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We use multiscale perturbation theory in conjunction with the inverse scattering transform to study the
interaction of a number of solitons of the cubic nonlinear Schro¨dinger equation under the influence of a small
correction to the nonlinear potential. We assume that the solitons are all moving with the same velocity at the
initial instant; this maximizes the effect each soliton has on the others as a consequence of the perturbation.
Over the long time scales that we consider, the soliton amplitudes remain fixed, while their center of mass
coordinates obey Newton’s equations with a force law for which we present an integral formula. For the
interaction of two solitons with a quintic perturbation term we present more details since symmetries — one
related to the form of the perturbation and one related to the small number of particles involved — allow the
problem to be reduced to a one-dimensional one with a single parameter, an effective mass. The main results
include calculations of the binding energy and oscillation frequency of nearby solitons in the stable case when
the perturbation is an attractive correction to the potential and of the asymptotic ‘‘ejection’’ velocity in the
unstable case. Numerical experiments illustrate the accuracy of the perturbative calculations and indicate their
range of validity.

PACS number~s!: 42.65.Tg, 42.81.Dp, 02.30.Jr
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I. INTRODUCTION

This paper is concerned with the asymptotic behavior
solutions of the initial-value problem for the perturbed no
linear Schro¨dinger equation~NLSE!

i ] tc1
1

2
]x

2c1ucu2c1p@c,c* #50, ~1!

subject to the initial conditionc(x,0)5c0(x) for certain ini-
tial fields c0(x), in the limit when the perturbation term
p@c,c* # becomes formally small. The unperturbed proble
when p@c,c* #[0 in ~1!, is well known to be solvable@1#
by an inverse scattering transform, one consequence
which is the existence of finite energy soliton solutions t
are dynamically stable and robust with respect to collisio
The unperturbed NLSE arises in two different physical si
ations in modern optics@2#. Firstly, for high-speed telecom
munications, Eq.~1! describes the propagation of light wav
packets along an optical fiber. In this interpretation,t is the
spatial coordinate along the fiber andx is the retarded time
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variable for the signal; accordingly the solitons of the unp
turbed problem~and usually also the solitary waves of th
perturbed problem, when they exist! are called temporal soli-
tons. The suggestion by Hasegawa and Tappert in 1973@3,4#
that temporal solitons, being immune to dispersion, mi
serve as bits in a high-speed data stream has since gene
a large body of work, much of which is comprehensive
reviewed in@5,6#. Second, for photonic switching device
Eq. ~1! describes the stationary envelope of monochrom
light waves in a planar waveguide under the paraxial
proximation. Herex and t are both spatial variables, witht
being the propagation direction andx being the transverse
direction; accordingly the solitons of the unperturbed pro
lem are called spatial solitons.

In both of these applications, the cubic termucu2c in ~1!
models the Kerr effect in which the refractive index of th
material depends linearly on the local intensity of light. F
weakly nonlinear effects, when intensities are not too lar
this effect is dominant in isotropic materials like glass. Th
fact, along with the integrability afforded by neglectin
p@c,c* #, makes the unperturbed NLSE one of the most i
portant models in modern optics.

Of course, real materials can have a complicated dep
dence of refractive index on intensity, for which the Ke
effect is only an idealization. Modeling such phenomena
quires introducing corrections to the coefficientucu2 in the
cubic term of the NLSE. The perturbative termp@c,c* #
might also include corrections related to higher-order disp
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7122 PRE 61BESLEY, MILLER, AND AKHMEDIEV
sion, the Raman effect, self-steepening of pulses, etc. In
paper we will consider only the influence of higher-ord
nonlinearity on solitons of the unperturbed NLSE. For spa
solitons in photorefractive media, such a perturbation can
the main factor influencing propagation. In particular, w
take the perturbation in~1! in the form of a quintic term

p@c,c* #5se2ucu4c, ~2!

wheree.0 is a small parameter ands561.
In view of the possibility of using solitons as bits in op

tical fibers or dynamically controllable switches in plan
waveguides, it is of some interest to determine the effec
such a perturbation on the solitons of the unperturbed p
lem. If one considers an initial conditionc0(x) that is a
‘‘snapshot’’ of a simple soliton solution of the unperturbe
problem, then there are many approaches available to s
the perturbed evolution. Because the unperturbed solito
stationary in some Galilean frame, the main effect
p@c,c* # will be an adiabatic adjustment of the soliton
amplitude and phase parameters. This fact, together with
simplicity of the form of the soliton solution, means th
direct perturbative methods can be used to study their s
evolution. In particular, variational methods and multisc
methods applied directly to~1! often give valid results.
These perturbative methods are dynamical in origin and c
ture effects on finite but long scales. Other methods can
used to answer infinite time questions concerning the pe
tence of solitary waves. In fact in the presence of quite g
eral perturbations solitary waves continue to exist for ar
trary e @7,8# and these can be expressed in closed form
some cases@2#.

The presence of more than one soliton complicates
analysis. If the solitons are isolated, then the field may
approximated as a sum of solitons plus a small error te
and the adiabatic coupling among the solitons may be ca
lated by several methods. Note that if the solitons are mov
with respect to each other then they will always be in iso
tion except possibly for a short time. An early analysis
this kind was carried out by Gordon@9#, who studied the
exact two-soliton solution of the unperturbed NLSE f
equal velocities. When the solitons are well separated, th
is an effective force between them~even in the unperturbed
NLSE! that varies sinusoidally with their phase differenc
This phase difference grows linearly int if the solitons differ
in amplitude. The force is therefore zero on average@10# and
one expects periodic motion. This is a physical explanat
of the mathematical fact that the intensityucu2 of the exact
two-soliton solution for equal velocities is a periodic fun
tion of t. An extension of this argument to perturbed pro
lems was given by Ankiewicz@11#, who obtained a simple
description of soliton interactions with the use of compl
averaged potentials. Again, the essential assumption is
the solitons are well separated inx, so that the field may be
approximated as a sum of solitons. If the solitons are clos
each other, nonlinear interference effects cause the fiel
adopt a form very different from the linear superposition
individual solitons, and therefore a different approach
needed. Often, one turns to numerics to study the interact
of solitons in various media~see, for example,@12–14#!
without the restriction of the solitons being isolated.
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In the scattering transform domain, where the dynam
of the unperturbed NLSE are trivial, a state in which tw
solitons are close to each other inx has the same spectrum a
a state in which they are far apart. This suggests that
studying the influence of perturbations on multisoliton bou
states~that is, several solitons traveling with the same velo
ity, represented by a collection of eigenvalues of t
Zakharov-Shabat equations with the same real part! it is best
to carry out the analysis in the transform domain using s
ton perturbation theory@7,15,8#. With p@c,c* #Þ0, the evo-
lution of the scattering data is no longer trivial, and thus t
scope of possible dynamics in near-integrable systems
~1! is much greater than in the unperturbed NLSE, includ
effects like repulsion, attraction, and energy exchange am
bound or colliding solitons. Other techniques that have b
used to study these effects include the judicious use of c
served quantities@2#, variational methods@16,17#, ‘‘equiva-
lent particle’’ approaches@18,19#, and of course, numerics.

In this paper, we use soliton perturbation theory to stu
perturbations of the nonlinear potential in~1!, for initial con-
ditionsc0(x) that are snapshots of multisoliton bound sta
of the unperturbed NLSE. With respect to treating the so
tons in isolation, this is a worst-case scenario since in
unperturbed NLSE a tightly bound state of solitons will r
main so for all time. Nonetheless, it is a scenario of so
interest, in particular for the quintic perturbation~2!. If s
511, then it is known that the solution remains bound, a
this case has been studied using conservation laws@20#. If
s521, then the bound state becomes destabilized. Rece
it was shown@21# by simulations of~1! that the instability
causes the bound state to divide into isolated solitons tha
ejected from the origin with nonzero relative velocities. O
the time scales over which this splitting occurs, the solito
do not appear to exchange energy. In mathematical te
each eigenvalue in the bound state ensemble, originally c
fined to the imaginary axis~zero velocity!, appears to slowly
‘‘grow’’ a real part while its imaginary part remains fixed
Once the solitons escape, they no longer interact and
velocities no longer change. The wave guidance propertie
Y junctions engineered from such splittings of spatial so
tons have also been analyzed@22#.

By considering the relative velocities to be small, we w
find an integral formula that expresses the asymptotic ve
ity difference between a pair of initially co-propagating so
tons destabilized by the quintic perturbation~2! with s
521. Along the way, we will write down a coupled syste
of differential equations that describes the interaction of a
number of solitons under more general perturbations o
long time scales. These equations are just Newton’s eq
tions for a system of interacting particles in one space
mension; the particle coordinates have the interpretation
the soliton centers of mass. The force is translationally
variant, conserves the total momentum, and is also pro
tional to s, so the forces giving rise to attraction and repu
sion are related just by a change of sign. For the interac
of two solitons, the problem may be reduced to a sin
degree of freedom, the relative separation of the solito
The force law scales simply with the~fixed! amplitudes,
which have the interpretation of masses. The result is a o
parameter family of problems indexed by a normalized
fective mass. If the separation is small in the attractive c
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s511, the force is nearly linear and the frequency of m
tion becomes a function of the normalized effective ma
We calculate this frequency, a quantity that is connec
with the vibrations of solitons that are infinitely close, a lim
opposite to the well-separated case.

Our paper begins in Sec. II with a review of the theory
the scattering transform for the Zakharov-Shabat eigenv
problem and of the inverse theory that holds in the refl
tionless case. We also recall the derivation of the exact eq
tions of motion in the transform domain corresponding to
perturbed NLSE~1!. Then, in Sec. III we consider perturba
tions of the formp@c,c* #5e2W(ucu2)c and apply multi-
scale perturbation theory to find asymptotic solutions of
equations of motion in the transform domain. The appro
mations are uniformly valid ase↓0 on expanding time inter
vals of lengthe21, and are given in terms of solutions o
Newton’s equations for particles interacting in one dime
sion under a force law that has several universal feature
Sec. IV we focus on the quintic perturbation~2! and study
the interaction of two solitons. We reduce the problem to
motion of a single particle and then explicitly perform th
averaging required to remove secular terms from
asymptotic expansion. This leaves the force law in the fo
of a 1D integral that we study numerically. We use it
compute the ‘‘ejection’’ velocity observed by Artigaset al.
@21# in the unstable case and the harmonic frequency
tightly bound solitons in the stable case. Finally, we comp
the results of perturbation theory with direct simulations
~1!. The Appendix contains the more cumbersome formu
that nonetheless are among our main analytical results.

Regarding notation, we will use stars for complex con
gation, and matrices will be written with bold letters, exce
for the Pauli matrices

s1ªF0 1

1 0G , s2ªF0 2 i

i 0 G , s3ªF1 0

0 21G . ~3!

II. EXACT INVERSE SCATTERING THEORY
FOR THE PERTURBED NLSE

Here, we review the known inverse scattering theory
the Zakharov-Shabat eigenvalue problem to fix our notat
In general, we wish to consider~1!, where p@c,c* # is a
polynomial inc, c* , and theirx derivatives. The fieldc is
taken to be in the Schwartz space as a function ofx.

A. Scattering data

We will work with the scattering transform ofc, a map
that associates to the complex fieldc at each fixed time a se
of ‘‘scattering data’’ from whichc can be reconstructed b
inverting the map. As is well known, the advantage of this
that the time evolution of the scattering data correspond
to the time evolution ofc is trivial when p[0. Conse-
quently, whenupu!1, this proves to be a useful setting fo
perturbation theory.

Fix t, and assume the complex functionc(x,t) to be
given. ForlPR denote byM6(x,t,l) the 232 matrix so-
lutions of the linear differential equation
-
s.
d

f
e
-
a-
e

e
i-

-
In

e

e

f
e
f
s

-
t

r
n.

s
g

]xM
65LM 6

ªF 2 il c

2c* ilGM6, ~4!

satisfying the boundary conditionsM6(x,t,l)exp(ils3x)
→I as x→6`. SinceL is traceless, these boundary cond
tions guarantee that these matrices are unimodular for ax.
For eachl there can only be two linearly independent co
umn vector solutions of~4!; therefore there is a matrix
S(t,l), lPR, thescattering matrix, such that

M2~x,t,l!5M1~x,t,l!S~ t,l!. ~5!

The first column ofM2(x,t,l) and the second column o
M1(x,t,l) turn out to be boundary values of analytic fun
tions for Im(l).0, while the second column ofM2(x,t,l)
and the first column ofM1(x,t,l) are the boundary value
of analytic functions for Im(l),0. Adjoining the second
column ofM1(x,t,l) on the right of the first column of~5!
and taking determinants gives

S11~ t,l!5det„M1
2~x,t,l!,M2

1~x,t,l!…, ~6!

which is therefore the boundary value of a function analy
for Im(l).0. Likewise S22(t,l)5det„M1

1(x,t,l),
M2

2(x,t,l)… is the boundary value of a function analytic fo
Im(l),0.

Fix lPR. Then, from ~4!, M6* 5s2M6s2, and thus
S* 5s2Ss2, so thatS225S11* andS2152S12* . In particular,
this means that as an analytic function for Im(l)
,0, S22(t,l)5S11(t,l* )* . Also, for lPR the fact that
det(S)51 implies the normalization conditionuS11u2

1uS12u251.
The analytic functionS11(t,l) with Im(l).0 may have

zeros l1(t), . . . ,lN(t). The determinant formula~6! then
shows that there exist complex numbersg1(t), . . . ,gN(t)
such that

M2
1
„x,t,lk~ t !…5gk~ t !M1

2
„x,t,lk~ t !…, k51, . . . ,N.

~7!

The conjugation symmetry ofM6(x,t,l) for lPR, when
extended to the complex plane, implies that at t
complex conjugate points lk(t)* where S22(t,l)
vanishes,M1

1
„x,t,lk(t)* …52gk(t)* M2

2
„x,t,lk(t)* …, for k

51, . . . ,N. Since S11(t,l)→1 as l→` with Im(l).0,
Hilbert transform theory can be used in conjunction with t
normalization condition to expressS11(t,l) for Im(l).0 in
terms of its zeros and the values ofS12(t,l) on the real axis
@23#:

S11~ t,l!5S )
k51

N
l2lk~ t !

l2lk~ t !*
D

3expS 1

2p i E2`

` ln~12uS12~ t,m!u2!

m2l
dm D . ~8!

The so-called ‘‘trace formulas’’ that equate certain fun
tionals of the potentialc to functionals of the scattering dat
will be useful below. In particular, we will use the formula
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P@c,c* #ªE
2`

`

Im~c]xc* !dx

5
1

2pE2`

`

m ln~12uS12~ t,m!u2!dm

2 (
k51

N

Im@lk~ t !2#. ~9!

This functional ~not to be confused with the perturbatio
p@c,c* #) has the interpretation of the total momentum
the wave functionc(x,t). For the unperturbed problem, a
well as in the presence of many physically important pert
bations, the total momentum is a constant of motion.

B. Reconstruction of the potential in the reflectionless case

The miracle of inverse scattering theory is that for ea
fixed t, the potentialc(x,t) can be recovered from its sca
e

ic
-

g

e

f

-

h

tering data, namely, the reflection coefficientS12(t,l) for l

PR, the eigenvalues$lk(t)% with Im(lk).0, and the pro-
portionality constants$gk(t)%. The reconstruction is particu
larly simple if S12(t,l)[0 as a function ofl for some t,
since it then follows from~8! that

S11~ t,l!5)
k51

N
l2lk~ t !

l2lk~ t !*
, ~10!

which extends to Im(l),0 as a meromorphic function
Similarly one sees thatS22(t,l)51/S11(t,l) and that
S21(t,l)[0. SinceS(t,l) is diagonal in this case, the solu
tion matricesM6(x,t,l) can be expressed in terms of
common solution matrixU(x,t,l) by setting M6(x,t,l)
ªU(x,t,l)N6(t,l), where@24#
N6~ t,l!ªs1
(171)/2diagS )

k51

N

@l2lk~ t !#21,)
k51

N

@l2lk~ t !* #21Ds1
(171)/2. ~11!
r-

is-
The columns ofU(x,t,l)5„U1(x,t,l),U2(x,t,l)… neces-
sarily satisfy the relations

U2„x,t,lk~ t !…5gk~ t !U1„x,t,lk~ t !…,

2gk~ t !* U2„x,t,lk~ t !* …

5U1„x,t,lk~ t !* …, ~12!

for all k51, . . . ,N. It follows thatU(x,t,l) takes the simple
form

U~x,t,l!5S lNI1 (
p50

N21

lpU(p)~x,t !D exp~2 ils3x!,

~13!

that is, a polynomial inl times an exponential, where th
matrix coefficientsU(p)(x,t) are determined uniquely from
~12!. This means that~12! can be viewed as a linear algebra
system of 4N equations in 4N unknowns, the matrix ele
ments ofU(p)(x,t). Moreover, it can be shown thatU con-
structed in this way is satisfies]xU5LU if and only if the
potential function inL is

c~x,t !52iU 12
(N21)~x,t !. ~14!

This formula reconstructsc(x,t) from the discrete scatterin
data$lk(t)% and $gk(t)% in the ‘‘reflectionless’’ case when
S12(t,l)[0. This treatment of multisoliton potentials via th
matrix U follows Krichever@25#, Manin @26#, and Date@27#.
See@28# for a relevant application.
C. Dynamics of the scattering data

We now recall how the data evolve int whenc satisfies
~1!. The motivating observation@8# is that~1! can be cast in
matrix form:

i ] tL2]xB1@L ,B#1P50, ~15!

where the matrixL is the one appearing in the linear scatte
ing problem~4!, and where

B5F l22
1

2
ucu2 ilc2

1

2
]xc

2 ilc* 2
1

2
]xc* 2l21

1

2
ucu2

G ,

P5F 0 p@c,c* #

p@c,c* #* 0
G . ~16!

Using the fact thatM6 satisfies~4!, multiply ~15! on the
right by M6 and find

~]x2L !~ i ] t2B!M61PM650. ~17!

This equation is solved for (i ] t2B)M6 by variation of pa-
rameters. Introducing a new unknownJ6(x,t,l) defined
through the relation (i ] t2B)M65M6J6, one finds thatJ6

satisfies]xJ
652M621PM6. We now integrate to findJ6

explicitly, taking into account the boundary conditions sat
fied by M6 as x→6` and the fact that in both limitsB
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→l2s3. With the use of these explicit formulas forJ6 the
equations (i ] t2B)M65M6J6 become equations of motio
for the matricesM6:

~ i ] t2B!M65M6S 2l2s31E
x

6`

M621PM6dx8D .

~18!

As written, ~18! does not make sense for Im(l)Þ0. But
for lPR, the columnsM1

2 andM2
1 are the boundary value

of functions analytic for Im(l).0, and we will also need
equations for them that hold for Im(l).0. To this end, we
introduce the matrixM (x,t,l)ª(M1

2 ,M2
1), and as before

define the new unknownJ(x,t,l)5(J1 ,J2) through the re-
lation (i ] t2B)M5MJ , and then integrate:
rit

te
J15F2l2

0 G2E
2`

x

M21PM1
2dx8,

J25F 0

l2G1E
x

`

M21PM2
1dx8. ~19!

As before, these expressions are used in (i ] t2B)M5MJ to
yield the equation of motion forM , valid for Im(l).0 ex-
ceptat $lk%, whereM fails to be invertible. Each singularity
is, however, removable, since detM5S11 and hence@writing

M jk
68 for M jk

6(x8,t,l)#
M ~x,t,l!M ~x8,t,l!215
1

S11
FM11

2 M22
182M12

1 M21
28 M12

1 M11
282M11

2 M12
18

M21
2 M22

182M21
28M22

1 M11
28M22

1 2M12
18M21

2 G . ~20!
r

nt

e-
We make the natural assumption that the~isolated! zerosl
5lk(t) of the denominatorS11(t,l) are simple@23#. But
then the numerator of each entry is analytic atl5lk(t) and
is easily seen to vanish there, thus cancelling the singula
Hence, the evolution equation forM makes sense asl
→lk(t). We accordingly introduce the notation

Hk~x,x8,t !ª lim
l→lk(t)

M ~x,t,l!M ~x8,t,l!21. ~21!

The equations of motion forM6 and M determine the
evolution of the scattering data. UsingSªM121M2, for
real l one finds

i ] tS52M121i ] tM
1
•M121M21M121i ] tM

2

52M121i ] tM
1
•S1M121i ] tM

2. ~22!

Substituting from~18! yields

i ] tS5l2s3S2E
x

`

M121PM1dx8•S2l2Ss3

2SE
2`

x

M221PM2dx8. ~23!

Finally, sinceS does not depend onx, it may be brought
inside the integrals. With the use of its definition the in
grals are combined, giving the equation of motion:
y.

-

i ] tS~ t,l!1l2@S~ t,l!,s3#

1E
2`

`

M1~x8,t,l!21PM2~x8,t,l!dx850. ~24!

Note that sinceP is off diagonal, the equation forS11(t,l)
only involves quantities analytic for Im(l).0. Likewise, the
equation forS22(t,l) only involves quantities analytic fo
Im(l),0.

The equation of motion for the reflection coefficie
S12(t,l) is contained in that forS:

i ] tS12~ t,l!22l2S12~ t,l!

1E
2`

`

@M1~x8,t,l!21PM2~x8,t,l!#12dx850.

~25!

The integrand here is p@c,c* #M22
1 M22

2 2p@c,c* #*
3M12

1 M12
2 , evaluated atx8, t, andl, which generally only

makes sense forlPR, as required. Now, the expression d
fining the zeroslk(t) of S11(t,l) is S11„t,lk(t)…50. Differ-
entiating with respect tot gives

i ] tS11„t,lk~ t !…1 i
dlk

dt
~ t !]lS11„t,lk~ t !…50. ~26!

Using the equation of motion forS, one therefore finds
i
dlk

dt
~ t !5

1

]lS11„t,lk~ t !…E2`

`

@M1
„x8,t,lk~ t !…21PM2

„x8,t,lk~ t !…#11dx8. ~27!



u

a
ce
d

r,
tio
io
-

f
s-

s

al-

ies

ng
by

e

f

e

-

7126 PRE 61BESLEY, MILLER, AND AKHMEDIEV
The integrand here is p@c,c* #M22
1 M21

2 2p@c,c* #*
3M12

1 M11
2 , evaluated atx8, t, and l5lk(t). As remarked

above, this makes sense with Im@lk(t)#.0. It remains to
find an equation for$gk(t)%. Differentiating the defining re-
lation M2

1
„x,t,lk(t)…5gk(t)M1

2
„x,t,lk(t)… with respect tot

and using the evolution equation forM taken in the limitl
→lk(t), yields the equation of motion

F i
dgk

dt
~ t !22l2gk~ t !GM1

2~x,t,l!

5gk~ t !E
2`

`

Hk~x,x8,t !PM1
2~x8,t,l!dx8

1 i @]lM2
1~x,t,l!2gk~ t !]lM1

2~x,t,l!#
dlk

dt
~ t !,

~28!

with l5lk(t). Equations~25!, ~27!, and ~28! describe the
evolution of the scattering data, but are coupled to the eq
tions for M andM6. This coupling disappears forP[0:

i ] tS12~ t,l!22l2S12~ t,l!50, i
dlk

dt
~ t !50,

i
dgk

dt
~ t !22lk~ t !2gk~ t !50, ~29!

for k51, . . . ,N, as was first observed by Zakharov and Sh
bat @1#. From this simple system, it is possible to introdu
the coupling perturbatively, leading to closed systems or
by order.

III. PERTURBATION THEORY WITH NEARLY BOUND
SOLITONS

We now suppose thatp@c,c* #5e2W(ucu2)c for some
real-valued functionW, takinge.0 to be a small paramete
and seek a perturbative solution of the equations of mo
for the scattering data. We want a description of the solut
up to anO(e2) error, containing important physical informa
tion, and valid uniformly over time scales of lengthO(e21).
The initial data we consider is

S12~0,l![0, lk~0!5 imk , gk~0!5exp~22mkxk
01 iuk

0!.
~30!

Proposition 1. The solution of the initial-value problem o
(25), (27), and (28) with initial conditions (30), is given a
ymptotically for smalle by S12(t,l)5O(e2) and

lk~ t !52
e

2
vk~et !1 imk1O~e2!,

gk~ t !5exp@22mkxk~et !1 iuk~ t !1O~e2!#, ~31!

where xk(T), vk(T), and uk(t) are certain functions to be
specified below. They satisfy xk(0)5xk

0 , vk(0)50 and
uk(0)5uk

0 . This approximation is uniformly valid for time
t5O(e21).
a-

-

er

n
n

We develop the expansion using the multiscale form
ism. Introducing the slow time variableT5et, and assuming
all quantities to depend functionally on botht and T, we
replace the time derivatives in~25!, ~27!, and~28! according
to the chain rule:] t→] t1e]T . Observe that for the initial
conditions~30!, there is no enforced magnitude for Re(lk)
or S12(l). We may thus select the scaling of these quantit
to achieve a dominant balance. We choose to scaleS12(l) as
e2 and Re(lk) as e. Thus, settinglk5eak1 ibk and gk
5exp(Dk1ijk), we assume the expansions:

eak1 ibk5e~ak
(0)1eak

(1)1••• !1 i ~bk
(0)1ebk

(1)1••• !,

S125e2~S12
(0)1eS12

(1)1••• !, ~32!

Dk1 i jk5~Dk
(0)1eDk

(1)1••• !1 i ~jk
(0)1ejk

(1)1••• !.

Substituting into the equations of motion and collecti
powers ofe, we examine the resulting equations order
order. First, from the leading-order terms in~27! we find for
k51, . . . ,N that

ak
(0)5ak

(0)~T!, bk
(0)5bk

(0)~T!, ~33!

so that these quantities do not depend on the fast timt.
Similarly, looking at~28! we see that

Dk
(0)5Dk

(0)~T!, jk
(0)5jk

(0)~0!22bk
(0)~T!2t. ~34!

The description we desire will follow upon determining theT
dependence of these leading-order quantities. TheO(e) con-
tribution in the equation forbk , the imaginary part of~27!, is

] tbk
(1)1]Tbk

(0)50. ~35!

If this equation forbk
(1) is to be solvable in the class o

bounded functions oft, thenbk
(0) must be independent ofT as

well ast. With theT dependence ofbk
(0) dropped,~35! can be

solved by takingbk
(1)50. This yields the simplest part of th

claimed result, that Im(lk) is described uniformly fort
5O(e21) by bk(t)5mk1O(e2), where themk are con-
stants. Sincebk

(0)5mk , this also determines the leading
order behavior ofjk

(0) from ~34!. Setting uk
0
ªjk

(0)(0), we
defineuk(t) as follows:

uk~ t !ªjk
(0)5uk

022mk
2t. ~36!

At O(e), Eq. ~28! gives

] tDk
(1)1]TDk

(0)54ak
(0)bk

(0)54mkak
(0) . ~37!

Again, avoid secular growth ofDk
(1) by setting

]TDk
(0)~T!54mkak

(0)~T!, ~38!

and then takeDk
(1)50. If we now define

xk~T!ª2
Dk

(0)~T!

2mk
, vk~T!ª22ak

(0)~T!, ~39!

then ~38! takes the simple form

xk8~T!5vk~T!. ~40!
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An equation forvk(T) is found atO(e2) in the real part
of ~27!. We find

] tak
(1)2

1

2
v8~T!5Im@Gk~ t,T!#, ~41!

where Gk(t,T) is the leading term, divided bye2, of the
right-hand side of~27!. In more detail, from~8! and the
leading-order behavior of$lk%, we first see that

]lS11„t,lk~ t !…ue505]l)
j 51

N
l2 imj

l1 imj
U

l5 imk

5
1

2imk
)
j Þk

mk2mj

mk1mj
. ~42!

To find the leading-order behavior ofM6, recall thatS12
5O(e2) so that we can use the ‘‘reflectionless’’ constructi
of M6 and c in terms of U, which in turn is constructed
from $lk' imk% and $gk'exp@22mkxk(T)1i„jk

(0)(0)
12mkt…#%. This gives

Gk~ t,T!5 i ~21!NF2mk)
j Þk

~mk
22mj

2!G21

3E
2`

`

W„uc~x,t !u2…f ~x,t,imk!dx, ~43!

with

f ~x,t,l!ªc~x,t !U22~x,t,l!U21~x,t,l!

2c~x,t !* U12~x,t,l!U11~x,t,l!. ~44!

Now, it is clear from~12! that all of thex and t dependence
in U and c enters through the productsgkexp(22ilkx)
'exp(zk)exp@iuk(t)#, where zkª2mk@x2xk(T)#. Therefore,
Gk(t,T) is a multiperiodic function oft for fixed T. The N
21 frequencies are independent ofT, since all of theT de-
pendence enters through the functionsxk(T). Secular growth
of ak

(1)(t) is avoided by choosingvk8(T) to cancel the mean
value of this oscillatory function:

mkvk8~T!5Fk„x1~T!, . . . ,xN~T!…ª22mk^Im@Gk~ t,T!#&,
~45!

where angled brackets denote averaging overt with T fixed.
The force functionsFk depend parametrically on the mass
mk . Equations~40! and~45! imply Newton’s equations for a
system of interacting particles of massmk and coordinatexk :

mkxk9~T!5Fk„x1~T!, . . . ,xN~T!…. ~46!

It is easy to see thatFk(x11dx,x21dx, . . . ,xN1dx)
5Fk(x1 ,x2 , . . . ,xN) so that the forces only depend on th
relative coordinates. There is also a symmetry for~46! com-
ing from the conservation of momentum that holds exac
~and thus to all orders of expansion! in ~1! with p@c,c* #
5e2W(ucu2)c. This symmetry follows from the trace for
mula ~9! and shows that the total force on the system is ze
y

:

(
k51

N

Fk„x1~T!, . . . ,xN~T!…5 (
k51

N

mkxk9~T!50. ~47!

The dynamical system~46! describes the evolution of th
scattering data. Since the reflection coefficient vanishes
second order on the time scales of interest, solutions of~46!
can be used to build, at each fixedt, the N-soliton potential
as in Sec. II B. This allows a direct comparison betwe
numerics for~1! and the predictions of~46!.

IV. TWO PARTICLES

Consider the caseN52. The aforementioned symmetrie
imply that the system takes the form

m1x19~T!5F1„x1~T!,x2~T!…52
1

2
F@x2~T!2x1~T!#,

m2x29~T!5F2„x1~T!,x2~T!…5
1

2
F@x2~T!2x1~T!#,

~48!

for some functionF. The relevant quantity is then the rela
tive distancey(T)ªx2(T)2x1(T), which has the simple-
looking equation of motion

m̃y95F~y!, ~49!

where the effective mass is defined by m̃ª2(m2
21

1m1
21)21.

A. Writing down the force function

We begin our study of the force functions by simplifyin
the integrand in~43! to isolate terms that are exactx deriva-
tives and do not contribute. In this context, consider
squared eigenfunction systemimplied by ~4!. Let M be any
solution of]xM5LM , and define the quadratic forms

fªM11M12, xªM21M22, hªM11M221M12M21.
~50!

Then, these quantities again satisfy a linear system of eq
tions

]xf522ilf1ch, ]xx52ilx2c* h,

]xh522c* f12cx. ~51!

Using the quadratic forms associated withU, f as defined by
~44! is seen to be an exactx derivative:

f 5
1

2
]xh5

1

2
]x~U11U221U12U21!5]x~U12U21!, ~52!

where the last equality follows from the fact that the det
minant of any solution of~4! is independent ofx becauseL
is traceless. ForN52, we use the relations~12! and the
parametersl15 im1 , l25 im2 , g15exp@22m1x1(T)1i(u1

0

22m1
2t)#, andg25exp@22m2x2(T)1i(u2

022m2
2t)# to find U12

5eilx@lc/(2i )1w# and U215e2 ilx@lc* /(2i )2w* #,
where
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c5
2~m2

22m1
2!

D~z1 ,z2 ,u22u1!
@m1 cosh~z2!eiu1(t)

2m2 cosh~z1!eiu2(t)#,

w5
m1m2~m2

22m1
2!

D~z1 ,z2 ,u22u1!
@sinh~z2!eiu1(t)2sinh~z1!eiu2(t)#,

~53!

wherec is the well-known two-soliton ‘‘breather’’ solution
and using

D~z1 ,z2 ,u!ª~m11m2!2 cosh~z1!cosh~z2!

22m1m2 cosh~z11z2!22m1m2 cos~u!.

~54!

SinceW(ucu)PR, only Re@ f (x,t,imk)# is needed to find
Im@Gk(t,T)#. From ~52! one finds f 52]x„l

2ucu2/4
1l Im(cw* )1uwu2…, and therefore Re„f (x,t,imk)…
5mk

2]xucu2/42]xuwu2. Using this in the formula~43! for
Im„Gk(t,T)…, one finds that the first term is an exact deriv
tive of a rapidly decreasing function and hence integra
away. In terms of the two quantitiesucu2 and uwu2 obtained
directly from ~53! we finally obtain

Im@G1~ t,T!#5
1

2m1~m2
22m1

2!
E

2`

`

W~ ucu2!]xuwu2dx

52
m2

m1
Im„G2~ t,T!…. ~55!

In particular, it follows that 22m1 Im„G1(t,T)…
22m2 Im„G2(t,T)…50 so that the total instantaneous~that
is, before averaging overt) force vanishes.

Specializing further to the quintic perturbation~2! by tak-
ing W(r)ªsr2 and writing

F~y;m1 ,m2!5
1

2pE0

2pE
2`

`

h~y,z,u;m1 ,m2!dz du,

~56!

we have found the following explicit formula forh:

h~y,z,u;m1 ,m2!5
128sm1

2m2
2~m2

22m1
2!5

D~z1 ,z2 ,u!7
@h11•••1h13#,

~57!

where the individual termshk are given in the Appendix
They depend on a dummy integration variablez that differs
from x by a simple translation. Note that, by the periodic
with respect to the ‘‘fast’’ functionu5u2(t)2u1(t), averag-
ing over t is equivalent to averaging overu.

B. Scale invariance

From~56! and the explicit formulas for the termshk in the
Appendix, note the important symmetry:

F~jy;m1 ,m2!5j26F~y;jm1 ,jm2!, ~58!
-
s

for all nonzerojPR. Settingy5jq andS5j23T, the equa-
tion of motion takes the form

~jm̃!q9~S!5F„q~S!;jm1 ,jm2…. ~59!

For arbitrary massesm1 and m2, we may then setj
5(m1m2)21/2. Becausem̃ is homogeneous of degree one
m1 andm2, it is convenient to use the normalized masse

M15jm1 , M25jm2 , M̃5jm̃, j5~m1m2!21/2.
~60!

Here, M1 and M2 satisfy M1M251 and may therefore be
expressed in terms of thenormalized effective mass M˜ by
solving 2(M2

211M1
21)215M̃ subject to this constraint to

find

M15@12~12M̃2!1/2#M̃ 21, M25@11~12M̃2!1/2#M̃ 21,
~61!

assuming without loss of generality thatM2.M1. From now
on, we will work exclusively with the normalized masses,
which case the force depends only onS andM̃ .

C. Averaging

We now compute theu averages explicitly by residues
There are five terms:

Apª
1

2pE0

2p cosp u

D~z1 ,z2 ,u!7
du5

227

2p E
0

2p cosp u

~a2cosu!7
du,

~62!

for p50,1, . . . ,4, where aª(22M̃2)cosh(z1)cosh(z2)M̃
22

2sinh(z1)sinh(z2)>1. Changing variables tow5exp(iu), the
contour of integration becomes the counterclockwi
oriented unit circle in thew plane. The only singularity
within the contour is a seventh-order pole at the pointw0
5a2(a221)1/2, where from here on the positive root
taken. Therefore,

Ap52
1

2p
Res

w5w0

w6~w1w21!p

~w2w0!7~w2w0
21!7

. ~63!

In particular one finds exact expressions forÃp865536(a2

21)13/2Ap :

Ã058~2a!61240~2a!41720~2a!21160,

Ã1556~2a!51560~2a!31560~2a!,

Ã254~2a!61232~2a!41808~2a!21192,

Ã3542~2a!51588~2a!31672~2a!, ~64!

Ã453~2a!61202~2a!41928~2a!21256.

These results yield an explicit formula for the two-partic
force function as an integral
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F~q;M̃ !5E
2`

`

H~q,z!dz, ~65!

where we are assuming thatM1M251 and M2.1.M1
.0, and where

H5
2s~12M̃2!5/2

M̃10 (
m,n50

6

@gmn~M1 ,M2!tanhz1

1gnm~M2 ,M1!tanhz2#Hmn ,

Hmn

ª

sech2(62m) z1 sech2(62n) z2

F S 22M̃2

M̃2
2tanhz1 tanhz2D 2

2sech2 z1 sech2 z2G 13/2.

~66!

FIG. 1. The force lawF(q,M̃ ) in the attractive case,s511,

for M̃50.3,0.4,0.5,0.6. In the repulsive cases521, the force sim-
ply has the opposite sign.

FIG. 2. A two-soliton bound state affected by an attractive p
turbation. Here,e50.0387,m150.6, andm251. Left: an approxi-
mation toucu2 found by solving Newton’s equations and then co
structing the field using reflectionless inverse theory. Right:
corresponding numerics for~1!. The bound state has too much e
ergy for the harmonic approximation to hold, and the period
motion, about 120 time units, is longer than the harmonic perio
Here,z152M1(z1q/2) andz252M2(z2q/2). Many of the
coefficientsgmn(a,b) vanish identically. In particular,g66

50 as is needed for the integral to converge. The nonv
ishing coefficientsgmn(a,b) are given in the Appendix.

D. General features of the force function

Unfortunately,~65! cannot be evaluated in closed for
because the integrand generally involves both exp(z1) and
exp(z2). Even if M2 /M1PQ so that the integrand becomes
rational function of, say, exp(z1), the denominator is irreduc
ible already for the simplest resonance,M252M1.

In spite of these difficulties, certain elementary features
the force law can be extracted.

~i! F(q;M̃ ) is proportional to the constants561, as is
clear from~65!.

~ii ! F(q;M̃ ) is an odd function ofq, since the integrand
satisfiesH(2q,z)52H(q,2z) and moreover this symme
try holds term by term in the formula forH.

~iii ! F(q;M̃ ) decays to zero for largeq. This follows from
the fact that the denominator of each termHmn in the integral
is bounded and the corresponding numerator vanishes
large q whenevergmnÞ0. The result then follows from a
dominated-convergence argument.

~iv! F(q;M̃ ) only vanishes exactly forq50. Thus it is
strictly of one sign forq.0.

~v! The normalized effective massM̃ enters the dynamics
both as a mass parameter multiplying the accelerationq9(S)

and as a parameter inF(q;M̃ ) itself.

The forceF(q;M̃ ), as computed from the integral for
mula ~65!, is plotted in Fig. 1 for several different values o

the normalized effective massM̃ .

E. Attractive case. Spring constant

For s511, the forceF(q;M̃ ) and the displacementq
have opposite signs, so the force is always attractive. T
means that the slow dynamics of the two-soliton bound s

-

e

f
.

FIG. 3. The spring constant for small bound motions as a fu

tion M̃ .
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7130 PRE 61BESLEY, MILLER, AND AKHMEDIEV
are periodic in time and the state remains bound.1 To illus-
trate, Fig. 2 compares the results of perturbation theory w
a simulation of ~1!. For small displacements, we hav
F(q;M̃ )52k(M̃ )q1O(q2). The ~mass-dependent! spring
constant k(M̃ ) determines the frequency v(M̃ )
ª(k(M̃ )/M̃ )1/2 of small oscillatory motions. This is the fre
quency on the time scaleS; the frequency on the origina
time scale t is related by V(m1 ,m2 ,e)
5e(m1m2)3/2v@m̃/(m1m2)1/2#. A formula for the spring
constantk(M̃ ) can be found by simply differentiating with
respect toq in ~65! and settingq50; however, it seems les
useful to present than a plot, shown in Fig. 3, of the~numeri-
cally! evaluated formula. In Fig. 4 we plot the correspondi
frequency~on the time scaleS), the latter being a directly
observable quantity. It is noteworthy here that the dynam
of solitons can be described by a linear theory even tho
their amplitudes are not at all small. The parameter linea
ing the theory is the distance between the solitons, ra
than the soliton amplitude. We also remark that the limit
which this linear behavior holds is that of infinitessima
separated solitons, a limit in which methods assuming
solitons to be well separated are invalid.

F. Repulsive case. Asymptotic velocity

For s521, the force and displacementq have the same
sign, resulting inq always becoming large. Solitons that a
near each other att50 are ejected from the origin as ob
served by Artigaset al. @21#. This effect is captured accu
rately by our theory, as shown in Fig. 5. The work done
the force in moving the particle fromq5q0 to q5` deter-
mines the asymptotic velocity of an initially stationary pa
ticle upon ejection. Takingq050 corresponds to the ultimat
velocity of a stationary particle that is slightly perturbe
from ~unstable! equilibrium at the origin. With zero initial
velocity, one equates the asymptotic kinetic energy with
work done:

1This is a long-time statement, holding fort5O(e21), but not an
infinite time statement. The question of whethertrue breatherlike
bound states exist~that is, permanently! for nonzeroe is more
subtle.

FIG. 4. The frequencyv of harmonic motion as a functionM̃ .
h

s
h
-

er

e

y

e

1

2
M̃q8~`!25E

q0

`

F~q;M̃ !dq, ~67!

to find a formula for the asymptotic velocity difference

q8~`!5S 2

M̃
E

q0

`E
2`

`

H~q,z!dz dqD 1/2

. ~68!

Figure 6 shows the asymptotic velocity differenceq8(`) for
q050 found from ~68! as a function of the normalized ef
fective massM̃ . To apply the graph in Fig. 6 to problem
with unnormalized masses, it is useful to unravel the chan
of variables made so far. Givenm1 andm2, the scaling pa-
rameter is j5(m1m2)21/2 and the effective mass ism̃
52•(m1

211m2
21)21. Then, the normalized effective mas

used in Fig. 6 isM̃5jm̃. Next, from the graph one finds th
asymptotic velocityq8(`). The true velocity in the original
coordinates is thendy/dt5ej22q8(`). For example, the pa
rameters used in Fig. 5 imply a normalized effective mass
M̃'0.9. From Fig. 6 one findsq8(`)'5.0, and thusdy/dt
'0.15. This value agrees well with the pictures in Fig. 5

FIG. 5. A two-soliton bound state affected by a repulsive p
turbation. Here,e50.07746,m150.4, andm251. As in Fig. 2, the
result of perturbation theory is on the left and the numerics are
the right. The solitons escape with a relative ‘‘ejection’’ veloci
given by ~68!.

FIG. 6. The asymptotic velocity differenceq8(`) of two soli-
tons falling from unstable equilibrium.
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PRE 61 7131SOLITON INTERACTIONS IN PERTURBED NONLINEAR . . .
In the attractive case, the integral~67! also has physica
meaning as the binding energy of the two-soliton state
relative velocity in excess ofq8(`), the escape velocity, wil
‘‘ionize’’ the state.

V. DISCUSSION

Multiscale asymptotics shows that under certain con
tions the behavior of a multisoliton initial condition in
perturbed NLSE reduces to Newton’s equations for a sys
of interacting particles, one particle per soliton. The the
applies over time scales of lengthO(e21) for perturbations
of sizee2, when the initial velocities of the solitons mutual
differ by anO(e) amount. Our calculations make very co
crete the often-cited analogy between solitons and partic
We want to emphasize that the limit considered here is
in which the relative velocities of the solitons are small b
the solitons may be strongly nonlinearly superimposed, p
cisely the limit in which methods exploiting large distanc
between solitons fail.

For a quintic perturbation of the NLSE and an initial co
dition composed of two solitons, the resulting dynamical s
tem can be analyzed. When the perturbation is attrac
(s511), the system describes a nonlinear oscillator w
all solutionsq(S) being periodic. If the energy associate
with q(S) is small@that is, ifq(0) andq8(0) are both small#,
then the periodic motion is nearly harmonic, and formu
for the associated spring constant and frequency of mo
can be found; in this limit the model for the soliton intera
tion linearizes even though the soliton amplitudes are no
all small. The latter are determined by the massesm1 andm2
and are not related to the coordinateq(S). For larger ener-
gies, the spring ‘‘softens’’ and the frequency decreases w
increasing energy. The pictures in Fig. 2 show oscillations
the nonlinear regime, where the frequency of motion
smaller than the linear frequency. Of course even in the n
linear regime, the dynamics still obey the simple mod
M̃q95F(q;M̃ ). Although the periodic motion is predicte
and observed over long time scales of sizeO(e21), it is not
likely to persist for all time, due to the influence of highe
order resonant coupling effects.

On the other hand, when the quintic perturbation is rep
sive (s521), the nodal point at the origin in the phas
plane gets replaced with an unstable saddle point. All or
apart from the fixed point itself represent the nonlinear
velopment of the instability. Because the force vanishes
enough for largeq, the velocityq8(S) ultimately saturates a
the two-soliton state becomes ‘‘ionized.’’ From the for
function F(q;M̃ ) this ‘‘ejection’’ velocity may be calcu-
lated, giving excellent agreement with direct simulations
the perturbed NLSE. This analysis explains the observat
reported in @21#. The symmetry breaking that determin
which soliton ends up on the right and which on the left c
be traced to the location of the initial phase point in relat
to the separatrix connected to the saddle. Unlike in the
tractive (s511) case, the approximation obtained fro
multiscale asymptotics for the repulsive (s521) caseis
expected to be uniformly valid for all time, since as the so
tons separate, further effects due to resonant coupling dim
ish.
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Given the formula for the forceF(q;M̃ ), it is possible to
compute the harmonic frequency and ejection velocity, m
explicitly than we have done here. For example, the formu
would be expected to simplify in the limitsM̃↘0 ~corre-
sponding to two solitons differing very much in amplitud!
and M̃↗1 ~corresponding to two solitons with nearly th
same amplitude!. The calculation of the ejection velocity i
challenging because it may require uniform approximation
F(q;M̃ ) for all q in the limit of interest; pointwise asymp
totics for fixed q are not enough to approximate the wo
integral without further information.
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APPENDIX: FORMULAS FOR THE TWO-PARTICLE
FORCE FUNCTION INTEGRAND

Here, we record the details of the formulas for the tw
particle force function needed to calculate or approximate
special values ofM̃ the force and related quantities to an
desired accuracy.

Before averaging. The 13 terms appearing in the sum
~57! are given here in terms ofcªcosu, Skªsinh(zk) and
Ckªcosh(zk), z1ª2m1(z1y/2) andz2ª2m2(z2y/2).

h152m1
6m2S2C1C2

612m1m2
6S1C1

6C2 ,

h252@m1
5~m2

21m1
2!S1C2

71m2
5~m2

21m1
2!S2C1

7#,

h352m1
5~m1

21m2
2c2!S1C2

512m2
5~m1

2c21m2
2!S2C1

5 ,

h452@2m1
5~m2

21m1
2!cS2C2

512m2
5~m2

21m1
2!cS1C1

5#,

h55m1
5~m1

229m2
2!cS2C1

2C2
51m2

5~m2
229m1

2!cS1C1
5C2

2 ,

h65m1
4m2~5m2

213m1
2!cS1C1C2

6

1m1m2
4~3m2

215m1
2!cS2C1

6C2 ,

h752$2m1
4m2@~5m1

21m2
2!c14m2

2c3#S1C1C2
4

12m1m2
4@~m1

215m2
2!c14m1

2c3#S2C1
4C2%,

h852m1
4m2@m2

21~5m1
214m2

2!c2#S2C1C2
4

12m1m2
4@m1

21~5m2
214m1

2!c2#S1C1
4C2 ,

h952@2m1
3m2

4~114c2!S1C1
2C2

5

12m1
4m2

3~114c2!S2C1
5C2

2#,

h105m1
4m2~3m2

22m1
2!~114c2!S2C1

3C2
41m1m2

4

3~3m1
22m2

2!~114c2!S1C1
4C2

3 ,
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h1152@2m1
3m2

2~m2
22m1

2!~3c12c3!S2C1
4C2

3

12m1
2m2

3~m1
22m2

2!~3c12c3!S1C1
3C2

4#,

h1252$4m1
2m2

3@~3m1
21m2

2!c1~2m1
214m2

2!c3#S1C1
3C2

2

14m1
3m2

2@~3m2
21m1

2!c1~2m2
214m1

2!c3#S2C1
2C2

3%,

h1354m1
2m2

3@m2
21~3m1

214m2
2!c212m1

2c4#S2C1
3C2

2

14m1
3m2

2@m1
21~3m2

214m1
2!c212m2

2c4#S1C1
2C2

3 .

After normalization and averaging. Here, we give the
nonzero quantitiesgmn5gmn(a,b) appearing in~66!. In
these expressionsb and a are linked by the normalization
conditionab51.

g035672a32672a7, g0451344a313136a7,

g05522304a322816a7, g065512a31512a7,

g12526048a324032a7110080b,

g13569664a3116576a711120a1112240b,

g1452130544a3252016a722960a11229520b,

g15575904a3148256a714480a11118816b,

g165210368a3210368a721920a1121920b,

g215213440a313360b110080b5,

g22517920a3117920a7151520b224640b5,

g2352234720a3248320a725440a112272640b

27200b5,

g245479872a31146176a7113184a111320a151352704b

136864b5,

g2552277152a32144096a7219280a112560a15

2141808b215120b5,

g26531680a3131680a718800a111480a1518800b

1480b5,

g30524032b13360b51672b9,

g3155600a3290944b232480b527616b9,

g325131600a326720a71166960b114960b5115760b9,

g335224576a3215168a713648a111249088b

1145344b521984b9,
g3452375744a3263840a726688a112480a152545056b

2186144b529888b9,

g355280368a31108768a7113712a111864a15116a19

1227744b154604b512592b9,

g365224024a3224024a728008a112728a1528a19

28008b2728b528b9,

g40526720b222400b522240b9,

g41531680a31216128b1162400b5119072b91800b13,

g4252269952a3218720a72592576b2268928b5

229984b922560b13,

g435384912a3182032a712976a111387040b143584b5

28784b911168b13,

g445281312a3263840a728256a112192a15197152b

1127104b5126784b91864b13,

g455261776a314368a111288a15296096b239312b5

24032b9248b13,

g5059216b121760b514864b9,

g515220096a32129152b2155264b5238272b9

21280b13,

g525112848a317584a71355920b1307872b5171872b9

13984b13180b17,

g5352165584a3222752a72528a112330528b

2200112b5232672b921392b13296b17,

g54572072a3115288a71648a11192664b124024b5

26552b921512b13224b17,

g60521536b24096b521536b9,

g6151280a3113568b127648b5113568b911280b13,

g62524096a3296a7227808b250688b5227808b9

24096b13296b17,

g6352912a31112a7116016b127456b5116016b9

12912b131112b17.
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