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We consider the evolution of an initial disturbance described by the modified Korteweg—de Vries
equation with a positive coefficient of the cubic nonlinear term, so that it can support solitons. Our
primary aim is to determine the circumstances which can lead to the formation of solitons and/or
breathers. We use the associated scattering problem and determine the discrete spectrum, where real
eigenvalues describe solitons and complex eigenvalues describe breathers. For analytical
convenience we consider various piecewise-constant initial conditions. We show how complex
eigenvalues may be generated by bifurcation from either the real axis, or the imaginary axis; in the
former case the bifurcation occurs as the unfolding of a double real eigenvalue. A bifurcation from
the real axis describes the transition of a soliton pair with opposite polarities into a breather, while
the bifurcation from the imaginary axis describes the generation of a breather from the continuous
spectrum. Within the class of initial conditions we consider, a disturbance of one polarity, either
positive or negative, will only generate solitons, and the number of solitons depends on the total
mass. On the other hand, an initial disturbance with both polarities and very small mass will favor
the generation of breathers, and the number of breathers then depends on the total energy. Direct
numerical simulations of the modified Korteweg—de Vries equation confirms the analytical results,
and show in detail the formation of solitons, breathers, and quasistationary coupled soliton pairs.
Being based on spectral theory, our analytical results apply to the entire hierarchy of evolution
equations connected with the same eigenvalue problem20@ American Institute of Physics.
[S1054-150M00)01202-7

The modified Korteweg-de Vries equation describes many branches of physics when there is polarity symmetry.
nonlinear wave propagation in many physical systems For instance, applications in the context of electrodynamics
with polarity symmetry. The fundamental nonradiating are described by Perelmat al. in Ref. 1, in the context of
solutions of this equation with a positive coefficient for wave propagation in size-quantized films by Pelinovsky and
the nonlinear term are solitons and breathers. These cor- Sokolov in Ref. 2, in the context of stratified fluids by sev-
respond, respectively, to discrete eigenvalue pairs and ei- eral authors in Ref. 3 and Ref. 4, and finally in the context of
genvalue quartets for the associated scattering problem. elastic media by Pavlov in Ref. 5. Equatidh), like the
Here we consider a class of piecewise-constant initial con- Korteweg—de Vries equation, is integrable, and can be
ditions, using analytical and numerical solutions of the solved by the inverse scattering meth@ee, for example,
scattering problem and direct numerical simulations of Lamb® Dodd et al.” or Drazin and Johns8n As is well-

the modified Korteweg-de Vries equation. We demon- known, the steady-state, bounded traveling-wave solution of
strate that initial conditions with large mass and energy this equation is &oliton of either polarity

favor the formation of solitons, while those with small )
mass, but finite energy favor the formation of breathers. u=AsechiA(x—AT—xo)], )

Our results admit immediate generalization to many  \here A is the soliton amplitude, and, is an arbitrary
other integrable equations. phase. Theolarity of the soliton refers to the sign &€ It is
important to note that the mass of a soliton is fixed,

I. INTRODUCTION e .
. ) ) ) ) Ms=f u(x)dx= 7 signA, 3
The modified Korteweg—de Vries equation with a posi- —o

tive coefficient for the cubic nonlinear term, and does not depend on the soliton amplitude. Multisoliton

au au  d3u solutions can be found by several methods: the inverse scat-
EJFGUZ&JF %20, (1) tering method, the Hirota bilinear formalism, of &und—
Darboux transformations. Within the “complexification” of
here presented in standard form, is well-known as a canonthe family of two-soliton solutions obtained by any of these
cal model for the description of nonlinear long waves inmethods, one finds the other elementary excitations of the
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S AL e Ay FIG. 1. Possible bifurcations of the
discrete spectrum for the AKNS ei-
% genvalue problent5). Left: the bifur-
- A br A br cations of breather eigenvalue quartets
* W o ¥ and soliton eigenvalue pairs to and
-A L _ A Ao from the continuous spectrum on the
AT = o DA Y T imaginary axis. The continuous spec-
A, -A, oAy trum is the imaginary -axis, indicated
¢ ¢ in bold. Right: the splitting of a
~ A }\T,r breather into two solitons, or the
merging of two solitons to form a
breather.
- )\' or @ -9 }"4;"
modified Korteweg—de Vries equation—tlieeathers An  1l. EIGENVALUES OF THE SCATTERING PROBLEM

isolated breather is a solution @f) of the form ) o o
Equation(1) is integrable, and the initial-value problem

can be solved by the inverse scattering method. Here we use
the Ablowitz-Kaup-Newall-Segu(AKNS) scheme(see, for

cos¢+ (alB)sing-tanhd instance, Drazin and John$on
u=—4a sechd- _ . (4)
1+ (alB)? sir? ¢ secht 6 N
o~ UX) @2t hes,
5 )
where 6= —28x—8B(B%—3a?)t+ 6y, p=2ax+8a(332 T2 U(X) @1 Ny,

—a®)t+ ¢, and wherer, B, 6y, and ¢, are arbitrary real 28

parameters. Breathers are sometimes called “oscillatoryhere u(x) is an initial disturbance for the modified
pulse solitons” because although they are isolated disturkorteweg—de Vries equatiofl), and \ is the (generally
bances propagating without any loss, they have internal ogomplex-valuell eigenvalue. Here we assume thex) is
cillatory degrees of freedom, and are not traveling waves ofocalized, that is, it decays rapidly &g —c; in fact, in our
permanent fornper se Due to these internal degrees of free- analytical worku(x) will vanish identically outside a finite
dom, small amplitude breathers are very difficult to distin-domain. The reader should note that in the literature, a “90°-
guish in practice from dispersive radiation components of theotated” version of the spectral parameter more commonly
solution of (1) over fixed time intervals of observation. All appears, in which cag®) is written in terms off=i\. The
breather solutions have zero mass, so ¥gt=0. fact that the scattering probleg®) is used to solve many
Because the solitons and breathers are the fundamentalher physically important equation@.g., the nonlinear
nondispersive excitations of the modified Korteweg—deSchralinger equation, the sine-Gordon equation, the un-
Vries equation, our aim in this article is to develop an un-damped Maxwell-Bloch equations, gteeans that all re-
derstanding of what classes of initial conditions fdy lead  sults we will obtain here for the modified Korteweg—de
to the formation of solitons and/or breathers. We are awar&'ries equation imply analogous results for these equations as
of only one totally analytical result in this conteliy “to- well.
tally analytical” we mean here that not only can an analyti- The spectrum of5) consists of the continuous spectrum
cal eigenvalue condition be obtained in the form of an im-on the whole imaginary\-axis, and a number of discrete
plicit relation, but also that the relation can be solvedeigenvalues for which there exists a solution (6§ with
explicitly in closed form, namely the study by Satsuma and ¢,(x) and ¢,(x) being functions that decay g|—ce.
Yajima? which showed(essentially that a “soliton-like”  While the discrete spectrum eigenvalues must have nonzero
initial disturbanceli.e., proportional to secl]] for the real parts, they may emerge from certain spectral singulari-
modified Korteweg—de Vries equation generates solitons antles in the continuous spectrum as a parameter is varied. We
an oscillatory tail, but no breathers; for the generation ofwill see examples of this below. Elementary symmetries of
solitons it is further necessary to have an initial disturbance5) that follow from the reality of the potential(x) imply
with mass greater than/2. Here we will study the process that wheneveh is an eigenvalue, then so ax&, —\, and
of soliton and breather generation from various initial distur-—\*. This means that the nonimaginary eigenvaluespf
bances, represented by piecewise-constant functions for aneither come in pairsNs,—Ag) for Ag real, or in quartets
lytical convenience, and by similéslightly smoothegifunc- (A, — A5, — N, Apy) for Ny, genuinely complex. Without
tions in our direct numerical simulations of the initial value loss of generality, in the former case we assume that
problem for(1). >0, while in the latter case we assume thgtis in the first
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guadrant of the complex-plane. Then, the possible bifurca- u(x)
tions that can occur in the discrete spectrum as a parameter .
in the potential is varied are limited to the birth of breather u
eigenvalue quartets and soliton eigenvalue pairs from the
continuous spectrum as illustrated in Fig. 1 on the left, and U
the coalescence of breather eigenvalue quartets on the real
axis giving rise to two distinct soliton eigenvalue pairs, as
illustrated in Fig. 1 on the right. 1 0 L X
Our main concern is with the discrete spectrum, which ! 2

can be found by assumiri@(\)>0 andZ(\)=0 (to single FIG. 2. An initial disturbance of rectangular well form.
out a representative of each eigenvalue pair and quaared

requiring that the functiong(x;\) and ¢,(x;\) vanish at

infinity. We are primarily concerned with the discrete spec-yo,ys from the argument principle for complex functions
trum because each pair and quartet of eigenvalues encoded;j{L+ theindexof the functiona()) for R(\)=0, defined as

the pptentialu(x) yig!ds a “permanent” c.ontributio.n to the  {he number of times the phaseaf\) increases by 2 as\
solution of the modified Korteweg—de Vries equati@nfor —aries continuously from-i to i, is exactly the number

the initial datau(x,0)=u(x). Namely, each real pair of €i- ¢ gigenvalues of5) in the right half-plane. It is sometimes
genvalues correspc_)nds to a solit@ with amplltuo_le 9IVeN  convenient to use parametric plots of the curve
by |A|=2\s>0, while each complex quartet of eigenvalues| o a(\)),7(a()))] to determine the total number of exci-

corresponds to a breathéd) with \p=a+is. While the  ta4ons to expect: we first encountered such plots in the ar-
polarity and position of each soliton, and likewise the values[ide of Lewis? From these plots the number of eigenvalues

of the phase constant and ¢, for each breather, are not ;1o fight half-plane is then given by the integral
determined by the eigenvalue, they are indeed given by cer-

tain auxiliary spectral data connected with the eigenfunctions N= 1 (+i=a’(N)

¢1(X) and ¢,(x) that we do not discuss here. 27 ) s a(N) dX. ®)

There may be other, transient, contributions to the SOIUN houdh bl ical calculation f Lini
tion of (1) with initial datau(x,0)=u(x). These contribu- /though an unstable numerical calculation for general ini-

tions concern the formation of a dispersive oscillatory tail int"ﬁlI O?_;Fa’ Ifor initial data havmg c%mpfctfsupport I (')S (;‘.Ot at
u(x,t) and their presence is indicated in the initial dafx) all difficult to construct numericalla(x) for R(1)>0 di-

by a continuous spectrum reflection coefficient {6f that rectly. Then, a similar index integral can then be used to

does not vanish identically as a function of purely imaginaryqbtam the number of discrete eigenvalues lying on the posi-

\. Because these are transient effects, the detailed study gye real axis, which is the number of solitons which evolve

the scattering problent5) for pure imaginary\ is of less rom the initial disturbance. Ldf be the counterclockwise-
direct importance for the long-time behavior fx,t) than oriented perimeter of a vanishingly thin but infinitely long

the study of the discrete spectrum. There is, however, onkectangle enclosing the positive real axis. Then the total

guantity that is very useful to calculate for imaginarywith number of solitons is

the aim of determining the number of discrete eigenvalues in 1 a’(N)
the right half-plangand hence in the left half-plane by sym- NSZZ_TriJ’rTN) : 9
metry). This is the reciprocal of the transmission coefficient _ o
a(\)=1/T(\) defined for pure imaginarx by considering Obviously the number of breather pairs is then
the two solutions ¢; (X;1), ¢, (x;\))T of (5) defined by the Ng,= X(N—N,). (10)
boundary conditions r s

®©1 (X;\) 0

F(x0) exXpAX)—=| 4|, X—=+e, lll. EIGENVALUES FOR SYMMETRIC AND
#2182 ® ANTISYMMETRIC BOXES
((’Dl:(x;}\))exp(—)\x)ﬂ( L e Here we consider initial disturbances which are
@, (X;\) 0/ ' piecewise-constant, and zero forx —L,; andx>L,. Note

that then for a bound-state eigenfunctigpy(x)=0 for x
<-—L; and ¢;(x)=0 for x>L,. Recently Abdullaev and
a(N) =1 (N) s (XN =@ (X)) (X;\). (7)  Tsoy! considered similar piecewise-constant initial distur-
bances in an analogous study of the initial-value problem for
the Manakov system. Thus consider the rectangular well-like
form illustrated in Fig. 2,

and setting

This function is independent ofand is definedb initio for
purely imaginary\, but in fact can be shown to have an
analytic continuation into the right half-plane, where it satis-

fiesa(A\)—1 asA—oo [in any direction withR(\)>0]. 0 x<-Lq4,

The zeros of its analytic continuation f@(\)>0 corre- U, —L;<x<0,

spond exactly to the discrete eigenvaluegflying in the u(x)= (12)
right half-plane. While this analytic continuation procedure Uz O0<x<L;,

is not always how one seeks the eigenvalues in practice, it 0 Ly<x.
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To illustrate the exact results obtained for this initial condi-It is easily shown that the paramefgican only take imagi-
tion, we also present several direct numerical simulations ofary values to satisfy the conditigd(\) >0 and so there are
the modified Korteweg—de Vries equatigh). These will  only real eigenvalues, i.e., K belongs to the discrete spec-
show clearly the process of soliton and breather formatiorirum of (5) for this potential, therZ(\)=0. It is then a dis-
from rectangular well-like initial disturbancé€$1) as param- crete eigenvalue corresponding to a soliton of the modified
eters are varied. A standard finite-difference scheme i&Korteweg—de Vries equation. Introducipg=iy, the expres-
applied!? The sides of the rectangular wells in the initial sion(15) becomes
conditionu(x) are smoothed in our simulations by replacing
them with hyperbolic tangent functions with a width of 0.03, |U|= L A=—ycotlyL). (16)
while the width of each peak in most experiments is approxi- sin(yL)
mately unity. Equatior{1) is solved in a domain with width  There are an infinite number of branches, where each branch
40 and with zero boundary conditions. On the left boundaryexists in the range
exponential dissipation is introduced to damp any reflection
of the wave tail. The amplitude of the initial disturbance is (o 1)Z<yL<(n+ 1), (17)
allowed to vary. 2

In each region of the-axis where the systert6) has o n=0,1,2,3, .. . Note that the relatiof16) is universal in
constant coefficients, it is easily solved. At the boundarie§ne variables\L and the massM = UL, and that it is suffi-
between regions we require that both functigngx) and  cjent to consider only the cadé>0 as the cas&)<0 is
¢2(x) should be continuous. Itis then readily shown that thegpiained from antisymmetry. For large amplitudes of the ini-

discrete spectrum foRR(A\)>0 satisfies the transcendental 4j5| gisturbance the solution has the asymptotic form
equation

APz A—ps
U, U,

A(U)~U, U-—. (18)

(N +py)ePrtitpzts Each branch\,(U) begins from a critical value of the am-
plitude U=U{") given by

A—pPz Atpg
+ — N—Dp,)e Pit1—P2ls ) w
( U, U, | APy Ui =(2n+1) 5, (19
(AEP2 APy (A—p,)eP2epils near which the branch has the approximate form,
U U !
2 ! A~ULu-ul), u—u(P. (20)
_ ( APz _ AP (N+py)ePiti—Pela=0, (12) Here the superscriptf) is meant to remind us that the total
U, U, mass ofu(x) is positive.
where Thus, this rectangular-well disturbance of a single polar-
ity has a discrete spectrum wheh> /2L, and the number
P12=VA*=U7, (13)  of discrete eigenvalues I8 where
The magnitude of the variabfeassociated to a complexin UL 1
this way is sometimes called tlgiasimomentum N=|—+5] (22)

where the braces denote the integer part. These results are
similar to those obtained by Satsuma and Yafirfar the
soliton-like initial disturbanceu(x)=U sechf), for which

First, to review known results in the context of our the eigenvalues of5) are also purely real and are given
study, we consider a “single-peaked” disturbanctl,( exactly by
=0,U;=U,L;=L) which has of course a single polarity 1
(positive forU>0). This special case of the potential pic- M(U)=U-=n+2. (22
tured in Fig. 2 has been considered in detail by severaBeing real, each eigenvalue corresponds to the generation of
authors'>!* see also Ref. 7 for a review. For this distur- a soliton with an amplitude

A. Symmetric disturbances

bance,(12) reduces to IAL|=2)\,(U) (23)
n n .
tanh(pL)=— E, (14) The soliton amplitude depgnds generally on both the height
A U of the rectangular well disturbance, and its lengttDue

where we have replaceg with p. Together with(13), the to (18) and(23) the amplitude of the generated soliton can-

formula (14) enables us to find branches of the function"Ot exceed twice the height of the initial disturbaries in
\(U) giving discrete eigenvalues ¢5) as functions of the the Korteweg-de Vries equatipnAs remarked earlier, the

initial amplitudeU. This set of equations can be represented®h@sellocation of the soliton cannot be found from the cor-

in the parametric form responding eigenvalue alone; one must analyze the eigen-
functions to obtain this auxiliary spectral information. These
_ p _ results for the rectangular well are qualitatively similar to
U= sinh(pL)’ A=—pcoth(pL). (19 those for the soliton-like disturbance. The qualitative differ-
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FIG. 3. Numerical simulations of the
modified Korteweg—de Vries equation
Py ‘° with positive square well initial data.
Upper left: U=1.57 and t=0.432.
N Upper right: U=2.5 andt=0.7425.
. T Lower leftt U==x and t=0.135.
g Lower right: U=7.5 andt=0.72.

$
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ence between these initial conditions lies in the structure o&n interesting contrast with this fact is illustrated in the lower
the oscillatory tails. For instance, the soliton-like disturbancdeft-hand graph of Fig. 3, where the initial amplitude of the
with massM =UL == will generate just one solitofwith square pulse wald = 7r, which implies that the mass is ex-
no tail), because then its mass and energy are the same as factly 7v. This graph shows the evolution of the disturbance
the soliton. But, the rectangular well disturbance with massinder (1) as a nonlinear superposition of a soliton and a
M= will generate both a soliton and an oscillatory tail, dispersive oscillatory tail. This oscillatory tail compensates
because the energy of the generated soliton is less then tiige deficit in energy between the rectangular initial distur-
initial energy. We also want to point out that for strictly bance and the exact soliton. Finally, the lower right-hand
positive initial disturbances(x), it may be shown that the graph in Fig. 3 shows the evolution of a large disturbance,
eigenvalues always emerge from the continuous spectrum atith U=7.5. In this case two solitons should form having
the originA =0 asU increases; moreover the threshold con-amplitudes 14 and 10, according to the results of the spectral
dition a(0)=0 can be computed exactlySee Ref. 15 and theory.

references therein. Also, in the context of the application of

the eigenvalue problei(®) to the undamped Maxwell-Bloch

equations and the phenomenon of self-induced transparendy, Antisymmetric disturbances

this result is connected with the McCall-Hahn *“area
theorem.’®) This results in the exact statement that tike
eigenvalue appears when the mass integral is equal to

Another special case treated in the literature is that of the
piecewise-constant initial disturbana¢x) shown in Fig. 2
being antisymmetrical and therefore having zero total mass.

T We setU,=—-U;=U, L,=L;=L, so that
M=nm— . (24)
2 + oo
u(x)dx=0. 25
Each eigenvalue branch described above satisfies this exact Jﬂc (x) (25

threshold condition, as expected.

. . . . his special case has been considered in Ref. 16 and also has
Representative snapshots of the numerical simulations . . S .
. o . een studied using ad hocvariational approach in Ref. 17.
the evolution of a positive rectangular well disturbance of

lengthL =1 are shown in Fig. 3. In Eq11) we putU,=0 Equation (12) for this potential reduces to the following

andL,=1. The upper left-hand graph in Fig. 3 shows theparametnc curve fop (p;=pz=p here,
evolution of a weak disturbance with amplitudé=1.57 p?

<U§H=m/2. In the course of the evolution, the amplitude ~ \?+Xp coth(pL)+ m=0, (26)
of the leading wave decreases, and an oscillatory tail is sinfr(pL)

formed. For large times the tail begins to develop a selfwith p being given by

similar oscillatory structure, which for sufficiently small am- _ WU 27

plitudes can be represented in terms of Airy functions. The
upper right-hand graph in Fig. 3 shows the evolution of anlt can be shown that there are no real solutions\faf (26),

initial disturbance with amplitud&) =2.5. This disturbance and so this disturbance with zero mass cannot evolve as a
evolves undefl) into one soliton and an oscillatory tail. The nonlinear superposition of soliton®). The eigenvaluex
soliton amplitude is 2.6 as predicted by the spectral theorytand therefore, the parametp) must be complex. Such
Now, recall that an initial soliton-like disturbance with mass complex solutions bifurcate from the continuous spectrum
M = 7 evolves undef1) as a soliton with no oscillatory tail;  (the imaginaryA-axis) at the values given by
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FIG. 4. Snapshots from three numerical simulations of the modified Korteweg—de Vries equation with “zero-mass” square well initial dats: 1 efitd
t=0.1485. Middle:U=2.5 andt=0.12. RighttU=5 andt=0.126.

i the amplitudeexceedghe critical valug(29). Each complex
ANpL=*——=(2n+1), (28) eigenvalue branch so obtained corresponds to the generation
2\/5 of a breathern4) in the course of the evolution under the
and the bifurcations occur whe is tuned through the val- modified Korteweg—de Vries E@1) from the zero-mass ini-
uesU = UEO) defined by tial conditionu(x). The first breather is generated when the
amplitudeU exceeds the first critical valug{®)= 7/22L
~1.11L, the second atB3{”, and so on. Here we assume
without any loss of generality that>0. If U<U{ then
there are no discrete eigenvalues whatsoever and conse-
quently only a dispersive oscillatory tail is formed during the
i evolution. It is important to note that for large amplitudés
PaL=iyn=—(2n+1). (300 (we can takdU>0 without loss of generalityof the initial
disturbance;R(\) has the asymptotic valug8), andZ(\)
Here, the superscript (0) in Eq29) refers to the potential tends to zero. An “almost” real value for the eigenvalue
u(x) having zero total mass. The solutiof8) of (26) cor-  means that the corresponding breatt#r will resemble a
respond to spectral singularities of the eigenvalue problemyonlinear superposition of a pair of solitof® of the same
(5) whenU=U(”; the so-determined values afare zeros amplitude but opposite polarities over long time intervals,
of the functiona(\) (and so poles of the transmission coef- with a weak interaction between them. We call this situation
ficient) on the imaginani -axis. Note here the contrast with a quasistationary coupled soliton pair
the situation for the KdV equation and for the mKdV equa-  The process of breather formation from a rectangular
tion with u(x)>0. In those cases, the eigenvalue problemyel| initial disturbance, with both polarities and zero mass,
only admits spectral singularities at=0, a distinguished (je., U,=—U,=U,L;=L,=1) is illustrated with three
point in the continuous spectrufrAs remarked earlier, such snapshots of numerical simulations of the modified
singularities are nongeneric and hence structurally unstablgorteweg—de Vries equation in Fig. 4. The left-hand plot is
and expected to vanish under perturbatitmg., small 3 snapshot of the evolution for an initial disturbance with
changes in the value of the amplitude paraméi¢r The  y<u(® that is not sufficiently energetic to generate any
question is: wherl is varied in the neighborhood of the preathers at all. The plot in the middle of Fig. 4 shows a
bifurcation pointU(®), does the spectral singularity disap- snapshot from an evolution fdy{¥’<U<2U{> for which
pear into the continuous spectrum, or emerge into the firsyne breather forms. Finally, in the right-hand plot of Fig. 4,
quadrant of thex-plane as @ona fideeigenvalue branch? e present the results of an evolution fou<U
We choose to answer this question with perturbation-3y(® when two breathers are generated. In each case, the
analysis of the eigenvalue relati¢@6). Thus we seek a sO- pymber of breathers is in full agreement with the above

U(O)L=+i(2n+1) (29
n _2\/5 "

The corresponding value of the paramgtas

lution of (26) as a perturbation from the soluti¢28), analysis. Also, the numerical simulations confirm that no
A=A +ON, U=UQ+sU, p=p,+dp. (31)  solitons form in this case.
At the first order of perturbation theory we obtain IV. TRANSITION FROM SOLITONS TO BREATHERS

. FOR BOX INITIAL NDITION
2y, +i(1-y2P2) OR BO CONDITIONS

2N 5
1+y;/2

signuY) sU. (32) The bifurcation of a complex conjugate pair into a real
pair or vice versa can occur as the potential is continuously
Heren=0,1,2,3, ... Because the eigenvalue conditit®6)  tuned through a physically reasonable family. To illustrate
was derived assuming th&(\)=0, we can only consis- this phenomenon, and to appreciate the complexity of the
tently admit solutions for whictR(S\)=0. Thus, this per- eigenvalue probleni5), we study the general potentigll)
turbation analysis establishes the existence of complex enumerically. That is, we explicitly write down the eigenvalue
genvalues in the discrete spectrum as a bifurcation from theonditiona(\)= 0, which for the potentia{11) has an obvi-
continuous spectrurti.e., from the imaginary\-axis), when  ous analytic continuation into the right half-plaf@&(\)
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FIG. 5. The discrete spectrurihere
complex-valueg for the rectangular
well disturbance. Heré),=—-U,=5,
L,=1, andL, is varied. Left: the real
parts of the eigenvalues as functions of
L,. Right, the corresponding imagi-
nary parts.

=0] and then we use a numerical root-finding procedure te¢oliton branch s2. Next, this complex eigenvalue, b1, coa-
find solutions of this equation in the complex plane for dif- lesces with its complex-conjugate on the real axisLat
ferent values of the potential parameters. Here we study irF0.6 and the double eigenvalue that results unfoldsLfor
detail the discrete spectrum for the two-peaked disturbance 0.6 as a pair of distinct real eigenvalu@abeled s3 and
u(x) with opposite polarities given bgl1) with parameters 4. This is exactly the phenomenon we mentioned earlier,
U=U,;=-U,=5,L,=1, and then we allowi, to vary be-  with the bifurcation happening at a certain structurally un-
tween zero and.,. Therefore, we are now providing new stable potentiali(x). At this point in the tuning of the pa-
detailed results that interpolate between the two cases previameterlL,, we now have three real eigenvalueg, s3, and
ously studied in the literature and reviewed in Sec. lll. Ac-s4) and the corresponding initial disturbance should evolve
cording to the analytical results whén =0, there are two under the modified Korteweg—de Vries equatifh) into
real discrete eigenvalues in the spectrum, but whenl,  three solitons. However, whem, is further increased ta,
there should be two complex pairs of eigenvalues. The nu=0.68, the real eigenvalue s4 disappears, being absorbed
merical root-finding results we now describe tune continu4into the continuous spectrum at=0. The next bifurcation
ously between these two limiting cases. occurs wheri,=0.73, at which point a new complex eigen-
The results of our calculations are presented in Fig. 5value, labeled b2, is born, again from the imaginary axis with
For smallL, we have two real eigenvaluéshich we label a finite imaginary part. AL,=0.79 the two remaining real
as sl and 92representing two solitons, as fop=0. AsL,  eigenvaluegsl and sBcoalesce and the double eigenvalue
increases, the second real eigenvalue, s2, decreases and disunfolded for slightly larget., as another complex eigen-
appears into the continuous spectrumiLat0.05. For 0.05 value, b3,(and its complex conjugateFinally, asL,— 1 we
<L,<0.15 we have only one real eigenvalue, s1, represenfiave the two complex eigenvalug¢b2 and b3 only, in
ing just one soliton. FokL,=0.15 a complex eigenvaluéa-  agreement with the previous analysis. This example shows
beled as bllis born, corresponding to a breather. It emergesjuite a complicated picture of eigenvalue behavior and bifur-
into the first quadrant from the imaginaxyaxis with a finite  cation, even for this relatively simple form of the initial dis-
imaginary part. In between the disappearance of s2 and therbanceg11), and we infer that there will be a corresponding
appearance of b1, there are no spectral singulafigiebed- complicated pattern of soliton and breather formation under
ded eigenvalugsin the continuous spectrum, so it is not the evolution of the modified Korteweg—de Vries equation
clear if in any sense the breather bl is a continuation of thél) as parameters are varied.

10.0-—‘
5.0 — 30— b3
b2
aaannpAMAAA A A~
0.0 - o0 T MAAARAA

FIG. 6. The evolution of a two-peaked initial disturbance with=-U,=5,L,=1, andL,=0.8. Left:t=0.09. Right:t=0.1485.
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g 1 b2 FIG. 7. The evolution of a two-peaked
oo __wmwmn“nuﬂﬂ I\ 00 - initial disturbance withU,=—U,=5,

Ty L,=1, and L,=0.75. Left: t=0.03.
Right: t=0.1485.

s3

Again using numerical simulations @¢1), we illustrate  soliton s2 has emerged from the continuous spectrum. At this
the intermediate regimes of breather and soliton generatiopoint the evolution is similar to that illustrated in the lower
by using the parametdr, to tune between the strictly posi- right-hand graph of Fig. 3. The sequence of wave transfor-
tive and zero-mass cases. In these numerical simulations timeations illustrated in this sequence of numerical experiments
rectangular well disturbance is represented kgraoothedl  corresponds exactly to the bifurcation of eigenvalues that
two-peaked form as in Fig. 2, with height$=U;=-U, occurs with decreasing, as described above.
=5,L,=1, whileL, is varied betweeih,=0 andL,=1. If The formulas(8), (9), and(10) can be used to indepen-
L,=L;=1, we have a case of an initial disturbance with zerodently verify that the numerical root-finding procedure has
mass, and it corresponds to the generation of two breatherfyund all of the eigenvalues in the right half-plane. More-
b2 and b3. This scenario of the generation of two breathers igver, if we are only concerned with the number of eigenval-
maintained at first ak, decreases, but whdn,=0.8 one of  ues, these formulas can be used to further put into context
the breathergb2) has a very small amplitude, and a simula- the sequence of bifurcations shown in Fig. 5. To do this it is
tion corresponding to this case is shown in Fig. 6. When thenost convenient to let);=—-U,=U, L;=1 and allow the
length parameter has decreased. je=0.75 the larger, lead- mass and energy of the initial disturbance to be varied, where
ing breather(b3) has transformed into two solitorisl and the energy of a disturbance is
s3 of opposite polarity with nearly equal amplitudes as
shown in Fig. 7. This bifurcation is exactly as predicted by E— EJW U2(x)dx (33)
the spectral theory, namely the coalescence of the complex 2)_« '
eigenvalue corresponding to b3 with its complex conjugate,
resulting in the two real eigenvalues corresponding to th&he mass and energy are then=U(1-L,) and E
solitons s1 and s3. Decreasing through the range 0.6 =3U?(1+L,). The plots in Fig. 11 show the numbers of
<L,<0.68, a third soliton(s4) has been generated, and a eigenvalues corresponding to solitons and breathers over a
shapshot from a corresponding simulation showing the preswvhole region of the I1,E) plane. Along the dotted line in
ence of this soliton is shown in Fig. 8. Whén=0.5, the Fig. 11,U=5 andL, increases from 0 & =3iM? to 1 at
two solitons s3 and s4 have combined and merged to becond =0. Comparing this with Fig. 5, and keeping in mind that
the breather b1; a numerical simulation corresponding to thia breather corresponds to a pair of conjugate eigenvalues in
case is shown in Fig. 9. When the length has been tunethe right half-plane while a soliton corresponds to a single
down toL,=0.2 the breather has become much more oscilteal eigenvalue in the right half-plane, we see that all eigen-
latory and very small in amplitude; its eigenvalue quartet isvalues in the discrete spectrum have been captured in Fig. 5
on the verge of vanishing into the continuous spectfam over the whole range of the parameteyr.
which point its energy will be converted into dispersive ra- A comparison of Fig. 5 and Fig. 11 demonstrates that the
diation). The corresponding simulation is shown in Fig. 10. onset of the branches s4 and s2 corresponds to the emergence
Finally whenL,<0.1 the breather has vanished and a newof a soliton eigenvalue out of the continuous spectrum as the

10.0 = 10.0 —

s1

b FIG. 8. The evolution of a two-peaked
0.0 - 0.0 — initial disturbance withU,=—-U,=5,

] L,=1, andL,=0.63. Left: t=0.03.
Right: t=0.1485.
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u sl

i 5.0 — o1

| oo JA FIG. 9. The evolution of a two-peaked

e initial disturbance withU,=—U,=5,

o-0 A 1 © L;=1, and L,=0.5. Left: t=0.06.

E 5.0 | Right: t=0.135.
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mass increases through the threshold valésand 37/2, disturbance considered here solitons are not generated for
respectively, in agreement wit@4). Indeed the only unigue M=<0.5. Between these two limits a complicated pattern of
lines on the soliton eigenvalues plot of Fig. 11 are those fobifurcations occurs and no general statement can be made for
which M = 7/2 and 3r/2, with all other curves also occur- an arbitrary initial disturbance.
ring in the breather eigenvalue pairs plot. Therefore bifurca-
tions of solitons from the continuous spectrum only occur aR/ CONCLUSIONS
these threshold values of the mass. However, as the mass of
the initial disturbance is increased these bifurcations can cor- In this article, we have studied the initial-value problem
respond to either the emergence of a soliton from the confor the modified Korteweg—de Vries equatidf) with a
tinuous spectrum or the subsuming of a soliton into the conpositive coefficient for the cubic nonlinear tefso the equa-
tinuous spectrumThis result shows that the intuition that a tion admits solitonsusing both analytical methods based on
soliton should emerge from=0 at the thresholds as the the AKNS system(5) for the inverse scattering method, and
mass is increased is patently falsés the mass increases, direct numerical simulations. Our aim has been to determine
these transitions which occur for all real-valued potentialshe kinds of initial disturbance which can lead to solitons on
and are characterized generally in terms of the mass integréte one hand, and breathers on the other. We have confined
by (24), can correspond t@ither soliton birth or soliton our study to piecewise-constant initial conditions for analyti-
death events. cal convenience, but would claim that the conclusions drawn
All the curves of the left-hand plot of Fig. 11, except for from these cases are representative of more general initial
M= 7/2 and 3r/2 and ZE=M? correspond to bifurcations conditions.
of breather eigenvalue pairs from the continuous spectrum. Solitons correspond to real-valued eigenvalues in the
Here the more common occurrence is that as the mass @iscrete spectrum of the AKNS system, and are typically
increased breather eigenvalue pairs are subsumed into tigenerated by initial disturbances of a dominant polarity and
continuous spectrum, although as with the soliton eigenvalsufficient mass. On the other hand, breathers correspond to
ues the opposite can also occur. complex-valued eigenvalues, and are typically generated by
In general we can state that for initial disturbances withinitial disturbances with very small mass and sufficient en-
large mass and energy, i.e., close 8-2M?, the generation ergy. Further we have shown that breathers can either be
of solitons will be favored. Conversely, for disturbances withgenerated by coincident solitons of opposite polarities, a
small mass, but finite energy, i.e., closeMc=0, the genera- quasistationary coupled soliton paircorresponding to a
tion of breathers is favored. Indeed, for the two-peak initialcomplex unfolding of a double real eigenvalue, or can

u

) 10.0 1 .
] 4 b1l
4 0.0 — FIG. 10. The evolution of a two-
M__,,,,,,,WAAM\ 3 peaked initial disturbance with),=
U1 L ~U,=5,L,=1, andL,=0.2. Left:t
1 ) =0.03. Right:t=0.1485.
ro.0 T T T 1
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Soliton Eigenvalues
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FIG. 11. The number of eigenvalues as a function of the mass and energy for the two-peaked initial disturbablge=with,=U andL,=1. The total
number of eigenvalues, number of soliton eigenvalues, and number of breather eigenvalue pairs are given by thé8prt@ylasd(10). The numbers of

eigenvalues in each plot is only calculated above the dashed Emél\/lz, upon whichL,=0. The dotted line corresponds td=5, for which the
eigenvalue bifurcations are shown in Fig. 5.
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