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Self-similar evolution of self-written waveguides
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Numerical simulations show that channel waveguides can be self-written in photosensitive materials.

As the

waveguide evolves, its shape remains approximately constant, even though its depth and width change. We

find an exact solution that describes this evolution, which we show to be self-similar.
peaked beams form waveguides that converge to this solution.

OCIS codes: 130.2790, 190.5940.

It has been shown experimentally that waveguides
can be self-written in photopolymers! and UV-cured
epoxy.? Numerical simulations® indicate that fairly
uniform channel waveguides can also be self-written
in photosensitive glasses. We have shown theoreti-
cally that the refractive-index changes that occur in
photosensitive glass are large enough to form self-
written channel waveguides as long as the input beam
is not too narrow.> The only existing analytical de-
scription of this process uses series expansions to
describe features that are precursors to waveguide
formation.* However, the series cannot describe the
subsequent formation of the channel waveguide. Here
we use similarity techniques® to study this stage of
the evolution, which leads to what is to our knowledge
the first exact solution to the differential equations de-
scribing self-writing. We also show numerically that,
for a wide range of input beams, the self-written chan-
nel evolves toward this solution, which suggests that it
is stable.

Similarity techniques have been used to study Hill
gratings, which are formed by internal writing in
a photosensitive fiber,® and to describe light propa-
gation in an inverted two-level medium.” Menyuk
et al.® also used similarity methods to study stimulated
Raman scattering, and they suggest that similar-
ity techniques are generally useful for systems with
memory. Photosensitive glasses and photopolymers
do exhibit such a memory. We consider photosensitive
materials that experience permanent increases in re-
fractive index as a result of exposure at specific wave-
lengths. Self-written waveguides can be written in
such materials as follows.? A single-peaked symmet-
ric beam incident upon the material initially diffracts.
The refractive index increases, increasing most in re-
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A wide variety of single-
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gions of high intensity, and so the index change is
greatest on the propagation axis. Hence the beam be-
gins to be guided by the refractive-index change that
it has created. Over time the refractive-index struc-
ture becomes more nearly uniform, and this channel
waveguide continues to evolve, becoming deeper and
narrower.?

We consider self-writing in a planar geometry. Two
equations describe self-writing; the paraxial wave
equation describes the light propagation,*®
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and the photosensitive evolution of the refractive index
in a p-photon process is described by>*°

aN _ *\p
o (EE™)*. (2)
Here T, Y, and Z are the normalized time, trans-
verse coordinate, and propagation distance and
N(Y,Z,T) and E(Y,Z,T) are the normalized
refractive-index change and amplitude of the elec-
tric field envelope. These quantities are related to
the corresponding physical quantities ¢, y, z, An, E
by! T = a?ko?noA(EcFo™)Pt, Y = y/a, Z = z/(konoa?),
N = a?ko?noAn, and E = F/F,, where a is the beam
width, k¢ is the free-space wave number, ny is the
initial index, and E; is the maximum electric field
amplitude. A is a measure of the degree of photosen-
sitivity of the material. In our numerical simulations
below of Egs. (1) and (2), E(Y, 0, T) is Gaussian for all
T, and the index is initially spatially uniform.
Because the structure evolves into a fairly uniform
channel, we look for solutions where N is independent
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of Z. We also take the input beam M(Y,T) to be a
mode of this channel, and hence the field is of the form

E(Y,Z,T)=M(Y,TexpliB(T)Z], (3)

where B is the propagation constant and M can be
taken real. As the input beam is a mode, it changes
as the waveguide evolves. We also choose to maintain
constant input power:

P = fw MY,T)%dY . 4)

Numerical results show that as the waveguide
evolves, its shape appears to remain approximately
constant, even though its depth and width change.?
This result motivates the use of self-similarity tech-
niques.’ Self-similar solutions depend only on certain
combinations of the original variables, thus reducing
the degrees of freedom of the system. We have found
that the combination

Y =Y¢(T) (5)

is a universal parameter in this problem that can
be interpreted as a time-dependent scaling of the
transverse coordinate and that allows us to rewrite the
system as ordinary differential equations in Y alone.
We write M and N as products of functions of T and Y .
Substituting these products and Eq. (3) into Egs. (1)
and (2), and requiring consistency in Egs. (1), (2), and
(4), we find that

MY,T)=¢(T)"2M(Y), (6a)
N({Y,T)=¢(T)’N(¥), (6b)
B(T) = ¢(T)?, (6¢)
where the scaling ¢ (T') is given by
oy — (PN -1
oy =(5) e )

and P = [7, M(Y)*dY is the input power in this
reduced system. Here M and N are shapes of the
modal profile and the refractive index, which satisfy

%M”(?) + [N(F) - 1J01(F) = 0, (8a)

2N(Y) + YN'(Y)=M({)?*.  (8b)
One can also find the reduced system by looking
for scaling symmetries of Egs. (1) and (2) subject to
Eq. (4).°
We determined the shapes of the mode and the
refractive index by solving Egs. (8) numerically, and
they are shown in Fig. 1for p = 1. For p = 1 we find
that P = 2.89; and for p = 2, P = 2.94. The solutions
in Fig. 1 are the only single-peaked solutions that
decay as Y — *o. For both p = 1 and p = 2 we found
that the tails of the self-similar index profile decay as
Y ~2 and that the tails of the mode decay exponentially.
Combined with scalings (6), the solution in Fig. 1 is
to our knowledge the first exact solution to the self-
writing problem.
Recall that when we derive the solution in Fig. 1, the
input beam is the mode of the evolving waveguide, and

S0 it is time varying. We now investigate whether the
self-similar evolution can be related to the evolution
of a waveguide produced by a time-dependent input
beam, which we take to be Gaussian.! Numerical
simulations indicate that the shape of the index profile
in the uniform waveguide region agrees well with
Fig. 1. To test further the relationship between our
solution and the simulations, we now investigate the
scalings in Egs. (6). B

For p = 1, Eq. (7) gives Y « YT, so Eq. (6b) predicts
that the width w of the channel scales as 7 !. The
numerical simulation results shown in Fig. 2 confirm
that w1 « T at different positions Z. The superior
linearity at large Z is expected, as simulations® in-
dicate that the waveguide is more nearly uniform at
larger Z.

For p = 2, Eq. (6b) predicts that In w o T'. This is
confirmed in Fig. 3, which shows In w versus T at dif-
ferent Z positions. Numerical results for the peak re-
fractive index also confirm scalings (6b). Indeed, our
numerical simulations indicate that the self-writing
of waveguide according to Egs. (1) and (2) appears to
be well described by the self-similar solutions. For
brevity, the remainder of the results presented here
are for p = 1.

We now investigate scaling prediction (6¢) for the
propagation constant. Simulations indicate that as
a self-written waveguide evolves, it becomes multi-
moded. The modes of this waveguide beat, producing
intensity maxima that move rapidly as the waveguide
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Fig. 1. Similarity solutions of the self-writing problem
(p =1). M is the mode shape and N is the refractive-
index shape.
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Fig. 2. Inverse width of the refractive index versus T at
various values of Z (p = 1; simulation results).
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Fig. 3. Width of the refractive index versus T on a log-
linear plot at various values of Z (p = 2; simulation
results).
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Fig. 4. Zp'? versus T (p = 1; simulation results), which
gives a straight line, in agreement with the similarity

prediction. The solid line is a straight-line fit to the data.
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Fig. 5. Shape of the refractive-index profile for a triangu-
lar input beam at different Z (p = 1; simulation results).

evolves.> This movement allows the refractive index
to remain approximately uniform in Z, even though the
intensity distribution is not uniform in Z at any time.
Scalings (6) remain approximately valid when more
than one mode is present and are the same for each
mode. Hence the beat length Zp scales as T2 for
p =1. Figure 4 shows Zg V2 versus T as given by the
numerical simulation. This gives an approximately
straight line, as predicted. No data are shown for

T =< 15 because the waveguide then does not support
more than one symmetric mode.

We thus found not only that a self-similar solution
exists but also that it describes simulations of the full
self-writing process well. This is remarkable: The
input beam for the numerical simulation is a time-
independent Gaussian, whereas the self-similar solu-
tion has a time-varying input. Note that the Y 2
decay of the index profile implies that this system
differs qualitatively from the seemingly related prob-
lem of spatial solitons.™

The index profile is initially Gaussian, and its
evolution into the predicted shape suggests that the
self-similar solution is stable. We also investigated a
triangularly shaped input intensity. Figure 5 shows
the refractive index at different positions at a particu-
lar time. Although the profile is triangular at the
input face, it evolves into the self-similar solution at
larger Z. For Z = 2.0 the channel is approximately
uniform, and hence the shape of the profile is nearly
constant. This further confirms the stability of the
self-similar solution and its relevance to a wide variety
of self-writing processes.

It should be possible to observe this self-similar be-
havior experimentally in photosensitive planar wave-
guides. In self-writing experiments, the intensity at
the output edge of the material is monitored. As a
self-written waveguide evolves, similarity scaling (6a)
predicts how the width and the peak values of the in-
tensity vary with time.
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