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Abstract

We study an N-component, symmetrically coupled system of Korteweg-de
Vries (KdV) equations that is integrable in the context of the s/(N +1) AKNS
hierarchy. We show how the coupled system can be solved through a combi-
nation of the well-known inverse-scattering transform for (one-component)
KdV and the solution of a linear equation with nonconstant coefficients.
The coupled KdV system may be viewed as a phenomenological model
for the sharing of mass among interacting solitons of the (one-component)
KdV equation. Results for the scattering theory of solutions of the
nonconstant coefficient linear equation arising in the solution of the coupled
system are used to quantify the redistribution of mass during soliton collisions
within the framework of the coupled KdV model.

1. Introduction

This paper is about the system of coupled equations:

N
0 Uy, +8x|:%2uj+8§uk:| =0, k=1,...
J=1

For N > 1 this system is a completely symmetrical
multicomponent generalization of the Korteweg-de Vries
equation. In this paper, we will show that this system is inte-
grable by giving the Lax pair, which itself is a natural
generalization of that for the scalar KdV equation. We will
then show that for this coupled system of equations, unlike
for other members of the corresponding hierarchy, there
is an efficient solution technique that combines two estab-
lished methods for scalar equations: the inverse-scattering
transform for the KdV equation [1] and the analysis of a
certain linear PDE having a given solution of KdV as a
nonconstant coefficient [2].

A very interesting application of the coupled system (1) is
to the old question of soliton identity in collisions. An
observer of two KdV solitons involved in a collision is easily
able to distinguish the two individual solitons before their
interaction, and again after their interaction. But during
the collision this clear identity becomes confused. If one
looks at pictures of interacting solitons, one gets the
impression that when the relative velocity is large, the faster
soliton simply passes through the slower soliton. There does
not seem to be any difficulty distinguishing the solitons in
this case because they spend so little time interacting. On
the other hand, if the relative velocity is small, the two
solitons appear to slow down as they approach and ““bounce
off”” each other with an exchange of mass through their tails.
It looks like the slower soliton has siphoned off some energy
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from the faster soliton and run off with it. In this case, the
fast soliton that emerges might be said to be made up of
some mixture of contributions from the two solitons that
originally entered the collision, and in this sense soliton
identity is not preserved.

There is some evidence for each of these points of view in
the mathematical structure of the multisoliton solutions
of the KdV equation. The idea that solitons a/ways maintain
their identity throughout all interactions (corresponding to
the first scenario above) is given a mathematical framework
in a series of papers by Moloney and Hodnett [3]. Using
algebraic properties of multisoliton solutions w(x, f) of
KdV suggested by the Hirota formalism, they broke
w(x, f) into a sum of components u(x, t), each of which
has a constant mass. Moreover, the fields wui(x, ) each
had the form of a solitary wave with a time-dependent ampli-
tude and phase shift. If each function wuy(x, ) is associated
with a soliton of w(x, ¢) in this way, then it may be said that
each soliton has a well-defined amplitude and center of mass
for each ¢, even during the complicated interaction. This
gives the solitons identity throughout their interaction. This
point of view has been further developed in several works
of Fuchssteiner [4] who places the division of w(x, f) into
noninteracting parts on a Lie-theoretic footing, representing
the Lie algebra of multisoliton interactions in KdV as a
direct sum in such a way that each direct summand is
isomorphic to the symmetry algebra of an isolated soliton.
The approach is quite general, and for KdV the resulting
decomposition turns out to be the same as that obtained
in [3].

The notion that during collisions the solitons ““bounce off”
each other with some exchange of mass can also be argued,
as shown by Bowtell and Stuart [5]. They studied soliton
interactions by analyzing the singularity structure of
multisoliton solutions. For fixed ¢, a two-soliton solution
w(x, t) of the KdV equation is meromorphic in the finite
complex x-plane. As t — £oo, the singularities are double
poles that are periodically distributed on two lines parallel
to the imaginary x-axis moving to the right at constant
speeds. The motion of the poles may be traced for finite
t, revealing that the poles of each soliton remain in vertical
lines that undergo a repulsive interaction as the solitons
approach each other. This model suggests that solitons of
the KdV equation do not pass through each other at all
but rather exchange their identities during interactions, with
the larger and faster soliton giving up just enough of its mass
to the smaller and slower soliton to effect this exchange.

The reason for describing these approaches to soliton
interactions is to point out that one interesting application
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of the coupled KdV system (1) is to provide a new, quan-
titative way to interpret soliton identity during interactions.
The main idea is to focus on a conserved quantity that is
transported by the equation. The KdV equation

1
dw + By [2 w? + Biw:| =0, ()
is in the form of a local conservation law for the mass density
w(x, ). That is, for appropriate boundary conditions, the
total mass

Mw]= /OO wdx 3)

—0Q

is a conserved quantity. In a multisoliton solution, the indi-
vidual solitons can really only be identified in the limits
t - 400, where their velocities, amplitudes, and wave
shapes are the same before and after their nonlinear
interaction. In particular, this means that if a soliton is
traveling with velocity ¢ as t — —oo and is carrying some
amount of mass M, then as t — 400, the soliton traveling
at speed ¢ will also carry M units (or “quanta’) of mass.

Now we would like to allow for the possibility that the
solitons exchange some mass during their interactions,
and this means that the M quanta of mass transported away
from the interaction in the soliton traveling with velocity ¢
may not be the same M quanta as entered the interaction
region in the soliton with velocity ¢ (see the schematic dia-
gram in Fig. 1).

To address this problem quantitatively, we must introduce
internal degrees of freedom into the KdV equation. We need
to consider the mass density field w(x, 7) to be composed of a

number of distinguishable contributions. Thus, like

Moloney and Hodnett, we write:

wix, ) =Y u(x, 1). &)
k

The uy(x, t) are the internal degrees of freedom. Rather than
determining them using properties of special solutions of
KdV (as in [3]) or equivalently in an attempt to give the
solitons unambiguous identity at the Lie-theoretic level
(as in [4]), we seek a more physically motivated description
by postulating equations of motion' for a system of
unknowns u(x, ¢) that imply the KdV equation for w(x, ¢)

! The special soliton components u(x, ) studied by Moloney and Hodnett [3]
in fact do satisfy the coupled system of equations

Oy + Wouy + ai“k =0,

which are also the “interacton”equations of Fuchssteiner [4] for KdV. Although
the total mass of each component u (x, ) turns out to be conserved for the par-
ticular solutions considered in [3], the masses are not individually conserved
for general solutions. We will impose general mass conservation on models we
consider. The point is that the interacton equations are only intended to have
meaning when w(x, ¢) is a multisoliton solution of KdV, and then only when
special solutions are considered (the “interactons”) corresponding to the de-
coupled solitary waves uy(x, f) studied by Moloney and Hodnett. The theory
we propose differs from that in [3] and [4] in that the models we will consider
will describe the interaction of several mass density fields that in principle can
superpose to form an arbitrary solution of KdV. Furthermore, for a given solu-
tion of w(x, f) of KAV for the sum of the degrees of freedom, we will want to
admit the most general possible solution of the coupled system. In particular,
the number N of fields u (x, ) need not have anything to do with the number M
of solitons in the KdV field w(x, 7).
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subject to (4). We impose several physical constraints on
the system of equations:

1  Conservation. The individual fields wu(x, ) are con-
served local densities.

2 Symmetry. The system of equations is invariant under
any permutation of the individual fields u(x, 7).

3 Homogeneity. The evolution equations admit the
reduction obtained by setting any subset of the
ur(x, t) identically equal to zero.

These three criteria are intended to model a physical division
of mass into different quantities. The conservation property
means that no kind of mass can be created or destroyed.
The symmetry property means that the different kinds of
quanta are merely labeled differently and thus are all inter-
changeable from the point of view of their dynamics. Finally,
the homogeneity property guarantees that it is physically
reasonable to presume that some species of mass may not
be present at all. In view of the relation (4) we will consider
the homogeneity condition replaced by the stronger con-
dition:

3’ Linearity. The evolution equation for wu(x, f) is linear
once the KdV equation has been solved for the sum
w(x, ).

A splitting (4) of the KdV mass density according to these
criteria will thus result in a nonlinear coupled model for a
number of fields u;(x, f). Such a model can be interpreted
as a way of giving internal degrees of freedom to the
KdV mass density field w(x, t); these internal degrees of
freedom are essentially linear, since all the nonlinearity
is contained in the scalar KdV equation for the sum
w(x, ).

The linearity of the equations for u(x, f) given the corre-
sponding solution w(x, 7) of the KdV equation (which could
be obtained for given initial conditions ux(x, 0) by summing
and applying the inverse-scattering transform to the result-
ing initial condition for w) does not necessarily make them
amenable to analysis. Only very special linear equations con-
nected with the KdV equation can be studied using tech-
niques related to the integrability of KdV. More
typically, linear equations with coefficients depending on
a solution w(x, ) of KdV can have solutions that are
scattered from the soliton trajectories before, during, or
after interactions [2]. Worse yet, the initial value problem
for the linear equation may be ill-posed. In view of the
integrability of the KdV equation itself, we might wish to
further constrain the dynamics of the internal degrees of
freedom by imposing

4 Integrability. The coupled nonlinear system for the
fields wux(x, ) should be integrable, having a Lax pair
representation, and an associated method of exact
solution.

The integrability property would imply that the quantitative
details of the mass redistribution process could be worked
out exactly.

It is a direct matter to check that the coupled KdV system
(1) satisfies the conservation, symmetry, and linearity
criteria, and that the sum of the components (4) satisfies
KdV (2). We will show below that it also satisfies the
integrability condition. This makes the coupled KdV system
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a good model for quantifying mass exchanges among
solitons.

In Section 2, we briefly describe the integrability of the
coupled KdV system (1). This will serve to at once place
the system in a familiar context, the s/(N + 1) AKNS
hierarchy, and also to introduce the solution method we
choose. This method is not based directly on an
inverse-scattering transform for (1), but rather on the
simpler transform for KdV and the analysis of an associated
linear equation. Then, in Section 3, we use the solution
method and results from [2] to explicitly quantify the
exchange of mass among KdV solitons according to the
coupled KdV model. We briefly illustrate the results with
a numerical experiment in Section 4 before concluding with
a few remarks.

2. Integrability of the coupled KdV system

In this section, we identify the coupled KdV system (1) as a
member of a well-known integrable hierarchy, and then
use this fact and some additional structure to offer a special-
ized solution technique that under some circumstances
suffices to solve the initial value problem for (1). First,
we show that the system (1) can be obtained as a real
reduction of one of the nonlinear equations in the
sI(N+1) AKNS [6] or vector nonlinear Schrodinger
hierarchy. Let ¢ € C" and r € CV be N-component vector
potentials, f e C¥™' an N + l-component vector, and
A € C a complex spectral parameter. The vector nonlinear
Schroédinger hierarchy is the set of nonlinear equations that
are obtained as pairwise compatibility conditions of the lin-
ear problem

)
A

S = ; f. (5)
r —ZI

where [/ is the N x N identity matrix, with linear problems of
the form

;bn-&-l 1 0T

0 =
nf 2i

+ Z )'mV(nm) f , (6)

m=0

0 I

where 0 is the N-component zero vector. The matrix
coefficients V? are taken to be traceless® and then are
uniquely chosen so that the compatibility condition between
(5) and (6) is independent of 1. If we restrict attention to even
values of n, then forallk =1, ..., N we may consistently set
qr = 1 and take ri = uy/6 to be real-valued for real x and ¢,.
As functions of x and ¢ =1t,, the compatible potentials
ur(x, t) satisfy the coupled KdV equations (1).

2 Since the trace of the matrices appearing in the linear problems (5) and (6) is
always contributed by the leading term which is independent of the potentials ¢
and r, the trace can always be removed by the elementary scalar gauge transfor-
mation

f=gex iN-1 “>c+ii”+lt
= | A N
EXP\IN+1 Zn

where in formulas of this type it is assumed that all but a finite number of the
variables ¢, are zero to avoid convergence questions. This shows that the vector
fields for g are all in s/(N + 1) and define local flows for gon SL(N + 1).
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In principle, this integrable structure can be used to find
exact solutions of (1) through Bicklund transformation
methods and also to solve the initial value problem for
(1) through an inverse-scattering transform constructed
from the spectral theory of the linear problem (5). However,
there are certain technical difficulties in the inverse-
scattering theory for the problem (5) connected with the fact
that the diagonal matrix proportional to 4 on the right-hand
side of (5) has nondistinct eigenvalues [7] for N > 1.

So, rather than pursuing this direction, let us point out an
alternative method of constructing solutions of (1), which
in many cases leads to the general solution of the initial value
problem. This method makes use of the fact that the sum of
the individual fields wu(x, f) solves the scalar KdV equation
(2), which is well understood, and also the fact that once
the KdV equation is solved for the sum w(x, ¢), the equations
for the individual fields wu(x, f) are linear. Thus, given the
solution w(x, ) of the KdV equation corresponding to the
initial data w(x,0) = u;(x,0) + ...+ uy(x,0), we want to
construct solutions of the linear equation

1
A+ 0y [E wu + 8iuj| =0, 7

in which w(x, ¢) is now interpreted as a given nonconstant
coefficient. Each component field u(x, ?) satisfies this linear
equation.

Fortunately, the linear equation (7) can be solved using
essentially the same machinery as was involved in solving
the scalar KdV equation for the sum w(x, 7). Particular sol-
utions of (7) can be obtained from the following fact.
Due to the block structure of the coefficient matrices in
the linear problems, the first component of the vector f plays
a distinguished role. Thus, it can be shown that whenever the
vector f € CV*! satisfies the linear equations of the vector
nonlinear Schrodinger hierarchy (5) and (6), the scalar
function?

¢ :fexp(—% (Xx + ii'1+lt;1)> , ®)
n=1

where f is the first component of f, satisfies all of the linear
equations of a certain Kadomtsev-Petviashvili (KP)
hierarchy, in which the scalar KP potentials are built from
q and r [8]. In the special case of ¢qx = 1 and ry = u /6,
one of the linear equations in that KP hierarchy is

1
3p + 3 Wi+ 8dp =0, )

where t=t, and w=¢’r =u; + ...+ uy. This equation is
exactly the potential form of (7), as seen by setting
u = dy¢. So we know how to find solutions of (7) from
the first component of f. This procedure becomes more effec-
tive when we observe that under the restriction ¢ = 1 and
re = ug/6, the first component f of a vector f satisfying
the Lax pair (5) and (6) decouples and satisfies the scalar

3 See the remark in the above footnote regarding the interpretation of this
infinite sum.
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equations

FE |

1 1
2, A1 _ 1 ) 2 _ 2 .
o0 f = 4f 6wf, o f 63xw f+ () 3w)8xf

(10)

These are of course the well-known Lax representation of the
scalar KdV equation (2) itself, and in solving the KdV
equation for the sum w(x, f) by inverse-scattering, we have
already obtained f as a by-product! In summary, solutions
of the linear equation (7), where w(x, ¢) is a solution of
the KdV equation (2), are constructed from simultaneous
solutions f(x, #; A) of the KdV Lax pair (10) by the formula

iR
u(x, t) = x| f(x, t; A)exp _EX_ZZ .

After the fact, it is of course easy to verify directly that this
formula represents a large family of solutions of (7) indexed
by the complex parameter 4 and the integration constants
arising from the simultaneous solution of (10).

At this point it is perhaps useful to draw a comparison
between the equation (7) and the well-known linearized
KdV equation®

(11)

e + Oy[we + %] =0, (12)

which is obtained from (2) and a solution w thereof by mak-
ing the subsitution w — w + ¢ and keeping only the linear
terms in ¢&. The only difference between (7) and (12) is the
factor of 2, but this cannot be removed by rescaling x
and ¢ because w depends on x and ¢ according to (2). In fact,
the equation (7) is not a linearized KdV equation for any
solution w(x, t). A formula similar to (11) for solving (12)
was known to the discoverers of the integrability of the
KdV equation [9]. Their formula is

o(x, 1) = [ f(x, 15 2)*] . (13)

The parametric dependence on A and the integration con-
stants used to specify f means that there are many such sol-
utions of (12). In fact, they form a complete set [10] and
they thus span the tangent space of the manifold of KdV
solutions. By contrast with the formula (13), which is
quadratic in the eigenfunction f, the formula (11) is only
linear in f.

One explanation for this linearity in the solution formula
(11) is that, whereas the linear equation (7) is not a linearized
KdV equation for any solution w(x, ) of (2), it does arise in
the linearization of the coupled system (1). Substituting
ur + ¢, for w in (1) and keeping only terms linear in the
&, gives

1 -
a,sk+8x|:§8k;u;+§uk;§;+8§ek} =0.

The homogeneity property of (1) guarantees that we can
linearize around a particular solution for which
uy(x, t) = 0 for some n, and for which the remaining fields
satisfy a coupled system of the same form. In such a

(14)

4 The linearized KdV equation plays roughly the same role in the interacting
particle picture of Moloney and Hodnett [3] and Fuchssteiner [4] that equation
(7) plays in our theory.

© Physica Scripta 2000

521

linearization, the equation for ¢, decouples and takes the
form of (7). In general, solutions of the linearization (14)
can be expressed in terms of quadratic forms in solutions
of the compatible system (5) and (6). This is in complete
analogy with the way one solves the linearized KdV equation
(12). Now, if u,(x, ) =0, then one of the factors in the
quadratic expression for g,(x, ) becomes trivial, making
its appearance in the solution formula (11) as the
exponential function. This linear formula can thus be inter-
preted in the context of quadratic eigenfunction expansions,
with the eigenfunctions coming from the vector Lax pair
(5) and (6) for the coupled system (1), rather than from
the KdV Lax pair (10).

Just as the squared eigenfunctions form a complete set [10]
in which to expand the solution of the initial value problem
for (12), it has been shown [2] that when w(x,?) is a
multisoliton solution of KdV, the functions defined by (11)
are also complete and can be used to solve the initial value
problem for (7) and therefore for the coupled system (1).
The completeness relation established in [2] probably holds
in some form for more general solutions of KdV, and of
course the formula (11) always provides a large number
of exact solutions of (7) even if it is not known how to
superpose these solutions to satisfy given side conditions.
In the next section, we will use the results of time-dependent
scattering theory carried out for the linear problem (7) in [2]
to study the problem of redistribution of mass quanta among
solitons according to the coupled KdV model (1).

3. Mass exchanges among solitons

Here, we use the solution method for the coupled KdV sys-
tem (1) described in Section 2 along with some long-time
asymptotic results for the linear equation (7) established
in [2] to describe the exchanges of mass among interacting
solitons that are predicted by the model (1).

Using the coupled KdV model (1) to describe the exchange
of mass that occurs during the interactions of solitons of the
KdV equation requires finding some exact solutions of (1).
In order to represent a decomposition of the KdV mass den-
sity during such interactions, these solutions need to have the
property that the sum of the fields w(x, 7) is a multisoliton
solution of the KdV equation. It follows that the individual
fields wui(x,f) will be particular solutions of the linear
equation (7), where w(x, 7) is a multisoliton solution. The
transformation formula (11) gives us a large number of such
solutions if we can write down the corresponding simul-
taneous solutions of (10).

Finding these eigenfunctions leads us to briefly summarize
the famous reflectionless potential theory of Kay and Moses
[11]. For some integer M > 0 (the number of solitons), a sim-
ultaneous solution of (10) is assumed in the form

Ml RS
o) =14+ Mo |expl=x+=1). (15)
g 21 21

The coefficients f,(x, t) are determined by choosing M posi-
tive real numbers 1, > 1, > ... > y,, and M real numbers

oy, ...,0y and insisting that
Sr(x, 15 2in,) = (=1 expQu,o)f (x, ; =2in,), (16)
for n=1,..., M. The function f,(x,t; A) is then a simul-
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taneous solution of the two linear problems of the Lax pair
for the KdV equation as long as one takes as a definition

WX, 1)=6idx frr_1(x, 1) . (17)

By compatibility of the equations of the Lax pair, this latter
function solves the KdV equation (2). It corresponds to
the interaction of M solitons, which means that as
t — +o00, it decouples into a sum of the form

M
+
w(x, 1) ~ Z w(x, 1)
n=1

wE(x, H=12nsech?(n,(x — o) — 4n’1),

(18)

where the asymptotic phase constants o are functions of the
1, and a,. Another linearly independent solution of the Lax
pair for the same potential w(x, ) is then given by
J-(x, 15.4) = fo(ox, 13 —A).

Note that, by comparing (7) with (2) it is clear that one
obvious solution of (7) is in fact u(x, ) = w(x, ). Since
the equation (7) is local and linear, it follows that when
w(x, t) is an M-soliton solution of KdV, there exists for
any k=1,...,M a (unique) particular solution u =
ur(x, ) of the linear equation (7) satisfying wu(x,t) —
wi(x, 1) as 1 — —oo (or more precisely, wui(x —4nit, 1)—
wi (x — 4n2t, 1) — 0in some appropriately weighted L norm
in x). Thus, we may represent w(x, ¢) as a sum over k of these
solutions of (7) (see Fig. 2 for a schematic diagram).

Taken together, these M functions are solutions of the
coupled KdV model (1). In this configuration, the conserved
local density uy(x, 7) has the interpretation of the mass den-
sity that is unambiguously carried by the KdV soliton with
velocity ¢ = 4n3 for large negative times. One expects some
redistribution of the mass to occur as the solitons begin
to interact, such that after the interaction each soliton
emerges carrying some mixture of the masses. We can
use scattering theory results [2] for the linear equation (7)
to calculate the behavior of the component fields wux(x, 7)
as 1t — +oo and therefore determine the mixture of the
masses carried by each outgoing soliton.

An important feature that makes this analysis possible is
the integrability condition satisfied by the coupled KdV
equation as mass transport model. The integrability ensures
that the functions u(x,?) that are defined to be
asymptotically confined to the (incoming) soliton
trajectories as t — —oo are also asymptotically confined
to the (outgoing) soliton trajectories as ¢ — co. In typical
nonintegrable coupled models satisfying the conservation,
symmetry, and linearity criteria, radiation is generated in
each of the individual fields u;(x, ) during soliton collisions,
which propagates away from all of the soliton trajectories. In
this case, the integrability of KdV simply implies the rather
weak constraint that the pointwise sum of this radiation over
all M fields must be zero, because the sum is necessarily an
M-soliton solution of KdV which has no radiation
component. If radiation not asymptotically confined to

Fig. 2. Decomposition of a two-soliton solution w(x, 7) of KdV into two parts u;(x, ) and u,(x, ?) satisfying the coupled KdV system and determined by their

asymptotic behavior as t — —oo.
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the soliton trajectories is present, it becomes necessary to
include sources and sinks of various species of mass near
x = +oo to complete the picture. This complicates the
interpretation of solutions of the coupled system in the con-
text of solitons exchanging mass.

In the paper [2], it is shown that if w(x, 7) is an M-soliton
solution of KdV corresponding to the data set
{ne, .. snas o, ..., 0}, and if as t— —oo a solution
u(x, t) of (7) has the form

M
w(x, 1) ~ ) Bwy (x,0),

n=1

(19)

for some coefficients f3,, ..., ;. then the same solution has
the asymptotic description

M M
u(x. 1) ~ Z[Z Tnmﬁm} Wi x.1),

n=1 | .m=1

(20)

as t > 4oo for some matrix T which turns out to depend
only on the soliton eigenvalues 7, . .., #,,. T is the scattering
matrix for the linear equation (7). It is computed as

follows. First, solve for Q,x for m=1,...,M and
k=0,...,M —2 by solving the linear inhomogeneous
system

M-=2
(=2in,) " + D (<2in,) MO =0, n=1,....m—1,
k=0

M-2
Qin,)™" + > Qin,) MO =0, n=m+1,...,N.
k=0

@2y
Next, build the M x M matrices G* by setting
Gz — 1M_22' Mo 22
o=~ g, 1 20" O (22)
Gr o= + 1 Mi(zi Y=o (23)
km™— 12’71( 6i Ly urs mn-
Finally, the scattering matrix is defined by
T=[(G)'G*]". (24)

The matrix T can now be used to compute the manner in
which an amount of mass unambiguously traveling with
the soliton moving with speed ¢ = 452 as t — —oo0, is divided
up by (7) during the soliton interaction to be redistributed in
various portions traveling at speeds ¢ = 452 as t — +oo.
Since the mass carried by each soliton is proportional to
the corresponding eigenvalue:

MwF)= / wE(x, ) dx = 121, / sech’(y)dy, (25)

we see by integrating (19) and (20) with respect to x that the
mass transfer matrix M, whose elements are defined by

M= 2T,

m

(26)

expresses the redistribution of mass by the linear problem
(7). If Q quanta of mass are traveling in from = —o0 in
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the potential well of the mth soliton moving with speed
¢ = 452, then they will be divided by the soliton interaction
in the potential function w(x, 7) so that, for each n, exactly
M,,,Q quanta are traveling out to = +oco with speed
¢ = 4n2. By the relation of the linear equation (7) to the
coupled nonlinear system (1), the mass transfer matrix
encodes the redistribution process of mass during soliton
interactions in the KdV equation, according to the coupled
KdV model. For example, if M were the identity matrix, then
the prediction would be that solitons do not share any mass,
as suggested by the interacton theory in [3,4], and shown
schematically in the left-hand diagram of Fig. 1. More gen-
erally, the deviation of the mass transfer matrix from the
identity matrix is a measure of how many quanta of mass
are exchanged by solitons of the KdV equation during their
interaction. For the coupled KdV system, M is never the
identity matrix.

Before proceeding to any examples, it is worth stressing a
very important property of these matrices — that they
are algebraically constructed out of the numbers #, alone.
There is no dependence on the numbers oy, which determine
the centers of mass of the various solitons at some time when
they can be distinguished one from the other. Thus, the
matrices T and M for an M-soliton solution with parameters
1, in which the solitons all collide more or less at the same
time will be the same as the matrices for an M-soliton sol-
ution with the same parameters #, in which the solitons
collide only pairwise. This implies that all transfer matrices
can be expressed in terms of those for the two-soliton
interaction, for example using the procedure described in
[12].

4. The two-soliton case. A numerical experiment

Since they are so fundamental, let us calculate explicitly the
matrices T and M for the particular case of an interaction
of two solitons. The result will depend only on the real posi-
tive values 7, > #n,. First calculating the numbers Q.
and then using (24) gives

1 (n —n2)>  2my(my — )
T=—— 1= M2 U =) | (27)
=1 [2111(111 —m) = =)’
Finally, applying (26) gives
L[ m=m)?®  2nGn —my)
M=— 1= mln —m) | (28)
’7% - ’7% |:2”12(’71 =) —(n — ’72)2

Note that the law of conservation of mass is reflected in this
matrix by the fact that for each k,

2
> Mp=1,
J=1

and thus all mass carried by a soliton before the interaction is
divided without loss among the solitons emerging from the
interaction. The analogous result holds for the M x M mass
transfer matrix for the interaction of M solitons. This is one
property that would be lost if integrability of the coupled
model were not present, since it would be possible via
radiation for mass to be exchanged at infinity.

(29)
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A

Fig. 3. KdV solitons exchanging mass according to the coupled KdV model.
Left: before the interaction. Right: after the interaction. Bottom row:
up(x, 1). Middle row: u;(x, t). Top row: w(x, t) = uj(x, 1) + uz(x, 1).

The exchange of mass quantified precisely by the matrix M
can be illustrated and confirmed by numerical simulations of
the coupled KdV system (1).

The first row of Fig. 3 shows snapshots of a solution w(x, 7)
of the KdV equation at two times, one before and one after
the interaction of two solitons. Larger solitons overtake
smaller ones as they travel to the right, and the horizontal
scale has been translated to bring the solitons after their
interaction back into the center of the picture. The KdV field
w(x, t) can be split into two mass density fields u;(x, ) and
uy(x, t) that satisfy the two-component coupled KdV system
(1). The second and third rows of Fig. 3 show the corre-
sponding snapshots of particular solutions u;(x,?) and
u>(x, t) each of which has the form of an isolated soliton
as t - —oo. These mass density fields may be equivalently
regarded as solutions of the linear equation (7) that satisfy
uy(x, 1) + us(x, r) = w(x, t) (again, the situation schematic-
ally represented in Fig. 2). Note that the field u(x, f), which
was initially confined to the potential well of the smaller
of the two solitons making up w(x, ¢), actually develops a
mass deficit in one of the potential wells after the collision.
This interesting feature is universal to all soliton interactions
in the coupled system (1), and is predicted by the mass
transfer matrix M, in which the element My, is always
negative, while all other matrix elements are positive.

The mass transfer matrix can also be used to describe sol-
utions of the coupled KdV system (1) that have asymptotics
for large ¢ different from those illustrated in Fig. 2. For
example, one might consider the problem of determining
what mixture of the mass densities must be present in each
KdV soliton as t - —oo in order that each soliton emerges
from the interaction carrying only one species of mass. This
question is answered by considering other solutions
u(x, t) of the linear problem (7) that satisfy wx ~ w; as
t > +oo and examining the asymptotic behavior as
t — —oo. It is easy to see that the relevant mixtures in this
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limit are given by the columns of the inverse of the mass
transfer matrix.

5. Conclusion

The coupled KdV system (1) is a fully symmetric integrable
generalization of the KdV equation. It is a member of
the s/(N + 1) AKNS hierarchy, and by virtue of its represen-
tation as a collection of linear equations for N internal
degrees of freedom coupled to an autonomous KdV
equation for the sum, the system can be solved by an effective
technique not directly requiring inverse-scattering for the
(N + 1) x (N 4+ 1) scattering problem (95).

One application of this coupled nonlinear system is as a
phenomenological model that allows one to precisely quan-
tify the process of redistribution of mass among interacting
solitons of the KdV equation. This model gives a complete
description of several mass density fields that are trapped
by their own net dynamics, the latter being described by
the KdV equation. The description holds for an arbitrary
number of fields and prescribes them for all values of x
and 7, even during the complicated interaction of the
KdV solitons. This fact allows ““mass quanta” of different
types to be traced as they are transported through the
KdV field.

Using known scattering theory for the linear equation (7),
it is possible to compute the large time asymptotics for all
solutions of the coupled KdV system that are asymptotically
suitably confined to the KdV soliton trajectories. Assuming
that the number of fields is equal to the number of solitons
in the solution of KdV, we can unambiguously place a dis-
tinguished type of mass in each distinct soliton for large
negative times and determine the mixtures present in each
soliton for large positive times. This leads to the algorithmic
construction of a mass transfer matrix M whose elements
give the mass fractions of each species ultimately captured
by each KdV soliton. There are always some elements of
the mass transfer matrix that are negative. It follows that
the coupled KdV model makes the interesting prediction
that some mass is always borrowed locally from the con-
tinuum during soliton collisions. These results contribute
one more interpretation of soliton interactions to the several
[3-5] already in the literature. The coupled KdV system (1)
gives a new way of quantitatively thinking about soliton
identity during interactions.

The integrability of the coupled KdV system (1) should
provide a starting point for the study of a large class of
physical problems. Indeed, coupled KdV systems of various
kinds occur naturally in physical models when two or more
distinct long wave modes with (nearly) degenerate phase
speeds are weakly coupled in the presence of weak
nonlinearity and dispersion (see, for example, Hirota and
Satsuma [13], Gear and Grimshaw [14], and Gottwald et
al. [15]). Of particular interest in the context of mass trans-
port are some possible applications to the propagation of
internal waves in deep water. In a sequence of impressive
experiments, Davis and Acrivos [16] have shown that
internal solitary waves of sufficiently large amplitude can
in fact trap a bubble of fluid, carrying it along for some
distance. More recent experiments by Stamp and Jacka [17]
using a tracer fluid dye have shown that two such waves
can be made to collide, resulting in the exchange of some
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of the trapped fluid. Analysis of the type presented above for
the coupled KdV model (1) is prototypical of what will need
to be carried out (in a more complicated model, no doubt)
to describe effectively this observed mass exchange.
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