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We show how the Hartree approximation (HA) can be used to study the quantum discrete self-trapping (QDST) 
equation, which - in turn - provides a model for the quantum description of several interesting nonlinear effects 
such as energy localization, soliton interactions, and chaos. The accuracy of the Hartree approximation is evaluated 
by comparing results with exact quantum mechanical calculations using the number state method. Since the Hartree 
method involves solving a classical DST equation, two classes of solutions are of particular interest: (i) Stationary 
solutions, which approximate certain energy eigenstates, and (ii) Time dependent solutions, which approximate the 
dynamics of wave packets of energy eigenstates. Both classes of solution are considered for systems with two and three 
degrees of freedom (the dimer and the trimer), and some comments are made on systems with an arbitrary number 
of freedoms. 

1. Introduction 

Consider the classical discrete self-trapping (DST) equation, which can be written in the form [ 1,2 ] 

f 
1 -tOoAj + Y~ mjkAk  + 7]Aj[2Aj = O, 

k=l 

(1.1) 

where j = 1,2 . . . . .  f counts the number of freedoms, too is the site frequency, and the Aj 's  are  

complex mode amplitudes. Also M = [rnij] is an f x f symmetric matrix with real coefficients 
my, = mkj and rnjj = 0 describing linear coupling between identical oscillators at the jth and k th 
freedoms, and y is a nonlinear or anharmonic parameter for each individual oscillator. This system has 
applications to molecular crystals, molecular dynamics, nonlinear optics, and biomolecular dynamics; 
see [ 1 ] for a list of  references. 

As a model of  identical molecular stretching oscillators, Aj = (xjx/~ + i ~ j v / m ) / ~  is the 
complex mode amplitude of the j th  oscillator (where tOo = v/-k-/m and k and m are the linear spring 
constant and reduced mass of  an oscillator) [3 ]. 

Under quantization Aj (A~) ~ bj (b~), the standard boson lowering (raising) operators, and the 
classical Hamiltonian becomes the energy operator [4,5 ] 
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E [(COo y)b~b, 1 t t m,kb)bk, = - - ~ybjbjbjbj] - y]. 

j= 1 j:~k 
(1.2) 

where zero point energy has been ne~ected. 
Although exact eigenfunctions of H can be constructed for any finite number (n) of  bosons [4,5 ], 

this becomes technically inconvenient when n is large and f >f 3. In such eases it is interesting to 
consider approximate methods. The method discussed here is the Hartree approximation [6 ], which 
- in essence - determines the behavior of each boson in the presence of the n - 1 others. An exact 
analysis, called the number state method (NSM) [4,5 ] is used to determine the accuracy of  various 
Hartree results. 

It is interesting and important to observe that the equation to be solved in order to construct the 
Hartree approximate wave function is almost identical to the motivating classical equation (1.1). 
Thus the classical dynamics is closely related to the quantum dynamics, at least in the Hartree ap- 
proximation. 

Some general aspects of  the quantum analysis of  H are presented in the following section, and 
the Hartree approximation is described in detail in section 3. Here we stress the close connection 
between the Hartree approximate eigenfunctions of  H in eq. (1.2) and solutions of the classical DST 
in eq. ( 1.1 ). In section 4 we consider quantum expectation values and energies of  stationary states. 
As examples, we discuss the dimer system ( f  = 2) in section 5 and the trimer system ( f  = 3) in 
section 6. In both examples we consider the significance of  Hartree wave functions that are based upon 
stationary solutions of  the classical DST and those that are based upon time dependent solutions. 
Some comments on the accuracy of the Hartree approximation in systems with an arbitrary number 
of freedoms are presented in section 7, and conclusions are summarized in section 8. Throughout the 
paper we assume h to be unity. 

2. Quantum analysis 

Our analysis of  H is in the Schr6dinger picture; thus the state vector [~u (t)) is time dependent, and 
the quantum operators are those at time t = 0. The Schr6dinger equation for the state vector is then 

• d Hl~(t)) l ~ l ~ ( t ) )  = 

A general n-boson state vector can be expanded in the Fock space as [ 7] 

(2.1) 

I~u.(t)) 1 f : f 
= " ~ .  E E " "  E On(Jl 'J2'" "jn't) b*bt .bJ,[0) • j! j2 "• , 

• j l = l  j 2 = l  jN=l  

(2.2) 

where [0) = [ 0 ) 1 [ 0 ) 2 . . .  [ 0 ) f  is the vacuum state• The 0. are f "  time dependent coefficients of  corre- 
sponding number states. For example if f = 2 and n = 3, 03 (2, 1, 2, t) indicates that the first bo- 
son is put onto the second freedom, the second boson is put on the first freedom, and the third bo- 
son is put on the second freedom; thus it is a coefficient of  the number state [1)[2). More generally, 
0. (Jl, J2 . . . .  j . ,  t) is the n-boson wave function, which is normalized as 
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f f f 

E "'" E IOn(jl'J2 . . . .  jn, t)l 2 = 1. (2.3) 
j l = l  j2=l  jn=l  

Substituting the state vector in eq. (2.2) into the Schr6dinger equation in eq. (2.1) and using the 
boson commutation relations [b j, bfk] = Sjk, we obtain the following Schr6dinger equation for the 
n-boson wave function: 

f 
( i d - n m ° )  On(jl'j2'''''jn't) + E [rnjl,kOn(k'j2'J3"'"Jn't) 

k=! 

+ mj2,kOn (Jl, k, J3 . . . . .  in, t) + "" + mj,,kOn (Jl, J2, . . . ,  k, t) ] 
n n 

+ ? E E $j,,j,,On(j, . . . .  ,Jr . . . . .  j m , . . . , j n ,  t) = O, (2.4) 
l=1 m>l 

where ~0 - (tOo - y). Eq. (2.4) is the Schr6dinger equation for a system ofbosons at f discrete sites 
(freedoms) with linear coupling (mjk) and a Kronecker delta-function interaction between pairs of  
bosons. It can be compared with the corresponding quantum field theory for a Bose gas, which involves 
a Dirac delta function interaction [7 ]. 

As was noted above, the 0, 's in eq. (2.2) are f n  time dependent coefficients of  corresponding 
number states, but not all are independent since bosons are indistinguishable. For example if f = 2 
and n = 2, eq. (2.2) becomes 

[qt2(t)) = 02(1, 1, t)12)[0) + v / ~ [ 0 2 ( 1 , 2 , t )  + 02(2, 1 , t ) ) ] l l ) [ l )  + 02(2,2,t)[0)12), (2.5) 

while in the number state method [4,5 ] the most general eigenfunction of  the boson number operator 
is written as 

l~¢2) = c112)10) + c211)ll) + c310)12), (2.6) 

and ca, c2 and c3 are then chosen so [~2) is also an eigenstate of  Hwith eigenvalue E. Time dependence 
is then introduced by multiplying each energy eigenfunction by the factor exp ( - i E t ) .  

In eq. (2.5), 02(1,2, t) is equal to 02(2, 1, t) because there is no physical difference between putting 
the first boson on the first freedom and the second on the second and putting the first on the second 
and the second on the first. Thus the order of  the system is no larger than the number of  ways, p, that 
n bosons can be put on f freedoms or 

( f  + n - l ) !  < f n .  (2.7) 
P = n ! ( f - 1 ) [  

If H has additional symmetries, the order of  the system to be solved may be less than p. 

3. Hartree approximation (HA) 

Since the order, p in eq. (2.7), may be inconveniently large, we turn to the Hartrce approximation 
(HA). This approximation is well known in quantum field theory [6] - in particular, nuclear many 
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body theory and more recently to nonlinear optics [8 ] - but to our knowledge it has not yet been 
applied to a discrete system such as the QDST equation. 

In the HA it is assumed that the n-boson wave function 0. ( J l , . . . ,  J.,  t) can be written as a product 
of  the form 

n 

0n (H) ( J l  . . . . .  j . ,  t )  = l - [  cPn,jk ( t )  , ( 3 . 1 )  

k=l  

which satisfies the symmetry condition for a many-boson boson wave function 

On (Jl . . . . .  Jl . . . .  , Jm , . . .  ,Jn, t) -" On(Jl . . . . .  Jm . . . . .  Jl . . . . .  jn, t) . 

The basic idea is that each boson feels the same mean field potential due to all the other bosons, 
and the many-body wave function can be approximated as a product of  single-boson wave functions 
¢}n,j, (t) with Jk = 1,2 . . . .  , f and k = 1,2 . . . . .  n labeling the boson. Since these single-boson wave 
functions are independent of  k, we write them simply as ¢~,,y (t),  where j = 1, 2 , . . . ,  f .  

Using the HA wave function in eq. (3.1) the n-boson state vector in eq. (2.2) becomes 

n 

I ~ " ( t ) ) ¢ H )  = v ~ .  

j.=l 

and from eq. (2.3) the normalization condition is 

f 
} 2 1 ~ . j ( t ) l  2 = 1. (3.3) 
j = l  

To obtain an equation of  motion for ¢~.d (t) we note that eq. (2.4) for 0. (Jl, j2 . . . . .  jn, t) can be 
obtained by extremizing the functional 

s =  dt } 2  } 2  ' } 2  o;, . . . . .  j . , t )  
--oo jl = l j2 =1 Jn =1 

f 
+ E [mjl,kO" (k,  J2, J3 . . . .  , A ,  t) + mh,kOn (Jb k,  J3 , . . . ,  in, t)  + ""  

kffil 

n . 

+ m A , k O n ( J l , J 2  . . . . .  k,t)] + 7 E E t ~ j t , j m O n ( J l  . . . .  ,jl,...,jm,...,jn, t)] (3.4) 
1= 1 m>l 

as JS/JO* = O. By substituting the HA wave function from eq. (3.1) into eq. (3.4) and using the 
normalization condition of  eq. (2.3) we obtain 

s(H) = n _ _  • - -  n j  k dt ~o~n,j "4- E m j k t ~ n , k  "b ½ } t ( n  - 1)l¢'.,j l 4 (3.5) 
--oo j = l  k= l  

where we exclude the degenerate case in which all the mjk are zero for some particular value of  j .  
Requiring J s ( H ) / J ~ n ,  j = 0 for the optimal Hartree solution we obtain the following equation for the 
effective single-boson wave function: 
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f 
• d@n,j _ ~0@nj + ~ mjk@n,k + 7 ( n -  1) l~n, j [2~n, j  = 0 (3.6) 
I d t  ' 

k=l  

Equation (3.6) is the main result of  this section. Together with eq. (3.1) it enables us to construct 
On trI) (J l , . - - ,Jn ,  t ) ,  the HA to the many-boson wave function 0n ( j~, . . . ,  j , ,  t). In effecting this con- 
struction it is interesting to notice that Equation (3.6) is closely related to the classical DST in eq. 
( 1.1 ). The differences are these: 

i) The solution of eq. (3.6) is constrained by the normalization condition of  eq. (3.3), 
ii) The nonlinear parameter 7 is multiplied by the factor (n - 1 ), and 
iii) The site frequency in eq. (1.1) has changed from too to ~0 = too - Y in eq. (3.6). 
Finally we note that eq. (3.6) can be written in Hamiltonian form as idq~n,j /dt  = O h , / O q ~ , j ,  where 

hn = Y~ ff~oltbn,jl 2 -  ½ ? ( n -  1)1¢,.,jl 4 -  y~ ¢lgn,jmjk~n, k (3.7) 
j = l  k=l  

is the effective single-boson Hamiltonian for one boson in the presence of the other (n - 1 ) bosons. 

4. Quantum expectation values 

The approximate Hartree state vector [~n (t))(H) can now be used to calculate quantum expectation 
values. For example, the mean number of bosons on the jth freedom is 

( n j ( t ) ) ( n )  = ( n ) ( ~ n ( t ) l b ~ b j l ~ n ( t ) ) ( n )  , (4.1) 

and using eq. (3.2) in eq. (4.1) we obtain 

(nj( t))  in) = nlq~,,j(t)l 2 . (4.2) 

Thus quantum expectation values can be related to solutions of  eq. (3.6), which is identical in form 
to the classical DST in eq. (1.1). This is the basic reason for the usefulness of the HA: it connects 
expectation values of the quantum problem with solutions of  the corresponding DST equation. 

The Hartree approximation can also be used to obtain energies of stationary solutions of  the QDST 
equation. Consider a stationary solution of  eq. (3.6) with the form 

(])n,j = e-i'Ot)Cn " (4.3) 
~J  • 

The single-boson Hamiltonian defined in eq. (3.7) gives the energy of  a single boson as 

) - - -  z;,jmj x.,j • (4.4) e . = ~ - ~  ~olZ,,jl 2 ½7(n 1)[Zn,j[ 4 
j = l  k=l  

For such stationary solutions the HA wave function in eq. (3.2) becomes 

v ~ .  Znd(t)b 10), (4.5) 

where ~ and Znj are solutions of  the nonlinear eigenvalue equation 
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f 
(Q --~O0)Zn,j + Z m j k Z n , k  + y ( n -  1)[Zn,j[2Zn,j = O. (4.6) 

k=l 

The corresponding Hart?ee energy for the n-boson system is then given by 

E(H) = (H)(~n ( t ) l g l ~ ' .  (t))(H),  (4.7) 

w h e r e / t  is defined in eq. (1.2). Substituting eq. (4.5) into eq. (4.6), we find that 

E (H) = n e n .  (4.8) 

Thus in the HA the energy of  an n-boson stationary state is just n times the energy of  a single-boson 
stationary state. 

5. The  D S T  dimer 0 e = 2) 

In this section we assume the renormalized site frequency ~0 = o9- y to be zero. With two freedoms 
( f  = 2) and ml2 = e, the Hamiltonian operator in eq. (1.2) becomes 

2 
= l t t ffI - E  [eb~(bj+l + bj-1) + ~ybjblbjbj] . 

j=l 
(5.1) 

Our aim is to explore the conditions under which the Hartree wave function is or is not a useful 
approximation to the exact wave function. Using the number state method [4,5 ], energy eigenvalues 
are eigenvalues of  the (n + 1 ) x (n + 1 ) tridiagonal matrix 

H~ = 

:Pl ql 
ql P2 

q2 

where 

q2 
P3 q3 
"o. ".,  ".° 

q2 P2 ql 
ql Pl 

Y pj = - ] [ ( n  + 1 - j ) ( n  - j )  + ( j -  1 ) ( j -  2)] ,  qj = - e x / j ( n  + 1 - j ) .  

(5.2) 

En (H) = -¼yn(n - 1) 4-~n,  (5.3) 

where the " + "  ( " - ' )  sign corresponds to an antisymmetric (symmetric) wave function. Above a 
critical value of  the anharmonic parameter, 

Hartree energy levels are determined from stationary states of  the classical DST, which are discussed 
in detail in references [ 1,2]. From eqs. (3.6) and (4.8) one finds that for sufficiently small values of  
y there are two Hartree levels at 



24 E. Wright et al. / The quantum discrete selftrapping equation 

Yc = 2 e / ( n  - 1), (5.4) 

the symmetric wave function "bifurcates". Thus for ~, > 7c there are three levels: the two described 
above plus a localized level for which the expected boson number of the Hartree wave function is 
larger on one of  the two freedoms (see [1,2] for details) and 

n £2 

E.'"' = (w-T- 7 (5.5) 

To appreciate the relationship between the exact wave functions and their Hartree approximations, 
let us consider the ease of  two bosons (n = 2). From eq. (5.2) the lowest energy eigenvalue (corre- 
sponding to a symmetric eigenfunction) has the value 

e(S) -½ (7 + X/7 2 + 16e2) (5.6) 2 ~ 

which lies close to the lowest value given by eq. (5.3), for 7 < Yc. For 7 > 7c the Hartree level, given 
by eq. (5.5) lies between the exact value of  the lowest (symmetric) level from eq. (5.6) and the next 
lowest (antisymmetric) level at 

E(a) 2 = - 7  • (5.7) 

In this case the Hartree solution is localized [ 1,2] while exact eigenfunctions of  the Hamiltonian 
operator in eq. (5.1) cannot be because they must share the symmetry of  the reflection operator 
with which H commutes. As Bernstein has shown [9 ], quantum theory responds to this dilemma by 
producing two lower levels which are quasi-degenerate with splitting 

~.(a) ~(s) 2n~ n 
AF'2 ~- ~ n  - - ' - ,n  (n - 1 )! 7n-1 • (5.8) 

Thus the quantum theory manages to keep energy localized on one freedom for times short compared 
with the tunneling time: h/AEz.  

For a more detailed comparison we turn to numerical studies. In fig. 1 the heavy lines indicate the 
energies of  Hartree stationary states that are computed from eqs. (5.3) and (5.5) with e = 1 and 
n = 10. The light (background) lines are the exact energy eigenvalues obtained from the matrix in 
eq. (5.2). We note that this plot is similar - but not identical - to one that has recently been prepared 
by Bernstein to compare classical and exact quantum energies for the DST dimer [ 10]. Again we see 
that the lowest Hartree level lies close to the lowest exact eigenvalue; to the accuracy of  the plot in 
fig. 1 they appear identical. The largest of  the three Hartree levels lies close to the largest exact level 
for 7 < 7c but diverges for 7 > 7c- An intermediate Hartree level, which appears in fig. 1 for ~, > 7c, 
is dashed because the corresponding symmetric solution is dynamically unstable [ 1,11 ]. We see from 
fig. 1 that this unstable Hartree level indicates where pairs of  exact solutions become quasi-degenerate. 
That is, for 7 > 7c the unstable Hartree branch separates nondegenerate energies (above the dashed 
line) from quasidegenerate pairs (below). These degenerate pairs allow one to construct wave packets 
localized to individual freedoms that oscillate about the stationary localized solution for times short 
compared with the appropriate tunneling times [9]. 

Next we consider how well the Hartree analysis represents the exact time dependent behavior. Our 
approach is as follows: i) We choose an initial condition in eq. (3.6) and compute the time dependent 
behavior of  the Hartree single boson wave function, ii) Eq. (4.2) is then used to obtain the Hartree 
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Fig. 1. A comparison of  energy level calculations for the 
quantum DST dimer for two boson (n  = 10) s tates  with 

= 1. The  heavy solid (dashed) lines are the energies 
of  stable (unstable) Hartree stationary states, which are 
calculated f rom eqs. (5.3) and  (5.5).  T he  light lines are 
exact energy eigenvalues computed as eigenvalues of  the 
Hamiltonian matrix in eq. (5.2). To the accuracy of  the 
figure the lowest exact eigenvalue coincides with the lowest 
Hartree level. The points x indicate initial conditions for 
time dependent calculations in fig. 2. 
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Fig. 2. Comparison of  time-dependent Hartree calculations 
( . . . .  ) o f  (¥lb~bj[~') with  exact calculations ( ) 

on the DST dimer for three different initial conditions, 
with n = 10 and  e = 1. a)  The initial condition is 7 = 1 
and close to the lowest (local mode) Hartree energy, b) 
The initial condition is y = 1 and close to the unstable 
(symmetric) Hartree branch, c) The initial condition is 
y = 10 and close to the highest (antisymmetric) Hartree 
energy. In this case a larger value of  7 is chosen to illustrate 
divergence between Hartree and exact calculations. 

® 

® 

© 

estimate of  (nj(t)) (n) on a particular freedom, iii) Identical initial conditions for an exact quantum 
mechanical calculation are obtained from eq. (3.2). 

The exact solutions (full lines) and the Hartree estimates (dashed lines) are compared in fig. 2 for 
initial conditions chosen from three different points in the ";)-energy" plane of  fig. 1. If the initial 
conditions are chosen to lie exactly on a Hartree stationary state, then (nj (t)) and (nj (t))in) are both 
constant for all time. Thus we choose initial conditions that are perturbed slightly away from the 
Hartree stationary states. 

The upper part of  fig. 2a is for an initial condition that is close to the localized Hartree solution 
(see the cross denoted "a" in fig. 1 ), and the time dependent Hartree behavior is close to that of  the 
exact solution. 

Figure 2b is initiated at a point that lies close to the unstable Hartree solution in fig. 1, and - in this 
case - Hartree gives a poor approximation to the exact result. Figure 2c is calculated from an initial 
condition that is close to the stable antisymmetric branch in fig. 1. If it were plotted for an initial 
condition with the same value of  y as in figs. 2a and 2b, the result would be similar to that indicated 
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infig. 2a; thus we choose a much larger value of  7. Here the Hartree solution is periodic while the exact 
solution is quasiperiodic. This is because the initial condition chosen must be represented by a wave 
packet with approximately equal contributions from several of  the n + 1 eigenstates. 

Finally a note about the time scales in fig. 2. Since we assume e = 1, the basic unit of  time is e - l .  I fe  
is measured in joules, the time unit will be h/e  seconds. If  e is measured in cm-l  or "wave-numbers", 
the unit of  time is 1/2rtce, or the time it takes light to travel (2rtc)-1 centimeters in a vacuum. 

6. A DST trimer ( f  ---- 3) 

Here we proceed along the lines of  the previous section to consider a system with three degrees of  
freedom: a trimer. Returning to eq. ( 1.1 ) we again assume 090 - ? = 0 and also 

mjk = e(1 - ¢~jk) , (6.1) 

which implies that each freedom interacts equally with the other two. This example is an interesting 
generalization of  the dimer because it is not classically integrable; thus it has played a role in exploring 
the relationship between classical and quantum descriptions of  chaos [ 12 ]. 

The classical bifurcation diagram for this system has been presented in reference [1,2], and - 
although it can be expressed analytically - it is considerably more complicated than for the dimer 
case shown in fig. 1. The corresponding Hartree diagram for e = 1 and n = 3, 5, and 7 is plotted on 
the left hand side in fig. 3 from eqs. (3.6) and (4.8), where again the solid (dashed) lines indicate 
stationary states that are dynamically stable (unstable). Using the number state method exact energy 
eigenvalues are plotted for the same parameters on the right hand side in fig. 3. 

To understand the relationships between exact energy eigenvalues and Hartree stationary energies, 
the left and right hand sides of  figs. 3 should be viewed together. (We suggest that the reader make 
transparent copies of  fig. 3 so the two sets of  data can be directly superimposed.) As in the case of  
the dimer, the lowest Hartree energy is seen to give a good approximation to the lowest (symmetric) 
energy eigenvalue. Also for 7 larger than its value at the Hartree bifurcation point, the three lowest 
levels become quasi-degenerate within an energy range AE3 given by Bernstein's formula [9 ] 

4n~ n 
AE3 - (n - 1)!?n-I • (6.2) 

As in the case of  the dimer, this permits the quantum theory to localize energy on a single freedom 
for times of  order h/AE3. 

The upper Hartree energy coincides with the highest exact energy eigenvalue at ? = 0 but diverges 
at increasing values of  7. Between the highest and lowest Hartree energies are several stationary levels 
that are unstable as indicated by the dashed lines. These are related in a complicated manner - if at all 
- to the exact levels. In the vicinity of 7 ,-~ 1 the statistics of  the level spacings is given by the Wigner 
distribution, which is characteristic of  classical chaos [ 12 ]. 

In fig. 4 we compare Hartree and exact calculations of  (~,lb~bj[~) on the trimer with e = 1. The 
initial conditions are for a Hartree stationary state so the Hartree (dashed) curves are horizontal lines. 
The exact calculations - on the other hand - oscillate in a quasiperiodic manner as is expected for 
a quantum mechanical wave packet. In these calculations (~lb~bll~') shows an oscillation of  larger 
amplitude and (¢t I b~ b21 ~) = (¥  I b] b31 ~') is of  smaller amplitude. (Note the difference in time scales 
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Fig. 3. A comparison of  Hartree and exact energy level calculations for the quantum DST trimer for (n -- 3, 5, and 7) with 
= 1. Left hand plots: The energies of  Hartree stationary states. The solid ( ) lines indicate dynamic stability and the 

dashed ( . . . .  ) lines indicate dynamic instability. Right hand plots: The exact energy eigenstates calculated for the same 
parameters. The heavily dotted fines are doubly degenerate ("E" modes) while the lightly dotXed lines are non-degenerate 
("A" or "B" modes). Left and right hand sides of  this figure should be viewed superimposed as in fig. 1. 
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Fig. 4. A comparison of  exact ( ) and Hartree ( . . . .  ) time dependent calculations of  (~,lb]bjl¥) for the DST 
trimer. The initial conditions for the exact calculations are chosen for Hartree stationary states using eq. (3.2).  For the 
curves of  larger amplitude j = 1, while j = 2, 3 for the curves of  lower amplitude. 

for the upper and lower plots of  fig. 4.) Thus the larger curve plus twice the smaller curve is equal to 
n, the number of  bosons. For n = 7 almost all of  the wave packet is composed of  the lowest three 
quantum states, which lie within the range given by eq. (6.2), and the time dependence is almost 
sinusoidal. 

In fig. 5 we present results from a large number of  plots of  the sort shown in fig. 4. In particular the 
fundamental frequencies of  the exact oscillations are plotted as functions of  7 for various values of  n. 
These calculations are indicated by dots and are compared with AE3 from Bernstein's formula in eq. 
(6.2). Clearly the frequency approaches AE3 for the larger values of 7. Returning to fig. 4 we see that 



E. Wright et al. / The quantum discrete self-trapping equation 

1o° / I I I I I I 

n=3 

1 0 - 2  

29 

z 

.J k A ~, 1°-4 ~.. 

1 0 - 6  

lO -8 I 
2 3 

n = 4  

nffi5 

n = 6  

n = 7  

I I I I 
4 5 6 7 8 9 10 

GAMMA 

Fig. 5. The dots (o) show fundamental oscillation frequencies from dynamic calculations as are indicated in fig. 4. The solid 
lines are computed from Bernstein's formula, which is given in eq. (6.2). 

the Hartree approximations remain close to the exact result for times of  order 1/20th of  the period or 

h 
r = ~ seconds (6.3) 

20AE3 

if AE3 is in joules and h is in joule-seconds. This means that the lowest energy Hartree solution is 
represented quantum mechanically by a superposition of  the three lowest quasi-degenerate levies with 
energy spacing AE, which in turn means that the Hartree solution is only dynamically valid for times 
t ~< r. Referring to eqs. (6.2) and (6.3), the Hartree approximation improves as 7/~ and the number 
of  bosons n increase. 

7. An arbitrary number of freedoms 

The DST dimer and trimer, which we have considered as examples in the previous sections, can be 
generalized to systems with f freedoms in many different ways: (i) To systems with periodic boundary 
conditions (so j + f = j )  and 

m j k  = c Jj,j± I , (7.1) 

or (ii) To systems with 
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mj,k = e ( 1 - ¢~j,k ) • (7.2) 

The interactions indicated in eq. (7.1) are those for a "discrete nonlinear Schrrdinger equation" (with 
nearest neighbor interactions), which has been studied in some detail [13,14]. Eq. (7.2) - on the 
other hand - indicates equal interactions between all f freedoms. Geometrically this might be thought 
of  as a natural model for a regular " f -hedron"  in a space of  f - 1-dimensions. From a more practical 
perspective, eq. (7.2) can be considered as a limiting case for a set of  oscillators in which the range 
of  interaction is large compared with the size of  the system. 

For the discrete nonlinear Schrrdinger example of  eq. (7.1) we make use of  results obtained in 
reference [ 13 ], from which it can be shown that the accuracy of the energy of  the Hartree ground state 
depends strongly upon the size of  a classical (or Hartree) soliton. In particular if 7 lies within the range: 

24e 24e 
(n + 1 ) f  < 7 < (n + 1-------~ ' 

the continuum approximation holds and the exact soliton binding energy is [ 15 ] 

72 
EB = 4--~n (n 2 - 1 ) ,  

while the corresponding Hartree approximation is [ 16 ] 

7 2 
E ( H )  = 48e n (n - 1 )2 . 

(7.3) 

(7.4) 

(7.5) 

Thus within the range of  eq. (7.3) the Hartree method underestimates soliton binding energies by the 
factor (n - 1 ) / ( n  + 1 ). Outside the range indicated in eq. (7.3) the Hartree approximation gives a 
good estimate of  the ground state energy. 

Turning to the strongly interacting (or complete graph) system of eq. (7.2) we consider the case of  
two bosons (n = 2) for which the NSM gives the lowest exact energy eigenvalue as 

E1 = - ( f -  2) - ½7-  ~ ( f e  - ½7) 1 + 27.  (7.6) 

For the classical DST we recall that the (T) f stationary solution was obtained in [ 1 ] as ~ j  = 1 / x/r-f; 
thus the single boson energy is 

7 e ( f -  1) .  e2 - 2 f  

There is a bifurcation point at (7,e)  = 
solution was given parametrically by [ 1 ] 

r e + l =  

(7.7) 

( ½ e f 2 , c ( - ~ f  + 1)). The T ( . ) f-1 (soliton) stationary 

3 ( f  2 - 3 f  + 3)UEsin (0 + 00) 
sin 30 
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Fig. 6. A comparison of  the exact ( . . . . . . . . .  ) lowest en- 
ergy eigenfunction for the strongly interacting (or complete 
graph) system with the corresponding stable Hartree ap- 
proximation ( ) for f = 7, n = 2 a n d ~  = 1. An 
unstable Hartree branch is indicated by the dashed ( -  - - 
- - - )  line. Exact energies are calculated from eq. (7.6) 
and the Hartree approximations from eq. (7.9) using eq. 
(7.7) along the left hand branch and eq. (7.8) along the 
fight hand branch. 

m e2 = _ ~ [ ~ , 4  + ( f _  1)~4] f -  1 [2~1~2 + y  ( f -  2 )~21 .  (7.8) 

From eq. (4.8) the total Hartree energy is 

Et2 H) = 2e2. (7.9) 

In fig. 6 we assume f = 7 and e = 1 and compare the exact value of  the lowest energy eigenvalue 
from eq. (7.6) with the corresponding Hartree approximations calculated from eq. (7.10) along the 
two branches defined by eqs. (7.7) and (7.8). The dotted line shows the exact energy as a function of 
y, and the solid lines indicate the Hartree approximation. Note that the lowest energy Hartree solution 
jumps from a (T) f to a T (.)f--I solution near (y, E)  = (11, 13). 

8. S u m m a r y  and conc lus ions  

In this paper we have shown how to construct the Hartree approximation (HA) to the n-boson 
wavefunction for the quantum discrete self-trapping (QDST) equation with f freedoms and arbitrary 
linear interactions. This is a useful approximation because it reduces the order of  the quantum problem 
to that of  the corresponding nonlinear classical problem. 

From investigations of  the QDST dimer, trimer, and f -mer ,  we draw the following conclusions: 
- For a small number of  freedoms the energy of  the lowest Hartree stationary state gives a good 

approximation to the lowest exact energy eigenvalue. 
- For a small number of  freedoms the difference between the lowest and highest energy levels in the 

Hartree approximation gives a reasonable estimate of  the bandwidth of  the exact energy eigenvalues. 
- Time dependent Hartree calculations from initial conditions on the lowest stationary state - for 

y > e and a small number of  freedoms - are in good agreement with exact calculations for times of  
order h/AEf, where AEf is the splitting of  the f lowest (quasi-degenerate) energy eigenvalues. 

- For the discrete nonlinear Schr6dinger equation with periodic boundary conditions and f >> 1, 
studies of  the lowest Hartree and exact energies indicate a maximum error in binding energy of  about 
200/n% for nearest neighbor interactions, where n is the number of  bosons. 
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