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We use multiscale perturbation theory in conjunction with the inverse scattering transform to study the
interaction of a number of solitons of the cubic nonlinear Sdimger equation under the influence of a small
correction to the nonlinear potential. We assume that the solitons are all moving with the same velocity at the
initial instant; this maximizes the effect each soliton has on the others as a consequence of the perturbation.
Over the long time scales that we consider, the soliton amplitudes remain fixed, while their center of mass
coordinates obey Newton’s equations with a force law for which we present an integral formula. For the
interaction of two solitons with a quintic perturbation term we present more details since symmetries — one
related to the form of the perturbation and one related to the small number of particles involved — allow the
problem to be reduced to a one-dimensional one with a single parameter, an effective mass. The main results
include calculations of the binding energy and oscillation frequency of nearby solitons in the stable case when
the perturbation is an attractive correction to the potential and of the asymptotic “ejection” velocity in the
unstable case. Numerical experiments illustrate the accuracy of the perturbative calculations and indicate their
range of validity.

PACS numbds): 42.65.Tg, 42.81.Dp, 02.30.Jr

[. INTRODUCTION variable for the signal; accordingly the solitons of the unper-
turbed problem(and usually also the solitary waves of the
This paper is concerned with the asymptotic behavior operturbed problem, when they existre called temporal soli-
solutions of the initial-value problem for the perturbed non-tons. The suggestion by Hasegawa and Tappert in 948

linear Schrainger equatior(NLSE) that temporal solitons, being immune to dispersion, might
1 serve as bits in a high-speed data stream has since generated
: ) 2 *7_ a large body of work, much of which is comprehensively
1ot 26X¢+|¢| yplyg™1=0, & reviewed in[5,6]. Second, for photonic switching devices,

Eq. (1) describes the stationary envelope of monochromatic
subject to the initial conditiogy(x,0)= ¢o(x) for certain ini-  light waves in a planar waveguide under the paraxial ap-
tial fields ¢o(x), in the limit when the perturbation term proximation. Herex andt are both spatial variables, with
pl &, ™ | becomes formally small. The unperturbed problem,being the propagation direction anxdbeing the transverse
when p[ #,#* ]=0 in (1), is well known to be solvablg¢l] direction; accordingly the solitons of the unperturbed prob-
by an inverse scattering transform, one consequence d¢€m are called spatial solitons.
which is the existence of finite energy soliton solutions that In both of these applications, the cubic tef#? in (1)
are dynamically stable and robust with respect to collisionsmodels the Kerr effect in which the refractive index of the
The unperturbed NLSE arises in two different physical situ-material depends linearly on the local intensity of light. For
ations in modern opticg2]. Firstly, for high-speed telecom- weakly nonlinear effects, when intensities are not too large,
munications, Eq(1) describes the propagation of light wave this effect is dominant in isotropic materials like glass. This
packets along an optical fiber. In this interpretatiois the  fact, along with the integrability afforded by neglecting
spatial coordinate along the fiber ards the retarded time p[«,¢* ], makes the unperturbed NLSE one of the most im-

portant models in modern optics.

Of course, real materials can have a complicated depen-
*Present address: Racal Research Ltd., Worton Drive, Wortolence of refractive index on intensity, for which the Kerr
Grange Industrial Estate, Reading, Berkshire, RG2 0SB, UK. Eleceffect is only an idealization. Modeling such phenomena re-

tronic address: James.Besley@rrl.co.uk quires introducing corrections to the coefficiggi? in the
"Electronic address: millerpd@mail.maths.monash.edu.au cubic term of the NLSE. The perturbative tempfy, ™ |
*Electronic address: nnal24@rsphysse.anu.edu.au might also include corrections related to higher-order disper-
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sion, the Raman effect, self-steepening of pulses, etc. In this In the scattering transform domain, where the dynamics
paper we will consider only the influence of higher-orderof the unperturbed NLSE are trivial, a state in which two
nonlinearity on solitons of the unperturbed NLSE. For spatiaksolitons are close to each othendias the same spectrum as
solitons in photorefractive media, such a perturbation can bg state in which they are far apart. This suggests that for
the main factor influencing propagation. In particular, westudying the influence of perturbations on multisoliton bound

take the perturbation ifd) in the form of a quintic term stategthat is, several solitons traveling with the same veloc-
ity, represented by a collection of eigenvalues of the

Pl ¥ 1= €|yl *y, (2)  Zzakharov-Shabat equations with the same real jitzigt best
to carry out the analysis in the transform domain using soli-

wheree>0 is a small parameter ang=*1. ton perturbation theor}7,15,8. With p[ ¢, * ]# 0, the evo-

In view of the possibility of using solitons as bits in op- lution of the scattering data is no longer trivial, and thus the
tical fibers or dynamically controllable switches in planarscope of possible dynamics in near-integrable systems like
waveguides, it is of some interest to determine the effect ofl) is much greater than in the unperturbed NLSE, including
such a perturbation on the solitons of the unperturbed probeffects like repulsion, attraction, and energy exchange among
lem. If one considers an initial conditiogiy(x) that is a bound or colliding solitons. Other techniques that have been
“snapshot” of a simple soliton solution of the unperturbed used to study these effects include the judicious use of con-
problem, then there are many approaches available to studerved quantitief2], variational method$§16,17, “equiva-
the perturbed evolution. Because the unperturbed soliton ient particle” approachefl8,19, and of course, numerics.
stationary in some Galilean frame, the main effect of In this paper, we use soliton perturbation theory to study
p[¥,¢¥*] will be an adiabatic adjustment of the soliton’s perturbations of the nonlinear potential(ih, for initial con-
amplitude and phase parameters. This fact, together with th@itions o(x) that are snapshots of multisoliton bound states
simplicity of the form of the soliton solution, means that of the unperturbed NLSE. With respect to treating the soli-
direct perturbative methods can be used to study their slowons in isolation, this is a worst-case scenario since in the
evolution. In particular, variational methods and multiscaleunperturbed NLSE a tightly bound state of solitons will re-
methods applied directly tq1) often give valid results. main so for all time. Nonetheless, it is a scenario of some
These perturbative methods are dynamical in origin and cagnterest, in particular for the quintic perturbatidg). If o
ture effects on finite but long scales. Other methods can be +1, then it is known that the solution remains bound, and
used to answer infinite time questions concerning the persighis case has been studied using conservation [2@F If
tence of solitary waves. In fact in the presence of quite gene= —1, then the bound state becomes destabilized. Recently
eral perturbations solitary waves continue to exist for arbi-it was shown[21] by simulations of(1) that the instability
trary € [7,8] and these can be expressed in closed form ircauses the bound state to divide into isolated solitons that are
some casef?]. ejected from the origin with nonzero relative velocities. On

The presence of more than one soliton complicates th#éhe time scales over which this splitting occurs, the solitons
analysis. If the solitons are isolated, then the field may belo not appear to exchange energy. In mathematical terms,
approximated as a sum of solitons plus a small error termgach eigenvalue in the bound state ensemble, originally con-
and the adiabatic coupling among the solitons may be calcuined to the imaginary axi&ero velocity, appears to slowly
lated by several methods. Note that if the solitons are movinggrow” a real part while its imaginary part remains fixed.
with respect to each other then they will always be in isola-Once the solitons escape, they no longer interact and the
tion except possibly for a short time. An early analysis ofvelocities no longer change. The wave guidance properties of
this kind was carried out by Gordd®], who studied the Y junctions engineered from such splittings of spatial soli-
exact two-soliton solution of the unperturbed NLSE fortons have also been analyzg?].
equal velocities. When the solitons are well separated, there By considering the relative velocities to be small, we will
is an effective force between thefaven in the unperturbed find an integral formula that expresses the asymptotic veloc-
NLSE) that varies sinusoidally with their phase difference.ity difference between a pair of initially co-propagating soli-
This phase difference grows linearlyfiif the solitons differ ~ tons destabilized by the quintic perturbatid®) with o
in amplitude. The force is therefore zero on averddd and = —1. Along the way, we will write down a coupled system
one expects periodic motion. This is a physical explanatiorof differential equations that describes the interaction of any
of the mathematical fact that the intensjiy|? of the exact number of solitons under more general perturbations over
two-soliton solution for equal velocities is a periodic func- long time scales. These equations are just Newton’s equa-
tion of t. An extension of this argument to perturbed prob-tions for a system of interacting particles in one space di-
lems was given by Ankiewicgl1], who obtained a simple mension; the particle coordinates have the interpretation of
description of soliton interactions with the use of complexthe soliton centers of mass. The force is translationally in-
averaged potentials. Again, the essential assumption is thairiant, conserves the total momentum, and is also propor-
the solitons are well separatedxnso that the field may be tional to o, so the forces giving rise to attraction and repul-
approximated as a sum of solitons. If the solitons are close tsion are related just by a change of sign. For the interaction
each other, nonlinear interference effects cause the field tof two solitons, the problem may be reduced to a single
adopt a form very different from the linear superposition ofdegree of freedom, the relative separation of the solitons.
individual solitons, and therefore a different approach isThe force law scales simply with théixed) amplitudes,
needed. Often, one turns to numerics to study the interactionshich have the interpretation of masses. The result is a one-
of solitons in various medigsee, for example[12-14) parameter family of problems indexed by a normalized ef-
without the restriction of the solitons being isolated. fective mass. If the separation is small in the attractive case
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o=+1, the force is nearly linear and the frequency of mo-
tion becomes a function of the normalized effective mass. IM*T=LM *:=
We calculate this frequency, a quantity that is connected

with the vibrations of solitons that are infinitely close, a limit L . N
Y satisfying the boundary conditionM~=(x,t,\)exp(\osX)

opposite to the well-separated case. ) ; .
our paper begins in Sec. Il with a review of the theory of 71 85X *. SinceL s traceless, these boundary condi-

the scattering transform for the Zakharov-Shabat eigenvalulﬁéOns guarantee that these matnce; are ummodular foc all
problem and of the inverse theory that holds in the reflect °F eachh there can only b.e two linearly mdependent C?OI'
tionless case. We also recall the derivation of the exact equ Imn vector solutions O.M)’ therefore there is a matrix
tions of motion in the transform domain corresponding to the>(t:}), M € i, the scattering matrix such that
perturbed NLSH1). Then, in Sec. lll we consider perturba-
tions of the formp[ ¢, y* 1= €>W(|4|?) ¢ and apply multi-
scale perturbation theory to find asymptotic solutions of the i _
equations of motion in the transform domain. The approxi—Th+e first column ofM~(x,t,A) and the second column of
mations are uniformly valid as| 0 on expanding time inter- M (X,t,A) turn out to be boundary values of analytic func-
vals of lengthe %, and are given in terms of solutions of tons for Im(x)>0, wh|Ie+the second column & ~(x,t,\)
Newton's equations for particles interacting in one dimen-and the first column oM " (x,t,\) are the boundary values
sion under a force law that has several universal features. [Af analytic fEnCt'O”S for Im{)<0. Adjoining the second
Sec. IV we focus on the quintic perturbati¢®) and study ~column ofM " (x,t,\) on the right of the first column of5)
the interaction of two solitons. We reduce the problem to thétnd taking determinants gives
motion of a single particle and then explicitly perform the B N
averaging required to remove secular terms from the Su(t,N)=def(My (x,t,N),M; (X,t,N)), (6)
asymptotic expansion. This leaves the force law in the form
of a 1D integral that we study numerically. We use it to Which is therefore the boundary value of a function analytic
compute the “ejection” velocity observed by Artigat al.  for  Im(\)>0. Likewise  Syy(t,\)=detMy (X,t,\),
[21] in the unstable case and the harmonic frequency oM (x,t,\)) is the boundary value of a function analytic for
tightly bound solitons in the stable case. Finally, we comparém(A)<O0.
the results of perturbation theory with direct simulations of Fix A e R. Then, from (4), M** =¢,M*0,, and thus
(1). The Appendix contains the more cumbersome formulas* = o,Sa,, so thatS,,=Sj; and S,;= —S},. In particular,
that nonetheless are among our main analytical results.  this means that as an analytic function for Nj(
Regarding notation, we will use stars for complex conju-<0, S,,(t,\)=S;4(t,\*)*. Also, for A eR the fact that
gation, and matrices will be written with bold letters, exceptdet(S)=1 implies the normalization condition| Sy 4|2

4

=i\ zﬂ} .
(M,
—¢* 0N

M~ (X, t,N) =M T (X, t,N)S(t,\). (5)

for the Pauli matrices +]S,%=1.
The analytic functiorS;(t,A) with Im(\)>0 may have
. zeros\q(t), ... \n(t). The determinant formul#6) then
e 01 ooim 0 —i Caim 10 &) shows that there exist complex numbergt), ... ,yn(t)
Y1 oo Plioo) T*lo -—1f such that

My (X E N (D)= 7(DOMT (XN (1), k=1,... N.
Il. EXACT INVERSE SCATTERING THEORY (7)
FOR THE PERTURBED NLSE
. ) . The conjugation symmetry d¥1=(x,t,\) for A e R, when
Here, we review the known inverse scattering theory forgyiended to the complex plane, implies that at the
the Zakharov-Shgbat eigenvqlue problem to fix our mtationcomplex conjugate  points A\ (t)* where S,(t,\)
In gener_al, we Wlfh to con$|de([t),_ where pl ¥, 4,//’_*] is a vanishesM  (x,t, A ()*) = — y(D)* M3 (x,t, (1)), for k
polynomial in ¢, ¢, and theirx derivatives. The fieldy is =1,... N. Since S;y(t,\)—1 asA—c with Im(\)>0,
taken to be in the Schwartz space as a functio. of Hilbert transform theory can be used in conjunction with the
normalization condition to expre&4(t,A) for Im(A)>0 in
A. Scattering data 'E%Ts of its zeros and the values®f(t,\) on the real axis
We will work with the scattering transform af, a map
that associates to the complex fiefcat each fixed time a set Ny (t)
of “scattering data” from whichys can be reconstructed by Sll(tv)\):( H —")
inverting the map. As is well known, the advantage of this is K=1 N =N (D)
that the time evolution of the scattering data corresponding 1 (= In(1—|SAt,0)]?)
to the time evolution ofy is trivial when p=0. Conse- Xex;{—.f Cail du|. (8
quently, when|p|<1, this proves to be a useful setting for 2mi ) o M=\
perturbation theory.
Fix t, and assume the complex functiof(x,t) to be The so-called “trace formulas” that equate certain func-
given. For € R denote byM *(x,t,\) the 2x2 matrix so- tionals of the potentia§s to functionals of the scattering data
lutions of the linear differential equation will be useful below. In particular, we will use the formula:
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tering data, namely, the reflection coeffici€h(t,\) for A
e R, the eigenvalue$\(t)} with Im(\,)>0, and the pro-
. portionality constant$y,(t)}. The reconstruction is particu-
_ J' 2 In(1— St ) |2)du larly simple if S;5(t,\)=0 as a function ofA for somet,

PLpp 1= | im(pa,pax

2 since it then follows from(8) that
N
= 2, ImD(0)7]. (9) .
- A= Ng(t)
. . . . sutM =11 ———, (10
This functional (not to be confused with the perturbation k=1 N — N\ (1)*

pl#,¢*]) has the interpretation of the total momentum of

the wave functiony(x,t). For the unperturbed problem, as

well as in the presence of many physically important perturwhich extends to Im)<0 as a meromorphic function.

bations, the total momentum is a constant of motion. Similarly one sees thatS,(t,\)=1/S;y(t,\) and that

So4(t,A)=0. SinceS(t,\) is diagonal in this case, the solu-

B. Reconstruction of the potential in the reflectionless case tion matricesM~(x,t,\) can be expressed in terms of a
The miracle of inverse scattering theory is that for eachcommon solution matrixU(x,t,\) by setting M= (x,t,\)

fixed t, the potentialy(x,t) can be recovered from its scat- :=U(X,t,\)N=(t,\), where[24]

N N
N*(t,x>==o&1*”’2diag(ﬂ V=1 5T a7t o 02, (19
k=1 k=1
|
The columns ofU(x,t,\)=(Uq(x,t,\),Us(X,t,\)) neces- C. Dynamics of the scattering data

sarily satisfy the relations We now recall how the data evolve frwhen ¢ satisfies

(1). The motivating observatiof8] is that(1) can be cast in
U (Xt N (1) = 7(D) U1 (X, 1N (1)), matrix form:

= YD U (X, 1N (1) *) ig,L—a,B+[L,B]+P=0, (15)

=U1 (6t (D)%), (12 . - .
where the matri}t is the one appearing in the linear scatter-

) ing problem(4), and where
forall k=1, ... N. It follows thatU(x,t,\) takes the simple

form ; . .)\ ) 07
N-1 2|‘!’| INth= 5 dxih
UG EN) = AN+ S APUP(x,1) | exp(—iNosx), B= ) 1 ’
p=0 I T T
(13) NG = S0 =N+ Sy
that is, a polynomial i\ times an exponential, where the 0 o[ v v ]
matrix coefficientsUP)(x,t) are determined uniquely from p— 16
(12). This means thatl2) can be viewed as a linear algebraic o[ * 0

system of N equations in N unknowns, the matrix ele-
ments ofU(P(x,t). Moreover, it can be shown that con-
structed in this way is satisfiegU=LU if and only if the
potential function inL is

Using the fact thatM* satisfies(4), multiply (15) on the
right by M= and find

— _ 4 t_.
w(x,t)ZZiU(l’El’l)(x,t). (14 (dy—L)(id;—B)M PM==0 a7
This equation is solved fori §;—B)M ™ by variation of pa-
This formula reconstructg(x,t) from the discrete scattering rameters. Introducing a new unknowh (x,t,\) defined
data{\(t)} and{y.(t)} in the “reflectionless” case when through the relationig,—B)M =M =J, one finds thag™~
Si»(t,\)=0. This treatment of multisoliton potentials via the satisfiesd,J*=—M*"1PM*. We now integrate to find™*
matrix U follows Krichever[25], Manin[26], and Datg 27]. explicitly, taking into account the boundary conditions satis-
See[28] for a relevant application. fied by M* as x— *+o and the fact that in both limit8
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—\205. With the use of these explicit formulas faF the —\2 X
equations {d;— B)M==M=J* become equations of motion =l | LWM PM, dx’,
for the matricesv =:
ig—B)M*=M=*| —\2 +f7mMi‘1PMJ—'d . 0 =
(l t ) ( g3 « X) JZZ )\2 +f MflpM;dX! (19)
(18) )

As written, (18) does not make sense for IN)# 0. But
for X e R, the columnsVi; andM are the boundary values
of functions analytic for Im{)>0, and we will also need
equations for them that hold for Im§>0. To this end, we
introduce the matrixM (x,t,\):=(M; ,M), and as before
define the new unknowd(x,t,A)=(J;,J5) through the re- o N
lation (i9,—B)M =MJ, and then integrate: Mjc for Mj(x",t,\)]

As before, these expressions are used i< B)M=MJ to
yield the equation of motion foM, valid for Im(\)>0 ex-
ceptat{\,}, whereM fails to be invertible. Each singularity
is, however, removable, since dét=S,;; and hencgwriting

, ., 1 MMz =M pMp MM =M Mo,
M(X,t, N )M(X',t,\) - B o L (20)
11l MMz =M Ma; My M= My, My
|
We make the natural assumption that {felated zerosa i 9S(t,\) + N [S(t,\), 03]
=\(t) of the denominatoiS;4(t,\) are simple[23]. But
then the numerator of each entry is analytid.atA(t) and I f“ M*(x',t,0) " IPM ™ (X", t,\)dx' =0. (24)
is easily seen to vanish there, thus cancelling the singularity. —w Y Y '

Hence, the evolution equation fdvl makes sense ak . . . _
—\(t). We accordingly introduce the notation Note that sinceP is off diagonal, the equation fdB;(t,\)
only involves quantities analytic for Im(>0. Likewise, the

equation for t,\) only involves quantities analytic for
HUx D= lim MOGOMOC a0 S @) 2 SzALA) only k Y

A= The equation of motion for the reflection coefficient

The equations of motion foM™ and M determine the Si(t,\) is contained in that fob:
evolution of the scattering data. Usirg§i=M* M ~, for

real\ one finds i 3:S1a(t,\) — 2X2Syo(t,\)
iﬂtS:—M+_li(9tM+~M+_1M_+M+_1i(9tM_ +J‘oc [M+(X/ t )\)—1PM—(X/ t )\)]1de,:0.
=M LigM*-S+M*LigM . (22) -

(25
Substituting from(18) yields
The integrand here is p[#,d* MM oo— p[ i, * 1*
° XM{,M1,, evaluated ak’, t, and\, which generally only
iatS=>\2038—J M*IPM*dx’ - S—\2Soy makes sense fox € R, as required. Now, the expression de-
X fining the zeros\(t) of S;1(t,\) is S;1(t, N\ (t))=0. Differ-
X entiating with respect to gives
—SJ M~ PM dx’. (23

. Cdhy
Finally, sinceS does not depend ogr, it may be brought 'atsll(t’)‘k(t))ﬂW(t)axsll(t')‘k(t))zo' (26)

inside the integrals. With the use of its definition the inte-
grals are combined, giving the equation of motion: Using the equation of motion fd8, one therefore finds

H K — ” + (! - — (v’ ’
IW(t)_%\Sll(t,)\k(t)) _x[M (X lt!)\k(t)) 1PM (X !tl)\k(t))]lldx ' (27)
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The integrand here is p[#,¢* IM,M o — pl o, % 1* We develop the expansion using the multiscale formal-
XM,M7;, evaluated ak’, t, and A =\(t). As remarked ism. Introducing the slow time variable= et, and assuming
above, this makes sense with [b(t)]>0. It remains to all quantities to depend functionally on bothand T, we
find an equation fof ,(t)}. Differentiating the defining re- replace the time derivatives i@5), (27), and(28) according
lation M3 (X,t,\(t))= y()M 1 (X,t,\ (1)) with respect ta 0 the chain ruled;— d;+ ed;. Observe that for the initial

and using the evolution equation fit taken in the limitx ~ conditions(30), there is no enforced magnitude for Re)
— (1), yields the equation of motion or Sx(\). We may thus select the scaling of these quantities

to achieve a dominant balance. We choose to s8gle\) as

Cdyy 5 B €’ and Rej,) as e. Thus, setting\,=ea,+ib, and vy,
g D= 20 %) My (X, tA) =exp(A+i&), we assume the expansions:
= ea+ib,=e(a?+ealV+ - ) +i(bO+ebH+ - - ),
=yk(t)j Hi (X, x",t)PM; (X', t,N)dx’
- Si= (S P+ eSH+ - ), (32
dx
+i[(hM§(x,t,>\)—w(t)ﬁxMI(x,t.k)]d—tk(t), Ati&=(AP+eAM+ - ) +i(ED+ e+ - -).
(29 Substituting into the equations of motion and collecting

powers ofe, we examine the resulting equations order by
with N =\ (t). Equations(25), (27), and (28) describe the order. First, from the leading-order terms(2v) we find for
evolution of the scattering data, but are coupled to the equa=1, ... N that
tions forM andM*. This coupling disappears fét=0:

. a@=al®(1), b®@=b{"(T), (33
. Oy
10;S1o(t,N) = 2\?S;5(t,\) =0, 4 (V=0 so that these quantities do not depend on the fast time
Similarly, looking at(28) we see that
d (0)_ A (0) 0= £0) )= 2p@(T)2
()= 20 (02D =0, (29) AP=ACM), E7=867(0) =26 (34
The description we desire will follow upon determining the
fork=1,... N, as was first observed by Zakharov and Sha-dependence of these leading-order quantities. g€ con-

bat[1]. From this simple system, it is possible to introducetribution in the equation fob, , the imaginary part of27), is
the coupling perturbatively, leading to closed systems order
by order. dibH+ arbi?)=0. (35

If this equation forb{") is to be solvable in the class of
bounded functions df thenb{®) must be independent dfas

well ast. With the T dependence di{*) dropped(35) can be
We now suppose thai[ i, ¢* 1= €W(|#2) i for some  Solved by taking{=0. This yields the simplest part of the
real-valued functio, takinge>0 to be a small parameter, clalme_dl result, that 1) S described uniformly fort
and seek a perturbative solution of the equations of motior= (¢ ) by blé(t):mk+9(f ), where them, are con-
for the scattering data. We want a description of the solutiorftants. Sinceb(®’=m,, this also determines the leading-
up to anO( ) error, containing important physical informa- order behavior of¢(” from (34). Setting 62:=£(0), we
tion, and valid uniformly over time scales of lengfi{e " !).  defined,(t) as follows:
The initial data we consider is (0)_ 70 2

Ill. PERTURBATION THEORY WITH NEARLY BOUND
SOLITONS

_ _ _ _ 0, : .0
S 0M) =0, M(0)=imy, 7(0)=exnt 2mkxk+'6g‘0) At O(e), Eq. (28) gives

-, . L (1) (0) = £5(0)RH(0) — (0)
Proposition 1 The solution of the initial-value problem of G+ oTA =4 by = Amyag (37)
(25), (27), and (28) with initial conditions (30), is given as-

ymptotically for smalle by S(t,\)=0(e?) and Again, avoid secular growth ok~ by setting

. IrA(T)=4ma(T), (39)
M) =— =v(et) +im +O(€?),
(D=~ gudet) +imct O and then take\(Y'=0. If we now define
vty =exd — 2mx,(e) +i6,()+0(ed)], (3D AQ(T)

X(T) = — , o(M)=—2aQ(T), (39

. . 2m
where %(T), v(T), and 6,(t) are certain functions to be K

specified below. They satisfy,(8)=x;, vk(0)=0 and  then(38) takes the simple form
0,,(0)= 08. This approximation is uniformly valid for times
t=0(e™b). X (T)=vi(T). (40
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An equation forv,(T) is found atO(e€?) in the real part
of (27). We find

where Gy(t,T) is the leading term, divided by?, of the
right-hand side of(27). In more detail, from(8) and the
leading-order behavior din,}, we first see that

)\—imj
3x511(t,)\k(t))|e:0:‘9>\H Y
j=1 x=im,
1 m—m;

- 2|mk i#k my+ mJ ' (42)

To find the leading-order behavior &fl -, recall thatS,,

=0(€?) so that we can use the “reflectionless” construction

of M™ and # in terms of U, which in turn is constructed

from  {Ne=im}  and  {ye~exd —2mx(T)+i(E2(0)
+2myt)]}. This gives

-1
Gk(t,T):i(—l)“{zmk_l'[k (mﬁ—mjz)}
IE:

xﬁo W( g(x,1)|Df(x,t,im)dx, (43

with
f(X,t,)\) = (//(X,t)UZZ(X,t,)\)U21(X,t,)\)

— (X D)* U (X)) U (X EN). (44)
Now, it is clear from(12) that all of thex andt dependence
in U and ¢ enters through the productg.exp(—2i\X)
~expJlexdib(t)], where ¢ :=2m[x—x,(T)]. Therefore,
G(t,T) is a multiperiodic function ot for fixed T. The N
—1 frequencies are independentTfsince all of theT de-
pendence enters through the functioRgT). Secular growth
of aff)(t) is avoided by choosing,(T) to cancel the mean
value of this oscillatory function:

M(T)=F(Xa(T), . .. Xn(T)):=—2mIM[ Gy (t, T) ]),
(49)

where angled brackets denote averaging dweith T fixed.
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N N
kzl Fk(xl(T): PR ,XN(T)):IZ]- kaK(T):O (47)

The dynamical systert¥6) describes the evolution of the
scattering data. Since the reflection coefficient vanishes to
second order on the time scales of interest, solutiongd®f
can be used to build, at each fixedhe N-soliton potential
as in Sec. Il B. This allows a direct comparison between
numerics for(1) and the predictions of46).

IV. TWO PARTICLES

Consider the casi=2. The aforementioned symmetries
imply that the system takes the form

1
myx3(T)=F1(X4(T),xx(T))=— EF[Xz(T) =X (T)],

1
maX5(T) =F2(x1(T),Xa(T)) = 5 Fxa(T) = x2(T)],
(48)

for some functionF. The relevant quantity is then the rela-
tive distancey(T):=X,(T)—x4(T), which has the simple-
looking equation of motion

my”=F(y), (49)
where the effective massis defined by m:=2(m,*
+m hHL

A. Writing down the force function

We begin our study of the force functions by simplifying
the integrand in43) to isolate terms that are exactderiva-
tives and do not contribute. In this context, consider the
squared eigenfunction systamplied by (4). Let M be any
solution of9,M =LM, and define the quadratic forms

d=M1M 15, x:=M My, 7:=M11Mo+M Mo,

(50

Then, these quantities again satisfy a linear system of equa-
tions

dxbp=—2IN+ Y7, dxx=2INx—¢* 7,

dxn=—2¢* p+2¢x. (51)

The force functiond=, depend parametrically on the massesUsing the quadratic forms associated withf as defined by

my . Equationg40) and(45) imply Newton’s equations for a
system of interacting particles of masg and coordinate, :
MX(T) =F(X1(T), . .. Xn(T)). (46)
It is easy to see that, (x;+dx,x,+dx, ... Xy+dX)
=F(X1, X2, -
relative coordinates. There is also a symmetry(f#) com-

(44) is seen to be an exagtderivative:

1 1
f= Ef?xﬂ: Eﬁx(UMUzz“‘ U1Uz) =3dx(U1 Uz, (52)

where the last equality follows from the fact that the deter-

. 1XN) so that the forces 0n|y depend on the minant of any solution Ot4) is independent Ok becausd.

is traceless. FON=2, we use the relation§l2) and the

ing from the conservation of momentum that holds exactlyparametershy=imy, A,=imy, y;=exg —2mxy(T)+i(6?

(and thus to all orders of expansjom (1) with p[ «, ™ ]

= e?W(||?) ¢. This symmetry follows from the trace for-

—2n2t)], and y,= ex] —2myx(T) +i(8—2m2t)] to find U,
=eM\yl(2i)+¢] and Uy=e ™[\yg*/(2i)—¢*],

mula(9) and shows that the total force on the system is zerowhere
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2(m3—m?) ' for all nonzeroé e R. Settingy = ¢q andS= ¢ 3T, the equa-
Y= 502 2o 0o 00 [m; cosh £,)e' 1) tion of motion takes the form
—mj cosh{¢)el 207, (ém)q"(S)=F(q(S);émy, £my). (59
mlmz(mg_mi) ' _ For arbitrary massesn; and m,, we may then set¢
= DLy .6 0,0 )[Sinf@z)e'gl(t)—Sin“él)emz(t)], =(m;m,) 2. Becausam is homogeneous of degree one in
15272 L (53 M andm,, it is convenient to use the normalized masses
where is the well-known two-soliton “breather” solution, Mi=émy, My=ém,, M=é&m, &=(mm,) 12
and using (60)
D(¢1,¢,,0)=(my+my)2 cosh£;)cosh ¢,) Here,M; and M, satisfy M;M,=1 and may therefore be

) ) expressed in terms of theormalized effective mass My
—2mym; COSH{y + £p) —2mym; COS6). solving 2(M, *+M;)"*=M subject to this constraint to
(54)  find

SinceW(|#]) € R, only Ré f(x,t,imy)] is needed to find  p,—[1—(1—-M2)¥2M 1, M,=[1+(1—M2)¥20 1,
IM[Gy(t,T)]. From (52) one finds f=—a,(\%|%/4 (61)
+NIm(pe*)+|e|?), and therefore  Ré(x,t,imy))
=m2a,|y|?14— o, ¢|?. Using this in the formula43) for  assuming without loss of generality tHét,>M . From now
IM(G(t,T)), one finds that the first term is an exact deriva-on, we will work exclusively with the normalized masses, in
tive of a rapidly decreasing function and hence integratesvhich case the force depends only $mndM.
away. In terms of the two quantitieg|? and|¢|? obtained

directly from (53) we finally obtain C. Averaging

1 " We now compute the& averages explicitly by residues.
Im[Gl(t,T)]=mj W(| 4/]?) 0y 0| 2dx There are five terms:
1=y ) /=
1 (27 cod 6 g 27f2w cod 0

A = —_— 0:— - ,
=—%Im(62(t,T)). (59) P 2m)0 D(¢4,65.0) 27 Jo (a—cos)’

(62
In particular, it follows that —2m;Im(G(t,T))
—2m, Im(G,(t,T))=0 so that the total instantaneo(that
is, before averaging ove) force vanishes.

Specializing further to the quintic perturbati¢®) by tak-
ing W(p) :=op? and writing

for p=0,1, ... .4, where a:=(2—M?)cosh{;)cosh{,)M 2
—sinh(¢y)sinh()=1. Changing variables tov=exp(6), the
contour of integration becomes the counterclockwise-
oriented unit circle in thew plane. The only singularity
within the contour is a seventh-order pole at the paoigt
=a—(a’—1)Y?, where from here on the positive root is

1 (27 (=
Foimum =5 [ [ ey, omy mo)az o, taken. Therefore,
0 —
(56) 1 wo(w+w 1P
A,=—— Res - - (63
we have found the following explicit formula fdr. 2P w=wy (W—wp) (W—wg )
1280m§m§(m§—m§)5 In particular one finds exact expressions fq{i 65536@°
h(yvzaa;mlamZ): 7 [hl+ : '+hl3:|1 _1)13/2Ap:
D(g]_ng!a)
(57) Ao=8(2a)%+2402a)*+720/2a)%+ 160,
where the individual term#, are given in the Appendix. - 5 5
They depend on a dummy integration variabléhat differs A;=56(2a)+5602a)°+5602a),
from x by a simple translation. Note that, by the periodicity ~
with respect to the “fast” functiord= 6,(t) — 6,(t), averag- A,=4(2a)%+2322a)*+8082a)?+ 192,
ing overt is equivalent to averaging ovex.
A;=42(2a)°+5882a)%+ 672 2a), (64)

B. Scale invariance

From (56) and the explicit formulas for the ternig in the A4=3(2a)°+2022a)*+ 928 2a)*+ 256.

Appendix, note the important symmetry: ) o )
These results yield an explicit formula for the two-particle

F(&y;my,my) =& °F(y;émy,émy), (58  force function as an integral
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Attractive Case
B L e e o e e e LA B e e e e e

Force F(q)
o

Displacement q

FIG. 1. The force IaV\F(q,I\7I) in the attractive caser=+1,

for M=0.3,0.4,0.5,0.6. In the repulsive case — 1, the force sim-
ply has the opposite sign.

(65

F@in- | Rz

where we are assuming thd;M,=1 and M,>1>M;
>0, and where

6

20(1—M?2)572
H=———— 2 [gni(M1.Mp)tanhs,

110
+9nm(M2,My)tanhfz1Hp,,

Hmn

sech(6~M 7, sec®~" ¢,

13/2*

2— W2 :
( —tanh{; tanhgz) —sech ¢, seck gzl

|'\7|2

(66)
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Attractive Case
g+ - - 1 - - - 1 T 1 T r 1

60—

40—

Spring Constant

20—

0.0 0.2 0.4 0.6 08 1.0
Normalized Effective Mass
FIG. 3. The spring constant for small bound motions as a func-
tion M.

Here,{1=2M(z+g/2) and{,=2M,(z—q/2). Many of the
coefficientsg,(«,B) vanish identically. In particularggg

=0 as is needed for the integral to converge. The nonvan-
ishing coefficienty,,(«,B) are given in the Appendix.

D. General features of the force function

Unfortunately, (65) cannot be evaluated in closed form
because the integrand generally involves both &)pdnd
exp,). Even ifM,/M, e () so that the integrand becomes a
rational function of, say, exg(), the denominator is irreduc-
ible already for the simplest resonandé,=2M ;.

In spite of these difficulties, certain elementary features of
the force law can be extracted.

(i) F(q;M) is proportional to the constant=*1, as is
clear from(65).

(i) F(q;M) is an odd function ofy, since the integrand
satisfiesH(—q,z)= —H(q,—2) and moreover this symme-
try holds term by term in the formula fa.

(i) F(q;M) decays to zero for largg This follows from
the fact that the denominator of each tesy,, in the integral
is bounded and the corresponding numerator vanishes for
large g wheneverg,,,#0. The result then follows from a
dominated-convergence argument.

(iv) F(q;M) only vanishes exactly foq=0. Thus it is
strictly of one sign forg>0.

(v) The normalized effective mas$s enters the dynamics
both as a mass parameter multiplying the acceleraii@®)

and as a parameter (q; M) itself.

The forceF(q;M), as computed from the integral for-
mula (65), is plotted in Fig. 1 for several different values of

FIG. 2. A two-soliton bound state affected by an attractive per-the normalized effective madd.

turbation. Hereg=0.0387,m;=0.6, andm,=1. Left: an approxi-

mation to| |2 found by solving Newton’s equations and then con-

E. Attractive case. Spring constant

structing the field using reflectionless inverse theory. Right: the ~ )
corresponding numerics fdt). The bound state has too much en-  For o=+1, the forceF(q;M) and the displacemery

ergy for the harmonic approximation to hold, and the period ofhave opposite signs, so the force is always attractive. This
motion, about 120 time units, is longer than the harmonic period. means that the slow dynamics of the two-soliton bound state
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Attractive Case
10 T T T T T T T T T T T T T T T T

X X

FIG. 5. A two-soliton bound state affected by a repulsive per-
turbation. Heree=0.07746,m;=0.4, andm,=1. As in Fig. 2, the
result of perturbation theory is on the left and the numerics are on
the right. The solitons escape with a relative “ejection” velocity
given by (68).

Frequency
T T T T [ T T T T T T T T

o .. 1
0.0 0.2 0.4 0.6 08

Normalized Effective Mass

o

FIG. 4. The frequencys of harmonic motion as a functiol .

are periodic in time and the state remains botifa. illus- £|\7|q'(oo)2: fxlz(q;f\h)dq, (67)
trate, Fig. 2 compares the results of perturbation theory with 2 do

a simulation of (1). For small displacements, we have

F(q;M)=—k(M)q+0(g?). The (mass-dependenspring  to find a formula for the asymptotic velocity difference
constant k(M) determines the frequency w(M)

:=(k(M)/M)¥2 of small oscillatory motions. This is the fre- ( > fu fu 112
guency on the time scal§, the frequency on the original q' ()= :f J H(q,z)dz dq)
time scale t is related by Q(my,m;,e€) M JgoJ —=

= e(mym,)%2w[m/(m;m,)*?]. A formula for the spring

constantk(M) can be found by simply differentiating with Figure 6 shows the asymptotic velocity differerggé) for
respect tag in (65) and settingg=0; however, it seems less go=0 found from(68) as a function of the normalized ef-
useful to present than a plot, shown in Fig. 3, of themeri-  fective massM. To apply the graph in Fig. 6 to problems
cally) evaluated formula. In Fig. 4 we plot the correspondingwith unnormalized masses, it is useful to unravel the changes

frequency(on the time scaleS), the latter being a directly of yariables made so far. Givem, andm,, the scaling pa-
observable quantity. It is noteworthy here that the dynamics . 1 . o~
of solitons can be described by a linear theory even thougﬁ""mEter_lIS g—_(lm}gnz) and the eff_ectwe mass 18
their amplitudes are not at all small. The parameter lineariz= 2 (M1~ +Mz ") "= Then, the normalized effective mass
ing the theory is the distance between the solitons, rathewsed in Fig. 6 idM = ¢m. Next, from the graph one finds the
than the soliton amplitude. We also remark that the limit inasymptotic velocityq’ («). The true velocity in the original
which this linear behavior holds is that of infinitessimally coordinates is thedy/dt= £~ 2q’(«). For example, the pa-

separated solitons, a limit in which methods assuming theameters used in Fig. 5 imply a normalized effective mass of
solitons to be well separated are invalid. M~0.9. From Fig. 6 one findg’()~5.0, and thusly/dt
~0.15. This value agrees well with the pictures in Fig. 5.

(68)

F. Repulsive case. Asymptotic velocity

For o=—1, the force and displacemegthave the same . Repusive Case
sign, resulting ing always becoming large. Solitons that are
near each other at=0 are ejected from the origin as ob-
served by Artigaset al. [21]. This effect is captured accu-
rately by our theory, as shown in Fig. 5. The work done by
the force in moving the particle from=q, to g=0o° deter-
mines the asymptotic velocity of an initially stationary par-
ticle upon ejection. Takingy=0 corresponds to the ultimate
velocity of a stationary particle that is slightly perturbed
from (unstablé equilibrium at the origin. With zero initial 10
velocity, one equates the asymptotic kinetic energy with the
work done:

N
Q

Ejection Velocity
o
LI B e e B L B B B B L

o
o

0.2 0.4 0.6 08 1.0

1 . . . . 71
This is a long-time statement, holding for O(e™ *), but not an Normalized Effective Mass

infinite time statement. The question of whettiare breatherlike
bound states existthat is, permanentyfor nonzeroe is more FIG. 6. The asymptotic velocity differenag («) of two soli-
subtle. tons falling from unstable equilibrium.
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In the attractive case, the integrd?) also has physical  Given the formula for the forc&(q;M), it is possible to
meaning as the binding energy of the two-soliton state. Asompute the harmonic frequency and ejection velocity, more
relative velocity in excess af’ (=), the escape velocity, will - explicitly than we have done here. For example, the formulas

“ionize” the state. would be expected to simplify in the limits1\,0 (corre-
sponding to two solitons differing very much in amplitode

and M 1 (corresponding to two solitons with nearly the
same amplitude The calculation of the ejection velocity is

Multiscale asymptotics shows that under certain condichallenging because it may require uniform approximation of
tions the behavior of a multisoliton initial condition in a F(q;M) for all g in the limit of interest; pointwise asymp-
perturbed NLSE reduces to Newton’s equations for a systertotics for fixedq are not enough to approximate the work
of interacting particles, one particle per soliton. The theoryintegral without further information.
applies over time scales of leng®(e 1) for perturbations
of size€?, when the initial velocities of the solitons mutually ACKNOWLEDGMENTS
differ by anO(€) amount. Our calculations make very con-
crete the often-cited analogy between solitons and particles. P-D.M. acknowledges the support of NSF Grant No. DMS
We want to emphasize that the limit considered here is on8304580 while a member of the School of Mathematics at
in which the relative velocities of the solitons are small butthe Institute for Advanced Study. During the preparation of
the solitons may be strongly nonlinearly superimposed, prethis paper, J.A.B. and N.N.A. were affiliated with the Aus-
cisely the limit in which methods exploiting large distancestralian Photonics Cooperative Research Centre.
between solitons fail.

For a quintic perturbation of the NLSE and an initial con-  APPENDIX: FORMULAS FOR THE TWO-PARTICLE
dition composed of two solitons, the resulting dynamical sys- FORCE FUNCTION INTEGRAND
tem can be analyzed. When the perturbation is attractive i
(0=+1), the system describes a nonlinear oscillator with Here, we record the details of the formulas for the two-
all solutionsq(S) being periodic. If the energy associated particle force fun(itlon needed to calculate or approximate for
with q(S) is small[that is, ifq(0) andq’(0) are both sma)] ~ special values oM the force and related quantities to any
then the periodic motion is nearly harmonic, and formulasdesired accuracy.
for the associated spring constant and frequency of motion Before averagingThe 13 terms appearing in the sum in
can be found; in this limit the model for the soliton interac- (57) are given here in terms af:=cos#, S;:=sinh() and
tion linearizes even though the soliton amplitudes are not a€:=cosh{y), {;1:=2my(z+y/2) and{,:=2m,(z—y/2).
all small. The latter are determined by the massg®ndm,
and are not related to the coordinat€S). For larger ener- hy=2m{m,S,C,C3+2m;m§S,CIC,,
gies, the spring “softens” and the frequency decreases with
increasing energy. The pictures in Fig. 2 show oscillations in ~ h,=—[m3(m3+m?)S,C+m3(m3+m3)S,C1],
the nonlinear regime, where the frequency of motion is
smaller than the linear frequency. Of course even in the non- .= 2m3(m2+mc?)S,C3+ 2m3(m2c2+ m2)S,C3,
linear regime, the dynamics still obey the simple model
Mq”=F(q;M). Although the periodic motion is predicted  h,= —[2mS(m3+m?)cS,C3+2m3(m3+m?)cS,CY],
and observed over long time scales of st 1), it is not
likely to persist for aI.I time, due to the influence of higher- h5=mi(mf—ng)cSZCECgﬂLmg(mg—gmf)cslcfcz,
order resonant coupling effects.

On the other hand, when the quintic perturbation is repul- 4 2 2 6
sive (c=—1), the nodal point at the origin in the phase he=mim,(5mj+3m1)c$,C,C;
plane gets replaced with an unstable saddle point. All orbits +m;m3(3m3+5m32)cS,C8C,,
apart from the fixed point itself represent the nonlinear de-
velopment of the instability. Because the force vanishes fast
enough for largey, the velocityq' (S) ultimately saturates as

V. DISCUSSION

h,= —{2m}m,[ (5m?+ m3)c+4m3c®]S,C,C5

the two-soliton state becomes “ionized.” From the force +2m;mj[ (m3+5m3)c+4m2c®]S,CiC,},
function F(q;M) this “ejection” velocity may be calcu-

lated, giving excellent agreement with direct simulations of hg=2mim,[ m3+ (5m>+4m3)c?]S,C,C5
the perturbed NLSE. This analysis explains the observations

reported in[21]. The symmetry breaking that determines +2myma[ mf+ (5m3+4m?)c?]S,C1C,,
which soliton ends up on the right and which on the left can

be traced to the location of the initial phase point in relation he=—[2m5mj(1+4c?)S,C3C3

to the separatrix connected to the saddle. Unlike in the at-

tractive (o=+1) case, the approximation obtained from +2mim3(1+4c?)S,CIC3],
multiscale asymptotics for the repulsiver€ —1) caseis

expected to be uniformly valid for all time, since as the soli- hyo=mim,(3m5—m?)(1+4c?)S,C3C3+mym;

tons separate, further effects due to resonant coupling dimin- A a3
ish. X (3m5—m3)(1+4c¢?)S,CiC3,
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hy;= —[2mim5(m5—m3)(3c+2c?)S,CIC3

+2mim3(mZ—m3)(3c+2c®)S,C3C3],

hyo= —{4m2m3[ (3m2+m3)c+ (2m2+4m3)c®]S,C3C2

+4m3m3[ (3ma+m?)c+ (2ma+4m?)c®]S,C3C3),

hag=4mim3[m3 -+ (3mf + 4m3)c>+ 2mic]S,CIC3
+amimEm-+ (3m3 + 4mf)c?+ 2mie]$,CHC3.

After normalization and averagingHere, we give the
nonzero quantitiegm,=9gmn(a,B) appearing in(66). In

these expression8 and « are linked by the normalization

conditionaB=1.
Jo3=6720°— 6720, Qo= 134403+ 31367,
Jos= — 2304x*—2816n", gps=5120°+512a,
g1,= —6048>—40322"+ 100803,
g13=69664°+ 165762 + 11201+ 22403,
g14= — 1305443 — 52016 " — 29601 — 295203,
015= 75904°+ 48256 + 44801+ 188163,
g16= — 10368°— 10368’ — 1920 - 19203,
1= — 13440¢°+ 33603+ 1008(8°,
U= 1792+ 17920+ 5152Q8 — 2464(5°,

Op3= — 23472@— 48320 " — 54401 — 27264(8
—72008°,

004=479872°+146176r” + 131841+ 3200 1%+ 3527043
+368643°,

Up5= — 277152¢°— 144096 " — 19280 "'~ 5600*°
— 1418093 — 1512085,

926= 31683+ 3168y + 880 '+ 48015+ 88003
+4808°,

U30= — 40328+ 33608°+ 6725°,
03;= 560003 — 909443 — 3248(B°— 76168°,
03=13160Qr°— 672 + 16696(B + 1496(8°+ 1576Q5°,

033= — 24576+~ 15168y + 36482+ 24908
+14534485—19843°,
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O34= — 375744°— 63840’ — 6688+ 11— 480a1°— 5450563
—18614435—98883°,

03s=280368°+ 108768 + 1371 1+ 864015+ 16a*°
+ 2277448+ 546043%+ 259283°,

O36= — 24024x°— 24024 " — 800821 — 72801%— 8at®
—80083—7283°—8.3°,

Ja0= — 67208 — 2240Q3°— 22405°,
041=231680>+ 2161288+ 16240(8°+ 190728°+ 80033,

Qar— — 2699523 — 18720 — 5925763 — 26892885
—299843°— 256(8%3,

043= 384912+ + 82032 " + 297601+ 38704(B+ 435843°
—87843°+ 116833,

gas= —81312°~ 63840 " — 82560 '~ 1922°+ 97158
+1271048°+ 267843°+ 8648*3,

Oas= — 61776x°+ 43681+ 2880 15— 960963 — 3931 28°
—403239 483",

gs0=92168+2176Q8°+ 48648°,

g51= — 20096+° — 129158 — 1552643°— 38278°
—128B%

Osp= 1128483+ 7584 " + 355928 + 307878°+ 71873°
+398433+808Y,

Uss= — 165584 — 22752 " — 528"~ 330528
—200118%—32678°— 13923~ 968",

Os4= 720723+ 15288& " + 648211+ 926643+ 240243°
—65528°%— 151283 24817,

gso= — 15363 —40968°— 15368°,
J61= 1280+ 135683+ 276483° + 135683°+ 128083,

Jeo= — 40960° — 960’ — 278083 — 506883° — 278083°
— 409633~ 968",

O63= 291203+ 112"+ 160163+ 274563°+ 160163°
+29128%3+ 1128
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