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Abstract. We study the solutions of linear Sétinger equations in which the potential energy is a
periodic function of time and is sufficiently localized in space. We consider the potential to be close
to one that is time periodic and yet explicitly solvable. A large family of such potentials has been
constructed and the corresponding $chinger equation solved by Miller and Akhmediev. Exact
bound states, or breather modes, exist in the unperturbed problem and are found to be generically
metastable in the presence of small periodic perturbations. Thus, these states are long-lived but
eventually decay. On a time scale of or@e?, wheree is a measure of the perturbation size,
the decay is exponential, with a rate of decay given by an analogue of Fermi’s golden rule. For
times of ordere ! the breather modes are frequency shifted. This behaviour is derived first by
classical multiple-scale expansions, and then in certain circumstances we are able to apply the
rigorous theory developed by Soffer and Weinstein and extended by Kirr and Weinstein to justify
the expansions and also provide longer-time asymptotics that indicate eventual dispersive decay of
the bound states with behaviour that is algebraic in time. As an application, we use our techniques
to study the frequency dependence of the guidance properties of certain optical waveguides. We
supplement our results with numerical experiments.

AMS classification scheme numbers: 37K55, 35C20, 35C15, 35Q55, 81Q05, 81Q15

1. Introduction and overview

We are interested in the initial-value problem for the linear 8dmger equation in one space

dimension

i0,f = (—302+V(x,0))f =HO . (1.1)

Here, f is a complex-valued function af € R andt € R. We assume that (x, ¢) is a smooth
real-valued potential energy function which is sufficiently localized in space (for example, of
Schwartz class). In our specific applicatiomgx, t) will be taken to be a periodic function
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of t. However, the techniques we use can be adapted to a more general time dependence [15].
Note that (1.1) is a non-autonomous Hamiltonian system

. Sh
Ialfz (Sf_*[f’ f*’t] (12)

whereh denotes the Hamiltonian energy
hLf, f*1] =/(%|8xf|2+V(x,t)|fI2) dx. (1.3)

If V(x,t)is notindependent af 4 is not a conserved integral of the flow. On the other hand,
since the potentiaV is real-valued, the flow defined by (1.1) is always unitary.f(R), i.e.

/If(x,t)|2dx :flf(x,0)|2dx t e R. (1.4)
In applications, it is often natural to decompdséx, ¢) as
Vx,t) = Volx,t) + W(x, 1)

whereVy(x, t) denotes amnperturbed potentialandW (x, 1) = V(x, t) — Vo(x, t), denotes
a small perturbation. Thus,

H(t) = Ho(t) + W(1) (1.5)
and (1.1) can be rewritten as
i0, f = (Ho() +W()) f- (1.6)

Here, we have denoted the multiplication operafor~ W (x,t)f by W(z). The choice
of Vo(x, t) is often dictated by soma priori knowledge of the solutions of the unperturbed
system

10, f = Ho(t) f . 1.7

A problem of importance is then to contrast the detailed dynamics of solutions to (1.6)
with those of the unperturbed system (1.7). In particufafl.7) has bound state solutions
(breather modes, or solutions having finite energy and not decaying as oco) do they
persist in the perturbed dynamical system (1.6)7?

The simplest variant of this problem is the case where the unperturbed part is stationary,
i.e.Vo(x, 1) = Vo(x). Suppose the operatfy has an.2 eigenfunction. The unitary evolution
of the spatially localized eigenfunction is time-periodic and represents a bound state solution
of the unperturbed Scdinger equation (1.7). The perturbed model (in this and in the more
general case whet, has multiple discrete eigenvalues) is related to the problem of ionization
of an atom by a time-dependent electromagnetic field [10, 17] and the problem of describing
the effects of weak inhomogeneities on the propagation of continuous waves in optical fibres
[20]. Using a time-dependent method developed in the context of (a) quantum resonances
and the perturbation theory of embedded eigenvalues in the continuous spectrum [26] and
(b) resonances and radiation damping of bound nonlinear wave equations [27], Soffer and
Weinstein studied the metastability of such states [28]. Generalizations of this theory for
handling multi-frequency perturbations [15] and the interference of multiple bound states in the
unperturbed problem [16] have been explored by Kirr and Weinstein. Based on the observation
that the mechanism for instability of the bound state is coupling of the bound state to the
continuous spectral modes, the analysis was carried out at the level of the coupled equations
for the bound state and dispersive components of the solution. Under general hypotheses on
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the unperturbed Hamiltonian (local energy decay estimates on the unitary propadar e

this equivalent dynamical system was studied and it was shown that a bound state is generically
unstable but long-lived. The lifetime is given by a formula analogous to Fermi’s golden rule
[28].

In this paper we consider the case where the unperturbed Hamiltonian is genuinely time
dependent. A physical application of the theory we develop, in the context of frequency
detuning in periodically modulated optical waveguides [2, 3], will be presented in section 5.
Let Ho(t) = —%a§ + Vo(x, 1), whereVy(x, t) is smooth, periodic in with the same period
for eachx and of sufficiently rapid decay for largefor eachr € R. The particular choices of
Vo(x, t) we consider in this paper belong to a large family of very special, so-cadiearable
time-dependent potential§p(x, 1), x € R, studied by Miller and Akhmediev [22]. The
separable potentiddy(x, ) can be chosen to be time periodic, in which case the unperturbed
problem supports exact bound states (breather modes) and the initial-value problem for (1.7)
can be solved exactly. That is, a complete set of eigenmodes and generalized eigenmodes
can be displayed explicitly with respect to which the dynamics of (1.7) is diagonal. This
class of potentials is intimately connected with the soliton theory of completely integrable
multicomponent cubic nonlinear Séltinger equations [9, 19].

The existence of such exact breather modes in the unperturbed time-periodic problem is
quite remarkable and we believe that this is a highly non-generic phenomenont. Indeed, from
a general dynamical systems perspective, equation (1.7) with such a chuige of), may be
viewed as a parametrically forced wave equation (here we are actually considering the time-
periodic functionVy(x, 1) itself to be the sum of a time-independent part and a time-periodic
modulation). One therefore expects that the presence of resonances will perturb the Floquet
multipliers (corresponding to bound states) off the unit circle as in the elementary example
of Mathieu’s equation [1]. The persistence of breather solutions under the time-periodic
perturbation would imply the non-departure of a Floquet multiplier from the unit diocé!
ordersin the size of the perturbation. The factthatinfinitely many such conditions hold for these
special separable potentials is no doubt linked to the infinite sequence of symmetries and time
invariants enjoyed by the completely integrable nonlinear flow that underpins the construction
of the separable potentials (see appendix A for more details). Of course, this is only a heuristic
picture. In fact, the perturbation theory of the Floquet multipliers is complicated by the fact
that they are embedded in the continuous spectrum which covers the unit circle. However,
spectral deformation methods have been developed for some classes of models that could well
be adapted here. Relevant technical details can be found in [6, 11]F.

We want to make our motivation for pursuing deformations of these admittedly rather
special periodic potentials very clear. First of all, the problem is relevant to the analysis
of optical waveguides. In the paraxial approximation, the slowly varying envelope of
a highly oscillatory electric field in a dielectric medium with inhomogeneous dielectric
properties (refractive index) satisfies an equation of the form (1.1). Hedenotes the

T The scarcity of breather solutions ménlinearwave equations defined on a spatial continuum of infinite extent

has been explored extensively in the setting of perturbations of the completely integrable sine—-Gordon equation; see,
for example, [4, 5, 8, 14]. The connection with linear non-autonomous problems can be made by viewing a breather
solution of a nonlinear dynamical problem as a bound state of a linear problem with a given (self-consistent) potential.
t Fornonlinear wave equations defined on aninfinite lattice (e.g. discrete sine—Gordon, di§cteeather solutions

can be constructed for sufficiently large lattice spacing; see, for example, [18]. The radiative decay of such discrete
breathers, for sufficiently small lattice spacing, is expected to be governed by a mechanism of the kind studied in
this paper (see also [27]). Related to this are results for the dynamics of kinks of discrete nonlinear wave equations,
in which the techniques of this paper have been used to study the ‘pinning’ of discrete kinks on a lattice site. This
pinning is marked by the slow radiative decay of spatially localized and time-periodic or quasiperiodic oscillations
about a static kink [13].
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longitudinal variable, the direction of propagation, ands the transverse spatial variable.

For inhomogeneous index profiles corresponding to exactly solvable potentialspflight
particular frequencypropagates as a non-attenuating bound state mode in these waveguides.
However, if the light frequency deviates from the ‘integrable frequency’, the propagating wave
will be governed by the perturbed equation (1.6). Thus the question of whether such modes
persist and if not what their lifetime is for the perturbed dynamics naturally arises. We will
give more details about this problem in section 5.

However, itis also true that the study of perturbed separable periodic potentials is important
in general terms. Given an arbitrary time-periodic potential in the@tihger equation, one
wants to study the corresponding dynamics using perturbation theory. In doing so, the first
question one must address is that of finding a ‘nearby’ problem that can be solved exactly.
We simply take the point of view that many periodic potentials will be closer to a separable
periodic potential (in a sense that can be made precise) than to any time-independent potential.

In any case, with the explicit spectral theory associated Wiilx, 7) in hand, our goal
is to carry out a detailed analytical study of the coupled-mode dynamics induced by a time-
dependent perturbatioW (x, r). We establish the generic metastabilty of the exact bound
states associated with separable periodic potenitigls, t) and obtain a detailed picture of
the dynamics.

This paper is structured as follows. In section 2 we first review the construction of time-
dependent exactly solvable potentials [22] from a set of discrete data, and then show how the
initial-value problem for suckeparablgotentials can be solved explicitly. We then describe
how properties of the separable potentials depend on the choice of the discrete data generating
them. Next, we derive by projection onto an orthonormal basis the general coupled-mode
equations which arise when a separable potential is perturbed by some arbitrary correction
W (x,t). This section will then conclude with a detailed derivation of tve-solitontime-
periodic potential and its associated explicit complete set of bound states and generalized
eigenfunctions. More details about the separable potentials described in section 2 are givenin
appendix A.

In section 3, Floquet theory is then used to map the coupled-mode equations to a system
associated with a time-dependent perturbation ai@onomousystem, a situation analysed
in detail in [15, 28]. In section 4, we then describe the dynamics of solutions of the coupled-
mode equations for even time-periodic perturbatighs, r) of a separable two-soliton even
time-periodic potentiaVy(x, 1) (Vo(x, t) and W(x, ¢) both share even parity in and have
the same temporal period). In particular, we study the initial-value problem when the initial
condition is a pure bound state of the unperturbed problem. First, we study the small-time
behaviour of the coupled-mode equations (without requirifig, ¢) to be small) and deduce
that the bound state amplitude behaves a<’k? for some constar@ and interpret this result
in the context of the theory of ideal measurements in quantum mechanics (the ‘watched pot’
effect). We then assume the perturbati®x, ) to be small, of size, and seek the behaviour
of the bound state amplitude over intermediate times of ardeande 2 using the classical
method of multiple scales.

We show the existence of a perturbation-induced frequency shift of the breather mode
evident on time scales of order® and exponential decay of the bound state mode amplitude
on time scales of order—2. The condition for the decay constant to be non-zero is a direct
analogue of ‘Fermi’s golden rule’.

Then, using the transformation to an autonomous system found in section 3, we show how
the rigorous theory developed for multi-frequency perturbations of autonomous systems by
Kirr and Weinstein [15] can be applied in some cases to justify the multiple-scales calculation,
and to provide more detailed information about the infinite-time behaviour of the solution.
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This analysis completes the portrait of the dynamics, showing that the exponential decay is
ultimately washed out in a sea of dispersive waves, at which point the decay becomes algebraic
in time.

Having described the theory, in section 5 we consider an application of the analysis to a
problem of frequency detuning in planar optical waveguides. Finally, in section 6 the prediction
of an exponential decay constdnfor the bound state mode amplitude found in section 4 is
compared to numerical simulations of the perturbed time-dependeridicher equation.

A detailed description of the theory of separable potentials, at once summarizing for
completeness and also further developing the results of [22], can be found in appendix A. In
appendix B the reader will find the proofs of the decay estimates that we will use in section 4
in order to apply the results of [15].

Regarding notation

We will use the inner product
(f(),80) =/ J(x)"g(x) dx (1.8)

on L%(R). Occasionally, the angled brackets will denote the inner product in more general
Hilbert spaces. Linear operators will be denoted by calligraphic letters, vectors by arrows and
matrices with boldface letters. We will often use the function defined by

(x) = A +xAY2 (1.9)

Complex conjugation will be denoted with stars, and time averages will be denoted with bars.

2. Exactly solvable time-dependent potentials

In this section we recall for our purposes a class of time-dependent potéftials) related to
M-soliton solutions of certain completely integrable nonlinear flows. Because of the intimate
connection of these potentialsto integrable systems, itis possible to explicitly derive the spectral
representation associated with such potentials [22]. This section is divided into five parts. First,
the direct construction of separable potentials from a set of discretédatautlined. Then,

we show how the same discrete d@agives rise to formulae for a complete set of modes

for the time-dependent Sabdinger equation corresponding to the separable potéfifial r)

and how this basis is easily used to express the general solution of the initial-value problem.
We then give a qualitative description of the kinds of functi®géx, r) one can obtain from

this procedure. As we ultimately want to consider perturbation of, ¢), we next show how

to use the basis of solutions to the unperturbed problem to derive the coupled-mode equations
which trivialize the unperturbed dynamics and lay bare the perturbative effects. Finally, we
specialize to the case of an even periodic potential corresponding to a two-soliton solution of
the cubic nonlinear Schdinger equation. As one might anticipate, the evenness) @fthe
potential leads to some simplifications in the spectral representation.

2.1. Separable time-dependent potentials

Let us present the construction of the family of time-dependent potentials that we will consider
in this paper, and describe their properties with respect to the lineaid@ober equation. More
details can be found in appendix A.
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Each potential we shall consider will be specified by a certain set of discrete data. Let
N and M be independent natural numbers. A set of discrete Batansists ofM distinct
complex numbers, ..., Ay in the upper half-plane, and vectorsg®, ..., g™ in CV.

The discrete dat® are used to build a potential functidf(x, ¢) in the following way.
Introduce the scalar expression

M-1
a(x,1,3) = (xM +3 aaP(x, z)) g2 (2.1)
p=0
and theN-component vector expression
- M-1 -
b(x.t.0) =Y MV (x,1). (2.2)
p=0

In these expressions, the coefficient® (x, t) ands? (x, t) are undetermined functions of
andz. They will now be determined by the use of the discrete dat&ork = 1,..., M, we
insist thata (x, ¢, A) andb(x, ¢, 1) satisfy the relations

a(e, t, ) = §9Mh(x, 1, )

-

- (2.3)
b(x,t, A7) = —a(x,t,A)g®.

These equations amount to a square linear inhomogeneous system of algebraic equations for
the coefficient functiona‘” (x, t) and the components ofr) (x, ). We will soon illustrate

this procedure with a concrete example. From the solution of this linear system, the potential
function connected with the discrete datés given in terms of the componentsigt —b (x, 1)

by
N
Vo, 1) = =43 b D (x, 1) 2. (2.4)
n=1

This functionVy(x, ¢) is a genuinely time-dependent potential well. Furthermore, it can be
shown thatVy(x, ¢) is in the Schwartz space as a functionvpfind itsL norm is constant in

t. The latter follows from the fact thafy(x, ) can be viewed as the self-consistent nonlinear
potential for anV-component cubic nonlinear Sétinger equation, which conserves the sum
of the L? norms of theN field components, which are proportional to Wf,éf"l) (x,t) for
n=1...,N.

2.2. Solution of the linear Schdinger equation with a separable potential

Along with the potential functiorVy(x, ), this construction starting from the discrete data
also provides all of the solutions of the corresponding linear@thger equation [22]. These
are built from the functiom(x, ¢, ) as follows. For all real, set

M —1/2
Wy(x, 1, ) = <n]—[|x—,\k|2) a(x,t, ) (2.5)
k=1

and let the function®y, 1(x, 1), ..., Wp u(x, t) be the result of applying the Gram—-Schmidt
procedure (irL.2(R) with respect tor) to the functions:(x, ¢, A3, ... a(x, t, A;,) atany fixed
value oft. Then we have [22]:
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(a) Each functionly(x, t, A) for A € R and each functiod, ; (x, ¢) is a solution of the linear
Schidinger equation with the potentitiy(x, r). The fact that theL? inner product is an
invariant of the evolution shows that the functiobg, (x, t) do not depend on the choice
of the timer at which they are obtained from the Gram—-Schmidt process.

(b) For any fixed, these functions form an orthonormal basig8tR).

These facts show us how to solve the initial-value problem for the lineab8iciyer equation
for the potentialVp(x, ). Namely, to find the solution of

19, f + 302 = Voo, f =0 f(x,00 = fox) € LAR) (2.6)
one simply projects the initial data onto the basis at0 by defining
F) = (Wa(-, 0,0, fo()) fi = (Wi, 0), fo()) (2.7)
and then recovers the solution as a superposition of modes
M [es)
fx, 1) = ka\l’b.k(x, 1) +f FO)Wg(x, 7, 1) dr. (2.8)
k=1 —o0

If the potentialVo(x, 7) is slightly perturbed, it may still be convenient to expand in this basis,
but then the coefficientg (1) and f1, ..., fi will become time-dependent.

2.3. Qualitative description of separable potentials

Let us describe the types of potential functidfaéx, r) that can be obtained by this procedure.
In the generic case when the real parts of the paramgters., 1, are all distinct, these
potentials have the form of a collision amomgmoving potential wells. That is, as— o0,

M

Volx. 1) ~ Y Vg% (x.0) (2.9)
k=1

where the individual wells have the form

Vi (x, 1) = —4p? secR (20, (x + 2031) — 8F) (2.10)

-

wheres;t are constants that depend on the vecgéts . .., g™, and wherey, = oy +ip;.
Considered in isolation, each well carries a single bound state. When the wells collide for
finite ¢, the bound states can become mixed, and a gtater) that is bound in a single well
ast — —oo will have a component in each well as> +oco. The associated scattering matrix
can be computed exactly [21].

If some of the parameterg, share the same real part then the asymptotics of the
potentialVy(x, 7) in the frame moving with velocity-2o0 will no longer be stationary, but will
be generally quasiperiodic. In particular, if all of the parametgi@re purely imaginary, then
the potentialVp(x, ) will generally be a quasiperiodic function of the time This is clear
because taking, = ip; with p, real and positive ensures that the only time dependence that
enters into the computation &(x, ¢) is via the exponentials exfx2ip?t). Such a potential
is automatically quasiperiodic. We can further ensure that the potential function is strictly
periodic by making the frequencies commensurate. This will be truet if the paramgters
have the form

Pr =/ 3nk0 + A (2.11)

t ForM > 2. The potential is always periodicM = 2 and is stationary iM = 1.
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whereQq is some fundamental frequency andare distinct integers. This choice ensures that
the frequencies

wji = 2p5 — 2pf = (nj — n)Q (2.12)

are all integer multiples af29. Only the frequency differences;; are important because the
potential is given as a sum of absolute values (2.4). In fact, it can be seen from the form of the
linear system (2.3) that

b\ (x, 1) = PG, ((@9R), x) (2.13)

where G, , is, for each fixedx, a rational function of the exponentials &ip;.t). The
sufficiency of the relations (2.11) to guarantee time periodicity of, ¢) with a fundamental
frequencyQg is then clear from (2.4).

2.4. Perturbed separable potentials and coupled-mode equations

As we have already suggested, the explicit basis of exact solutions derived in the previous
subsection forms a natural coordinate system in which to study perturbed problems. Let
W (x, t) be a correction to the potential energy, so that the equation becomes

ify = (332 + Volx, D)) f + W(x, ) f = Ho(t) f + W(t) f. (2.14)
Here, Vo(x, t) is a separable time-dependent potential built from the discrete Mata
(A, .. A 80, ..., ™). So we use completeness to expregss, 1) for each fixedr

in terms of the basis of solutions of the unperturbed problem
fG0) =" Bos(t)Woi(x, 1) +/ By(t, MWy(x, 1, 1) dA. (2.15)
k=1 -

In the absence of the perturbati®n(x, r), the mode amplitudesy; and Bq(t, A), A € R

are governed by the equatio®®By» = 0, 9, B4(¢, A) = 0. In the presence of a perturbation
W (x, t) coupled-mode equatiorsn be derived by projecting (2.14) onto the basis elements
W (x, 1) andWy(x, ¢, 1). This yields the system afoupled-mode equations

19, Bp(t) = M (t)Bp(t) + foo By(t, )N (z, 1) dA
Bl (2.16)
id, Ba(r, 1) = N (2, 1) Bo(1) +/ K(t,n, A)Bqy(t, 1) dAr

for the coefficients off (x, 1), Whereéb(t) is the vector of bound state amplituds; (¢), and
where thematrix elementsf the perturbatiori (x, r) are given explicitly by

My () = (Wi, 1), W(, )W ; (-, 1))
Ni(t, 1) = (Wpi (-, 1), W(, )Wq(, 1, 1)) (2.17)
K(t,n, 1) = (Wa(-, 1, m), W(, )Wq(-, 1, 1))
whereN,(z, 1) are the components of the vect§z, ») and M;;(t) are the elements of the
matrix M (¢). In particular, it follows that the matri®/ () is Hermitian and the scalar kernel

K (¢, n, A) is Hermitian symmetric becaud¥ (x, ¢) is real. With the unperturbed problem
exactly diagonalized in this way, this system is a useful starting point for perturbation theory.



Metastability of breather modes of time-dependent potentials 515

2.5. Even two-soliton periodic potentials

In this subsection, we illustrate the procedures described above in some detail with an example
that is important in applications and that will guide the subsequent discussion. We consider
the caseV = 1 andM = 2, and accordingly introduce the expressions

a(x,t,2) = A2 +aD(x, Hr +aQ(x, 1)) e 20x+2%0
b(x,t,2) =bP(x,Hr +bQ(x, 1).

BecauseV = 1 these are both scalar expressions, and we have at the moment four complex-
valued unknown functions;© (x, ), a®(x, 1), b (x, t) andbP (x, t). To find these, we
introduce the discrete data, 1, g® andg® (again, here thg® are complex scalars
becauseéV = 1). The linear equations (2.3) then become

02 +a® (x, DAy +a® (x, 1) e 20D = gD p® (x, )21 + 5O (x, 1))

(2.18)

02 +a®(x, iz +a(x, 1) e 2029130 — 4@% (b (¢ 1)25+ 5O (x, 1)) (2.19)
and

b (x, A +bO(x, 1) = —gP W2 +a P (x, N2} +a©(x, 1)) @ 2D (2.20)
bV, A5 +bO(x, 1) = —g@ (02 +aV(x, HA5 +a O (x, 1)) e HOFHED, '

Given the discrete daf, one can solve these equationsdt¥ (x, 1), P (x, 1), b (x, 1) and
bV (x, t), say by Cramer’s rule, and thus obtain explicit expressions in terms of exponential
functions.

Specializing to the case ofy = ip1, A2 = ip2 (We assume without loss of generality
thatp, > p1), we obtain a time-periodic potential function, since the paramejease pure
imaginary and then the commensurability condition is automatically satisfied/fet 2.
Furthermore, choosing? = €% andg® = €% ensures that the potential function is even in
x. Indeed, we then find that with= p, + p; andd = p, — p1,

p1COSI(2px) 4P — py cOSN2pyx) €212+
d? cosh(2sx) + s2 cosh(2dx) — 4p1p2 COL2sdt + 62 — 61)
The potential function is then given by
Vo(x, 1) = =4 (x, 1)|? (2.22)
which is easily seen to be periodicirwith period L = 7 /(sd), and an even function of.
The shapes of these time-periodic potential wells are shown in figures 1 anéy 2<at, = 0

and two different choices of the parametgisand p,. From the solution of the same linear
system, we also find

(p1+ p2)2515, + pPeier=102=0) 4 p2eetti:=00 _ 2, p,C

bV (x, 1) = 2sd (2.21)

aQ(x, 1) = p1p2 (2.23)
2p1p2 COSwt + (62 — 61)) — (02 + p2)C + (p1 + p2)2515>
and
: ? — 05)p1CaS1 + (05 — p) p2Ca S,
aOe 1) =i (o7 — P5)Pp1C281 + (p5 — p7)p2C1S2 (2.24)

2p1p2COSwt + (6 — 61)) — (p? + p3)C + (p1 + p2)25152

where S, = sinh(2pxx), Cr = cosh2p,x) and C = cosh2(p; + p2)x), and where the
frequency isv = 27 /L = 2sd. Note thata@(x, ¢) is an even function aof, while aV (x, 1)
is odd. We may then write the mode functiex, ¢, 1) in the form

a(x,1,2) = (02 +a® (x, 1)) cosh—2irx) + 1a® (x, 1) Sinh(—2irx)) e 2

+((2+ a9 (x, 1)) sinh(—2irx) + 2a® (x, 1) cosh—2irx)) e 2+ (2.25)
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—101[

_12l

—

Figure 1. The potential wellVp(x, 1) for p1 = 1/+/2 andp, = 1. The phase parameters are
61 = 62 = 0. This well is time-periodic with period = 27 and even irx.

in which the first term is even in and the second term is odd in Also, it is clear that
a(—x,t, ) =a(x,t,—\).

A particularly convenient orthonormal basis of the two-dimensional space of bound states
is given by the formulae

1 2
VA(p1 + p2) [Pl — p2

WO (e 1) = [,/@ 2 aet—ipy+ |2 a(x,t,—ipz>].
VA(p1+ p2) LY o1 01— p2 02 P2 — P1

In this case, the even symmetry of the potenWiglx, ) guarantees that we may choose one
basis element to be even and the other to be odd; we are using superscripts ‘(e)’ and ‘(0)’ to
refer to even and odd functions of respectively. These bound state solutions of the linear
Schibdinger equation are shown in figures 3 and 4. The two bound state modes are Bloch
functions inz, with the same Floquet multiplier eif,L) = exp(2ip2L) = exp(2ip?L).

Note that, in reference to the remark made at the end of section 2.1, the fuﬁré?i@n t)is
proportional toyr = 2ib® (x, 1), which is a two-soliton solution of the nonlinear Setimger
equation

© - 2 -
W7 (x, 1) = a(x,t, —ip1) + o pla(x, t, —ip2)

(2.26)

ig,y + 232y + Y%y = 0. (2.27)

CorrespondinglyVo(x, t) = —|v|? is the self-consistent potential.
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Figure 2. The potential wellVy(x, r) for p1 = % and p2 = %. The phase parameters are

61 = 62 = 0. This well is time-periodic with period = 27 and even irx.

It will also be useful to decompose the continuum into odd and even parts. Using the fact
thata(x, r, —A) = a(—x, t, 1), define

W, 1, 1) = ! (a(x,t, %) +a(x,t, —2))
J2r G2+ p2) G2+ p3)
N (2.28)
W (x, 1, 0) = (a(x,t, %) —a(x, 1, =)
2102+ )02+ p3)

wherei > 0. The solutions¥§(x, ¢, A) and \I/éo)(x, t, A) are also Bloch functions in of
period L with Floquet multiplier exp—2ir2L).
These solutions of the unperturbed problem have the following inner products [22]:

(WO, 1), WP (,1,2) =0
(WP, 90, n) =1 (2.29)
(Wt 0, w2 m) =8 —n).

In this latter relation it is assumed that batlandy are positive real. Similar relations hold
among the odd solutions, and of course everything even is orthogonal to everything odd. If
the perturbatiotW (x, r) is also even i, then this observation will allow us to treat the even
and odd parts of the field(x, ¢) in isolation to all orders in the perturbation theory.

In our subsequent analysis of the coupled-mode equations for this family of periodic
potentials, we shall assume that the perturbaiogx, ¢) is also an even function of, and
thus restrict attention to the subspace of initial conditigfis;, 0) which are either even or
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Even Mode

(@) 21

Figure 3. Equal phase contours for the eve) énd odd ) modes superimposed on a density plot
of the corresponding square modulus. The parameter valups ard./+/2 andp, = 1. For these
values ofp; andp,, the Floquet multiplier is equal to 1, and therefore these are periodic functions
of .

odd inx. By the spatial symmetry of = Vo + W, f(x, t) has the same parity 89, 0). In
analogy with the above derivation of coupled-mode equations, we can then egpand in
terms of (even or odd) modes of the unperturbed problem

flx, 1) = Bg“>(t)wg°‘>(x,;)+/ B (1, MW (x, 1, 1) di (2.30)
0

wherea = e if f(x,0) is even andx = o if f(x,0) is odd. Coupled-mode equations
for the amplitudesB\*’ (r), B\ (t, »), » € R analogous to those derived in the absence of
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5 Even Mode
(@) 2T
t m |
0 !
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) Odd Mode
b) 2m
t mw[ |
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X

Figure 4. Equal phase contours for the eve énd odd ) modes superimposed on a density plot
of the corresponding square modulus. The parameter valugg a;lae%1 andpy = %. Here, the
Floguet multiplier is not equal to 1, and the modes are not periodicatthough they have Bloch
form.

any particular symmetry can then be derived by projecting the dynamical system (2.14) onto
these even and odd basis modes. In section 3 we show, by using the Floquet factorization
of the unitary evolution associated with the unperturbed dynamics, that these coupled-mode
equations can be re-expressed as the following system (cf the system (3.15)) which is more
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amenable to our techniques:

19, Ab(1) + 2Bo An(t) = M(1) Ap(1) + f T NO@ ) Aar, 2 d

0 o (2.31)

i9, Ag(t, 1) — 20%Aa(t, 1) = N (1, )" Ap(e) + f KP (1, 0, 1) Aa(t, ) dA
0

where
Ap(t) = By(t) 2Pl Aqg(t, 1) = By(z, ) e 271 (2.32)
and where the scalar coefficients, all periodic with petiga@re
M(t) = (Wo(-, 1), W(, 1) Wp(-, 1))
NP, 0) = (W, 1), W, )Bg(-, 1, 1)) 2O o (2.33)
K® (6,0, 2) = ($aC. £, 0), W, )W(-, 1, 2)) @410,

Remark. To avoid cumbersome formulae, we have omitted the superscripts (0) and (e), with
the understanding that the amplitudes correspond to either one type or the other, depending on
the parity of f (x, 0).

The system (2.31) may be viewed as that governing a family of oscillators: a single discrete
oscillator whose amplitude idp(¢) coupled to a continuum of oscillators with amplitudes
A4, m),n € Ry

In section 4 we shall analyse the coupled-mode system (2.31), and determine the detailed
asymptotic behaviour of its solutions for sm&@ll(x, ¢) over different time scales.

3. Coupled-mode equations for periodic potentials

Consider a dynamical system of the form (1.6), where both the unperturbed and the perturbed
potential are time periodic with the same peribd We will encounter a concrete example

of such a problem in section 5. Floquet theory [1] suggests the introduction of a new time-
periodic basis, with respect to which the problem (2.14) becomes a periodic perturbation of an
autonomougiamiltonian system. This change of basis transforms the problem at hand into
one similar to that treated in [15, 28]. Similar methods are used along with resonance theory
in a weakly nonlinear setting in [25].

3.1. Floquet factorization

Let 2(r) denote the unitary evolution operator (or propagator) of the unperturbed problem,
so that for anyL?(R) function f(x), f(x,t) = U(r) f (x) is the solution of the unperturbed
problem with f(x, 0) = f(x). As a consequence of the periodicity, the evolution operator
can be factored into two operators HA(R)

Ut) = P@)e "B (3.1)

whereP(t + L) = P(¢t) andB is independent of. This factorization can be motivated by
the observation that by periodicity, there is an operatbsatisfyingl((s + L) = U (1) M, and
that by settingg = 0, in fact, one hasvt = U(L). Sincel{/(L) is unitary, one can find a
self-adjoint operatoB8 such thatM = /(L) = e ', This operatot3, in turn, defines the
Abelian unitary group €. Now it is easy to see tha(s) = U(t) €' is a unitary operator
satisfyingP (¢t + L) = P(¢).
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Let W(¢) be the operator of multiplication by the correction to the potentigt, ), and
sety(x, 1) = P(t)" f(x, ). Then, the perturbed equation (1.6) becomes

id,y — By = W(t)y (3.2)

whereW(r) = P()"W(1)P(1), a ‘dressing’ oW (¢). The form of (3.2) is similar to the type
of problem treated in [15, 28]. The ‘unperturbed Hamiltoni&mé time-independent, and self-
adjoint. The perturbation(z) is localized, self-adjoint and time-periodic because the periods
of P(¢r) andW(r) are equal. Typically the perturbation contains frequency components at all
overtones of the fundamental frequency, and thus the version of the theory described in [15] is
most appropriate. The key qualitative difference between the present situation and that treated
in [15] is that here the unperturbed operator can have multiple bound states. We will soon
introduce a symmetry that removes this difficulty from the scope of this paper. However, the
methods of [15, 28] can be extended to give results on radiation damping due to the coupling
of multiple discrete modes to the continuum for a general class of spatially localized and
time-dependent perturbations [16].

In fact, one can simplify the problem even further by invoking the spectral theorem for
the self-adjoint operataB. This guarantees the existence of an isomorphismL?(R) —
L?(Z, du) to the space of square-integrable functions on som® wéth measure g, such that
VB = TV whereT is a real diagonal operator dif (X, du) (i.e. an operator of multiplication
by a bounded function frox to R). Settingz(z) = Vy(¢), we find the equation

id,z—Tz=VW0)V'z (3.3)

In quantum mechanics, making the transformation from (2.14) to (3.3) to facilitate the study
of perturbations is known as going from tBehibdinger pictureto theinteraction picture

In the particular example we will analyse in detail, arising from even perturbations
of the two-soliton even potential described at the end of section 2, the opédtas a
single degenerate eigenvalue 28, < 0 of geometric multiplicity two. By restricting
separately to even and odd spaces of initial conditions (which is possible because the potential
Vo(x, t)+W (x, t) is symmetric in), the problemis reduced to one which, formally, is precisely
of the type studied in [15]. We may then apply the methods developed in [15] (subject to some
appropriate hypotheses) without modification.

We now use our explicit knowledge developed in section 2 of the unitary propag@ajor
corresponding to a time-periodic separable potenfdk, ¢) to find the operator®(¢) and
B, and then to diagonalizB. This effectively implements the programme described above
and casts the perturbed problem (2.14) into a form (3.3) more suitable for analysis. We begin
with the observation that each element of the basis of solutions of the unperturbed problem is
a Bloch function or Floquet mode. We have

Wy(x, 1+ L, %) = e 2XLyy(x, 1, 1) (3.4)
where is arbitrary real. Also, we have

a(x,t+L,—ip) = eZipkzLa(x, t, —ipg). (3.5)
Note that the commensurability relations (2.11) imply quite generally that the Floquet
multipliers exg2ip?L) are all equal This generalizes the observation made above in the

context of the two-soliton potentials. This means that the edirdimensional subspace
of bound states consists of degenerate Floquet modes. In particular, the elements of any
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orthonormal basi§Wy . (x, t), k = 1, ..., M} have the same Floquet multipliert €2i8,L).
It now follows from (3.4) and (3.5) that the functions defined by

WP (x, 1, 0) = €71y (x, 1, )

o y (3.6)
YR 1) = e PPy (x, 1)

are time-periodic with period, as denoted by the superscript ‘(p)’.
As described in section 2, the solution of the unperturbed problem with initial ftlata
is expanded as

f, ) =U@) fx)

M e8]

(Wok (-5 0), f())Whi(x, 1) +/ (Wa(-, 0, 1), f())Wq(x, 2, 1) dr

—00

k

Il
hN

I
M=

(W 0), 5 £ () U (x, 1)

»
Il
AN

+

/ (WP (.0, 2), €2 F(N)WP (x,1, 2) dh. (3.7)
We now use the completeness relation &t 0 to factori/(r) asP(r) e 5 where

M
e P (0) = D (WH(,0), @M F ()Wl (x, 0)

k=1

+/Oo (WP, 0,1), e 2% F(NWP (x,0, 1) dr (3.8)

o0

and

M 00
P(0)g(x) = I (B, 0), g(NWUF(x. 1) + / (WP (0,2, g (x 1, ) dr. (3.9)
k=1 —
We have used, several times, the fact that at 0 there is no distinction between the
basis elements and their periodic counterparts defined by (3.6). It is easy to see that
flx,t) =U@) f(x) = P(r) e "B f(x) is the solution of the unperturbed initial-value problem
with dataf (x) € L2(R) and thatP(t) is periodic with period. andi/(L) = e 'L5,
The generator of the Abelian unitary group’é is

-d —itB
Bf(x)=l—te fx)

t=0

=D (WP 0), =28 f () ¥ (x, 0) + /oo (WP, 0,1), 22 (WP (x,0,1) dr
1 —00

(

1

d

M

k=

M
=2

k=

o]

Wp k(- 0), =2Bpf () Whk (x, 0) + / (Wa(, 0,2), 242 £ (-)) Wq(x, 0, 1) di.

—00

(3.10)

In the last step we have dropped the superscripts ‘(p)’ since everything is evaluateddat
This formula for the self-adjoint operatd makes clear its spectral decomposition. The

T Recall that the Floquet exponents are not unique but that the Floquet multipliers are. Identification of the Floquet
exponents with a single numbgg > 0 amounts to a particular choice of branch of the logarithm.
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isomorphismy takes a functiorg(x) € L?(R) to a function4d4(1) for » € R and a set o/
numbersAy . fork =1, ..., M defined by

Ag0) = (WP, 0, ), () (3.11)
andfork =1,..., M,
Apr = (WR(-, 0), g()). (3.12)

The diagonal operatdf is then simply defined by

Aq(V) 222 Aq(V)
Ap1 —2By Ap1
= , T (3.13)
Ab,m —2Bp Ap m

It is now easy to use the definition of the unitary periodic oper&i@y and the unitary
isomorphismy, along with the completeness relation to compute the dressed opevatoy) '
and thus write the perturbed problem (2.14) in the simple form (3.3). The dynamical unknowns
are in the range op, the spacd.?(Z, du), and are given in terms of (x, ¢), the solution of
(2.14), by

A = VPO FC Dbx = (WG, 0), (1)

T (9] (3.14)
Ad) = VP@) f(, 0)d) = (W, 1, 4), f(C, 1)
When f (x, t) satisfies (2.14), these quantities satisfy the system
19, Ap + 2BpAp = M () Ap +f Ag)NP (£, 1) dA
e o (3.15)
9, Ag(n) — 2n?Ag(n) = NP (t, ) Ap + / K®(t, 7, %) Ag(h) da
Wherelb is the vector of component, 1, . . ., Ap ur, @and the time-periodic matrix elements
are defined in terms of (2.17) by
ﬁ(p) fA) = e2i()»2+ﬂb)tﬁ £
) ) (3.16)

K®(t,n,2) = 01K (1,7, 3).

The periodicity of these matrix elements whét(x, ¢) is periodic with period. is also clear
from these explicit formulae and the Bloch relations (3.4) and (3.5) for the basis of solutions;
these imply similar ones for the matrix elements defined by (2.17). We have

M@ +L)=M()
N(t+L,2) = e 205 BLN; )) (3.17)
K@t +L,nx) =T Lgq o).

Of course, the right-hand side of (3.15) is just the openatdi(s) V' operating on the dynamical
unknowns. Similarly, the perturbation operaldi(r) operating in the spacé?(R) can be
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written explicitly as

M M
WO F@) =YY My () (-, 0), £ () Pp(x.0)

k=11=1

M 00
+Z/ NP, 7)) (Wq(-, 0, 1), £()) b (x, 0)dn
k=1Y —

M o0
+ Z/ Nz(p)(ts A (W (-, 0), f())Wg(x, 0, 1) dr
=1 /-0

+/°O /w K®(t, k, n)(¥a(-, 0, ), f(-))Wa(x, 0, 1) dr dn. (3.18)

For the special choice dfy(x, t) discussed at the end of section 2, evenness implies that
there is one bound state of each parity. If the perturbalitn, 7) also has even symmetry
in x, the coupled-mode system (3.15) reduces to a system of the type (2.31) when the initial
condition is restricted to either even or odd parity. It is easily checked that the unknowns as
defined above correspond exactly to those defined in section 2 for the system (2.31).

4. Analysis of the coupled-mode equations

In this section we study the structural instability of the even and odd breather modes introduced
at the end of section 2 associated with the two-soliton time-periodic even potentials. We first
give a simple argument valid for short times that in the presence of a perturtitiosr)

to the potentialVy(x, t), the bound state begins to decay initially. We then seek to capture
the dynamics for longer times, primarily to show that this initial phase of decay does not
reverse itself, but takes on a different, exponentially decaying, character. The decay will
be first calculated formally, using asymptotic expansions and the method of multiple scales.
Then, using the results of Kirr and Weinstein [15], we show that, at least in the odd case,
it is possible to make statements about the decay process that are valid globally in time. In
particular, these arguments will rigorously justify the formal results for the odd case, and will
show that the exponential decay model is only a valid approximation until it becomes smaller
than the dispersive part of the solution. The bound state ultimately dies algebraically in time,
qualitatively indistinguishable from the dispersive components of the solution to which it is
orthogonal.

4.1. Small-time analysis. The watched pot effect

A simple calculation carried out at the level of the coupled-mode equations (2.31) shows that
the effect of the perturbation is to cause the bound state to decay immediately both forward and
backward in time. More complicated calculations will be required to show that the decay does

not stop or reverse for longer times, although it takes on a different character. The approach
in the small-time analysis is simply to expand the solution in Taylor series

Ap(t) = Ap(0) + c1t + cot? + O(t3)

4.1
Ag(r, 1) = di(M)t + O(t?) (41
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and use the (known) Taylor expansions of the matrix elements, in particular,

M(t) = M(0) + M'(0)t + O(+?)

NP, 2) = NP, 1) + Or). 42
Substituting these series into (2.31), one finds
[ic1 + 2B,A(0) — M(0)Ap(0)] + |:2i62 +2Bpcy — M(0)c1 — M'(0)Ap(0)

- /0 N di(M)NP (0, 1) d)»:|t = O(t%) (4.3)
idy () — N®(0, 9)*Ap(0) = O(1).
Solving forc; andc; yields an approximation fas,(¢), valid for smallz
Ap(t) = Ab(O)[l —i(M(@QO) —28p)t

-1 (iM/(O) +(M(0) — 2Bp)° + / b INP (0, 1)|? dx);z + 0(t3)]. (4.4)
It easily follows that O

|Ap(1) 12 = |Ap(0)|? [1 —r? /OOO IN® (0, )2 dxr + O(t3)]. (4.5)

Note that the smallness of the perturbation is not exploited in these calculations. This Taylor
expansion shows that the initial phase of the evolution is a process of radiative decay, since
|Ap(1)]? < |Ap(0)|? for all non-zera in some neighbourhood of= 0. The decay is symmetric
in time.

The fact that the decay is an orde(:€) effect is quite generalt and is well known in the
perturbation theory of stationary Sélinger equations. It has an interesting interpretation in
the quantum theory of ideal measurements, the so-called ‘watched pot effect’. Suppose that an
ideal measurement is made at some point during the evolution of the wavefunction to determine
whether the state is bound, and the measurement yields a positive result. The probability of

T In the general setting, the decay is a simple consequence of the Cauchy—Schwarz inequality. One supposes that
U(t) is the unitary propagator of the possibly time-dependent unperturbed problem:

it (1)¢° = Ho(U(1)¢°
for all statesp®. One then considers the perturbed equation
iy = (Ho(®) + W)y
by settingy (t) = U(t)¢ (1), giving the ‘interaction picture’ equation
i = UMD WOUWDS
which one solves by Taylor seriesinThe result is
¢ (1) = (T = IWO)1 + 312 (=IW'(0) = W(0)? + [Ho(0), W(O)]) + Ot%))¢ (0).

The probability of remaining in the unperturbed state is then found to be (using self-adjointness @ {@tand
Ho(0))

U0, UDPD)I = 1($(0), p(1))I?
=103 — (VOO 31$ O3 — 1{$(0), W(0)p(0))P)r* + ().
This quantity is initially decreasing in time as a consequence of the Cauchy—Schwarz inequality.
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a positive result at time is |Ap(7)|2/|Ap(0)|?. The theory of ideal measurements says that

as a consequence of the measurement disturbing the system, the wavefunction ‘collapses’
upon a positive result to the bound state, and evolution of the wavefunction according to the
Schibdinger equation continues from this ‘reset’ bound state. One may then try to determine
the asymptotic effect of making many such measurements in a finite time interval. In particular,
we can ask about the limiting probability of finding the system in the bound statecaftbof

n ideal measurements performed attimes: T/n, asn — oco. After each positive result, the
wavefunction collapses and the experiment s restarted. Thédolyer evolution takes place

over short time intervals so it is appropriate to replace the probability in each inggirydy

its short-time approximatiop(r) = 1 — («r)? + O(z3). Then measurements are independent
events, so the probability of always finding the system bound after each measurement is
simply

P, = p(T/n)". (4.6)

Because the ‘time slice’ decay probability-1p(¢) is quadratic ir¢, P, tends to unityt as
n — oo, regardless of the value @f. So if the measurements are performed infinitely often,
the decay of the bound state never occurs. The quantum ‘watched pot’ never boils.

4.2. Multiple-scales analysis

We begin the multiple-scales analysis by assuming that the corré@tiens) = W(x, t; €)
to the potential energy has an expansion in a small parametésee, for example,
equation (5.11)),

W(x,t;€) = eWi(x, 1)+ O(e?). 4.7

It then follows that the coupling coefficient functions in (2.31) have formal expansions for
smalle,

M(t) = eM(t) + €2 Ma(t) + O(e®)
NP (1, 1) = eNP (1, 1) + O(€?) (4.8)
K® @, 1,0 =eKP(t,n,2) + O(e?).

Here,My(1), N\” (1) and K" (¢, n, 1) correspond to the expressions fii(z), N® andK ®
in (2.33) withW replaced byw;.

The amplitudesAp(r; €) and Aq4(z, A; €) are assumed to have asymptotic expansions of
the form

Ap(t; €) = AE,O)(TO, T1, T, ..) + €Ay (To, 1, T, ..) + GZAE,Z)(TO, Ty, T2, ...) + O(e?)

(0) (0] 2 (49)
Ag(t, k) = Ay (To, Ty, T, ..., M) + €Ay (To, T1, To, . .., &) + O(e9)

where theT;, = ¥t are time scale variables. Such expansions of given functigas ¢) and

Aq(t, 1; €) are highly non-unique. However, the guiding principle of the method of multiple
scales (see, for example, [12]) stipulates that the dependence of the various terms on the ‘slow’
timesTy, T», and so on is chosen so that each term is uniformly bounded as a function of the
‘fast’ time Tp. This procedure is quite systematic, and is supposed to keep the error terms in
any truncation uniformly small in time intervals whefgis bounded for somé ase tends to

t The superlinear nature of the decay probability is importani(df = 1 — |at| +O(t2), thenP, tends to el¢7! < 1
instead.
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zero. We will see by comparison with the rigorous results that this formal procedure indeed
works as advertised.

One now substitutes these expansions into the system (2.31) and expands the time
derivative operating on the expansion coefficients in (4.9) according to the chain rule,

& = By, +€dy, + €20, +---. (4.10)

The coupling coefficients, all being periodic functionsrafith period L independent o€,

are taken to be explicit functions o= Tp only. Substituting them into (2.31) along with the
expansions (4.9) and the chain rule formula (4.10), and equating terms with the same powers
of ¢ leads to a hierarchy of equations:

N i9,AY +2pAY =0 ™
(b PN () 2,0y _ (4.11)
10, Ag” (n) — 2n°Ag" (1) =0

o0
10, ALY + 2BpALY = —i97, A + My (Tp)AY + / NP (To, )AL (1) di
0

OCe): i9,A0 () — 2n2AL () = =i, AL () + NP (T, )* ALY (4.12)

o0
+/ KPP (To, 7, W) AP (1) di
0

i9,A2 +28,A2 = —iop ALY —i05,AL + My(To) ALY + My(Tp) AL
o0 o0
O(e?): + / NP(To, AP (1) di + / NP (To, )AL (1) di (4.13)
0 0

i9,AP () — 202AP () = -

and so on. Ourinitial conditions are encoded in the expansions (44%%& 0,0,...) = Apo,
A9(0,0,0,...,4) =0, and forj > 1, AY’(0,0,0,...) = AY’(0,0,0,...,1) = 0. We
now proceed to solve the hierarchy sequentially.

Solving equations (4.11) at order 0 subject to the initial conditions gives

AL = ce?too AP =0 (4.14)

whereC = C(Ty, T», ...) satisfies the initial conditiol€' (0, O, ...) = Apg but is otherwise
undetermined at this stage.

In the first of the two equations (4.12) appearing ge)XQit is natural to make the
substitution

Ay = [P (4.15)
which leads to the equation
O, f = —05,C — iM1(To)C. (4.16)

Integrating with the use of the initial conditiofi(7; = 0) = 0, and keeping in mind thaf;
andTy are to be thought of as independent variables, leads to the expressmﬁf'?for

To )
Ay = (—anc - Ty—iC Ml(s)ds> e?le, (4.17)
0
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We need this correction to be bounded as a functidfy gb that the asymptotic expansion will
be well-ordered for long times. Sindé; (s) is a periodic function of period, this requirement
uniquely determinesy, C,

— — 1 [t
8T1C = —iM]_C Ml = Zf Ml(S) ds. (418)
0

Thus,
C = De Mh D =D, ..) D, ...) = Apo. (4.19)

Putting together what we have for the bound state amplitude at this time,

_ _ To
AE,O) — De i MT1g2ipuTo Aél) _ _iDe_iMlnezwao/(; (Ml(s) _Vl) ds. (4.20)
This has been the first application in our calculation of the guiding principle of the method of
multiple scales, that dependence of expansion terms on ‘slow’ times is chosen to ensure that
the expansion terms are uniformly bounded with respect to the ‘fast’ Tim&low we solve
for the correction to the dispersive mode amplitude at this order (in fact, the leading term)
using the second of equations (4.12). Substituting the expressions from the previous order and
using the initial conditions gives a unique expression

S, TO . .
AP ) = —iDe T / NP (s, 1) €8P0 g2 (T0=) s (4.21)
0
Continuing systematically with equation (4.13) for the bound state amplitude correction

at order Qe?), we substitute all the expressions known thus far and observe the utility of the
change of variables

AP = peMiliglibolo, (4.22)
We find fork the simple equation
— TO —
drh = —D - (My(To) — My) / (Ma(s) — My)ds — 07,D — D - y(Tp) (4.23)
0
where
[o.¢] To o
¥ (To) = iMx(To) + f NP (To, 1) / g 205 To=0) NP (g 3y* dls . (4.24)
0 0

Equation (4.23) can be analysed as follows. By linearity, we can exprassa sum:
h = hq + hy, where

To
dr.h1 = —D - (M1(Tp) — M1 Ma(s) — M) d
1oh1 (M1 (To) 1)/0 (Ma(s) 1) ds (4.25)
Orh2 = —07,D — D - y (To)

and where we assume the initial conditioangTy = 0) = h,(T; = 0) = 0. Integrating the
equation for; exactly using the initial condition gives

To 2
hy=-1iD ( 5 (M1(s) — My) ds) (4.26)

which is periodic, and in particular bounded, by periodicityMbf(Tp).
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We now want to select the dependenceabn the slow timeT;, such that:,, as found
from the second of equations (4.25), is a bounded functidfy.ofJsing the initial condition
to integrate the equation faép with respect tdly while holding T fixed gives

To
hy = —Todr,D — D/ y(s) ds. (4.27)
0

Clearly, the possibility of choosinf(7%) so that expression (4.27) is boundedydepends
on the behaviour ofy(Tp) in the limits Ty — +o0o. We now studyy (Tp) for large
|Tol.

We can compute theiintegral in (4.24) exactly if we introduce the Fourier series for the
periodic functionV.” (Ty, 1),

oo
NP (Mo, 0) = Y Nyg(a) it (4.28)
k=—00
Note that in terms of the Fourier coefficients’éf? (Tp, A; €) itself (see (4.8)), we have

Nig(h) = Iimoe‘lNk(A; €). (4.29)

Substituting the Fourier series into (4.24), integrating term by term with respeactaiod
changing variables te = A2, we arrive at

i /oc va”(\/E)Nl»k(\/g)* [e—Zi(a—a,,)To _ eZJTi(n—k)To/L] do
0

y(To) =iMa(To) + )

oo 4./0 (0 — o3)
(4.30)
where the resonances are defined by
o, =nn/L — Bp. (4.31)

Note that for all terms having; > 0, the difference of the exponentials in the integrand
vanishes folo = oy, so there is no singularity. Moreover, the Fourier coefficieviis (1)
are by construction analytic functionsofor A in a sector including the real axis, and so the
quantitiesNVy , (/o) are analytic in a neighbourhood of the positive realxis. This property
extends to the whole integrand, and we may therefore deform the integration contour away
from the real axis in an effort to study the behaviour for laffig by a steepest-descents-type
argument.

For positiveTp, we deform the contour into the lower half-plane. Bof 0, letC? be the
contour consisting of the diagonal segment from Qlte- i)$ followed by the horizontal ray
from (1 —i)8 to —ié + oo (see figure 5). We have

1 = H Nl,n (ﬁ)le(ﬁ)* _2'( — )T i —
To) = IM-(Tp) + i g 2i(c—0)To _e2m(n k) To/L d
y (To) 2(To) n’;w " 4o —op) [ ] do

 My(Ty) + Z i 12 (VO) N1k (o) e 2@—00To §or
Wi Jai AJo(o —op)

B i": i/ Nl,n(\/E)Nl,k(\/E)*ezni(n—km,/L do
n,k=—o0 c 4ﬁ(0 - Uk)

= yo(To) + y1 (To) + 5 (To) (4.32)
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Figure 5. The deformed integration contout§ andc? .

so that on the new contod the two integrals converge independently. The tegitTo) is
periodic inTp with periodL and mean valueM,. The termy, (Tp) is also a periodic function
of Ty with period L. Its mean value is given by the terms in the sum wita &,

|N1. (V)2
H—Zoo /‘5 4«/—(0'_0‘,,) do-. (433)

Letting§ tend to zero does not alter the value of the integral, and then we may use the Plemelj—
Sokhotski formulat to evaluate the terms with> 0 to find

Yo+ys =iMy—iAz+T7 (4.34)
where
no—1 00 00 2
Nin d N1, d
Ay = Z/ [Ny, («/_)I o ZPV/ |N1,,(y/o)|* do (4.35)
e 4f(o -0 = o 4Jo(o—oy,)
and
LT [Nua (o) P
== oIV 4.36
2 ; = (4.36)

Finally, consider the termf(To). Its time integral, calculated term by term, is

oo | _ Nuw(VONL(VO) + ooy
/o y1(9)ds = i /ca 80 (0 —oy)(0 — 0,) le

~ / N1, (/o) N1k (Vo)*
wimse 80 (0 —oy)(o —O'n)

e / Nl,n (\/E)le(\/g)* —2i(0—0,)To
_ € w10 do,
e c: 80 (0 —oy)(0 — 0y)

The first term is independent @§ (and also of§ > 0, since the integral converges and the
integrand is analytic). Inthe second term, the real part of the exponent is negafiyefdr, so

— 1] do

(4.37)

T This is merely the distributional identity
(x £i0) 1 =PVx tFins(x).
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for Ty large and positive, the integrand is exponentially small except in a small neighbourhood
of o = 0. This small neighbourhood gives a leading contribution to the integrand that is
O(To_l/z), and in particular is bounded for lar@g > 0.

Putting these results together, we find that for lafge- 0, we have

To
/ y(s)ds = (iMy — iAp + o) Ty + O(1). (4.38)
0

Going back to (4.27), itis clear that choosing
dr,D = —(iMz —iAy +T2)D (4.39)

will lead to a solutiom,(Tp) that is uniformly bounded for alfy > 0. Also note that the first
term iny (Tp) contributes a term

To
hoy = —i/ (Ma(s) — M) ds (4.40)
0

to the expression a2 (Tp). We writeh(Tp) = ho p (Tp) + ho(T).

To find the behaviour of (Tp) and its time integral ag, tends to—oo, we repeat the
above steps, this time deforming the integration contour into the upper half-plane to facilitate
the steepest-descents argument. The path of integration i€hofsee figure 5). The only
difference is in the sign df',; the correct choice for a bounded solution for&ylis

dr,D = —(iM3 — iAy +sgn(To)['2) D. (4.41)

Thus, the method of multiple scales gives the following approximation to the bound state
mode amplitude:

t
Ab([) — Aboezilsblefi(éﬁjﬁezﬁz)teiezl\ztefezrz‘f‘ (1 — e / (Ml(S) — ﬁl) ds
0

t 2 t
—%62</ (My(s) — My) ds) — iezf (Ma(s) — Mp) ds + €2ha(1) + 0(63)).
0 0
(4.42)
It is not hard to see that an asymptotically equivalent expression is just

Ap(t) = AbOeZiﬂbtengFﬂtleiGZAztefi(/; M(s)ds (1 + 0(62)). (443)

This asymptotic formula is expected to be uniformly valid asnds to zero for alt| < Ke~2
for any constank .

So the behaviour of the bound state amplitude under the influence of a periodic
perturbation, as predicted by the multiple-scale theory, is dominated by two effects, a shift
in frequency accompanied by exponential decay. The shift in frequency is an ofder O
effect, coming fromM. This shift can be traced back to the influence of the perturbation
directly on the bound state; there is no coupling to any other modes in this term. The order
O(e?) effects include both a further adjustment to the frequency through the queintisythe
Lamb shift and exponential decay through the quani?y7,. Clearly, these two numbers are
the real and imaginary parts of the same complex frequency. Unlike the leading-order phase
shift, both of these effects are clearly due to the resonant coupling between the bound state
and the continuum that is introduced and mediated by the periodic perturbation. Due to the
exponential decay, the lifetime of the bound state is seen to be approxiraatglly,, which
is quite long for smalk. For this reason, under small perturbations of the potential energy the
state is callednetastable
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Remark. The validity of this expansion procedure is clearly called into question if any of

the resonances, are very close to zero, in which case the complex frequency il is
potentially large. The breakdown of the expansion in this case indicates the presence of a
parametric zero-energy resonanclote, however, that in the odd case the matrix element
N®(z, ) vanishes as tends to zero, and therefore so do the corresponding Fourier coefficients
(and, in particular, they vanish to leading ordekijrthat is,N; , (1) vanishes at = 0 for all

n). This suggests that the expansion (4.43) continues to hold in the odd case as the parameters
p1 andp, of the two-soliton potential are varied so as to cause a resomafeg p2) to pass

through zero. In the even case, however, behaviour possibly very different from that predicted
by the formula (4.43) is expected if a resonance is close to zero. We plan to investigate
this phenomenon analytically; however, in this paper we will demonstrate the effects of a
parametric zero-energy resonance in both the even and odd cases with numerical simulations.
Sudden changes in the behaviour of a simple model for atomic ionization as a parameter is
smoothly varied, causing the system to pass through a zero-energy resonance, have recently
been observed and compared with experiment by Cesh[7].

4.3. Rigorous analysis and infinite-time results

The multiple-scale analysis of the preceding section leads to an asymptotic formula for the
decaying bound state amplitude that is valid on time intervals of ardfer In this section,
we will establish the validity of the asymptotic formula (4.43) in certain circumstances using
the results of Kirr and Weinstein [15]. When applicable, these results also yield a detailed
description of the solution as— +oo.

More precisely, we now study the perturbed periodic system in the form obtained by use
of Floquet factorization of the time-periodic unperturbed Hamiltortigxy),

i0,y — By = W()y. (4.44)

The self-adjoint operatds : L?(R) — L?(R) defined in section 3 can be thought of as a time-
independent Hamiltonian, and the idea is to apply the theory of periodic (or almost periodic)
perturbations of autonomous linear Hamiltonian systems as developed in [15, 28] directly to
the problem in this form.

As we did in the multiple-scales analysis, we will restrict attention to the special case
of periodically perturbed even two-soliton periodic potentials. As we know, in this case the
operator3 has exactly twd.? eigenfunctions, one an even functiomoénd the other an odd
function ofx. SinceL? s the direct sum of its two subspadeg , of even and odd functions,
and sinces leaves each subspace invariant, we may study the problem (4.44) restricted to one
subspace at atime. This reduction results in an unperturbed problem with a single bound state,
and to such problems the results described in [15, 28] can be applied without modification.

On each subspade(ze_yo) (R), the operatoB is explicitly given by

Bf(x) = (W27, 0), =2Bp f ()W (x, 0)
+ /0 OO(\yge”)(-, 0, 1), 222 f (N WL (x, 0, 1) di (4.45)

where the function®/\*® (x, 1) andw > (x, 7, 1) are defined given the parametgrsand p,
in section 2. The hypotheses required in [15] of the even and odd restrictions of the operator
B are reproduced here adapted to our application.

(H1) The even and odd restrictions Bfare densely defined on subspaceiéfo)(R) and
have self-adjoint extensions to alll bfe,o) (R).
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(H2) The spectrum of3 in each ofL(zeqo)(R) consists of an absolutely continuous part

o 29(B) = [0, 00] with associated spectral projectigh®® and a single isolated
eigenvalue.o = —28, with corresponding normalized eigenstaig(x) = ¥\*(x, 0),
so that

Bro = dovo Yoll2 = 1. (4.46)

(H3) The odd restriction of B satisfies twodispersive local decay estimate§here exist
constants’,s andCs such that

(&) The non-singular local decay estimate

()~ "2 BPO £l < Cuslt) 2212 £ 2 (4.47)

holds for all f € L% (R).

(b) The singular local decay estimate
1)~ "2 B (B — 2u — 2ik0) P fll2 < Cslt) 212 £ 112 (4.48)

wherex = sgn(t), holds uniformly for allx satisfying|u| > umin > 0, that is, the
constaniCs only depends o mjn.

The local decay hypotheses are established in appendix B. We remark here that demto a
energy resonangéhe decay estimates that are established in appendix B for the even case are of
the form (4.47) and (4.48) but with decay ratg /2 (this is a sharp estimate). Unfortunately,
this slower rate of decay precludes the direct application of the results in [15, 28]. On the other
hand, as long as the perturbation does not create a resopaheg is close to zero, we can
expect similar results to hold in the even case over time scales of lgngth K /€2, since
there is no obvious difficulty with the multiple-scales analysis.

The application of the results of [15, 28] also requires some hypotheses to be satisfied
by the perturbation operato®’(s) and its relation to the unperturbed Hamiltoniéin The
perturbation operator acting drfevo) (R) takes the form

W) f(x) = (M(r)<wge’°’(~, 0), £())
+ /0 N NP @ (2, 0,n), f()) dn) e (x, 0)
+ / N (N“’)(t, VEEO,0), £()
0

+/ K®t, 0, )P0, 0,m), £()) dn) W% (x,0, 1) da. (4.49)
0

We recall that the periodic ‘matrix elements’ in the above expression are defined in terms of
either the odd or even modes by (2.33). This operator, being periodiwith periodL, has
a Fourier series expansion

W)y = Y ey, (4.50)
k=—o00
where each operatot, has the same form as (4.49) with the functidigr), NP (¢, 1) and

K®(, A, n) replaced by the correspondiith Fourier coefficientsyf;, Ny (L) andK;(r, 1),
respectively. The hypotheses required in [15] of the perturbation adapted to this context are:
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(H4) The operatorsV; satisfy)V_, =)V, and

o
Z Wil zez2m®y < 00 (4.51)
k=—o00
where|| - ||zL2) denotes the uniform operator normid(R). Also,

oo

HAVON = (1P Wl ez + 1)WY Pl camy) < oo (4.52)
k=—o00
(H5) The followingresonance conditioholds:

o0

F=mY W, 8B — 20,) W) > (4.53)

n=ng

where the resonances are definepy= (Ao + 27n/L)/2 = —By + n/L. Hereng is
the smallest positive integer for whief), > 0. Note that since

Watho = W, W% (x, 0) = M, 4% (x, 0) + / N, ()W (x, 0, 1) dA (4.54)
0
and since for > 0
[ee) (e,0) 2
(F(), 8B —20)£()) =[ (VPO )G P5(232 — 20y dh = [Pl
0 4./
(4.55)
the formula forl" can be written as

nno

Note thatifV, (1) has an expansion in a small parametewith its leading term linear ia

as was assumed in the multiple-scale analysis, then the leading term of the corresponding
expansion foll"(¢) is exactlye?I',, wherel', is correctly obtained by the multiple-scale
analysis and is given by (4.36). The constar$ a decay rate associated with the bound
state of the unperturbed system. The statement that expression (4.53) should be positive
for decay to occur as a consequence of resonant coupling to the continuum is attributed
to Fermi and is known as ‘Fermi’s golden rule’. Again, because the decay cofsignt
quadratic in the size of the perturbation, the exponential decay process is very slow for
small perturbations. Thus, in the presence of a small perturb&tian ), the bound state

is said to be metastable.

(H6) There are no finite accumulation points of the resonanges: > ng. This is
satisfied automatically because the Fourier expansiohVof) is that of a periodic
function. The point here is that the results in [15] are more general; for example, this
hypothesis is satisfied by finite Fourier sums with incommensurate frequencies. Yetfurther
generalizations can be found in [15].

Verifying the hypothesis (H4) would seem to require more detailed information about the
correction to the potential enerd¥ (x, r) than we have used thus far. We merely point out

at this time that by elementary Cauchy—Schwarz arguments applied to the unitarily equivalent
operator®’W, V', one finds the estimate

W e < /|Mk|2+2f N, ()2 + f / Ko O, )2 A . (4.57)
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Assuming these bounds are all finite, which is really a question of the smoothness and decay
of ‘snapshots’ of the functioV (x, ¢) at fixeds, we see that the first required bound in (H4)
will be satisfied if the Fourier coefficients of the functi@in(x, ) in r decay faster than, say,
1/n. This is because the other periodic contributions come from the analytic eigenfunctions,
whose Fourier coefficients decay faster than”lfor any p > 0. Therefore, not much beyond
continuity int is required ofW (x, t), at least for this simpler estimate. More restrictions are
certainly required to satisfy the second estimate of (H4).

These hypotheses imply the following results:

Proposition 4.1 (theorem 2.1 of [15]).Let B and W(r) satisfy the above hypotheses and let
an odd functionyg(x) be given such thatx)/2yo(x) € L(Zo) (R). Lety(x, t) be the solution of
(4.44) with initial conditiony (x, 0) = yo(x). Thenif[|W()|| is sufficiently small there exists

a constaniC such that
12y, 002 < )21 Py () 12 (4.58)
holds for allz € R.

Proposition 4.2 (theorem 2.2 of [15]). Assume the same hypotheses aind W(t). Then if
WOl is sufficiently small, the solution(x, ¢) of (4.44) corresponding to the odd initial

conditionyg(x) with (x)/2yy(x) € Lfo)(R) is of the form

Y, 1) = [(WO, 0), yo(-)) €@ e Tgihig o MO s dni® 4 1 ()]0 (x, 0)

+ (7P yo () (x, 1) + F(x, 1) (4.59)
where

A= " (Wato, PV(B = 20,) PO Watho) (4.60)
and where

e the phase correction, (¢) is uniformly bounded an®(||W(-)|||2);

o the bound state amplitude erres(zr) is O(||WV(-)||) uniformly for all |t| < K /T for all
fixedK and decays for large time a3(({r) ~%/?);

e the correctiony(x, t) is orthogonal to the bound statgyo, y(-, 7)) = 0 for all ¢, and
satisfies the dispersive decay estimgte"/25(-, 1)||, = O((t)~¥/?) for large .

Remark. Propositions 4.1 and 4.2 would appear to say that all initial conditions decay
exponentially and then algebraically. However, a more careful reading shows that it is possible
for there to be a transient stage of growth, before the decay ultimately sets in. This is because
the error terms, although small when the perturbation is small, angniformly small for all

initial conditionsyg(x) such that(x)"/?yo(x) ranges over the unit sphere Iif(R). So, for

each fixed perturbatioW (x, t), no matter how small, it is possible to find an initial condition
yo(x, t) that grows before it decays. This is achieved by the following thought experiment.
Suppose the periodic perturbati@n(x, ) is fixed and even in time. Now pick any initial
conditionyo(x) sothat(x)"/2yo(x) € L?(R). Proposition 4.1 guarantees that after a sufficiently
large numbewV of periods, the size of the solution of (4.44) when measured in the weighted
L? norm is as small as we please. Note that throughout this process, the solution continues
to satisfy||(-)"/?y(-, )]l < co. So now, start again at= 0 with the new initial condition

yo(x) = y(x,t = NL)*. Since the potential is real and even in time, integration of (4.44) with
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this new initial condition is, up to complex conjugation, equivalent to integradiamkwards

in timefrom the timer = N L with the initial conditiony(x,t = NL). So we know that for

this very small initial condition, the weightel® norm must first grow to an order one size
attimer = NL as the decay process transiently reverses itself, before ultimately giving way
to decay over longer times. The existence of such solutions does not violate the statement
of propositions 4.1 or 4.2 because if one keeps the same initial condition and then makes the
perturbation smaller yet again, the connection with the time-reversed problem is lost for this
initial condition, and decay occurs sooner.

By the same arguments applied in the above discussion of the decay céhstémitows
that there is an alternative formula far.

no—1
_N [T NGlde i % IN(Vo)I2do
A_nzzoofo m—;w/o 1o —on (4.61)

Again, if N, (A) has an expansion in a small parametef the formN, () = € N1, (1) + O(¢?)
then the leading term of is of the forme?A,, whereA, as given by (4.35) was resolved by
the multiple-scales analysis. This frequency shift associated with the decay of the bound state
is the Lamb shift.

From these results, one recoversthe true dynamics by s¢tting) = (P(#)y(-, t))(x, t),
whereP () is the periodic operator that appeared in the Floquet factorization of the propagator
U() for the periodic unperturbed Hamiltoni&ty(z). Since

P@) €5 WO (1) (x, 1) = (P(1) €Y, 1)) (x, 1)

= UOW D) x, 1) = U0 (x, 1) (4.62)

it follows that the time-dependent projection 6¢x, r) onto the bound state Bloch function
W% (x, 1) is uniformly approximated by

Bo(t) = (W0, 1), f(. 1)) ~ (WO, 0), f(-,0)) e TgAgifoMwds, (4.63)

For the system restricted to the odd parL3{R), these theorems provide justification for
the formal multiple-scales analysis carried out above, and more. They globally describe the
decay process for all time, where the multiple-scales calculation only attempts to capture the
dynamics over time scales of lendittl. On the other hand, since the rate of free dispersive
decay is not sufficient in the even case to apply this detailed theory, we must settle for the
multiple-scale expansions.

5. Applications in planar waveguide optics

In this section, we present a physical application of the kinds of perturbed time-dependent
Schidinger equations we have been studying in detail. This will provide a concrete family of
perturbationg¥ (x, ¢) that we can use in subsequent numerical experiments.

5.1. Time-dependent S¢ldinger equations in waveguide optics

For completeness, we present here a brief derivation of the time-dependentiSghar
equation as it occurs in the paraxial theory of monochromatic waveguide optics. Consider
Maxwell’'s wave equation for the electric field vect®(x, ¢) in a planar § = (y, z)) dielectric
medium with isotropic, inhomogeneous linear susceptibjity (x, ),

- 12 - 1 . -
AE = SEy=V(V-E)= S[xVE 0 El. (5.1)
C c
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Here, the asterisk indicates convolution intime. A Fourier transform (denoted with the operator
F) in ¢ with dual variablew (the optical frequency) leads to

2,2
AFE —V(V - FE)+ Wfé -0 (5.2)
where the refractive indexis defined by:?(y, z, w) = 1+(Fx ) (v, z, w). We now assume
that the inhomogeneity is weak, so that gradient6’f V) (v, z, ) are small. This implies
that in the absence of any free charges, the approximate refdtigRE ~ 0 follows from
the exact relation for the electric displacem&nt 7D = 0. Neglecting the divergence term
in (5.2), one may then choose any unit veda@nd set FE)(y, z, w) = ¢(y, z, w)é, which
gives the Helmholtz or scalar wave equationgor

2.2
Boe + yy + W¢ —0. (5.3)

In the design of integrated optical devices, the inhomogeneity in the refractive index
is a localized modulation of a ‘background indexy(w). Choose a fixed length scale
Lo and non-dimensionalize by settingLo = 8 2Z andy/Lo = §~'Y, wheres$ is a
dimensionless parameter, aidand Z are dimensionless coordinates. Settihg,z) =
f(Y, Z)expiBZ/8%), wherep = Lowng(w)/c is also dimensionless, one arrives at

. n2(YLod™, ZLod™, w
2iB8 2 f7+ f12+8 2 fry +ﬂ28“[ (to — ) 1} f=0. (5.4)
ng(w)
With the definition
1 [n2(YLps™ L, ZLos 2, w)
Y, Z; 0) = —— -1 55
0. zi) =~ [ ] 9

we see that the formal limit &f | O with 8 andQ (Y, Z; w) held fixed yields the paraxial wave
equation

iBfz+3fry — BPO(Y, Z; 0) f = 0. (5.6)

The potential functiorQ (Y, Z; w) vanishes as the refractive index approaches its background
valueng(w), say asY and Z go off to infinity (at least in most directions). Given a fixed
function Q(Y, Z; w), we see that the paraxial approximation made hér¢ Q) is valid if

the modulation in the refractive index is weak, slowly varying and more slowly varying in the
z-direction than in the-direction. Thatis, afixed functio@ (Y, Z; w) provides arasymptotic
descriptionof afamily of physical refractive index profiles parametrizedsby 1,

n%(y, z, w; 8) = nj(w) — 28%n5(w) Q(8y/Lo, 8°z/Lo; w). (5.7)

Note that these assumptions about the refractive index jusfifysterioriour neglect of the
term V(V - FE) in the original wave equation, because in the lidhit> 0, gradients of
n%(y, z, w; 8) necessarily vanish.

5.2. Spectral properties of paraxial waveguides

In optical waveguide theory, integration (numerical or otherwise) of the linea8iciger
equation (5.6), also known as the beam propagation method, is one of the main tools for
studying the optical properties of ‘long’ planar structures like gradual fibre tapers or channel
waveguide junctions, in which backward reflecting waves can be neglected. In this connection,
a common problem that arises is the description of the change in behaviour of a waveguiding
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structure as the optical frequency is varied in the neighbourhood of some frequgndly

the structurei®(y, z, w) is one that admits the paraxial approximation, we can use the theory
described above as a model. In this case, it is convenient to choose the lengtthysmataat

at the frequencywy we haveg = 1. With this choice, we think 0B = B(w) as a function

of frequency satisfyingg(wg) = 1. With the functionQ (Y, Z; w) chosen consistently, the
problem becomes one of studying the dependence of solutions of (5.6) on the frequency
parameteto nearwg. With the change of variables= Y./B(w) andt = Z, equation (5.6)

takes the form

ify = (332 + Volx,0)) f+ W, ) f (5.8)
where

Vo(x, 1) = Q(x, t; wo) (5.9)
and the correction to the potential is given by

W(x, 1) = (@) Q(x/VB (@), 1; ) — Q(x, 1; w). (5.10)

Settinge = w/wo— 1, we see thaW (x, 1) = W(x, t; €) is uniformly small ine if Q(Y, Z; w)
is in the Schwartz space with respectitoWe have the expansion

W(x,t;€) = ewp [B'(wo) (1 — 3x0:) Q(x, 1; wo) + 3, Q(x, t; wo) | + O(e?) (5.11)

uniformly in x and¢. If the frequency range of interest is sufficiently small, then it is often a
good approximation to consider the problem todigpersionlessso that the refractive index
n(y, z, w) is independent ob. In this paper, we will accordingly consider the functignto

be independent @b in which caseQ (x, t; w) = Vp(x, ¢) for all w in the range of interest, and
we can drop the corresponding termin (5.11).

Suppose now that we choose to study a refractive index préfile z) thatis even iy and
periodic inz, such that after choosing a frequengyand non-dimensionalizing, the function
Vo(x, t) is one of the separable potentials described in detail at the end of section 2. Over
length scales where the paraxial approximation is valid, this periodically modulated channel
waveguide will actually have two ‘breather modes’, approximately described by the bound
statesw,? (x, 1) and W.” (x, r). The effect of not being fully in the paraxial limit (that is,

8 is small but finite) is that the modes will very slowly attenuate as they propagate forward
due to a small coupling to backward-propagating fields. This small attenuation occurs at all
frequencies neab = wp in a way that can be quantified [23]. However, the profil¢y, z) is

very special in that at the frequeney= wg there is no coupling between the bound modes and
any forward-propagating radiation modes. This additional coupling would indeed be present
for ‘typical’ z-periodic waveguide profiles?(y, z).

In fact, the theory developed in section 4 can be applied to the perturbed problem (5.8)
because the unperturbed potentiglx, r) and the perturbatiotW (x, ¢; ¢) are both even
functions ofx that are periodic inr with the same period.. This theory shows that the
additional attenuation due to coupling to forward-propagating radiation, while completely
suppressed at the frequeney, re-emerges upon detuning the frequency slightly fogn
Suppose the waveguide is cleaved at 0 and is illuminated at this face with a broadband
source consisting of many frequenciesAfter some distance all of the frequencies will have
attenuated somewhat due to backscattering (weak non-paraxiality). However, all frequencies
excepiwg will additionallydecay by forward-propagating radiation damping. The waveguide
will therefore preferentially ‘pass’ light of the frequency}. These effects were observed
numerically in [2, 3].

T Actually, the ‘background’ attenuation due to non-paraxialityt(0) decreases slightly with increasing frequency.

When this effect is combined with the frequency-dependent decay calculated from the paraxial approximation, the
preferred frequency for which the loss is minimal is detuned slightly upward [23] by an amount thafjs O
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Note that from the point of view of optical waveguide theory, the periodicity of the
index n(x, z) in z is an important feature, since it gives rise to an attenuated frequency
response that is a symmetric function of frequeacyn the neighbourhood a#g. Thus,
attenuation occurs whether is less than or greater than the frequengy of structural
instability. In contrast, channel waveguides, whe(e, z) is independent of, also exhibit
frequency-dependent structural instabilitycat-off frequenciesvhere the number of bound
states changes. However, in such waveguides the number of bound states (guided modes)
is always an increasing function of frequency [20], which implies that an input beam that
matches onto a mode at its cut-off frequengy will attenuate forw slightly less thanog
but will remain bound and thus give rise to a significant transmissiom fslightly greater
thanwy. Thus, whereas channel waveguides wiihdependent refractive index profiles can
behave as ‘high-pass’ componentgeriodic waveguides that at frequeney are modelled
by separable potentials can behave as ‘band-pass’ components.

6. Numerical simulations

Here, we describe some numerical simulations we performed to verify the analytical predictions
where we expect them to apply. We also would like to explore the behaviour of the perturbed
system in parameter regimes where we expect zero-energy resonances (see the remark at the
end of section 4.2) to prevent the theory from applying in its current form. For concreteness,
we considered periodic perturbations of two problems, each associated with a particular two-
soliton separable periodic potential. The particular perturbation we selected was exactly the
type considered in section 5, namely, given a separable two-soliton periodic povghtial),

we numerically integrated the equation

i9, f + 32f —(L+e)Volx,0)f =0 (6.1)

2(1+¢)

for several small values ef This problem differs from the type to which the theory developed
above applies only by a rescalingxgfin particular, the time scale is unaffected.

Let us give some details about our numerical scheme. We used a Fourier split-step method
with a local truncation error of Q\¢®) [24]. The spatial domaind; , xz] of [—80, 80] in the
‘non-zero-energy resonance’ case and(, 40]inthe ‘zero-energy resonance’ case (see below
for more details about these two cases) was discretized into 1024 points. The scheme splits
the Hamiltonian into two partsH () = H; + H2(¢), where

Hi = —2(11+6)af Ha(1) = (1 +€)Vo(x, 1). (6.2)
Let (¢, s) denote the propagator associated with (6.1).l&t — s) andif5 (¢, s) be those
associated wittt{, andH2(¢). Then, the numerical scheme approximates the true integration
over a time step of sizat as follows:

Ut + At t) ~Us (At/8) Us (t + 3At /4, t + At /4) Ui (At /4) (6.3)

which has an error of ordexs3. It is easy to see that, after getting started with a quarter-step,
and until finishing with a quarter-step, iterating this approximation to the propagatars)
over many steps amounts to simply alternating betvi#esndl{; each acting over a half-step
of lengthAt¢/2.

So, in each half-step, only one of the two parts is integrated. The half-step invétying
is carried out in the Fourier transform domain where one multiplies by the explicit exponential
of the operator. This step is thus exact in time, so that the only error appears in discretizing
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Figure 6. The magnitude of the projection of the solution onto the bound state. Odd mpde%,

P2 = %. Full curves are the output from numerical simulations. Dotted lines are the analytical

predictions.

the Fourier transform and is smaller than any powes ofif the functions to be differentiated
are taken to be arbitrarily smooth. The half-step involviagr) is doneexactlybecause we
have explicit formulae foly(x, #) and it is possible to find aexplicit exponential ofH> (7).
That is, we can write down a formula for the multiplication operator

U (2, 10) = exp(i(l +e)/ Vo(x, s) ds) (6.4)

and use it in the code. Since the temporal gradientg0f, ) can be large in some parts of
each period and small in others, we adjusted the time step throughout the period.

We expect the perturbation to generate radiation from the central bound region of the
potential, and we need to remove this radiation from the problem as it moves tgdarge
take care of this we used a ‘sponge layer’ in which we effectively add a term of the form

o o5 el () ) 6

to the right-hand side of (6.1) for a positive damping faet@nd widthw. These parameters
were adjusted heuristically until it was observed, roughly speaking, that no energy was being
artificially drawn out of the centre and that no energy that was radiated outward was either
reflected or transmitted through to the other side of the periodic domain.

We integrated for 50 periods. In all the experiments it was arranged that the fundamental
period wad. = 2. We initialized the fieldf atr = 0 to be a snapshot of either the odd or the
even mode of the unperturbed problem. Then, after integrating, we calculated the projection
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Odd mode, p,=0.25, p,=0.75
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Figure 7. The phase of the projection of the solution onto the bound state. Odd rm)de.%,

3
P2 = 3.

of the numerical solution onto the exact solution of the unperturbed problem, defining

Bo(1) = (W2, 1), f(-,1)). (6.6)

We verified the accuracy of the code by checking thatfer O we hadBy,(r) = 1 to several
digits, even in the presence of the damping in the sponge layer. Note that the fuBgtipn
is related taAy(r) by the simple relation

By (1) = Ap(r) € 2P0, (6.7)

6.1. Away from parametric zero-energy resonance

For the first experiments, we selected= ‘—11 andp, = % as the parameters of the function
Vo(x, t). Itis easy to check that the periodlis= 27, and that the Floquet exponent of both
odd and even bound states may be taken tgpe p? = 1i6 Therefore, the resonances are
explicitly given by

On = %I’l - llﬁ (68)

none of which are equal to zero. This means that there is ho parametric zero-energy resonance,
although in the even case there still is a zero-energy resonance corresponding to insufficient
dispersive decay. In this case, the formula for the decay corstaratkes sense for both odd
and even parity. Furthermore, for odd parity, we have a proof that the asymptotic expansion
obtained previously is indeed valid.

In figure 6, we show plots of Iq@By(¢)|) for ¢ = 0.04, 0.02 and 0.01 for an initial
condition of odd parity. The numerical results are plotted as full curves, and superimposed
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Figure 8. The magnitude of the projection of the solution onto the bound state. Even mode.
p1 = ;11, P2 = %. Full curves are the output from numerical simulations. Dotted lines are the
analytical predictions.

are corresponding graphs efl"|¢| calculated from the analytical formula, the analogue of
Fermi’s golden rule, and shown as dotted lines. The main observation here is that the graphs
follow the corresponding straight lines, which have slopes that scale?jlkes expected. The
deviation from the straight lines appears to scale #kes well, and to decay in time. In
figure 7, we give corresponding plots of the argumenBg) for an initial condition of odd
parity. Inthese plots, itis easy to see that the phase grows roughly linearly in time, with a slope
that is Q). This is the contribution to the frequency shift of the temiy which is indeed
O(e).

Now, we consider an even initial condition, with corresponding projedigi) onto the
even mode of the exact solution fo= 0. Figure 8 contains plots of I§gB,(¢)|) as calculated
from the numerical data far = 0.04, 0.02 and 0.01 shown as full curves. Also plotted are
the corresponding decay curve§'|¢| shown as dotted lines. Although for even parity there
is insufficient dispersive decay for the results of [15] to apply, the decay cords{@ntmore
precisely as it is obtained in the multiple-scale analysi§),) is finite because none of the
resonances, are zero, and we see that the multiple-scale theory accurately predicts the rate of
decay of the bound state even in this case. The plots of the ph&gé& pare shown in figure 9.
Again, one sees that the rate of drift of the phase(is)(Oas predicted by the multiple-scale
theory.

The significant new feature apparently contributed by the lack of sufficient dispersive
decay for initial conditions of even parity appears to be the quality of the deviatigBg(ir)|
from the ‘backbone’ decay€'"!. Not only are they larger for fixedthan for initial conditions
of odd parity, but they have an undulatory character that suggests a possible contribution of
subharmonidrequencies to the dynamics. The period of the undulations superimposed on the
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Figure 9. The phase of the projection of the solution onto the bound state. Even mpde.%,
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decay appears to be long compared withthe fundamental period of the problem, but also
appears to be more or less independert of

6.2. At parametric zero-energy resonance

As a second set of experiments, we considered a potential energy fuligtiarn) obtained
from the parameters; = 1/+/2 andp, = 1. In this case, the period is agdin= 2r, and the
Floquet exponents of both modes #e= p? = % The corresponding family of resonances
is

NI
NI

op = 3n — (6.9)

One of these values is equal to zero. This condition for parametric zero-energy resonance
always goes hand-in-hand with another property of this potential, namely that the Floquet
multipliers of both modes are equal to 1. Thus, both odd and even modes are actually periodic
functions ofr with periodL.

At a parametric zero-energy resonance, the dispersive local decay estimates fail to be
sufficient to guarantee the applicability of the theory in [E8$0 for initial conditions of odd
parity. However, in the odd case, the formulae for the decay conktamid the Lamb shift
A are finite because there is sufficient vanishing in the numerator coming from the missing
generalized eigenfunction at = 0 to cancel and overcome the weaker vanishing of the
denominator. Plots of la@gB,(¢)|) for odd parity corresponding to= 0.04, 0.02 and 0.01 are
shown in figure 10 along with dotted lines indicating the analytical prediction of decay. The
prediction of the theory appears to be very accurate indeed. The plots of the pl&age) of



544 P D Miller et al
Odd mode pi= O707 ,02—1 OO

0.000

-0.010

-0.020

-0.030

€=0.04

Log(IB:(t)1)

—-0.040

IIl'lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

-0.050

—0.060

50 100 150 200 250 300
t

(@]

Figure 10. The magnitude of the projection of the solution onto the bound state. Odd mode.
p1 = 1/ﬁ, p2 = 1. Full curves are the output from numerical simulations. Dotted lines are the
analytical predictions.

are shown in figure 11. They show the frequency shift scalingdjkas we expect from the
contribution of the termd/. So it appears that for initial conditions of odd parity, there is little

if any effect of the parametric zero-energy resonance, although the rate of dispersive decay is
smaller here than at more generic parameter values.

Finally, let us examine the behaviour of initial conditions of even parity. For such initial
conditions and for these parameter values, we lhaika simple zero-energy resonance (as
one has in the even case for all parameter values) and a parametric zero-energy resonance (as
occurs only for very special parameter values). It is easy to see thal'latd A are infinite
in this case, and clearly one cannot expect the multiple-scale analysis to be valid. So what
can one expect? In figure 12 we plot (pB,(¢)|) for ¢ = 0.04, 0.02 and 0.01, as before.

This time, rather than superimposing the straight linr@¥z|, we might try to compare with

a ‘renormalized’ rate of decay given by the formula fowith the term coming fronw = 0

simply dropped. The straight lines calculated from the renormalized versioambear dotted

on the plots. Westill see quite good agreement at the level of a mean drifgi#)|. Asinthe
previous experiment with even parity, we see subharmonic undulations about this mean drift.
However, a key point is that, whereas previously the period of these undulations appeared to
be more or less independent @fin this case we note that the period appears to scale like
e~1. Thus, there is a ‘slow’ dynamical process involving variations of the amplitude that is
completely missed by the multiple-scales analysis in its current form. We must expect that
whatever rescalings are required to balance the blowing Uiprothe vicinity of a parametric
zero-energy resonance will also introduce interesting subharmonic dynamics on the scale of
T1 = et that will reproduce the effects we are seeing numerically. As a final remark, the phase
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Figure 13. The phase of the projection of the solution onto the bound state. Even mode.
p1=1/2,p2=1.

of By(t), as shown in figure 13, exhibits no particularly different behaviour than was seen in
any of the other experiments. The frequency adjustment continues to be dominated by the
relatively large termVf and is therefore of order.

7. Conclusions

In studying the propagation of waves in time-periodic potentials, considering the problem
at hand to be a perturbation of a separable periodic problem is evidently as easy as, and in
many cases more convenient than, working with periodic perturbations of stationary potential
problems. A particular application to the theory of periodically modulated optical waveguides
in planar dielectric media allows one to study frequency-dependent attenuation properties of
certain optical waveguides.

Many of the difficulties described in our paper concern the influence of zero-energy
resonances. These are generically not present (that is, for most separable periodic potentials,
as for most stationary potentials), but aevayspresent when the potential has sufficient
symmetry, as in the evenness considered above. Many problems would therefore vanish upon
dropping the symmetry. From one point of view, this introduces the additional complication
of having multiple bound states that are essentially coupled to one another by the perturbation.
The study of perturbed multimode problems arises naturally in the theory of light propagation
in optical fibres having large effective cross sections. Some of the necessary modifications in
the theory described in [15] are described by the same authors in [16].

Of course another point of view is to keep the symmetry, and hence the possibility of
zero-energy resonance, and study the effect of the resonance in more detail. Our numerical
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experiments suggest that the effects of such aresonance are most dramatic when the expressions
for I and A blow up, but we also see significant effects, presumably coming simply from the
lack of a sufficiently long time decay for freely dispersing waves, when these quantities are
finite. An asymptotic perturbation theory for smalshould be uniformly valid with respect

to parameters such as andp,, and we plan to investigate zero-energy resonances with such

a goal in mind in future work.
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Appendix A. Some theory of separable potentials

For completeness, here we give a self-contained description of the separable potentials for the
linear Schodinger equation that are connected with the soliton theory of vector nonlinear
Schibdinger equations. However, the material is auxiliary and all the needed facts are
reproduced in the main text. The results here are not new [22] but some arguments are carried
out in more detail.

Let gi(x,1),...,qn(x,t) be given smooth bounded complex functions of realnd¢,
and letA be the vector space of differentialfié’**-valued functions of and:. Letx be a
complex parameter, and consider the two linear operators actifig in

. =2ir g’
X()"vCI)—ax_l: _é’* 0 ]
=9 — (—2IRE+U@{)) (A.1)
whereF is a matrix whose elements are givenBy = 8,161, and
- 0 g’
U(g) = [ 7 0 } (A.2)
and
. —2iA+igTg /2 rgT +id.q" /2
T(h,§) =0, - e e
—Ag* +i0,q*/2 —ig*q' /2
=8 — (-22E+ U@ + V(@) (A.3)
where
T —x -T
- 99" 9q
V( ):[ . } A4
1 ag* —q*q" (A4)

Hereg denotes the column vector of the functiopgx, r) and0 denotes theV x N zero
matrix. Along with these two operators, we consider their nullspakesi, g) C A and
K7(x,q) C A. For generic\, these subspaces ai® + 1)-dimensional, and if restricted to
generic fixedx, + andx spanCV*1,
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If the functionsgy (x, t) are chosen just right, then the subspakgsi, g) andK+ (A, q)
may coincide for all complex: Ky = Ky = K. If this is the case, then the common
nullspace will certainly be contained in the nullspace of the commut&tot: Ky 77. As is
easily checked, the commutateY [7] is not a differential operator, but is merely a matrix
multiplication operator, with entries depending erand ¢ through theg,(x, t). Since the
kernel of the commutator contains a subsp&cef dimensionN + 1 for mosti, x andz,
this implies that the operators and7 commute. It is easily checked that the compatibility
condition [¥, 7] = 0is equivalent to the vector nonlinear Sédmger equation

i0,q + 3023 +(q"3"g = 0. (A.5)

It is therefore necessary that (A.5) be satisfied by the functips 1) if we are to have
a basis of simultaneous nullvectors in the common nullsgacéVhen they exist, we can
collect all these linearly independent column vectors into a square nfatkixt, A). These
ideas admit a natural geometric interpretation in the trivial frame buAdie R? with fibre
GL(N+1, C). Here,X andT are covariant derivative operators f6in thex andr directions,
and the conditionf, 7] = 0 means that the curvature of the affine connection specified by
and7 is zero. This implies the existence of parallel global sectiBus, ¢, A) of the bundle
E.

Finding a global sectiod (x, ¢, A) of E giveng(x, t) (that is, a matrix of simultaneous
solution vectors) is not always easy and for this reason, we will adopt a different point of
view below. However, it is clear from (A.1) and (A.3) that, given bounded functiQns, )
satisfying (A.5), it is possible to develop an asymptotic expansioFfar, ¢, A) in the limit
A — o0o. The expansion may be sought in the form

e—2i(Ax+Azz) 67
F(x,t,) = (cIys1 + 2PV, ) + A2FC2 (0, 1) + - ) 5 .| A8
N

Here I, denotesth® x D identity matrix and is a complex constant. The coefficient matrices
F®(x, t) are determined recursively in termsaqf(x, 1), ..., gy (x, t) and the constant by
collecting powers of. in the compatible equatiom®8F = 7 F = 0. There is some ambiguity

in this expansion procedure entering as integration constants at each order. However, itis easy
to see that

_ C
FaGen = za@.n  k=1...N (A7)

regardless of the values of the integration constants.
The implications of this compatible structure for linear Sxlinger equations that are of
interest to us in this paper are easily stated.

Proposition A.1. Suppose that (A.5) is satisfied, andi¢t, 7, A) € K be any simultaneous
nullvector of X (1, g) and7 (A, g). LetP : A — C(x, t) be the operator of projection onto
the first component. Define tkelf-consistent potential

Volx, 1) = —gG(x,0)" G (x,1)* (A.8)
and setf (x, t, A) = Pv(x, t, 1). Then it follows that

i0,f +302f — Volx, 1) f =0. (A.9)
So, for each complex, the function f (x, ¢, 1) is a solution of the linear, time-dependent

Schibdinger equation with potential (A.8). Solutions corresponding to different valugs of
are linearly independent. Given functiofgx, t) satisfying the nonlinear system (A.5), one
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can look to the common nullspaée of the linear operatorg’(x, g) and7 (A, g) as a source
of many solutions of the linear equation (A.9).

Remark. Let us try to put these facts in a larger context, and incidentally give the proof of
proposition A.1. It is part of the lore of integrable systems theory that linearized evolution
equations connected with integrable systems are solvable in terms of ‘squared eigenfunctions
coming from the auxiliary linear problems making up the Lax pair for the integrable system.
The integrable system (A.5) is the compatibility condition for the equatio#s = 0 and

TF = 0. By a change of variables (gauge transformatiBny: G exp(—iix — iA%t) the two
equations take the more familiar form of the Lax pair for (A.5) [9, 19],

3G = AG %G = BG (A.10)
where
_ix a7 —iz2+igTg*/2 AT +i0.g7/2
A=|: hoq } p=| T2 A a2 (A11)
—g* Al —AG* +id,g*/2 W1 —ig*q" /2

If G, andG} are any two simultaneous matrix solutions of the Lax pair (A.10), awld i
any constant (that is;- andz-independent) matrix, then by settity= GaCGlgl, one easily
obtains the equations

Equations of this form are calledax equationsand the elements af) are the ‘squared
eigenfunctions’. The terminology becomes accurate in the scalantasd whenA and B
are in the Lie algebral/(2). In this case the solutionG of the Lax pair can be normalized to
be in the Lie grou L (2) and therefore have determinant one. Then, beo@yss 2 x 2 with
determinant one, the elements@fare seen to bbona fidequadratic forms in the solutions
of the Lax pair (A.10). The emphasis in the literature on ¢h@)-specific terminology of
‘squared eigenfunctions’ for the forms that satisfy the Lax equations (A.12) no doubt bears
witness to the fact that so many of the famous integrable equations (e.g. Korteweg—de Vries,
scalar nonlinear Schdinger, sine—Gordon) are associated witt2) representations.

If one introduces the splitting of a matrix into blockdZ = MP + M©°P where MP
consists of the & 1 andN x N diagonal blocks of\f and M©P consists of the & N and
N x 1 off-diagonal blocks ofVZ, and if one introducedy = A|;—g andBy = B|;—o, then it
is an exercise to check that equations (A.12) imply

i or i o
° ) 81QOD + %8§QOD _ - ) [B(I)D, QOD] _ %[AOOD’ [A(?D, QOD]] =0
0 —il 0 —il
(A.13)
If one writes
0 g’
Qw:[ﬁ 0} (A.14)
then one finds
987 + 1927 +575%aT + -'T]jl'-'T +gTz%2T =6
+8 20:8 q9 498 q nq 84949 (A.15)

—io,h+10%h+ G G h+G*87G* +hg"§* = 0.

These linear equations f@rand/ are consistent with the constraint= z* at which point
it becomes clear thaj(x, r) satisfies the linearization of the vector nonlinear 8dimger
eguation (A.5) about a solutigj(x, 1).
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Consider now a particular solutiof(x, t) of (A.5) and by adjoining a new trivial
componentyy+1(x, t) = 0, view it as a solutio’(x, ) of (A.5) in the (N + 1)-component
case. From (A.15) itis easily seen that the corresponding companents, ¢) andh y+1(x, t)
satisfy

iang+1+%858N+1+@T‘}*)8N+1=0 (A.16)
—i0hya* 302hnea + (G Gy =0 '
where we have used the fact thigt g = g7 g*. Now considering the Lax pair (A.10) for

the primed potentials, it is easy to see that there exists a non-trivial column vector solution of
both equations of the forr®?, ,, exp(irx +iAr%#))T, and that further column vector solutions

can then be chosen to have a vanishing last component. Taking the last column of the matrix
solutionGy to be this particular solution, and the firgt+ 1 columns all to have zeros in the

final component, we see th@ls may be inverted into two independent blocks, and therefore

a solution of the linearized equation is given by

N+2

gn+1(x, 1) = Q1 na2(x, £, A) = eXp(—irx — ir%r) Z Cin+2(M) G 1k (x, 1, 1). (A.17)
=1

Since the matrixC is arbitrary, we may view the sum above as the first component of an
arbitrary column vector solution of the Lax pair (A.10) with the primed potenfjals, ).
Moreover, sinceyy,,(x,t) = 0, the first component of a solution of the primed Lax pair
is also the first component of a solution of the unprimed Lax pair for the fully non-trivial
potentialg (x, ). Reversing the gauge transformation between soluii®ms the unprimed
Lax pair (A.10) and solutiong” of YF = 7T F = 0 then establishes the connection with
proposition A.1.

So, the procedure we are using for solving the time-dependent linedrdhoper equation
is exactly the ‘squared eigenfunction’ linearization of a certslin 1 component nonlinear
Schiddinger equation about a particular solution haviyjg,(x,#) = 0. The ‘squared
eigenfunctions’ solving the linearized problem appear to be linear in this special case because
for ¢},,, = 0 the primed Lax pair becomes partly trivial, and the contribution of this trivial
part to the matrixQ is completely explicit (the exponential function that we remove with a
gauge transformation). O

We now return to the construction of self-consistent potentials and the corresponding
solutions of (A.9). The nonlinear equation (A.5) is an integrable system by virtue of its
representation as the compatibility condition of two linear problems. So there are many well
known ways to find functiong (x, #) for which the corresponding linear Séilinger equation
can be solved. However, as we are interested as much in the common nullspaeadf
as in the functiongy (x, 1), we will now describe an effective approach to finding both at the
same time. In this approach, the object of fundamental importance is the common nullspace
K itself. We construct it first, with the functiong (x, ¢) being chosen after the fact precisely
so that for any basis matrik of K, we will haveX (A, §)F = T (A, g)F = 0.

What we know abouk is that whenever it exists by virtue of the compatibility condition,
the assumption that the functiogg(x, ¢) are bounded (this will be justified below) leads to
expansions for large of a basis fork of the form (A.6). These expansions are generally
only asymptotic; there is no guarantee that there exists a choice of the integration constants
such that the expansion (A.6) converges for angt all. However, we now suppose that
there exist solutiong, (x, t) of the nonlinear system (A.5) for which an expansion (A.6) not
only converges in some deleted neighbourhood ef co, but actually truncates For such
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solutionsgy (x, 1), if they exist, a basis of the subspakeas givenexactlyby an expression of
the form

M-1 g 2i0x+?n QT

F(x,t,A) = (C/\MI[N+1+ Z APFP) (x, r)) [ . } (A.18)
= 0 Iy

for some positive integeVl, wherec is a complex constant. We have multiplied by an explicit
factor of A to bring the sum into polynomial form.

Since we are not considering the functiapsx, ) to be known, we do not have the
option of solving for the coefficient matriceB” (x, t) by substitution into the equations
XF = TF = 0. We therefore must consider them to be arbitrary functionsarfids until
we know otherwise. Without any constraints on the coefficients, we see that the differentiable
matrix functions ofx, r and of the form (A.18), for given integer values 81 and N, form
a vector spaca y_, over the complex numbers.

The spaceAy y is very large. If our claim—that appropriate solutioggx, ) of
the nonlinear system (A.5) exist—is not vacuous, tlen,, should contain many proper
subspaces that may be identified with the common nullspgacé X (1, g) and7 (1, g) for
someg. If F(x,t, 1) is of the form (A.18) and is a basis matrix of one of these subspaces, then
it must be determined modulo the constanfThis means that each such subspaca pfy,
should ultimately be isomorphic @, with the isomorphism being established via the constant
C.

We prepare to isolate the appropriate subspacas,gf by defining a set afliscrete data
Let D denote anM -tuple of pairs(re, g©) where thex, are distinct numbers in the complex
upper half-plane and where t@é are vectors irC". From each vectog®, we build N + 1
vectors inCV*! by setting

a® = (-1, gik)*’ g;k)*’ L gxc)*)T c N+t (A.19)
andforj=1,..., N,

pki) — (g;k{ el e ch (A.20)
wheree¢; are the usual unit vectors i@&".

Definition A.1. A%M is the subspace of\y ) whose element¥'(x,t, A) satisfy the
homogeneous linear conditions

F(x,t, a)a® =0 (A.21)
fork=1,..., M and

F(x,1,2)b%) =0 (A.22)
fork=1...,Mandj =1,...,N.

Itis not hard to use dimension counting arguments to prove the following:

Proposition A.2. Let the discrete dat® be given. The set of solutions of (A.21) and (A.22)
forms a one-dimensional linear subspace\gf 5,. The general solution of (A.21) and (A.22)

is given by the one-parameter family of matrices (A.18), indexed by the complex parameter
c. Thus,AE!M =~ C, with the isomorphism being established via the complex constant
particular, if ¢ is given, then the coefficient functiofi$” (x, ¢) are uniquely determined as
functions ofx andr, and ifc is chosen to be zero, thdn(x, ¢, 1) is the zero matrix.
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This proposition allows us to index the elements\@f ,, by the constant which is now
a genuine coordinate for the one-dimensional subspﬁgg. We indicate the dependence by
writing Fp .(x, t, A) for the matrices in this subspace.

This proposition is true even if homogeneous constraints less structured than (A.21) and
(A.22) are imposed. In order for the dimension count to come out right it is sufficient to
chooseM - (N + 1) arbitrary complex numbers, along with corresponding constant vectors
¢® e CN*1 (the numbers, need not all be distinct, as long as the vectdbelonging to each
A are linearly independent) and to impdgg..(x, t, A,)¢® = Oforallk = 1,..., M- (N+1).

The additional structure in the constraints (A.21) and (A.22) is needed for the following.

Proposition A.3. Let discrete datéD be given, and leFp .(x,1, 1) € Af,qM. Then
1 1 *
EF,fﬁjll) (x, 1) = — (ZF{f,Z+‘11>(x, t)> k=1,...,N. (A.23)
We will have use for this symmetry property below. Its proof is simple.

Proof of proposition A.3. It is sufficient to consider the case of= 1, since the coefficient
matrices simply scale with It will be convenient to introduce the block form of the coefficient
matrices

»  p»T
2] _| @
FP(x, 1) = [ 2 } (A.24)
wherea'® (x, t) is a scalarb® (x, ) andc® (x, t) are N-component vectors, an? (x, 1)
isanN x N matrix. We will prove the stronger result that forall=0, ..., M — 1,
&P (x, 1) = —bP(x, 1)*. (A.25)

In this form, equations (A.21) and (A.22) take the form of the system

M-1
VeI (l;(p)T gl it _ a(p)) -0
p=0

M-1
M0+ 3 ( D ghx _ g2iurifn g(p)) -0
p=0
M-1 ‘ . . (A.26)
AME® 4 Z 2P (a<p>§(k) + QIO t)b(p)) -0
p=0
M-1
AT + Z A <872i(kzx+xz2t)E(P)§(k)T + D(p)) -0
p=0
wherek = 1,..., M. From the first and fourth equations, we can elimindte(x, r) and
DWWk, 1), p = 0,...,M — 1 in favour of theb” (x,t) and ¢?(x, ). This involves

introducing the elements of the inver8€ of the Vandermonde matri¥” having elements
Vie = A’;‘l, but it leads to two decoupled linear systems, one fobthkx, 1) and the other
for theé® (x, t). These systems are

M
Z Hi, ¢ =y
r=1 (A.27)

M

* L(r—=1) _ *
Z H: D" ™Y =
r=1
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where
H, = Vkre—Zl(lkx+Akt) + Z Vies Z W;} VJ*r —2I(A/x+kj t)g(.l)Tg(k)* (A28)
= j=
and
hie = A g — Z Z Vis WaM g, (A.29)
s=1 j=
Itis then clear tha® = —p®* for all p. O

So, the emphasis has changed with respect to these matrices and their relation to the
functionsg, (x, ¢). Rather than determining the coefficient matri#&® (x, 1) from a given set
of functionsg, (x, t) solving (A.5) by an asymptotic expansion procedure, we are determining
them from the discrete dafaand a choice of the constantlf there is to be any consistency,
then we must still have relations between the coefficient mat#i¢ésx, t) of Fp . and the
functionsg, (x, t); in particular, we can rewrite (A.7),

2i
qi(x, 1) = F{“kﬁl” (x, 1) (A.30)

and use it as definitionof some functiongy, (x, ¢) in terms of the discrete dafa and the
constant. Note that as long as# 0, then this definition is actually independentdfecause
Fp . is directly proportional te. The fact that (A.30) is sensible as a definition of 4iaéx, 1)
is shown by

Proposition A.4. Letthe discrete dat® be given and let the constanibe non-zero, and let the
functionsgi(x, t), ..., gy (x, t) be defined (in terms @b alone) via (A.30). This determines
the operatorsY (1, g) and7 (%, g). Then for anyFp . (x, 7, 1) € A} ;.

X()"v é))FD,C()\‘s X, t) = T()"» a)FD,C()"v X, t) = 0 (A31)

For theseg,(x,t) the columns ofFp .(x,t, 1) are generically linearly independent and
therefore form a basis of the common nullsp&céor almost alla.

Recall that the commutatoi], 7] is, for fixed x andz, a matrix multiplication operator
in CN*1. Thus, the existence of the common nullsp&cef X (1, g) and7 (1, g) of generic
dimensionN + 1 for these functiong (x, ) implies the vanishing of the commutator and the
compatibility of the two linear problems. Therefore, we have

Corollary A.1. The functiongy, (x, ¢) constructed from any set of discrete d@asatisfy the
vector nonlinear Sctidinger equation (A.5).

A time-dependent self-consistent potential functigsix, ) generated from the functions
qx(x, t) connected with a set of discrete d@taaccording to (A.8) will be called aeparable
potential[22].

Proof of proposition A.4. Let Fp.(x,t, 1) € Af,,M. The proof begins with the simple

observation that, as a consequence of the vedtérandb ) in the homogeneous relations
(A.21) and (A.22) satisfied b¥p . (x, £, 2) being independent of andt, these relations are
satisfied by X Fp ) (x, t, ») and(7 Fp ) (x, t, ) as well. For example, with the operattr

(X, @) Fp o) (x, t, A)a® = X, §)(Fpo(x, t, )a®) = X (A, §)0=0 (A.32)
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fork=1,..., M, and
(X, §)Fp o) (x, 1, ADB®D = X (WF, §) (Fp o(x, 1, A)B®) = X (AF, §)0 =0 (A.33)

fork=1,...,Mandj =1,..., N. The argument is unchangedifis replaced withr .
Next, we examine the form of the matriX’ (1, g) Fp.)(x, t, A). Itis straightforward to
see that

(X, ) Fpo)(x, 1, 1) = {AM (2i[E, FMY] - cU)
M-1
+> A (0, FP + 2([E, F*~V] —UF®)
p=1

+(3, F© — UF(O))} exp(—2i(Ax + A2 E). (A.34)

Now, as a consequence of the definition of the functigng, ) in terms of the discrete
dataD and the symmetry property guaranteed by proposition A.3, the leading term vanishes
identically, that is,

20[E, F" Y (x,n] = cU@). (A.35)

This, along with the factthat (A, §) Fp . (x, ¢, A) satisfies the homogeneous conditions (A.21)
and (A.22), means that

X\, @) Fpc(x,1,1) € A . (A.36)

Not only that, but for matrices in%, ,, the only way that the coefficient af can vanish is
for the leading constant to vanish. Therefore, by the isomorphism betwggp andC via
the leading constant, it follows that

X, q)Fp(x,1,1) =0. (A.37)

We now consider the form af (A, §) Fp .(x, t, 1),
Tk, @) Fp(x,1,1) = {)\M” (2i[E, FM~Y] - cU)

M (2B, FM 2] —UF™ — Licv)
M-1

+ Z AP (3tF(p) +2i[E, F(pf2)] —_UF®»D _ %iVF(P))
p=2

O .
+1 (3, FP —UF© - 3ivF®)
+(3, F© — %iVF(O))} exp(—2i(Ax + A1) E). (A.38)

Once again, the definition of the functiong(x,#) and the symmetry property of
proposition A.3 guarantee that the coefficientAdf*! vanishes. We shall now show that
the coefficient of.™ vanishes as well. Begin by writing™— (x, ¢) in the block form

(A.39)

cM-1)  pM-1

(M-1) ];’(M—l)r
FMD(x, 1) = [ ? }
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We already know by definition of the functiogg(x, 1) and proposition A.3, thatM-D7T =
g"/2i and¢M-b = —pM-D* Making use of the fact that all of the terms in (A.34) vanish
identically, we also have

WFMV(x 1)+ 2[E, FM 2, 0] —U@GFMV(x,1)=0. (A.40)
This implies that for the coefficient of* in (A.38) to vanish, it will be enough to show that
eV (q) = 2i0, FMD(x,1). (A.41)

From (A.4), itis clear (A.41) is satisfied in the off-diagonal blocks. To show that the diagonal
blocks also vanish, we write out the diagonal blocks of (A.40)

8xa(M_1) 6T E]'TE(M—l) 6T 0 4o
6 axD(M—l) - 6 _ZI*E(M—l)T - v (A.42)

Eliminating the derivatives af™ Y andD®™ ~V between this equation and the diagonal blocks
of (A.41) and comparing with the definition (A.4) ®f(g), we finally see that (A.41) is satisfied
identically. By similar arguments as we used above, it followsTat, ¢) Fp .(x, t, 1) is also
the zero element cyfxﬁyM. This ends the proof of the proposition. |

We now return to the problem of interest, namely the algebraic construction of separable
time-dependent potentials for the linear Sidinger equation and of a large number of exact
solutions to this linear equation. From the construction of the subspﬁg\;g we can extract
a simpler construction of the quantities of immediate interest, and cast the whole procedure
in the form of an algorithm. The key observation is that it is sufficient to build from given
discrete dat&D only the first rowof a matrix Fp . (x, ¢, A) in the spaceAfLM. This gives us
both the functiong; (x, ) via the first row of the coefficient matrik™—2 (x, ) from which
we find the potentialy(x, t) and also the image of the projection opergathat consists of
solutions of the linear Schdinger equation with this potential.

Sowe consider the firstrow & . (x, ¢, 2) and impose the homogeneous linear constraints
(A.21) and (A.22). Introducing

M-1
a(x,t,A) = Fri(x,t,)) = <AM + Z APa'P (x, t)) g2 i?) (A.43)
p=0

and

M-1
b(x,1.3) = (Fra(x, 1, 1), ... Fysa(x, . 0)" = Y APbP(x,1)  (A.44)
p=0

the relations (A.21) and (A.22) take the simple form

a(e, t, ) = g§9Mb(x, 1, )

- . (A.45)
b(x,t, 1)) = —a(x,t,A)g®

wherek = 1,..., M. Note that without loss of generality, we are taking= 1. Written
out in its entirety, this is a square linear system for Me (N + 1) unknowns,a” (x, 1),
and theN elements ob? (x, 1) for p = 0, ..., M — 1. The matrix of this system, and the
right-hand side, are explicit functions efandr through the exponential functions contributed
bya(x,t, \) anda(x, £, A}).
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From the solution of this linear system, one computes the potential function as
N 2
Vox,1) = =4 [bM P (x,n)". (A.46)
n=1

Then, we see that(x, r, A) and all the elements 6tx, t, A) are solutions of the linear equation
i0,f +232f — Vo(x, 1) f =0 (A.47)

for fixed but arbitraryx. Being polynomial inx, each element ob(x,,)) sweeps out an

M-dimensional space of solutions asaries. The solutions containeddiix, ¢, A) are more

interesting because the presence of the exponential means that all of these solutiong.for real

are linearly independent. This immediately gives an infinite-dimensional space of solutions to

the linear Schirdinger equation.

In fact, the functionu(x, r, ) contains an.?(R) basis of solutions of the Sdbdinger
equation as the parameters varied [22]. In particular, the set

{a(x,t,A)), ..., a(x,t, X)), a(x, t, 1), rreal (A.48)

considered as functions offor fixed ¢, is complete. For redl, set

M —1/2
Wy(x, 1, ) = <n]_[|x—)\k|2) a(x,t, 1). (A.49)
k=1

The subscript ‘d’ indicates solutions that superpose to form dispersive wavesardr real
we then have the inner products

andfork =1,..., M,
(aC 1,20, Wa(-, 1, ) = 0. (A.51)

Also, dimspara(x,t,A}), k = 1,..., M} = M as functions ofx for fixed . So, let
{Wp i (x, 1)} be any basis of spda(x, 1, A}), k =1,..., M} thatis orthonormal with respect
to the inner product (say obtained by the Gram—Schmidt procedure), so that

The subscript ‘b’ indicates solutions that are bound and have finite energy. Note that this basis
remains orthonormal because the time evolution of these functions under (A.47) is unitary.
The completeness relation is generalized f6R) from that proved in [22] as

Proposition A.5. Let discrete datéD be given and let € R be fixed. For allf (x) € L3(R),
we have the expansion

e’} M
fx) =/ fa, HOWg(x, 1, ) dA + > fo () Wpi(x, 1) (A.53)
- k=1

where the expansion coefficients are given by

The orthogonality relations for the functions,  (x, ) and Wy(x, ¢z, ) are implied by this
result. Note thatiff = f(x, t) satisfies (A.47) then the expansion coefficients are independent
of + and can be constructed from the initial datér, 0). Thus one solves the initial-value
problem for (A.47) inL3(R).
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Appendix B. Dispersive local decay estimates

Here, we establish several important properties of the unitary grotfh ave will consider
even perturbations of the even two-soliton periodic potentials, so we will work in either the
even or odd subspace &f(R). For a given functionf(-) in L(R), the operatoP&? is
defined as the spectral projection onto the continuous part of the specti8im of

(PEO f)(x) = /0 (WO, 0,), FOIUE (x, 0, 1) di. B.1)

As we will now see, the main difference between the even and odd cases is in the rate of
dispersive decay, and the difference can be directly traced to the behaviour of the dispersive
eigenfunctionllc(,e’o) (x, 0, 1) inthe vicinity ofA = 0. Itis easy to see from the explicit formulae

that the eigenfunctions are continuous.iat A = 0, and that the odd mode vanishes there

W (x,0,A=0)=0 (B.2)

while the even mode does not vanish, but is simply finite 2t0. We say that the existence of

a non-trivial eigenfunction at = 0, as in the even case, indicatezegio-energy resonanad

the system. The ubiquitous effect of a zero-energy resonance is to alter the rate of dispersive
decay in the system. However, more dramatic effects can appear if under the influence of a
perturbation, the zero-energy resonance is directly excited. This latter situation we refer to
as aparametric zero-energy resonancA system with a zero-energy resonance is ‘primed’

to feel the effects of a parametric zero-energy resonance in the presence of an appropriate
perturbation.

B.1. Non-singular local decay

First, we will prove thenon-singular local decay estimater the unitary group 2.

Proposition B.1. Fix o > 2. There exist constants©® > 0 such that

1) (7BPE £) Oll2 < L2 FOll2 (B.3)

and

1)~ (€7 PL £) ll2 < L) 20137 £ )l (B.4)
forall f € L2(R) for which the right-hand side makes sense.

The proof is based on a sequence of intermediate results. First, from the simple chain of
estimates

(7€ BPEO £ ()|l < le7BPLEO £ ()2 = IPEY FOll2 < IFOll2 < 1) FOl2
(B.5)

we have
Lemma B.1. For all o > 0, we have the simple estimate
()€ FPEO FO)ll2 < 1) FO 2 (B.6)

forall f € L(R) for which the right-hand side makes sense.
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We now want to refine the above uniform estimate to include a multiplicative factor of
1Y f ()2 that decays in¢|. To this end, we fix # 0 and observe that by the definition of
the operatoi3,

o]

(x)77 (eMFPEAf) (x) = f ()7 () h(x, y: 1) dy (B.7)

—00

where
R .
h(x,y;t)i(x)"’(y)’“/ W (y, 0, ) WV (x, 0,0) €2 di. (B.8)
0

We note here that the integral in the definitionik, y; r) is improper; the integrand is not
absolutely integrable, and the integral from zero to infinity should be interpreted as the limit
of the integral from zero t&® asR 1 oo. This limit exists as long as# 0, and consequently
the functioni(x, y; r) is well defined forr # 0. The trouble with the functioh(x, y; ¢) at
t = 0is not our concern here because we already have a uniform estimate that holds, for all
and, in particular, for near zero. Thus we will be thinking ofas being large in what follows.

In any case, by Cauchy—Schwarz, we have

[(x) 7 (e7BPEO £) ()] < 7Gx, D12 116)° FO)ll2- (B.9)

It follows that
()7 (&7 BPED£) O], < HAC, 5 Dl 1) FOll2 (B.10)

an estimate that involves the Hilbert—Schmidt norm of the keie) y; ¢) for each fixed:.
The rest of our work will be to show(x, y; r) is in L?(R?) for each fixedr, with its norm
decaying injz|.
First note that from the explicit formulae
2ra® (x, 0) cog21x) — 2i(x2 +a©(x, 0)) sin(2x
WO(x, 0,3 = 24 000820x) 202 +a0(x, 0)SIN2Ax) g 4y
J2102+ )32+ p3)
2(A% +a© 20x) — 2iraV in(2x
W (x, 0, 1) = (A +a™(x, 0)) cog2rx) — 2ira'? (x, 0) sin(2rx) (8.12)
J2r G2+ p2) 02 + p3)

wherea© (x, 1) anda® (x, ) are bounded analytic functions of we obtain
Lemma B.2. Let the parameterg; and p, be fixed. The function defined by

q() = w2 (x, 0, )W (y,0,1)* (B.13)

is in CK(R,) for all k > 0. In particular, all derivatives with respect td are uniformly
bounded functions of. The normgjg™® (-)||» are homogeneous polynomials|ii and|y| of
degreek, with non-negative coefficients that depend onlyoand p,. Also, in the odd case,
we havey (1) = O(1?) for A near zero, while in the even cagé.) = O(1).

In showing thati(x, y; 1) is L?(R?) with its norm decaying irr, we will find that the
main contribution for large comes from the part of the integral néae= 0. To see this, we
first separate the contributions near and away from zerogL.ét) be a non-negative ‘bump
function’, infinitely differentiable for real > 0, identically equal to 1 for & A < A/2 and
identically equal to zero fak > 3A /2. Letga(A) =1 — ga(2). Then

h(x, y;1) = ha(x,y; 1) +ha(x, y; 1) (B.14)
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where
3a/2 L,
ha(x,yi1) = (x)™(y)™° / Wi (y, 0, ) W™ (x, 0, )ga(h) €2 da, (B.15)
0
and
haGx, yit) = (x)"7(y)™° / W (y, 0, ) W (x,0, 1) ga (1) € 2¥ dA. (B.16)
AJ2

First, we will show that away from = 0, we can obtain an arbitrary decay in time.

LemmaB.3.Fix L > 0. For somek > 2, suppose thatf (i) is in C"([L, oc]) for all

n=0,1,..., k. Supposethaf(L) = f'(L) = --- = f* (L) = 0and that the limit
R L
lim / F() e 2 da (B.17)
Rtoo J1

exists fort # 0. Then

R . 1
: —2ix2t k
’Igmo/L fe dx‘ A sup})\ A HO (B.18)
where the operatox is defined by
A
AR = (f s )> (B.19)

Proof. Integrating by part& times,

R k-1 H n+l
: —200% 4y _ i 1 iy —1a—20A2  4n
lglmofL fe dk—ymo[§ ( ) (=D"r"e (A" HM)

= 4¢

_- k R 2
+(—') f (A"f)(x)ez'“dx}. (B.20)
4t L

The boundary terms at = L vanish identically, and those at= R tend to zero a® 4 oo.
These facts prove the existence of the limit of the integral in the second line, and we find

A=R

A=L

'Ilm / ) e 2 dx‘

/ (Akf)()\-) eZIktd)\‘

4’<|t|k R¢

! / 02 (A"f)(k)|
4"|t|k RT

k B.21

L4k| 7 SUPAAA (). (B.21)

The bound is finite fok > 2. O

We can now apply this result to estimate(x, y: t).

Lemma B.4. Fix an integerk > 2, and leto > k + % Then, the functiom A (x, y; 1) isin

L?(R?) as a function of andy, with its norm decaying ajs|*.
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Proof. We apply the above lemma with = A /2 and f(») = ¥ (x, 0, VW (y, 0, 1)*
ga(A). This gives the pointwise estimate

2(x)"7{y)"° sup |12 W E0 (x, 0, )W E (1,0, ) 5 (DM, (B.22)

lhaCx,y; )] < =—————
SN A

The operatord* acting on the right-hand side makes the supremum bound a polynorial in
and|y| of degreek. Therefore, foria (x, y; t) to lie in L2(R?) as a function ofc andy, it is
sufficient to takes > k + % The claimed time decay of the? norm is then obvious. Note
that each derivative g, (1) contributes a factor of order@ 1), so the overall bound on the
L2 norm ofhia(x, y; 1) scales likeA=**D, O

Now, we move on to consider the parti/ofx, y; t) contributed by the neighbourhood of
A = 0. We again need some technical lemmas.

Lemma B.5. For all 4 € R,

" ir2
/ e 2 dr| < V3. (B.23)
0

Proof. First, note that

weoo_ w
/ e 2 | < / de| = [l (B.24)
0 0

This estimate is useful for bounded Supposer > M > 0. Then,

13 o
f e 2 dr| < M+
0

Changing variables te = ¢? and integrating by parts, one finds

Iz -
/ g2 dg‘. (B.25)
M

w _ in—2in?  ia—2iM? i pp? )
f o2 de| = e _le +|_/ e 2t r=32(r| < i (B.26)
Therefore, forw > M > 0, we have the estimate
/ e 2de| < M+ 3 (B.27)
0 aM’

The right-hand side takes its smallest vay@&, for Mmin = +/3/2. Since for O< & < Mmin,
we have

" )
/ e 2 dé‘ < |1l < Miin < 2Mpin = V/3 (B.28)
0

the lemma is established uniformly for all positive By symmetry, the same estimate holds
foru < 0. a

Lemma B.6. Fix L > 0 and supposg (1) is twice continuously differentiable, with(0) =
f'(0) = Oandf(L) = f/(L) =0. Then
J)
52 < . >‘ (B.29)

L3

u
4|t |3/2 O<i<L

()\‘) e—ZI)th d)\' ‘
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Proof. Integrating by parts using the boundary conditions (evaluations at the lower boundary
of A = 0 are interpreted in the sense of the limi{ 0, that is, from above), we have

—2ir% f()‘) d 2 __L Li D) —2ir%
ffme dk_4t o= | () e
(B.30)
Write
A
o202 _ % / o207 (B.31)
0

and integrate by parts again making use of the boundary conditions (with the same caveat as
above), to find

i (LaZ f 2

A e 2Pdy = / / e 2" do dh. B.32
f Tae 4 Jo 31\2( A ) 0 ’ (8:32)

With a change of variables to= |t|%?c, this becomes

i fRN [T e

A e 2P = / / ~287 dz da. B.33
/ roe 1T Jo aﬂ( x > o (8:33)
Estimating the. integral in the obvious way using the uniform bound of ¢hiategral by+/3
establishes the claimed estimate. a

Without the vanishing boundary conditionsiat 0, one finds less decay in time.

Lemma B.7. Let £ (1) be absolutely continuos< A < L, sothatf’(x) € L([0, L]). Then

L
’ / e dk‘ < (If(O)I +2 f Lf' ) dx> ﬁ’z (B.34)
0

an orderO(|¢|~Y/2) bound.
Proof. Separate off the slow decay by writing

L L L L, L -
/ F) e idy = f(O)f e*“’dhf (f(\) — f(O) e dy=1,+1z. (B.35)

0 0 0

The first integral is easily transformed

L i12 0 Lfl/z ir2
Iy = £(0) fo e 2 dy = % ; e 2 dr (B.36)

and therefore easily uniformly estimated

V30

Al < = (B.37)

In the second integral, one integrates by parts to find

L L
Iy = / ) f e 21 gy di. (B.38)
0 A
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Therefore,
L . L
[Ip| < sup / ez'wdu‘/ |f' (L)) da
O<i<L |Jx 0
Lo o L
< (/ e 2 du| + sup / e‘z"”d,u,‘)/ | /()] dA
0 O<Ai<L |JO 0
2J3 [t
< —= "(AW)] dA. B.39
2 J, [f M) ( )
Combining the estimates fdy and/p establishes the claimed result. O

We now want to use these results to estiniatéx, y; r). To do this, we want to apply
lemmas B.6 or B.7 withf (A) = W\ (x, 0, )W (v, 0, 1)*ga(%). Now, from lemma B.2,
it is clear that the hypotheses of lemma B.6 concerning the behaviguabt = 0 will only
be satisfied in the odd case. Here, we obtain the following.

Lemma B.8. Consider the odd case, and let > 2. Thenha(x, y;t) is in L2(R?) as a

function ofx andy with its norm decaying Iike|‘3/§.

Proof. We have the pointwise estimate

3V3A(x) 7 (y)°

[haCx, y; )] <
h 87|32 0<1<3A/2

92 (0, 0, )P (3,0, ) ga (R)
922 A '
(B.40)

From lemma B.2 we have that the right-hand side is a quadratic polynomijial and|y|.
Therefore, fo, (x, y; 1) to be inL2(R?) as a function of andy it is sufficient to taker > g
The time decay of th&2 norm is then obvious. Note that each derivativg gf1) contributes
a factor that is QA1) so the bound on th&2 norm scales likeA 1. O

In the even case, we have a zero-energy resonance, and this means that the integrand near
A = 0is not small enough to allow as rapid decay as in the odd case. In this case, we can only
apply lemma B.7 to find the following.

Lemma B.9. Consider the even case, and tet> g Thenha(x, y; 1) is in L2(R?) as a
function ofx andy, with its norm decaying liké|~%/2.

Proof. Using f (1) = W (x, 0, ) W? (v, 0, 1)*ga (%) andL = 3A /2 inlemma B.7, we have
the pointwise estimate

3 —o —o 3A/2
hate, i ) < Y307 (If(O)I +2/0 ol dx). (B.41)

|l|l/2

Since the derivative with respectiaesults in at most linear growth inandy, takingo > %
is sufficient to ensure that, (x, y; ¢) is in L?(R?) as a function of andy. Clearly, for large
t, the L2 norm is Q(|¢|~%2). Note that the estimate is alsq®1) due to differentiation of

the bump functiorgA (). a

In both odd and even cases, the contributiotk ofx, y; ¢) to the L? norm of h(x, y; t)
dominates for large time that éf, (x, y; ¢), for which we had arbitrary decay. According to
lemma B.4, foro > %’ this latter decay is at least as fast|as?. These results imply the
following.
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Lemma B.10.Fix o > g Then, forr sufficiently large, we have the estimates

. K®
[077 @"PEA) O, < Taalt fOllz (B-42)
and
' K©
[77 (€PN O, < 107 F Ol (B.43)

whereK © and K @ are some positive constants.

This result, taken together with the elementary time-independent bound established in
lemma B.1, completes the proof of proposition B.1. |

B.2. Singular local decay
Now we prove thesingular local decay estimafer the unitary group @‘%.

Proposition B.2. Let|u| > pumin > 0. Fixo > % Letr = «kr withr > 0andx = +1. Then,
there exist constant& ©? > 0, such that

)77 tim (8 = 21 = 2ikc8) "1 " PE ), < MO Ol (B.44)
and
[y lim (B — 2u — 2i8) e EPL YO |, < MO )T £ Ol (B.45)

The constantd/©° depend only ommin, SO the bounds are uniform for large|.

The proof of this proposition begins with a representation similar to (B.7),

o0

()77 lim (B = 211 = 2ik) e P £) (x) = / (M) FkCx, y; 1) dy (B.46)

—00

where

k(x, y3 1) = (x)77(y) "7 lim e 2¥ dy (B.47)

© WP, 0, MW (v, 0, 1)
810 Jo

202 — 211 — 2ikcd

Perhaps despite appearances, the k&iely; 1) is somewhat more amenable to analysis than

the kerneli(x, y; ¢) that appeared in the non-singular case. This is because for eacls finite

the integrand is absolutely integrable as a consequence of the uniform boundedneds in

W9 (x, 0, 1) as guaranteed by lemma B.2 and the laxgeehaviour of the denominator.
Again, the goal is to show that the kerri€k, y; ¢) is in L2(R?) as a function of andy,

with a norm that is decaying in time, although in this case we will only obtain the decay for

of a particular sign. First, we show that thé norm exists and is finite near= 0.

LemmaB.11.Fix o > % u Wwith |u| > umin > 0, andt with |¢| < T. Then there exist
constantgC®? > 0 depending oumin and T such that

Ik, 5 D)ll2 < C©. (B.48)

Since the bounds only dependwia wmin, they are uniform for largey|.
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Proof. Begin by settingf (1) = W (x,0, )W (y,0,1)* e 2**", First we consider
uw < —umin < 0, in which case we have
(X))~ [ f()dr
2 0 )\2 — K
since there is no singularity far < 0. We immediately obtain the pointwise estimate

(X))~ © di
= swl |

(X)) (y)"°
= - A
V=T AR
7T (x)"7(y)"°
L —— A)l. B.50
4/~ min fgci))'f( ) ( )

Now we consideft > pumin > 0. Pick some positivés less than/imin. Then

k(x, y; 1) = 3(x)77(y) " (Ins + 1) (B.51)

k(x,y;t) =

(B.49)

lk(x, y; )] <

where

; ;[ﬁ‘G f<x>dx+/°° £ dh
) M= Jype M-

/PG f(n) da
i-G A+ +id) (A — o/ +1kd)

where the principal branch of the square root is understood, so that the square root is nearly a
positive number fos small. It is easy to find

|nsl < SUPLF ()] /ﬁ_c a +/oo .
A A>(F)) 0 w—=2r2 ) e A2 —p
sug>o|m>|( k( Vi ) r(«/ﬁ—G))
< ——~ | arctanhf ————— ) + arctann| ——
JE Ji+G NG

< sup|f(A)] sup (i <arctan|‘( Vi > + arctanr(‘/ﬁ_ G))) (B.53)
A>0 > min \/ﬁ \/ﬁ'i' G ﬂ

For the singular part, we find

L W d ﬂm(fm _f(ﬂ)) d.
* 810 i+ Ju+id J i A — «/,u+|/<8 Ji-G \A 1 2,/ -

(B.52)

Is =Ilim
ST 510

_ i (D +ff+G( fo f(f)) 55
NG vi-G \AY Ve 2/
Therefore,
< T 5 s [(L0 f(ﬁ)) |
2V p-vEl<G I\NA I 21 ) A=
7| f (V) d ([ f)
<, () (559

Again, the bounds are uniform j for large .
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Now, we simply note that the pointwise bounds fgrand /s are themselves bounded by
functions ofx, y andr that grow linearly at worst, as a consequence of differentiatigf\ @
with respect to. (cf lemma B.2 for the growth in andy, while the growth irr comes from
the factor €2%*1). Thus, to have (x, y; 1) € L2(R?) as a function ofc andy, it is sufficient
to takeo > g and then the norm will be bounded by a linear functiontgfand therefore
uniformly for |¢| < T. The bound is also uniform in for || > fmin > 0. O

We now note that proving the decay for large= |¢| for u < —umin < 0 @amounts to
recalling the non-singular local decay estimate. The integral is not really singular

lim / ® U 0NV 00 o
340 Jo 22— —ikd
(e,0 (e,0)
- / T Y60 MW (0, 4) e 24 gy, (B.56)
0 22—

Using the same arguments as used to prove the non-singular local decay estimate one obtains a
pointwise bound for this integral that is at most quadratically growingandy and decaying
like |z|~%2 in the even case arjd| =%/ in the odd case. Since the estimates involve up to two
derivatives of the quotientin the integrand, the bounds will be unifomrfor 4« < —pmin < 0.

To prove the decay for large= |¢| in the truly singular case when > pmin > 0, we split
k(x, y; t) into three parts. Lega (1) andga (1) be as before, and introduce the new ‘bump’
functionsgs (A) andgs (L) = 1 — g (1), both infinitely differentiable and non-negative, with
gc (1) identically equal to zero outside of the interyglit — 3G /2, ,/i+3G/2) and identically
equal to one inside of the interva|/it — G/2, /it + G/2). Set

kGe,yit) = 3(x)7 () " Uo+ I, +1) (B.57)
where
3A/2 \lj(e‘o) 0. A ‘p(e,o) 0. A)* .
105/ ¢ (% ’2) ¢ 0.0 )gA(x)e—Z'*zfdA (B.58)
0 AS =
J+3G/2 \Il(e'o) 0. A \I/(e'o) 0. 0)* )
Iuilim/ d (x’z’ Wy (.0, )gG(A)e‘mz’dx (B.59)
810 \/ﬁ73G/2 A —/,L—“C(S
and
L VPO (x, 0, )WV (y, 0, 0)F L :
I= / ‘ S ga(MEc () e da
A/2 - K

© WY (x, 0, )W (y, 0, )* :
+ g OMTg (0O, a2 gy (B.60)
VG2 22—

Note that in keeping the contributions near zero and pedrstinct, we are assuming that
3A /2 < /itmin — G. The analysis of and/ proceeds exactly as in the proof of the non-
singular local decay estimate. The results are almost identical/ Boe can integrate by
parts as many times as one likes, and therefore one obtains a pointwise estimate with arbitrary
decay in time of order Q¢|~%) for k > 2, but at the cost of polynomial growth inandy of
degreek. For I, one obtains a pointwise estimate that decays like|3"?) in the even case
and Q¢|~%/?) in the odd case, at the cost of quadratic growtl andy.

The estimates ofy and are uniform for largex. The pointwise bounds faf involve
supremum bounds over the range of integration of the quantity

fO

22 (Akm> (\) (B.61)
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with £(1) given by w(*? (x, 0, W)W (y, 0, 1)*g6 (1) for A > /i + G/2 and with f (%)
given byw " (x, 0, MW (v, 0, 1)*ga (M Ge (1) for A2 < & < /it — G/2. In particular,
we will need these bounds fér= 2, in which case

o o SO _ 1504 — 10ur? + 3M> < —722+ 3#) / 0
by (A ()2 = M) ) = ( 22(A2 — p)3 fo)+ 0202 )+ pE—

(B.62)

For the part off involving A > Ji+G/2, itis easy to check that the three coefficients above
are monotonic functions of for A > /i that decay for large. with p fixed. Therefore,
each coefficient is bounded by its magnitude at the lower endpoiat, /i + G/2. With
G held fixed, these bounds are then seen to be decaying functioms &%or the part of
I involving » € (A/2, Ji— G/2), itis easy to see that the coefficients blow up at both
endpoints. Therefore, foh and G sufficiently small but independent of, the coefficients
will be bounded by the maximum of their valuesiat= A /2 andi = /i — G/2. Again,
holding A andG fixed, one sees that the bounds are uniform for larg&his direct argument
shows that, at least fdr = 2, the pointwise bound fof is uniform in . Establishing the
uniformity of the pointwise estimate fdj is easier; the denominataf — i plays no essential
role forA < 3A/2 for p sufficiently large.

The new term that must be handled differently js

Lemma B.12. For all k > 2, the integrall, satisfies the pointwise estimate

2 P(x,y)
I < — B.63

where P, (x, y) is a polynomial in|x| and |y| of degreek with positive coefficients that are
uniform in .
Proof. Consider first > 0. Then, the quantity to estimate is
fﬂ*w/z Wt @, 0. )W (3, 0. )"
JA-3G/2 AZ—p—id

1, = lim gc(h) e 24 gy,

510

i a—2iut | 5 VEr3G/2 (€,0) (e,0) * 2i(x2 is
= 2ie” "”nmeZ’/ W (x, 0, )W (y, 0, A)*gG(k)f e 207 =1=19)s s dp,
840 VE—-3G/2 1

. 0o Ji+3G /2 ‘2
= 2ig~ 2w / S / WP (x, 0, VW (v, 0, 1) g (A) €2+ da | ds.
' Ji—3G/2

(B.64)

Now, with g5 () vanishing to all orders at the integration endpoints, it is possible to bound
the integral in square brackets by iterated integration by parts. The boundsis‘® and
grows inx andy like a polynomialP; (x, y) of degreek. This bound is uniform im, since the

only placeu appears is in the range of integration over which bounds are required, and from
lemma B.2 we know that these bounds are uniform fok allherefore, we have

o 2 Pu(x,y)

—k _ k ’ y
[l < 2/: Pi(x, y)|s| ™ ds = [ PT= (B.65)
which establishes the lemma for= 0. Forz < 0, one obtains an integral fromoo to ¢ in
the second step above, and ultimately obtains the same bound. |

Finally, we put the pieces together to complete the proof of proposition B.2. For the odd
case, we want decay of order|©~%/2). For (x)~?(y)~? I, to be inL2(R?) with this decay
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rate, we need > 3. With this bound orv, we can obtainx) = (y)~°1 to be in L(R?)

with decay bounded by @|~2) = o(|t|~¥?), but no better. Finally, fotx)=?(y)=°1I, being

in L2(R?) with decay Q|7|~?) we now see that we need to localize a bit more in space by
takingo > % Combining these large time estimates with the finite-time bound of lemma B.11
establishes the proposition in the odd case. Similar arguments for the even case/diggzn

norm that decays like @r|=%2) for o > 1.

Remark. Evidently, the singular decay estimates blow up wpef, approaches zero. This
is an essential phenomenon in both the odd and even cases. This is best seen by considering
the singular integral for the cage= 0

/oo ‘y((je’O) (x, 0, )»)\I-’ée’o)(y, 0, )\)* e—ZiAZ
0

Tdx. B.
22— ik d (8.66)

This integral blows up for alt, y andz, asé tends to zero in the even case. In the odd case
there is sufficient vanishing at= 0 for the limit of § | O to exist for allx, y ands, but the
limit only decays irv like |z|~%2. Thus it is not possible for estimates of the form derived for
] = pmin > 0 to hold uniformly in any neighbourhood pf = 0. O
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