o@. This proves Lemma 2. O
Becausefg (x) converges tgf (x), we now have the result that for any fixedz, andr,

Sy = lim gr(x.1,2). (41)

Applying the residue theorem igr (x, ¢, z) to bring the contouC}, to the real axis gives discrete contributions
from A = A7 andA = —Ax:

R R

gR(x,z,z)=/w(x)¢(x,z,,\)1<(t,z,x) dk+/w(—k)¢(x,t, —M) 1= (t,z, ») dA
R —R
M
+ 27i Z[qs(x, LA, 2, ADwi — ¢ (x, 1, M) s (1, 2, =) w]]. (42)
k=1

Using the symmetry of the integrand on the real axis the first terms can be combined:

R
gR<x,r,z)=/f(x>w(x)¢(x,t,x)dx
—R

M

+27i ) [pCr, £, AT (t, 2 AWk — p(x. 1, M) - (¢, 2, —h)wi]. (43)
k=1
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Finally, we know from Lemma 1 thatz (x, ¢, z) is independent of, and since we no longer require any analytic
properties of the integrand, we can pass to the lymi +oco. This yields the desired expression

R M
gr(x,t, +00) = / FOOwWMG(x 1. 1) A+ 271 Y frwed (x, 1. 27). (44)
—R k=1

and completes the proof of Theorem 13

4. Solution of the initial value problem

Letus now describe how to use the completenessrelation established above to solve the initial value problem for the
Schiddinger equation (1) for separalle-soliton potentials. Suppose thAtx, r) satisfies the linear Scbdinger
equation (1) with potential (7), and thgt(x, r) and 3, f (x, ) both vanish asx — =oc. Then, using (1) and
integrating by parts, it is easy to show that the transform quantities

f(k)i/f(x,t)¢>(x,t,k)*dx fki/f(x,t)tb(x,t,kk)*dx, k=1,...,M, (45)

are independent af They may thus be calculated from the initial dgta:, 0) = fo(x). As long as the solution
for this initial data is unique and remains in the class of absolutely continlipfinctions ofx, it is given by the
modal expansion formula

k=1

R M
fa.ny = lim /f(x)w(,\)¢(x,z,)\)dx+2nikawm(x,r,)\;;). (46)
—R

This formula explicitly expresses the solutigitx, ¢) of the initial value problem for (1) in terms of the initial
data fo(x). The discrete part of the formula represents solution components that forldaege confined to the
individual moving potential weIIsti (x, t), while the integral term describes waves that scatter from the potential
V(x, t). Although mathematically distinct for ail the two parts of the formula are difficult to distinguish from
each other in regions where the solitongitx, ¢) are not well-separated.

5. Conclusion

The arguments above show that the initial value problem for the linead&idger equation (1) with a separable
M-soliton potentiaV (x, t) —which can have very complicated time dependence, especially in the interaction region
of the solitons — can be solved by separation of variables just as in the case of stationary pdteatiédls). In a
sense, the only new feature is that in the present case, the¢node 1) cannot be expressed as a simple product
of a function ofx and a function of.

The M-soliton potentials considered in detail in this paper are, however, a subset of all separable potentials, and
in some sense our results should extend to separable potentials that come from rapidly decaying gotutipns
of (9) for which there is a nonzero reflection coefficient in the inverse-scattering transform domain. It is a familiar
but imprecise notion that th&f-soliton solutions of the vector nonlinear Setlinger equation (9) are dense in
the set of all rapidly decaying solutions, with radiative components of the solution encoded in a nonzero reflection
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coefficient being somehow represented as a “sea of solitons”. Unfortunately, the presence of a nonzero reflection
coefficient introduces genuine technical difficulties in extending our completeness proof to more general separable
potentials. Because no longer there exists a single mode furietign, 1) that is analytic in the wholg plane, one
introduces the Jost solutions of the linear problems (3) making up the Lax pair. In particular, one finds functions
satisfying (1), (x, ¢, 1), analytic for ImA) < 0 and¢~(x, ¢, A), analytic for Imx) > 0. These functions are

further characterized as being eigenfunctions, with eigenvaloéthe operatorg.® with

1 1 T
(LT fHx) = —sz(x) + zq(x, t)T/q(y, N*f(y)dy, (47)

and with L~ being theL, adjoint of L*. One constructs from these two modal functions the quantity that is the
analog ofgr (x, ¢, z), and must prove that it (or perhaps its limit for lar@is independent of. This step is crucial
in controlling the exponential growth for larde since it allows us to consider at first= x, where there is no
growth at all, and then after the fact to sentb +oc. The proof ofz independence must follow a different path,
since the presence of a reflection coefficient means that it will no longer suffice to calculate residues. We expect
to overcome this technical difficulty and present the completeness relation for the full set of rapidly decreasing
separable potentials in a future publication.

Arelated direction of research is the precise development of the approximation theory that will allédiSgar
equations with arbitrary attractive and decaying time-dependent poteVitials) to be identified with sequences
of separable equations. Such a theory would be a powerful tool in the analysis of solutions to genécih§ehr
equations in compact regions of the r) plane.

Another path we would like to follow is the consideration of alternative splittings of thed8atger equation (1)
that fall into the same framework as described in Section 1. One such splitting is closely related to that described in
this paper, and yields the defocusing variant of the vector nonlinead@iciger equation (9) as the compatibility
condition. There is a class of algebraic potentlals, ¢) in this case as well, corresponding to the interaction® of
dark solitons in the vector-valued fietfx, 7). After subtracting a constant background potential, these potentials
also represent interacting potential wells. The moglés, ¢, A) can be found explicitly, and have been studied
[16]. Proving completeness of states in this case will require deforming contours on Riemann surfaces that are
(N + 1)-sheeted genus 0 coverings of thlane. The resulting completeness relation involves integrals on several
sheets of the surface and will be given elsewhere. We also suspect that other useful splittings may be possible, with
compatibility conditions that do not resemble the vector nonlineard@ihger equation at all.
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