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Abstract

We present numerical experiments that provide new strong evidence of the existence of the semiclassical limit for the
focusing nonlinear Schrödinger equation in one space dimension. Our experiments also address the spatiotemporal structure
of the limit. Like in the defocusing case, the semiclassical limit appears to be characterized by sharply delimited regions
of space-time containing multiphase wave microstructure. Unlike in the defocusing case, the macroscopic dynamics seem
to be governed by elliptic partial differential equations. These equations can be integrated for analytic initial data, and in
this connection, we interpret the caustics separating the regions of smoothly modulated microstructure as the boundaries of
domains of analyticity of the solutions of the macroscopic model. For more general initial data in common function spaces,
the initial value problem is ill-posed. Thus the semiclassical limit of a sequence of well-posed initial value problems is an
ill-posed initial value problem. c© 1998 Published by Elsevier Science B.V.

PACS: 02.30.Jr; 03.40.Kf; 03.50.Kk; 03.65.Sq
Keywords: Semiclassical limits; Nonlinear Schrödinger equations; Integrable systems; Nonequilibrium thermodynamics

1. Introduction

This Letter is concerned with the behavior of solutions of the initial value problem for the focusing nonlinear
Schrödinger (NLS) equation

i}∂tp +
}2

2
∂2
xp + |p |2p = 0 , p(x, 0) = A(x) exp[iS(x)/}] , (1)

in the semiclassical limit of } ↓ 0. We consider A(x) and S(x) to be real and smooth and A(x) to be positive
and rapidly decreasing in |x| while S(x) takes on constant values S± as x → ±∞. The data A(x) and S(x)
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do not depend on }. The semiclassical scaling of the NLS equation occurs naturally in nonlinear fiber optics
(see, e.g., Ref. [1] for a discussion of this point; of course in this application the small parameter } is not
interpreted as a dimensionless form of Planck’s constant, but rather as a ratio of optical wavelength to some
fixed macroscopic scale). The defocusing version of (1), where |p |2 is replaced by 1 − |p |2, was proposed
by Ginzburg and Pitaevskii [2] as a fundamental field theoretic model of superfluidity. Here, the semiclassical
limit describes a hydrodynamical state that is a mixture of a smooth superfluid background where the “order
parameter” |p(x, t)|2 ∼ 1 surrounding pockets of (vortex-dominated in two or more space dimensions) normal
fluid where |p(x, t)|2 ∼ 0; it is thus a model for the nonequilibrium thermodynamics of a mixture of material
phases. On the other hand, the semiclassical limit of (1) is of considerable mathematical interest in its own
right because it provides an example of a problem which can be solved exactly for each fixed value of } [3],
but for which a complete understanding of the semiclassical limit is still missing. We have recently performed
some numerical experiments that indicate with great confidence that the semiclassical limit exists at least for
analytic initial data, and we shall describe these experiments and their results below.

2. Phenomenology of the focusing semiclassical limit

The semiclassical initial value problem (1) is a notoriously difficult one to study numerically. It is a classic
example of a “stiff” problem, as it contains two different spatial and temporal scales. Ignoring the initial data
for the moment, we see that the problem (1) has families of solutions that have the form p = Ψ(x/}, t/}),
where Ψ is some function with no explicit dependence on }. In a sense, Eq. (1) “wants” to form microstructure
described at least locally by functions of this form.

But there is also the fixed length scale of the initial data A(x) and S(x) to consider. The initial presence of
this fixed scale prevents the semiclassical limit from being made up of uniform microstructure alone. Thus, there
is also macrostructure, that is, dependence in the solution on the unscaled variables x and t. The semiclassical
limit is complicated and interesting because it involves essential competition between effects on two vastly
different scales. One would like to know, for example, what kind of microstructure one should expect to see in
the neighborhood of fixed values of x and t.

Without a rigorous analytical theory (see below), it is natural these days to study the problem (1) numer-
ically, say using a Fourier split-step method. The stiffness of the problem makes this difficult. Resolving the
microstructure accurately requires one to use a time step that scales like }, and then to resolve the macrostruc-
ture requires one to take a number of time steps that scales like }−1. This is a situation that quickly leads
to large global errors as the local errors due to truncation and roundoff accumulate. An additional practical
consideration is the number of gridpoints (or Fourier modes) required to resolve the spatial microstructure;
since one needs O(}−1) of them, simulations require much memory and time. However, even if one can find a
machine that is fast and big enough, one must still contend with the influence of accumulated roundoff errors
on the macrostructure.

The numerical studies that have been carried out and published [4,5] may be difficult to interpret precisely,
but they do indicate some important and perhaps universal features of the limiting solutions. Initially smooth
“single-hump” fields focus, the primary mechanism being the Benjamin1Feir modulational instability. After the
first focus event the field consists of an expanding oscillatory central region and quiescent tails on either side.
It appears that the (moving) boundary between the quiescent region and the oscillatory region is very sharp for
small }; we shall call this the primary caustic. The oscillations that form beyond the focus are spatiotemporally
complex. They certainly are not the simple traveling waves that one sees after the first breakdown in the
defocusing version of the semiclassical limit [416]. It has been suggested that the semiclassical limit might
consist of chaotic microstructure in this oscillatory region. Unfortunately, most of the published numerical
experiments are carried out only for a single (small) value of }, so it is not possible to make any definitive
scaling observations that isolate the microstructure from the macrostructure.
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It is clear that the limit, if it exists in any sense at all, cannot be a strong limit of the field p(x, t). In
particular, if the phase S(x) is nonzero, then even the initial data does not converge strongly, and the weak
limit is zero. What one might expect to converge (although perhaps weakly) are the conserved local densities
of (1), like the field density ρ(x, t) and the momentum µ(x, t) defined by

ρ = |p |2 , µ = } Imp∂xp . (2)

It is an old observation that semiclassical Schrödinger equations can be viewed as singular perturbations of
compressible Euler-type fluid dynamical systems in the density and momentum variables. For example, the
focusing nonlinear problem (1) can be written as

∂tρ+ ∂xµ = 0 , ∂tµ+ ∂x

(
µ2

ρ
− ρ2

2

)
=
}2

4
∂x(ρ∂2

x logρ) , (3)

with initial data ρ(x, 0) = A(x)2 and µ(x, 0) = A(x)2S′(x). One would like to argue that, at least for small
t, the truncated system (Euler system) obtained by dropping the term involving } is satisfied by the limiting
density ρ(x, t) and momentum µ(x, t). Self-consistency is essential for this argument, and the difficulty here is
that the Euler system is elliptic. It follows that the initial value problem for the Euler system corresponding to
(1) is ill-posed. From the point of view of compressible fluid mechanics, this Euler system describes a strange
fluid whose pressure decreases when the density increases. As nonsensical as it may seem at the moment, we
will see good evidence below that this elliptic Euler system indeed governs the initial phase of the semiclassical
limit, at least for some data.

In fact, ill-posed initial problems often occur in the idealized modeling of unstable physical processes. For
example, in the mechanics of incompressible inviscid fluids, two-dimensional flows are often irrotational except
in the immediate neighborhood of a (moving) curve that is ideally modeled as a vortex sheet. The motion of
a vortex sheet is described by the Birkhoff1Rott singular integro-differential equation; the initial value problem
for this equation is ill-posed [7]. If the vorticity distribution is smooth, the initial value problem for the velocity
field is locally well-posed, but ill-posedness appears in the limit when the initial vorticity becomes concentrated
on the vortex sheet. There is a kind of dictionary of correspondences between the ill-posed dynamics of vortex
sheets and the semiclassical dynamics of the focusing NLS problem (1). In both cases, the ill-posedness arises
as a result of studying the limit of a sequence of well-posed problems that exhibit finite growth rate instabilities.
In fluid mechanics, the physical mechanism leading to ill-posedness is the Kelvin1Helmholtz instability, whose
maximum growth rate grows with gradients of the initial vorticity distribution; in the semiclassical problem (1)
it is the Benjamin1Feir or modulational instability whose maximum growth rate increases as } decreases to zero
leading to ill-posedness in the limit. In both problems the analyticity of initial data, admittedly a mathematical
abstraction, appears to encode important physical information about sensitivity to instabilities.

The Euler system is meant to describe the macroscopic dynamics of solutions to (1) when the microstructure
is locally a plane wave. Forest and Lee [8] have given the construction of “multiphase” wavetrain solutions of
the focusing NLS equation having the form

p(x, t) = A(S1(x, t)/}, . . . , Sg(x, t)/}) exp[iS0(x, t)/}] , (4)

where A is 2π-periodic in each argument and the Sk(x, t) are linear functions of x and t. The number g is
the genus of an associated Riemann surface Γ. When g = 0, these are the plane waves for which ρ and µ
are constants (there is the additional phase constant S0(0, 0)). Generally, these solutions are parametrized by
2g+2 “action” constants λk corresponding to the moduli of Γ and the g+1 phase constants Sk(0, 0). Formally,
letting the moduli depend on the macroscopic scales by taking λk = λk(x, t) leads to a first-order system

∂tλk + ck(λ1, . . . , λ2g+2)∂xλk = 0 , (5)
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which is the generalization of the Euler system, and which (remarkably) is naturally written in a Riemann
invariant form for all g. Forest and Lee showed that in the focusing problem the characteristic velocities ck are
generically complex, and thus that (5) is typically elliptic for all g, not just for g = 0. We shall also present
evidence below that the generalized Euler system (5) is the correct model for macroscopic modulations of
higher genus microstructure that spontaneously appears in the semiclassical limit of (1).

3. Current obstructions to analysis

The initial value problem (1) can of course be solved for each } by the inverse-scattering method [3]. The
analytical challenge is to study the dependence of the solution on the small parameter }. The solution of (1)
begins with the scattering data for the nonselfadjoint Zakharov1Shabat linear system corresponding to the initial
data A(x) and S(x),

}∂x
[
u1

u2

]
=

[
−iλ A(x) exp[iS(x)/}]

−A(x) exp[−iS(x)/}] iλ

][
u1

u2

]
. (6)

When } is small, this linear problem itself becomes semiclassical. Thus, the first step in the semiclassical
analysis of the nonlinear partial differential equation (1) is the semiclassical analysis of the linear ordinary
differential equation (6).

The continuous spectrum of (6) is the real λ axis. Using WKB methods to study the generalized eigenfunc-
tions for λ real shows that the reflection coefficient is exponentially small in }. The discrete eigenvalues can
be anywhere but on the real λ axis for } fixed. This makes them hard to characterize generally in the limit
of small }. If S(x) ≡ 0, then it can be shown (an unpublished argument by Deift, Venakides, and Zhou is
cited in Ref. [9]) that the eigenvalues must lie in a strip of width O(}) around the real and imaginary axes.
This single piece of information is enough to permit WKB methods to be used to find the asymptotic density
of eigenvalues supported on the imaginary λ axis, where their number scales like }−1, along with asymptotic
expressions for the norming constants [3,10]. If there are eigenvalues accumulating near the real λ axis, the
WKB method does not find them. In the general case of nonzero S(x), much less is known. Convincing
numerical calculations [9] have recently suggested that the number of eigenvalues scales generally like }−1

and that the eigenvalues accumulate on contours in the plane with some asymptotic density. The contours can
be quite complicated, having “y-shaped” bifurcations. At the moment, it is not at all clear how these curves are
encoded in the potentials A(x) and S(x). However, even if one knew where the curves were, WKB methods
based on real turning points cannot be used to find the asymptotic eigenvalue density and norming constants
because for most λ on these curves, there are no real turning points, and the physical optics WKB solutions do
not appear to break down.

If one supposes that asymptotic expressions for the eigenvalue density and norming constants are known, as
they are if S(x) ≡ 0, then one can move on to the next step in the analysis. Because the reflection coefficient is
negligible, the semiclassical solution of (1) is essentially a nonlinear superposition of a large number N ∼ }−1

of solitons. In this case, the density ρ(x, t) and momentum µ(x, t) (as well as all other conserved densities)
can be written in terms of derivatives of a potential, }2 log τ(x, t), where the so-called τ-function is a certain
N ×N determinant [3,10]. In particular, one has

ρ(x, t) = ∂2
x}2 log τ(x, t) , µ(x, t) = −∂t∂x}2 log τ(x, t) . (7)

In prior successful analyses that have arrived at this point (e.g., the zero-dispersion limit of the Korteweg1de
Vries (KdV) equation [11], the semiclassical limit of the defocusing NLS hierarchy [6], and the semiclassical
limit of the odd flows 3 of the focusing NLS hierarchy [10]) τ(x, t) is the determinant of a matrix I+G(x, t)

3 Alas, the problem (1) is one of the even flows.
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where G(x, t) is Hermitean and positive definite. If τ(x, t) is then written as a sum of the principal minors
of G(x, t), it is evidently a sum of positive terms. It can then be shown that the largest term dominates in the
limit, leading to a variational theory of the semiclassical limits of many integrable equations.

In the cases where it has been developed, the variational theory shows that different submeasures of the
eigenvalue density dominate the limit for each x and t. The submeasures are generically supported on finite
unions of intervals whose endpoints as functions of x and t turn out to be Riemann invariants for the hyperbolic
modulation equations of microstructure made up of multiphase wavetrains (that is, they satisfy a system of the
form (5) with ck real, see Ref. [12] for KdV and Ref. [8] for NLS). The hyperbolic modulation equations
for genus g multiphase wavetrains are the correct local macroscopic model until their solutions develop shocks.
When this happens, the global theory shows that a region opens up within which the correct local macroscopic
description is offered by the genus g + 1 modulation equations; the microstructure becomes correspondingly
more complex. In particular, for the defocusing version of (1), the Euler system for ρ(x, t) and µ(x, t) is
hyperbolic and governs the semiclassical limit until the shock time.

For the focusing problem (1), the matrix G(x, t) is not Hermitean positive definite, and determining the
leading contribution to τ(x, t) in the semiclassical limit remains an open problem. An analysis making use
of deformations of Riemann1Hilbert matrix factorization problems is underway [13]. These deformations can
be considered as a way of systematically rearranging and combining the terms in the sum for τ to reveal the
dominant behavior.

4. Use of the N-soliton formula. Experiments

Our main purpose in this Letter is to report the results of a revealing calculation we carried out in order
to better understand the semiclassical limit (1). Our approach was to avoid the analytical difficulties of the
general problem, and rather to study initial data for which we could construct the solution for several small
values of } without numerically integrating the equation.

The reflection coefficient is negligibly small. If its influence on the field p(x, t) is ignored, then p(x, t)
can be constructed from a finite number of soliton eigenvalues and their corresponding norming constants
through the solution of an algebraic linear system. If carried out on the computer, this construction is, for each
fixed x and t, an independent calculation. Thus, although local errors exist (here they are exclusively due to
roundoff error and its amplification through the solution of an ill-conditioned Vandermonde system), they do
not accumulate from point to point and in particular do not propagate from small t to large t.

In fact, one can do better. Rather than using WKB approximations to the eigenvalues and norming constants
(when they can be found), we considered the initial data

A(x) = A sech(x) , S(x) ≡ 0 . (8)

Using hypergeometric functions, Satsuma and Yajima [14] solved the scattering problem exactly for this
potential. With an appropriate scaling of their results, it follows that there exists a sequence {}N} of values of
} converging to zero,

}N =
A

N
, N = 1, 2, 3, . . . , (9)

for which the reflection coefficient vanishes identically and for which the eigenvalues λk and norming constants
γk are known exactly. These are

λk = i}N(k− 1/2) , γk = (−1)N+k , k = 1, . . . , N . (10)

For this special initial data, choosing any value of } in the sequence {}N} eliminates all errors associated with
the construction of the solution p(x, t) except for the computational ones that arise in the construction of the
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Fig. 1. p(x, 0) = 2 sech(x), } = 0.4. Top: ρ(x, t) = |p(x, t)|2 shown as a surface over the (x, t) plane. Bottom left: density plot of
ρ(x, t) in which concentrations appear in white. Bottom right: curves in the (x, t) plane where p(x, t) is positive real.

N-soliton solution. Note that for } = }N fixed, the density ρ = |p |2 is a periodic function of time t. However,
the period is proportional to }−1, and thus the periodicity plays no role in our study of the behavior of the
solution on space and time scales that are O(1) (strictly, or smaller) in the semiclassical limit.

The N ×N linear system that we chose to solve is obtained by first defining the expressions

F(x, t, λ) =

(
λN +

N−1∑
p=0

λpfp(x, t)

)
exp

(
− 2i

λx+ λ2t

}

)
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Fig. 2. p(x, 0) = 2 sech(x), } = 0.2. See caption for Fig. 1 for clarification.

G(x, t, λ) =
N−1∑
p=0

λpgp(x, t) , (11)

where f0(x, t), . . . , fN−1(x, t) and g0(x, t), . . . , gN−1(x, t) are unknown coefficient functions. These functions
are determined in terms of the data λ1, . . . , λN and γ1, . . . , γN by the relations

G(x, t, λk) = γkF(x, t, λk) , F(x, t, λ∗k) = −γ∗kG(x, t, λ∗k) . (12)

The fp(x, t) can be eliminated, leaving an N × N linear system for the gp(x, t). The function p(x, t) =
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Fig. 3. p(x, 0) = 2 sech(x), } = 0.1. See caption for Fig. 1 for clarification.

2igN−1(x, t) is then a solution of (1). This algebraic procedure can be viewed as a reduction of the inverse
scattering method in the case of zero reflection coefficient [3] or as an independent construction of a basis of
Lax eigenfunctions from function theoretic principles (see, e.g., Ref. [15]).

We fixed A = 2.0 and selected the three values }5 = 0.4, }10 = 0.2, and }20 = 0.1. We then solved the
linear system independently at a number of values of x and t. In our FORTRAN code it was necessary to use
quadruple precision arithmetic because the linear system, although not large (only 20× 20 at the largest), has
a very large condition number. For the first experiment we took N = 5 or } = }5 = 0.4. We constructed the
solution p(x, t) on a grid of values in the square 0 6 x, t 6 2 with spacing Dx = Dt = 0.025. The results are
shown in Fig. 1. This experiment shows the known focusing of the field due to modulational instability and
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Fig. 4. Left: the density ρ(·, t) obtained from our experimental data for N = 10 or } = 0.2, integrated in x from x to +∞ for each fixed
t and plotted over the (x, t) plane. Right: the same plot made for N = 20 or } = 0.1. These plots suggest that the weak limit of ρ(x, t)
exists even beyond the primary caustic and is piecewise smooth in the (x, t) plane.

the oscillatory aftermath of the first focusing event. There is also a boundary between oscillatory and quiescent
regions that one would like to interpret as the primary caustic, although at this value of } it is not very well
resolved. To improve the resolution, we must reduce the value of }.

The second experiment takes } to be half as big as in the first experiment, } = }10 = 0.2. The domain
was again taken to be 0 6 x, t 6 2, but in anticipation of more oscillatory microstructure, we sampled more
often, taking Dx = Dt = 0.0125. The results of this experiment are shown in Fig. 2. With this refinement, the
primary caustic that separates the oscillatory region from the quiescent region becomes clearly visible. Within
the primary caustic, the oscillations appear to be quite regular, at least for some time during which the field
is composed of a number of intermittent focus events that make up a hexagonal lattice in space-time. Such a
hexagonal lattice is characteristic of multiphase wave solutions of NLS of genus g = 2. It can be thought of as
a nonlinear interference pattern between two traveling waves (or so-called “cnoidal” waves) of genus g = 1;
this interpretation explains the intermittency of the maxima. The width and duration of the focuses seem to
scale like } by comparison with Fig. 1. For larger times near x = 0, it is difficult to conclude anything without
further refinements. Also, by way of comparison with Fig. 1, it appears that the phase gradient scales like }−1,
at least outside the primary caustic. This, along with the behavior of ρ in this region begins to suggest strong
convergence of ρ(x, t) and µ(x, t) outside the primary caustic.

The third experiment again divides } in half, giving } = }20 = 0.1, the same value as was used in the numerical
experiment reported in Ref. [5]. The domain and sampling are the same as in the second experiment. The
results are shown in Fig. 3. This experiment, again taken in comparison with the two prior ones, shows very
clearly both the primary caustic and the hexagonal lattice of focuses characteristic of modulated genus two
waves. Furthermore, it is now clear that for larger t, a secondary caustic appears that separates the modulated
genus two waves from a field of more complicated (although evidently still regular) microstructure. This has
never been seen before. The phase contours give yet more evidence for the strong convergence of ρ(x, t) and
µ(x, t) outside the primary caustic.

We have integrated the data for ρ(x, t) with respect to x in an effort to study the weak convergence of
ρ(x, t) beyond the primary caustic. With the definition

R(x, t)
.
=

∞∫
x

ρ(z, t) dz , (13)

we show in Fig. 4 plots of R(x, t) calculated from our numerical data for N = 10 (or } = 0.2) and N = 20
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(or } = 0.1). These plots suggest that as } goes to zero, R(x, t) converges strongly to a continuous function
R0(x, t) that is piecewise smooth. The limit function appears to have discontinuities in the first x derivative at
the caustic curves. These qualities of the strong limit R0(x, t) suggest in turn the weak convergence of ρ(x, t)
to the distributional derivative ρ0(x, t)

.
= −∂xR0(x, t). The weak limit ρ0(x, t) then appears to be a piecewise

continuous function, with discontinuities at the caustics. This observation agrees with what is known to be
true in the zero-dispersion limit of the KdV equation [11] and the semiclassical limit of the defocusing NLS
equation [6].

Before the primary caustic, the convergence of ρ(x, t) appears to be strong, as is that of the momentum
µ(x, t). In fact, we have constructed the quantities ρ(x, t) and µ(x, t) from our data for the complex field
p(x, t) and have been able to verify their strong convergence outside the primary caustic. Moreover, we have
checked that these quantities are approximate solutions of the elliptic Euler system (that is, of (3) with } set
equal to zero). Although the initial value problem for the Euler system is ill-posed, it can be solved uniquely
for (at least) analytic initial data by Cauchy1Kovaleskaya series. A contour plot of the first twenty terms of
the series expansions for ρ(x, t) and µ(x, t) about t = 0 are compared with ρ(x, t) and µ(x, t) as calculated
from our data for N = 20, or } = 0.1, in Fig. 5. In the series pictures, the curve where the contours accumulate
may be identified as t = R(x), the radius of convergence of the series in t as a function of x. For t < R(x)
we observe good agreement between the series solution and our data for } = 0.1. The radius of convergence
t = R(x) is evidently not the same as the primary caustic. However, this radius only appears to be an obstruction
to analytic continuation at the first focus which occurs at x = 0. For other values of x, we have noted that
the sequence of partial sums of the Cauchy1Kovalevskaya series diverges beyond the radius in an oscillatory
manner, suggesting a singularity for complex t and the possibility of analytic continuation in real t beyond the
radius. For each x, there is some real time t = t1(x) beyond which the series solution cannot be analytically
continued; we believe this to be the primary caustic.

Within the radius of convergence, it is possible to be more precise about the error. For each fixed t before the
first focus, we evaluated the L∞ norm in x of the difference between ρ(x, t) as computed from our numerical
data and ρ(x, t) as calculated from the twenty-term Cauchy1Kovalevskaya series approximant. We further
divided this norm by }2 and plotted the resulting scaled norm as a function of t for N = 10 (or } = 0.2)
and N = 20 (or } = 0.1). The results are shown in Fig. 6. The graphs for N = 10 and N = 20 are almost
indistinguishable to the eye. This is strong evidence that the error in approximating the semiclassical solution
of NLS before the primary caustic by the solution of the elliptic Euler system is O(}2). Note that it is not at
all clear from the graphs whether this error is uniformly small as t approaches the time of the first focus.

At the primary caustic, the microstructure appears to change from genus g = 0 to genus g = 2; this
kind of phase transition should be compared with those occurring in the semiclassical theory of KdV and
defocusing NLS where the genus typically increases by one at the caustic 4 . From the three experiments, it is
possible to observe that while the number of focuses in any fixed region of x and t between the primary and
secondary caustics scales like }−1, their amplitude converges to a smooth function of x and t. Our experiments
are not detailed enough at this time to tell whether this smooth amplitude function becomes unbounded in
the neighborhood of the first focus. However, this observation suggests that the moduli of the genus two
microstructure are, in the limit, well-defined smooth functions of x and t in this region. We thus anticipate
that the modulations of the waves in this region between the primary and secondary caustics are governed by
the g = 2 elliptic modulation equations (5) of Forest and Lee [8]. A global theory, once developed, will give
the matching conditions across the primary caustic, beyond which the g = 2 elliptic system presumably gives

4 The difference between the two kinds of phase transition can be explained by the fact that the moduli λk come in non-real complex
conjugate pairs for focusing NLS and must be real in the KdV and defocusing NLS cases. The onset of a phase transition is indicated by
the unfolding of a double point of the Riemann surface. While for the real spectrum problems it is possible for an isolated double point
to appear anywhere on the real axis and split, increasing the genus by one, in the focusing NLS case the generic situation is for a pair of
complex conjugate non-real double points to open up, thus creating two new “handles” and increasing the genus by two.
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Fig. 5. Upper left (right): contour plot of the first twenty terms of the series solution for ρ(x, t) (µ(x, t)) about t = 0. Lower left (right):
contour plot of ρ(x, t) (µ(x, t)) as calculated from our experimental data for N = 20 or } = 0.1.

the behavior until the time t = t2(x) at which the solution ceases to be analytic at the secondary caustic. We
expect the process to continue indefinitely, with a cascade of increasingly complicated microstructure governed
by elliptic modulation equations and separated by a sequence of caustic curves at which the solutions to the
elliptic equations lose analyticity. Our experiments do not address the way in which the solutions to the elliptic
equations become singular, whether through the formation of poles, branch points, or more exotic natural
boundaries. This is clearly a topic for further study.

The qualitative agreement of our calculations using the N-soliton solution with numerical experiments carried
out for more general initial data suggest that our observations should apply to arbitrary analytic initial data.
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Fig. 6. Left: the L∞ norm, divided by }2, of the difference between ρ(·, t) as computed from the first twenty terms of the
Cauchy1Kovalevskaya series and ρ(·, t) as calculated from our experimental data for N = 10 or } = 0.2. Right: the same compari-
son made with our experimental data for N = 20 or } = 0.1. These plots show that the error is order O(}2), although not necessarily
uniformly as t approaches the first focus.

So what happens for nonanalytic initial data? Although the Cauchy1Kovalevskaya procedure fails in this case,
the existence of solutions of the initial value problem for the elliptic Euler system and its generalization (5) is
not ruled out. In the analogous problem of vortex sheet motion, solutions to the ill-posed initial value problem
can indeed be found for initial data with singularities in some derivatives [7]. However, we do expect the
ill-posedness of the initial value problem for the Euler system to appear as a certain sensitive dependence of
the solution on initial data that should be understood. We hope that we have convinced some readers that the
elliptic modulation equations (5) for NLS [8] deserve further study.
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