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Abstract

With the use of a variant of the method of separation of variables, the initial value problem for the time-dependent linear
Schr̈odinger equation is solved exactly for a large class of potential functions related to multisoliton interactions in the vector
nonlinear Schr̈odinger equation. Completeness of states is proved for absolutely continuous initial data inL1. Copyright ©
1998 Elsevier Science B.V.
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1. Introduction

The nonperturbative solution of the initial value problem for the linear Schrödinger equation

i∂tf + 1
2∂2

xf − V (x, t)f = 0 (1)

subject to the initial conditionf (x, 0) = f0(x) is a central problem of quantum mechanics in one space dimension,
whereV (x, t) is the potential energy of a particle moving along thex-axis. In such quantum applications, the
problem (1) for time-dependent potentials has not received nearly as much attention as the stationary case where
V = V (x). One reason for this is that if the potential is time-dependent at all, then often the physical mechanism
responsible for the dynamics of the potential energy function couplesV to the wave functionf in a symmetrical
way that leads to a nonlinear system. For example, the Maxwell–Bloch equations of quantum optics arise in this
way. Exact solutions can be found for some of these nonlinear problems [1].

On the other hand, the linear equation (1) also comes up in the study of the classical optics of paraxial beams in
planar waveguides. Here,x andt are both spatial coordinates in a planar dielectric medium; the functionf (x, t) is
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the slowly varying envelope of an electric field for a stationary monochromatic light beam propagating primarily in
thet direction, and−V (x, t) is proportional to the spatial variation of the refractive index. In this case, unlike in one-
dimensional quantum mechanics,t dependence inV (x, t) without coupling to another system is natural because
V represents fixed inhomogeneities in a macroscopic medium. The time-dependent Schrödinger equation (1) is
used frequently to model the behavior of passive linear integrated optical devices like waveguide tapers, waveguide
junctions, and power splitters. Althought dependence in the potential functionV is quite natural from the modern
point of view of optical applications, it seems that many of the techniques currently used in optics are derived
perturbatively from the more classical quantum mechanical theory of stationary potentials. These perturbative
techniques are all variants of coupled mode theory. There would indeed be some value in developing alternative
methods that could be used to study the time-dependent Schrödinger equation without introducing any more small
parameters than are necessary to derive the equation to begin with.

A general strategy in treating the linear problem (1) nonperturbatively is to consider separating the time evolution
from the spatial structure by seeking a family of particular solutionsφ(x, t, λ) of (1) that for eachλ satisfy inde-
pendent ordinary differential equations inx andt . When they exist, these particular solutions are called themodes
of the potential functionV (x, t). This procedure does not work for all potential functionsV (x, t). However, it is
known to apply when the Schrödinger equation is stationary, that is, when the potential does not depend ont . Let
us review the usual procedure of separation of variables, introducing a suggestive formalism. There are three steps:
1. Make an assumption about the form of the potential. TakeV (x, t) = g(x, t) + h(x, t).
2. Use this assumption to split the partial differential equation (PDE) into two ordinary differential equations

(ODEs) with a parameterλ2 playing the role of a separation constant. Thus, take

1
2∂2

xφ − g(x, t)φ = −2λ2φ, i∂tφ − h(x, t)φ = 2λ2φ. (2)

Introducing the vectoru(x, t, λ) = (φ, ∂xφ)T, these ODEs can be written in the form

∂xu = Lu , ∂tu = Bu, (3)

where the matricesL andB are given by

L =

 0 1

−4λ2 + 2g(x, t) 0


 , B = −1

2

[
4iλ2 + 2ih(x, t) 0

2i∂xh(x, t) 4iλ2 + 2ih(x, t)

]
. (4)

It is obvious that if for someλ both ODEs can be simultaneously solved for a functionφ(x, t, λ), then this
function will also satisfy the PDE (1).

3. Demand that these two ODEs can be simultaneously solved for allλ. This will place constraints on the components
g(x, t) andh(x, t) of the potential. The compatibility condition is∂x∂tu = ∂t∂xu, or in terms of the matricesL
andB,

∂tL − ∂xB + [L , B] = 0. (5)

For the particular matrices above, this condition is equivalent to

∂tg(x, t) = 0, ∂xh(x, t) = 0. (6)

Thus, as is well-known, separation of variables in the usual sense works when the potential has the formV (x, t) =
g(x)+h(t). Usuallyh(t) is taken to be zero, and we then recover the family of stationary Schrödinger equations.
The main features of this familiar procedure are the following. First, the modes of the problemφ(x, t, λ) satisfy

the PDE (1) but are obtained rather by finding simultaneous solutions to two compatible ODEs. Second, the modes
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are indexed by a complex parameterλ. The dependence on the parameterλ means that there are often enough of
these solutions to use superposition to construct the solution to the initial value problem for arbitrary initial data in
some class. Thiscompleteness of statesis one of the most important features of the separation of variables procedure.

Our aim is to present an alternative separation procedure within the same framework that applies to more in-
teresting potential functionsV (x, t) and preserves the essential features of modes being obtained from ODEs and
being complete. This means that the splitting of the Schrödinger equation must be such that the compatibility con-
dition (5) admits a broader class of solutions. This can be accomplished by redesigning the separation scheme as
follows:
1. Make a different assumption about the form of the potential. Choose any positive integerN . IntroduceN complex

functionsqn(x, t) making up a vectorq(x, t), and suppose that the potential can be expressed as

V (x, t) = −q(x, t)Tq(x, t)∗ = −
N∑

n=1

|qn(x, t)|2. (7)

2. Split the PDE into two ODEs, one in space and one in time, with a parameterλ. Letu(x, t, λ) be a vector ofN +1
components, whose first component isφ(x, t, λ). Again consider the system (3) where this time the matricesL
andB are given by

L =
[ −2iλ q(x, t)T

−q(x, t)∗ 0

]
, B = −1

2

[
4iλ2 + iV (x, t) −(2λ + i∂x)q(x, t)T

(2λ − i∂x)q(x, t)∗ iq(x, t)∗q(x, t)T

]
. (8)

It is not hard to see that if these two ODEs can be simultaneously solved foru(x, t, λ), then the functionφ(x, t, λ)

solves the Schrödinger equation with potentialV (x, t).
3. Require that the ODEs can be simultaneously solved for allλ. This places nonlinear constraints on the functions

qn(x, t). In this case, the compatibility condition (5) yields the vector nonlinear Schrödinger equation for the
componentsqn(x, t)

i∂tqn + 1

2
∂2
x qn +


 N∑

j=1

|qj |2

 qn = 0, n = 1, . . . , N. (9)

This is the system studied by Manakov [2] in the caseN = 2. The nonlinear system (9) is integrable for allN by
virtue of its representation as the compatibility condition of the two linear problems of its Lax pair (3) with the
matrices (8). Note that this Lax pair differs from the usual Lax pair for Eq. (9), posed for a vectorv(x, t, λ), by
an exponential gauge transformation:v(x, t, λ) = u(x, t, λ) exp(i(λx + λ2t)). The reason we choose the gauge
we do is precisely so that the first component ofu, the functionφ(x, t, λ), satisfies (1). By contrast, the first
component of the vectorv does not satisfy any simple linear equations that do not containλ.

We will call time-dependent potential functions of the form (7) whereq(x, t) satisfies (9)separable. The three steps
of the separation scheme above show that for separable potential functions it is again possible to identify a family
of modesφ(x, t, λ) that satisfy the linear Schrödinger equation (1) for eachλ, and whose spatial and temporal be-
haviors are independently specified by ODEs. Unlike those potentials satisfying (6), for which the more traditional
method of separation of variables works, separable potential functions (7) can have complicated time dependence.
The complexity available in the family of separable potentials increases with the number of components,N . In
fact, there is some evidence [3] that a quite general (nonseparable) attractive potentialV (x, t) can be approximated
pointwise inx andt by a sequence{Vn(x, t)} of separable potentials. This pointwise convergence relies on allowing
the number of components to increase.

Having a family of modesφ(x, t, λ) satisfying the time-dependent Schrödinger equation (1) is certainly useful,
but it is not necessarily the case that these modes may be superposed to form the general solution for initial data
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f0(x) in some desired class. Of course, for well-behaved stationary potentials,L2 completeness of states follows
from the spectral theorem for self-adjoint operators [4]. Below, we intend to show that for a large sub-class of
separable potentials, the scheme described above yields the solution of the initial value problem for (1) for absolutely
continuous initial dataf0(x) in L1. This result will play the same role for these separable potentials that the spectral
theorem plays for stationary potentials. It thus places a large set of time-dependent Schrödinger equations on the
same footing as their stationary analogs.

The rest of this paper is organized as follows. In Section 2 the particular sub-class of separable potentials (7)
corresponding toM-soliton solutions of the nonlinear system (9) will be introduced, and the corresponding modes
φ(x, t, λ) will be constructed as well. Section 3 contains the main result of this paper, a proof that for fixedt , the
modesφ(x, t, λ) may be uniquely superposed to expand any absolutely continuousL1 function ofx. In Section 4
we briefly show how to use this completeness relation to solve the initial value problem for (1), giving a modal
expansion formula expressing the solution in terms of the initial data. We conclude in Section 5 by discussing some
extensions to more general separable potentials of the form (7).

Some, but not all, of our results have been obtained by others using different methods. Nogami and Warke [5]
have found several particular solutions to the linear equation (1) in their approach to multisoliton solutions of
the nonlinear problem (9). Indeed, superpositions of the functionsqn(x, t) themselves form anN -dimensional
manifold of particular solutions of (1) whenV (x, t) is separable. Other authors [1,6] have exploited the well-known
connection [7–10] between the time-dependent Schrödinger equation (1) and the Kadomtsev–Petviashvili (KP)
equation to present families of particular solutions of (1) for certain potentialsV (x, t). The reason that both the
vector nonlinear Schrödinger system (9) and the KP equation can be used to solve (1) is that the integrable dynamics
of the former can be embedded within the latter for any number of componentsN [3]. The works developing inverse-
scattering machinery for the two-dimensional operator in (1) with a view toward linearizing the KP equation [7–10]
suggest that there are enough eigenfunctions to expand many more functions ofx and t than just the potential
itself, and thus these techniques could likely reproduce or even extend our results. However, the advantage of
using the vector nonlinear Schrödinger system (9) as the source of integrability of the potential is that its Lax pair
representation allows the temporal evolution of each modeφ(x, t, λ) to be separated from its corresponding spatial
description in a way that obviously generalizes the simple procedure that applies to stationary potentials.

2. Algebraic construction of multisoliton separable potentials and modes

In this section, we will present a sub-class of separable potentialsV (x, t) that can be specified along with
their modesφ(x, t, λ) by algebraic operations only. These correspond to theM-soliton solutions of the nonlinear
system (9). A basis of simultaneous solutions of the Lax pair is constructed in the following manner, a generalization
for arbitraryN of the familiar procedure forN = 1 andN = 2. Fix the number of componentsN , and choose an
unrelated positive integerM. A fundamental solution matrix of (3) is sought in the form

F(x, t, λ) =

λM1N+1 +

M−1∑
p=0

λpF(p)(x, t)


 [

exp(−2i(λx + λ2t)) 0T

0 1N

]
. (10)

Here, the symbol1D denotes theD × D identity matrix. We denote the first column ofF by u(x, t, λ) and the
submatrix of remaining columns byU(x, t, λ). The matrix coefficientsF(p)(x, t) are determined by choosingM
distinct complex numbersλk in the upper half plane,M complex vectorsb(k) of N components each, and then
insisting that

u(x, t, λk) = U(x, t, λk)b(k)∗, U(x, t, λ∗
k) = −u(x, t, λ∗

k)b
(k)T, (11)
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for k = 1, . . . , M. Dimension counting arguments based on Liouville’s theorem can then be employed to show that
the columns ofF will be simultaneous solutions of the Lax pair as long as one defines

qn(x, t) = 2iF (M−1)
1,n+1 (x, t). (12)

More precisely, the argument begins with the observation that the matrices(∂x − L)F and (∂t − B)F satisfy
the relations (11) becauseF does. Liouville’s theorem is used to show that the linear space of matrices having the
form (10) up to a scalar multiple and satisfying relations (11) is one-dimensional. With theqn(x, t) chosen according
to (12), one then finds that both(∂x − L)F and(∂t − B)F are in this one-dimensional linear space with leading
coefficient zero (the latter part of the statement is shown by asymptotic analysis of (3) for largeλ). This implies that
the two matrices vanish identically, and thatF is a simultaneous solution of the two linear problems. It then follows
that the functionsqn(x, t) satisfy the compatibility condition of (3), the vector nonlinear Schrödinger equation (9).

The first element ofu(x, t, λ) is, for eachλ, a solution of the linear Schrödinger equation (1) with potential
function

V (x, t) = −4
N∑

n=1

∣∣∣F (M−1)
1,n+1 (x, t)

∣∣∣2 . (13)

Explicitly, this element takes the form

φ(x, t, λ) =

λM +

M−1∑
p=0

λpF
(p)

11 (x, t)


 exp(−2i(λx + λ2t)). (14)

The data setDN,M = {λ1, . . . , λM, b(1), . . . , b(M)} thus yields, by solving the system of linear algebraic equa-
tions (11) for the elements ofF(p)(x, t), both an explicit separable potentialV (x, t) and a family of modesφ(x, t, λ)

parametrized byλ.
A separable potential constructed in this manner generically models the interaction ofM moving potential wells.

By straightforward asymptotic analysis of the defining relations (11) in a frame of reference moving with fixed
velocity, one can show that ast → ±∞, the potential takes the form

V (x, t) ∼
M∑

k=1

V ±
k (x, t) , (15)

with

V ±
k (x, t) = −4ρ2

k sech2(2ρk(x + 2σkt) − δ±
k ), (16)

whereλk = σk + iρk and whereδ±
k are constants that depend on the elements of the vectorsb(j). This asymptotic

expression holds as long as the velocitiesσk are distinct; some results for nondistinct velocities appear in [11,12].
Each of the asymptotic component wellsV ±

k (x, t) has a single bound state. The way that these bound states interact
as the wells come together for finitet can be investigated [13,14], yielding the result that a superposition of the
isolated bound states prior to interaction is always converted into a superposition of isolated bound states after the
interaction, with no loss. Explicit asymptotic calculations carried out for large|t | give expressions for the field
amplitude in each well ast → +∞ in terms of the corresponding amplitudes ast → −∞. Waves that are not
confined to the potential wells ast → −∞ are scattered and lost.

On the other hand, this asymptotic analysis says nothing about the behavior of waves moving in the potential
V (x, t) for finitex andt , especially in regions where theM solitons inq(x, t) are interacting nonlinearly. During the
interaction, it is not clear what kind of waves are bound states that will ultimately be captured by the wellsV +

k (x, t),



518 P.D. Miller, N.N. Akhmediev / Physica D 123 (1998) 513–524

and what kind of waves will ultimately be scattered. The problem of understanding wave propagation for finitex

and t is of special interest because we expect separableM-soliton potentials to uniformly approximate arbitrary
attractive potentials in compact subsets of the(x, t) plane. Solving the initial value problem for the Schrödinger
equation in these regions will be possible after we have established the completeness relation for the modesφ(x, t, λ)

in the next section.

3. Completeness of states

In this section, we will show that, for fixedt , there are enough modesφ(x, t, λ) to expand any absolutely
continuous functionf (x) in L1. We will also give explicit formulas for the unique expansion coefficients. This
completeness relation is the tool that we will need to be able to express an arbitrary initial condition as a superposition
of modes and hence solve the initial value problem for the linear Schrödinger equation (1).

Define the weight functionw(λ) by

w(λ)
.= 1

π

M∏
k=1

(λ − λk)
−1(λ − λ∗

k)
−1. (17)

Also, denote the residues by

wk
.= lim

λ→λ∗
k

(λ − λ∗
k)w(λ). (18)

Theorem 1.Let t be fixed but arbitrary, and letf (x) ∈ L1 be absolutely continuous. For realλ, set

f̂ (λ)
.=

∞∫
−∞

f (x)φ(x, t, λ)∗ dx, (19)

and fork = 1, . . . , M, set

f̂k
.=

∞∫
−∞

f (x)φ(x, t, λk)
∗ dx. (20)

Then

f (x) = lim
R→∞

R∫
−R

f̂ (λ)w(λ)φ(x, t, λ) dλ + 2π i
M∑

k=1

f̂kwkφ(x, t, λ∗
k). (21)

Remark.The fact that the modesφ(x, t, λ) form a complete set in this sense is suggested by the fact that for large
λ, φ(x, t, λ) behaves as a family of exponential functions:

φ(x, t, λ) = λM exp(−2i(λx + λ2t))(1 + O(|λ|−1)), (22)

which are known to be complete. Roughly speaking, the proof is based on this observation. Similar arguments have
been used successfully to prove completeness of other families of functions [15].
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Proof. For fixedx and t , φ(x, t, λ) is an entire function ofλ, with behavior for largeλ given by (22). Thus, for
finite z, both integrals

I<(t, z, λ) =
z∫

−∞
f (x)φ(x, t, λ∗)∗ dx, I>(t, z, λ) =

∞∫
z

f (x)φ(x, t,−λ∗)∗ dx, (23)

are analytic for Im(λ) < 0. Now, forR > max|λk| set

gR(x, t, z) =
∫

C−
R

[w(λ)φ(x, t, λ)I<(t, z, λ) + w(−λ)φ(x, t,−λ)I>(t, z, λ)] dλ, (24)

whereC−
R is the contour from−R to R along the circle of radiusR in the lower half plane.

Lemma 1.The functiongR(x, t, z) is independent ofz.

Proof of Lemma 1.Using Fubini’s theorem to exchange the order of integration, we have

gR(x, t, z2) − gR(x, t, z1) =
z2∫

z1

f (y)I (x, y, t) dy, (25)

where

I (x, y, t) =
∫
CR

φ(x, t, λ)φ(y, t, λ∗)∗w(λ) dλ, (26)

andCR is the positively oriented circular closed contour of radiusR centered atλ = 0. Let us show thatI (x, y, t)

vanishes by evaluating the integral using the residue theorem. Becauseφ(x, t, λ) is entire, all poles of the integrand
are contributed by the weight functionw(λ). Explicitly

I (x, y, t) = 2π i
M∑

k=1


λM

k +
M−1∑
p=0

λ
p
k F

(p)

11 (x, t)





λM

k +
M−1∑
p=0

λ
p
k F

(p)

11 (y, t)∗

 w∗

k exp(−2iλk(x − y))

+

λ∗

k
M +

M−1∑
p=0

λ∗
k
p
F

(p)

11 (x, t)





λ∗

k
M +

M−1∑
p=0

λ∗
k
p
F

(p)

11 (y, t)∗

 wk exp(−2iλ∗

k(x − y)). (27)

EliminatingF
(p)

1,2 (x, t), . . . , F
(p)

1,N+1(x, t) from relations (11) gives

λM

j +
M−1∑
p=0

λ
p
j F

(p)

11 (x, t)


 exp(−2i(λjx + λ2

j t))

= −
M∑

m=1

M∑
k=1

λm−1
j h∗

mkβkj


λ∗

k
M +

M−1∑
p=0

λ∗
k
p
F

(p)

11 (x, t)


 exp(−2i(λ∗

kx + λ∗
k

2
t)), (28)

wherehmk are the elements of the inverse of the Vandermonde matrix

Λ =




1 λ1 · · · λM−1
1

...
...

...

1 λM · · · λM−1
M


 , (29)
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andβkj = b(k)Tb(j)∗ are the elements of a Hermitean matrix. Then, we can write

I (x, y, t) = 2π i
M∑

k=1

M∑
m=1

{αkm + α∗
mk}γmk(x, y, t), (30)

where

αkm = −w∗
k

M∑
j=1

λ
j−1
k h∗

jm, (31)

and

γmk(x, y, t) = βmk


λ∗

m
M +

M−1∑
p=0

λ∗
m

p
F

(p)

11 (x, t)





λM

k +
M−1∑
p=0

λ
p
k F

(p)

11 (y, t)∗



× exp(−2i(λ∗
mx + λ∗

m
2
t)) exp(2i(λkx + λ2

kt)). (32)

Thus, it suffices to show thatαkm + α∗
mk = 0, a condition that depends only on the numbersλk. This condition is

equivalent to the statement that the matrix

ΛTdiag(w∗
1, . . . , w∗

M)Λ (33)

is skew-Hermitean. But this matrix is obviously symmetric, and it can be shown that its elements are all imaginary.
This ends the proof of Lemma 1.2

Now definefR(x) by

fR(x) = 1

π

∫

C−
R




x∫
−∞

f (y) exp(−2iλ(x − y)) dy +
∞∫

x

f (y) exp(2iλ(x − y)) dy


 dλ. (34)

It follows from the Fourier inversion theorem that

lim
R→∞

|f (x) − fR(x)| = 0. (35)

Lemma 2.Let x, t , andz be fixed. Then

lim
R→∞

|gR(x, t, z) − fR(x)| = 0. (36)

Proof of Lemma 2.By Lemma 1, it suffices to considerz = x. We have

gR(x, t, x) − fR(x) =
∫

C−
R




x∫
−∞

Q(x, y, t, λ)f (y) exp(−2iλ(x − y)) dy

+
∞∫

x

Q(x, y, t,−λ)f (y) exp(2iλ(x − y)) dy


 dλ, (37)

where

Q(x, y, t, λ)
.= φ(x, t, λ)φ(y, t, λ∗)∗w(λ) exp(2iλ(x − y)) − 1

π
. (38)
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It follows from relations (11) that bothQ(x, y, t, λ) and∂yQ(x, y, t, λ) are O(|λ|−1) uniformly in y for largeλ.
Integrating by parts,

gR(x, t, x) − fR(x) =
∫

C−
R


{Q(x, x, t, λ) + Q(x, x, t,−λ)}f (x)

−
x∫

−∞
{∂yQ(x, y, t, λ) · f (y) + Q(x, y, t, λ)f ′(y)} exp(−2iλ(x − y)) dy

+
∞∫

x

{∂yQ(x, y, t,−λ) · f (y) + Q(x, y, t,−λ)f ′(y)} exp(2iλ(x − y)) dy


 dλ

2iλ
.

(39)

From our choice ofz = x, the exponentials are all bounded by 1, and|λ| = R on the contourC−
R of lengthπR, so

sincef (x) is an absolutely continuousL1 function,

|gR(x, t, x) − fR(x)| ≤ π

2


|f (x)| sup

λ∈C−
R

{|Q(x, x, t, λ)| + |Q(x, x, t,−λ)|}

+ ‖f ‖1 sup
λ∈C−

R

sup
y

{|∂yQ(x, y, t, λ)| + |∂yQ(x, y, t,−λ)|}

+ ‖f ′‖1 sup
λ∈C−

R

sup
y

{|Q(x, y, t, λ)| + |Q(x, y, t,−λ)|}

 , (40)

which vanishes for largeR by our uniform estimates onQ. This proves Lemma 2.2
BecausefR(x) converges tof (x), we now have the result that for any fixedx, z, andt ,

f (x) = lim
R→∞

gR(x, t, z). (41)

Applying the residue theorem togR(x, t, z) to bring the contourC−
R to the real axis gives discrete contributions

from λ = λ∗
k andλ = −λk:

gR(x, t, z) =
R∫

−R

w(λ)φ(x, t, λ)I<(t, z, λ) dλ +
R∫

−R

w(−λ)φ(x, t,−λ)I>(t, z, λ) dλ

+ 2π i
M∑

k=1

[φ(x, t, λ∗
k)I<(t, z, λ∗

k)wk − φ(x, t, λk)I>(t, z,−λk)w
∗
k ]. (42)

Using the symmetry of the integrand on the real axis the first terms can be combined:

gR(x, t, z) =
R∫

−R

f̂ (λ)w(λ)φ(x, t, λ) dλ

+ 2π i
M∑

k=1

[φ(x, t, λ∗
k)I<(t, z, λ∗

k)wk − φ(x, t, λk)I>(t, z,−λk)w
∗
k ]. (43)
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Finally, we know from Lemma 1 thatgR(x, t, z) is independent ofz, and since we no longer require any analytic
properties of the integrand, we can pass to the limitz → +∞. This yields the desired expression

gR(x, t,+∞) =
R∫

−R

f̂ (λ)w(λ)φ(x, t, λ) dλ + 2π i
M∑

k=1

f̂kwkφ(x, t, λ∗
k), (44)

and completes the proof of Theorem 1.2

4. Solution of the initial value problem

Let us now describe how to use the completeness relation established above to solve the initial value problem for the
Schr̈odinger equation (1) for separableM-soliton potentials. Suppose thatf (x, t) satisfies the linear Schrödinger
equation (1) with potential (7), and thatf (x, t) and ∂xf (x, t) both vanish asx → ±∞. Then, using (1) and
integrating by parts, it is easy to show that the transform quantities

f̂ (λ)
.=

∞∫
−∞

f (x, t)φ(x, t, λ)∗ dx f̂k
.=

∞∫
−∞

f (x, t)φ(x, t, λk)
∗ dx, k = 1, . . . , M, (45)

are independent oft . They may thus be calculated from the initial dataf (x, 0) = f0(x). As long as the solution
for this initial data is unique and remains in the class of absolutely continuousL1 functions ofx, it is given by the
modal expansion formula

f (x, t) = lim
R→∞

R∫
−R

f̂ (λ)w(λ)φ(x, t, λ) dλ + 2π i
M∑

k=1

f̂kwkφ(x, t, λ∗
k). (46)

This formula explicitly expresses the solutionf (x, t) of the initial value problem for (1) in terms of the initial
dataf0(x). The discrete part of the formula represents solution components that for large|t | are confined to the
individual moving potential wellsV ±

k (x, t), while the integral term describes waves that scatter from the potential
V (x, t). Although mathematically distinct for allt , the two parts of the formula are difficult to distinguish from
each other in regions where the solitons inq(x, t) are not well-separated.

5. Conclusion

The arguments above show that the initial value problem for the linear Schrödinger equation (1) with a separable
M-soliton potentialV (x, t) – which can have very complicated time dependence, especially in the interaction region
of the solitons – can be solved by separation of variables just as in the case of stationary potentialsV = V (x). In a
sense, the only new feature is that in the present case, the modeφ(x, t, λ) cannot be expressed as a simple product
of a function ofx and a function oft .

TheM-soliton potentials considered in detail in this paper are, however, a subset of all separable potentials, and
in some sense our results should extend to separable potentials that come from rapidly decaying solutionsq(x, t)

of (9) for which there is a nonzero reflection coefficient in the inverse-scattering transform domain. It is a familiar
but imprecise notion that theM-soliton solutions of the vector nonlinear Schrödinger equation (9) are dense in
the set of all rapidly decaying solutions, with radiative components of the solution encoded in a nonzero reflection
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coefficient being somehow represented as a “sea of solitons”. Unfortunately, the presence of a nonzero reflection
coefficient introduces genuine technical difficulties in extending our completeness proof to more general separable
potentials. Because no longer there exists a single mode functionφ(x, t, λ) that is analytic in the wholeλ plane, one
introduces the Jost solutions of the linear problems (3) making up the Lax pair. In particular, one finds functions
satisfying (1),φ+(x, t, λ), analytic for Im(λ) < 0 andφ−(x, t, λ), analytic for Im(λ) > 0. These functions are
further characterized as being eigenfunctions, with eigenvalueλ, of the operatorsL± with

(L+f )(x) = − 1

2i
∂xf (x) + 1

2i
q(x, t)T

∞∫
x

q(y, t)∗f (y) dy, (47)

and withL− being theL2 adjoint ofL+. One constructs from these two modal functions the quantity that is the
analog ofgR(x, t, z), and must prove that it (or perhaps its limit for largeR) is independent ofz. This step is crucial
in controlling the exponential growth for largeλ, since it allows us to consider at firstz = x, where there is no
growth at all, and then after the fact to sendz to +∞. The proof ofz independence must follow a different path,
since the presence of a reflection coefficient means that it will no longer suffice to calculate residues. We expect
to overcome this technical difficulty and present the completeness relation for the full set of rapidly decreasing
separable potentials in a future publication.

A related direction of research is the precise development of the approximation theory that will allow Schrödinger
equations with arbitrary attractive and decaying time-dependent potentialsV (x, t) to be identified with sequences
of separable equations. Such a theory would be a powerful tool in the analysis of solutions to general Schrödinger
equations in compact regions of the(x, t) plane.

Another path we would like to follow is the consideration of alternative splittings of the Schrödinger equation (1)
that fall into the same framework as described in Section 1. One such splitting is closely related to that described in
this paper, and yields the defocusing variant of the vector nonlinear Schrödinger equation (9) as the compatibility
condition. There is a class of algebraic potentialsV (x, t) in this case as well, corresponding to the interactions ofM

dark solitons in the vector-valued fieldq(x, t). After subtracting a constant background potential, these potentials
also represent interacting potential wells. The modesφ(x, t, λ) can be found explicitly, and have been studied
[16]. Proving completeness of states in this case will require deforming contours on Riemann surfaces that are
(N +1)-sheeted genus 0 coverings of theλ-plane. The resulting completeness relation involves integrals on several
sheets of the surface and will be given elsewhere. We also suspect that other useful splittings may be possible, with
compatibility conditions that do not resemble the vector nonlinear Schrödinger equation at all.
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