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On the generation of solitons and breathers in the modified
Korteweg–de Vries equation
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We consider the evolution of an initial disturbance described by the modified Korteweg–de Vries
equation with a positive coefficient of the cubic nonlinear term, so that it can support solitons. Our
primary aim is to determine the circumstances which can lead to the formation of solitons and/or
breathers. We use the associated scattering problem and determine the discrete spectrum, where real
eigenvalues describe solitons and complex eigenvalues describe breathers. For analytical
convenience we consider various piecewise-constant initial conditions. We show how complex
eigenvalues may be generated by bifurcation from either the real axis, or the imaginary axis; in the
former case the bifurcation occurs as the unfolding of a double real eigenvalue. A bifurcation from
the real axis describes the transition of a soliton pair with opposite polarities into a breather, while
the bifurcation from the imaginary axis describes the generation of a breather from the continuous
spectrum. Within the class of initial conditions we consider, a disturbance of one polarity, either
positive or negative, will only generate solitons, and the number of solitons depends on the total
mass. On the other hand, an initial disturbance with both polarities and very small mass will favor
the generation of breathers, and the number of breathers then depends on the total energy. Direct
numerical simulations of the modified Korteweg–de Vries equation confirms the analytical results,
and show in detail the formation of solitons, breathers, and quasistationary coupled soliton pairs.
Being based on spectral theory, our analytical results apply to the entire hierarchy of evolution
equations connected with the same eigenvalue problem. ©2000 American Institute of Physics.
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The modified Korteweg–de Vries equation describes
nonlinear wave propagation in many physical systems
with polarity symmetry. The fundamental nonradiating
solutions of this equation with a positive coefficient for
the nonlinear term are solitons and breathers. These cor-
respond, respectively, to discrete eigenvalue pairs and e
genvalue quartets for the associated scattering problem
Here we consider a class of piecewise-constant initial con
ditions, using analytical and numerical solutions of the
scattering problem and direct numerical simulations of
the modified Korteweg–de Vries equation. We demon-
strate that initial conditions with large mass and energy
favor the formation of solitons, while those with small
mass, but finite energy favor the formation of breathers.
Our results admit immediate generalization to many
other integrable equations.

I. INTRODUCTION

The modified Korteweg–de Vries equation with a po
tive coefficient for the cubic nonlinear term,

]u

]t
16u2

]u

]x
1

]3u

]x3
50, ~1!

here presented in standard form, is well-known as a can
cal model for the description of nonlinear long waves
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many branches of physics when there is polarity symme
For instance, applications in the context of electrodynam
are described by Perelmanet al. in Ref. 1, in the context of
wave propagation in size-quantized films by Pelinovsky a
Sokolov in Ref. 2, in the context of stratified fluids by se
eral authors in Ref. 3 and Ref. 4, and finally in the context
elastic media by Pavlov in Ref. 5. Equation~1!, like the
Korteweg–de Vries equation, is integrable, and can
solved by the inverse scattering method~see, for example,
Lamb,6 Dodd et al.7 or Drazin and Johnson8!. As is well-
known, the steady-state, bounded traveling-wave solution
this equation is asoliton of either polarity

u5A sech@A~x2A2t2x0!#, ~2!

where A is the soliton amplitude, andx0 is an arbitrary
phase. Thepolarity of the soliton refers to the sign ofA. It is
important to note that the mass of a soliton is fixed,

Ms5E
2`

1`

u~x!dx5p signA, ~3!

and does not depend on the soliton amplitude. Multisoli
solutions can be found by several methods: the inverse s
tering method, the Hirota bilinear formalism, or Ba¨cklund–
Darboux transformations. Within the ‘‘complexification’’ o
the family of two-soliton solutions obtained by any of the
methods, one finds the other elementary excitations of
© 2000 American Institute of Physics
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FIG. 1. Possible bifurcations of the
discrete spectrum for the AKNS ei
genvalue problem~5!. Left: the bifur-
cations of breather eigenvalue quarte
and soliton eigenvalue pairs to an
from the continuous spectrum on th
imaginary axis. The continuous spec
trum is the imaginaryl-axis, indicated
in bold. Right: the splitting of a
breather into two solitons, or the
merging of two solitons to form a
breather.
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modified Korteweg–de Vries equation—thebreathers. An
isolated breather is a solution of~1! of the form

u524a sechu•Fcosf1~a/b!sinf•tanhu

11~a/b!2 sin2 f sech2 u
G , ~4!

where u522bx28b(b223a2)t1u0 ,f52ax18a(3b2

2a2)t1f0 , and wherea, b, u0 , andf0 are arbitrary real
parameters. Breathers are sometimes called ‘‘oscilla
pulse solitons’’ because although they are isolated dis
bances propagating without any loss, they have internal
cillatory degrees of freedom, and are not traveling waves
permanent formper se. Due to these internal degrees of fre
dom, small amplitude breathers are very difficult to dist
guish in practice from dispersive radiation components of
solution of ~1! over fixed time intervals of observation. A
breather solutions have zero mass, so thatMbr50.

Because the solitons and breathers are the fundam
nondispersive excitations of the modified Korteweg–
Vries equation, our aim in this article is to develop an u
derstanding of what classes of initial conditions for~1! lead
to the formation of solitons and/or breathers. We are aw
of only one totally analytical result in this context~by ‘‘to-
tally analytical’’ we mean here that not only can an analy
cal eigenvalue condition be obtained in the form of an i
plicit relation, but also that the relation can be solv
explicitly in closed form!, namely the study by Satsuma an
Yajima,9 which showed~essentially! that a ‘‘soliton-like’’
initial disturbance@i.e., proportional to sech(x)] for the
modified Korteweg–de Vries equation generates solitons
an oscillatory tail, but no breathers; for the generation
solitons it is further necessary to have an initial disturba
with mass greater thanp/2. Here we will study the proces
of soliton and breather generation from various initial dist
bances, represented by piecewise-constant functions for
lytical convenience, and by similar~slightly smoothed! func-
tions in our direct numerical simulations of the initial valu
problem for~1!.
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II. EIGENVALUES OF THE SCATTERING PROBLEM

Equation~1! is integrable, and the initial-value problem
can be solved by the inverse scattering method. Here we
the Ablowitz-Kaup-Newall-Segur~AKNS! scheme~see, for
instance, Drazin and Johnson8!,

]w1

]x
52u~x!w21lw1 ,

~5!
]w2

]x
51u~x!w12lw2 ,

where u(x) is an initial disturbance for the modifie
Korteweg–de Vries equation~1!, and l is the ~generally
complex-valued! eigenvalue. Here we assume thatu(x) is
localized, that is, it decays rapidly asuxu→`; in fact, in our
analytical worku(x) will vanish identically outside a finite
domain. The reader should note that in the literature, a ‘‘9
rotated’’ version of the spectral parameter more commo
appears, in which case~5! is written in terms ofz5 il. The
fact that the scattering problem~5! is used to solve many
other physically important equations~e.g., the nonlinear
Schrödinger equation, the sine-Gordon equation, the
damped Maxwell–Bloch equations, etc.! means that all re-
sults we will obtain here for the modified Korteweg–d
Vries equation imply analogous results for these equation
well.

The spectrum of~5! consists of the continuous spectru
on the whole imaginaryl-axis, and a number of discret
eigenvalues for which there exists a solution of~5! with
w1(x) and w2(x) being functions that decay asuxu→`.
While the discrete spectrum eigenvalues must have non
real parts, they may emerge from certain spectral singul
ties in the continuous spectrum as a parameter is varied.
will see examples of this below. Elementary symmetries
~5! that follow from the reality of the potentialu(x) imply
that wheneverl is an eigenvalue, then so arel* , 2l, and
2l* . This means that the nonimaginary eigenvalues of~5!
either come in pairs (ls ,2ls) for ls real, or in quartets
(lbr ,2lbr* ,2lbr ,lbr* ) for lbr genuinely complex. Without
loss of generality, in the former case we assume thatls

.0, while in the latter case we assume thatlbr is in the first
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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385Chaos, Vol. 10, No. 2, 2000 Modified Korteweg–de Vries equation
quadrant of the complexl-plane. Then, the possible bifurca
tions that can occur in the discrete spectrum as a param
in the potential is varied are limited to the birth of breath
eigenvalue quartets and soliton eigenvalue pairs from
continuous spectrum as illustrated in Fig. 1 on the left, a
the coalescence of breather eigenvalue quartets on the
axis giving rise to two distinct soliton eigenvalue pairs,
illustrated in Fig. 1 on the right.

Our main concern is with the discrete spectrum, wh
can be found by assumingR(l).0 andI(l)>0 ~to single
out a representative of each eigenvalue pair and quartet!, and
requiring that the functionsw1(x;l) andw2(x;l) vanish at
infinity. We are primarily concerned with the discrete spe
trum because each pair and quartet of eigenvalues encod
the potentialu(x) yields a ‘‘permanent’’ contribution to the
solution of the modified Korteweg–de Vries equation~1! for
the initial datau(x,0)5u(x). Namely, each real pair of ei
genvalues corresponds to a soliton~2! with amplitude given
by uAu52ls.0, while each complex quartet of eigenvalu
corresponds to a breather~4! with lbr5a1 ib. While the
polarity and position of each soliton, and likewise the valu
of the phase constantsu0 andf0 for each breather, are no
determined by the eigenvalue, they are indeed given by
tain auxiliary spectral data connected with the eigenfuncti
w1(x) andw2(x) that we do not discuss here.

There may be other, transient, contributions to the so
tion of ~1! with initial data u(x,0)5u(x). These contribu-
tions concern the formation of a dispersive oscillatory tail
u(x,t) and their presence is indicated in the initial datau(x)
by a continuous spectrum reflection coefficient for~5! that
does not vanish identically as a function of purely imagina
l. Because these are transient effects, the detailed stud
the scattering problem~5! for pure imaginaryl is of less
direct importance for the long-time behavior ofu(x,t) than
the study of the discrete spectrum. There is, however,
quantity that is very useful to calculate for imaginaryl with
the aim of determining the number of discrete eigenvalue
the right half-plane~and hence in the left half-plane by sym
metry!. This is the reciprocal of the transmission coefficie
a(l)51/T(l) defined for pure imaginaryl by considering
the two solutions (w1

6(x;l),w2
6(x;l))T of ~5! defined by the

boundary conditions

S w1
1~x;l!

w2
1~x;l! Dexp~lx!→S 0

1D , x→1`,

~6!S w1
2~x;l!

w2
2~x;l! Dexp~2lx!→S 1

0D , x→2`,

and setting

a~l!5w1
2~x;l!w2

1~x;l!2w2
2~x;l!w1

1~x;l!. ~7!

This function is independent ofx and is definedab initio for
purely imaginaryl, but in fact can be shown to have a
analytic continuation into the right half-plane, where it sat
fies a(l)→1 as l→` @in any direction withR(l).0].
The zeros of its analytic continuation forR(l).0 corre-
spond exactly to the discrete eigenvalues of~5! lying in the
right half-plane. While this analytic continuation procedu
is not always how one seeks the eigenvalues in practic
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follows from the argument principle for complex function
that theindexof the functiona(l) for R(l)50, defined as
the number of times the phase ofa(l) increases by 2p asl
varies continuously from2 i` to i`, is exactly the number
of eigenvalues of~5! in the right half-plane. It is sometime
convenient to use parametric plots of the cur
@R(a(l)),I(a(l))# to determine the total number of exc
tations to expect; we first encountered such plots in the
ticle of Lewis.10 From these plots the number of eigenvalu
in the right half-plane is then given by the integral

N52
1

2p i E2 i`

1 i`a8~l!

a~l!
dl. ~8!

Although an unstable numerical calculation for general i
tial data, for initial data having compact support it is not
all difficult to construct numericallya(l) for R(l).0 di-
rectly. Then, a similar index integral can then be used
obtain the number of discrete eigenvalues lying on the p
tive real axis, which is the number of solitons which evol
from the initial disturbance. LetG be the counterclockwise
oriented perimeter of a vanishingly thin but infinitely lon
rectangle enclosing the positive real axis. Then the to
number of solitons is

Ns5
1

2p i EG

a8~l!

a~l!
dl. ~9!

Obviously the number of breather pairs is then

Nbr5
1
2~N2Ns!. ~10!

III. EIGENVALUES FOR SYMMETRIC AND
ANTISYMMETRIC BOXES

Here we consider initial disturbances which a
piecewise-constant, and zero forx,2L1 and x.L2 . Note
that then for a bound-state eigenfunction,w2(x)[0 for x
,2L1 and w1(x)[0 for x.L2 . Recently Abdullaev and
Tsoy11 considered similar piecewise-constant initial distu
bances in an analogous study of the initial-value problem
the Manakov system. Thus consider the rectangular well-
form illustrated in Fig. 2,

u~x!55
0 x,2L1 ,

U1 2L1,x,0,

U2 0,x,L2 ,

0 L2,x.

~11!

FIG. 2. An initial disturbance of rectangular well form.
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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To illustrate the exact results obtained for this initial con
tion, we also present several direct numerical simulation
the modified Korteweg–de Vries equation~1!. These will
show clearly the process of soliton and breather forma
from rectangular well-like initial disturbances~11! as param-
eters are varied. A standard finite-difference scheme
applied.12 The sides of the rectangular wells in the initi
conditionu(x) are smoothed in our simulations by replaci
them with hyperbolic tangent functions with a width of 0.0
while the width of each peak in most experiments is appro
mately unity. Equation~1! is solved in a domain with width
40 and with zero boundary conditions. On the left bound
exponential dissipation is introduced to damp any reflect
of the wave tail. The amplitude of the initial disturbance
allowed to vary.

In each region of thex-axis where the system~5! has
constant coefficients, it is easily solved. At the boundar
between regions we require that both functionsw1(x) and
w2(x) should be continuous. It is then readily shown that
discrete spectrum forR(l).0 satisfies the transcendent
equation

S l1p2

U2
2

l2p1

U1
D ~l1p1!ep1L11p2L2

1S l2p2

U2
2

l1p1

U1
D ~l2p1!e2p1L12p2L2

2S l1p2

U2
2

l1p1

U1
D ~l2p1!ep2L22p1L1

2S l2p2

U2
2

l2p1

U1
D ~l1p1!ep1L12p2L250, ~12!

where

p1,25Al22U1,2
2 . ~13!

The magnitude of the variablep associated to a complexl in
this way is sometimes called thequasimomentum.

A. Symmetric disturbances

First, to review known results in the context of o
study, we consider a ‘‘single-peaked’’ disturbance (U2

50,U15U,L15L) which has of course a single polarit
~positive for U.0). This special case of the potential pi
tured in Fig. 2 has been considered in detail by seve
authors;13,14 see also Ref. 7 for a review. For this distu
bance,~12! reduces to

tanh~pL!52
p

l
, ~14!

where we have replacedp1 with p. Together with~13!, the
formula ~14! enables us to find branches of the functi
l(U) giving discrete eigenvalues of~5! as functions of the
initial amplitudeU. This set of equations can be represen
in the parametric form,

uUu5
p

sinh~pL!
, l52p coth~pL!. ~15!
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It is easily shown that the parameterp can only take imagi-
nary values to satisfy the conditionR(l).0 and so there are
only real eigenvalues, i.e., ifl belongs to the discrete spec
trum of ~5! for this potential, thenI(l)50. It is then a dis-
crete eigenvalue corresponding to a soliton of the modifi
Korteweg–de Vries equation. Introducingp5 iy , the expres-
sion ~15! becomes

uUu5
y

sin~yL!
, l52y cot~yL!. ~16!

There are an infinite number of branches, where each bra
exists in the range

~2n11!
p

2
,yL,~n11!p, ~17!

for n50,1,2,3,. . . . Note that the relation~16! is universal in
the variableslL and the mass,M5UL, and that it is suffi-
cient to consider only the caseU.0 as the caseU,0 is
obtained from antisymmetry. For large amplitudes of the i
tial disturbance the solution has the asymptotic form

ln~U !'U, U→`. ~18!

Each branchln(U) begins from a critical value of the am
plitude U5Un

(1) given by

Un
(1)5~2n11!

p

2L
, ~19!

near which the branch has the approximate form,

ln'Un
(1)L~U2Un

(1)!, U→Un
(1) . ~20!

Here the superscript (1) is meant to remind us that the tota
mass ofu(x) is positive.

Thus, this rectangular-well disturbance of a single pol
ity has a discrete spectrum whenU.p/2L, and the number
of discrete eigenvalues isN where

N5 b UL

p
1

1

2 c, ~21!

where the braces denote the integer part. These results
similar to those obtained by Satsuma and Yajima9 for the
soliton-like initial disturbanceu(x)5U sech(x), for which
the eigenvalues of~5! are also purely real and are give
exactly by

ln~U !5U2n1 1
2. ~22!

Being real, each eigenvalue corresponds to the generatio
a soliton with an amplitude

uAnu52ln~U !. ~23!

The soliton amplitude depends generally on both the he
U of the rectangular well disturbance, and its lengthL. Due
to ~18! and ~23! the amplitude of the generated soliton ca
not exceed twice the height of the initial disturbance~as in
the Korteweg-de Vries equation!. As remarked earlier, the
phase~location! of the soliton cannot be found from the co
responding eigenvalue alone; one must analyze the ei
functions to obtain this auxiliary spectral information. The
results for the rectangular well are qualitatively similar
those for the soliton-like disturbance. The qualitative diffe
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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FIG. 3. Numerical simulations of the
modified Korteweg–de Vries equation
with positive square well initial data.
Upper left: U51.57 and t50.432.
Upper right: U52.5 and t50.7425.
Lower left: U5p and t50.135.
Lower right: U57.5 andt50.72.
o
c

s
as
il,

ly

m
n

o

n
a

x

s
o

he

e
l
el
-
h
a

e
or
ss

er
e
-
ce
a

es
ur-
nd
ce,
g
tral

the

ss.

o has
.
g

s a

um
ence between these initial conditions lies in the structure
the oscillatory tails. For instance, the soliton-like disturban
with massM5UL5p will generate just one soliton~with
no tail!, because then its mass and energy are the same a
the soliton. But, the rectangular well disturbance with m
M5p will generate both a soliton and an oscillatory ta
because the energy of the generated soliton is less then
initial energy. We also want to point out that for strict
positive initial disturbancesu(x), it may be shown that the
eigenvalues always emerge from the continuous spectru
the originl50 asU increases; moreover the threshold co
dition a(0)50 can be computed exactly.~See Ref. 15 and
references therein. Also, in the context of the application
the eigenvalue problem~5! to the undamped Maxwell–Bloch
equations and the phenomenon of self-induced transpare
this result is connected with the McCall–Hahn ‘‘are
theorem.’’13! This results in the exact statement that thenth
eigenvalue appears when the mass integral is equal to

M5np2
p

2
. ~24!

Each eigenvalue branch described above satisfies this e
threshold condition, as expected.

Representative snapshots of the numerical simulation
the evolution of a positive rectangular well disturbance
lengthL51 are shown in Fig. 3. In Eq.~11! we putU250
and L151. The upper left-hand graph in Fig. 3 shows t
evolution of a weak disturbance with amplitudeU51.57
,U0

(1)5p/2. In the course of the evolution, the amplitud
of the leading wave decreases, and an oscillatory tai
formed. For large times the tail begins to develop a s
similar oscillatory structure, which for sufficiently small am
plitudes can be represented in terms of Airy functions. T
upper right-hand graph in Fig. 3 shows the evolution of
initial disturbance with amplitudeU52.5. This disturbance
evolves under~1! into one soliton and an oscillatory tail. Th
soliton amplitude is 2.6 as predicted by the spectral the
Now, recall that an initial soliton-like disturbance with ma
M5p evolves under~1! as a soliton with no oscillatory tail;9
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an interesting contrast with this fact is illustrated in the low
left-hand graph of Fig. 3, where the initial amplitude of th
square pulse wasU5p, which implies that the mass is ex
actly p. This graph shows the evolution of the disturban
under ~1! as a nonlinear superposition of a soliton and
dispersive oscillatory tail. This oscillatory tail compensat
the deficit in energy between the rectangular initial dist
bance and the exact soliton. Finally, the lower right-ha
graph in Fig. 3 shows the evolution of a large disturban
with U57.5. In this case two solitons should form havin
amplitudes 14 and 10, according to the results of the spec
theory.

B. Antisymmetric disturbances

Another special case treated in the literature is that of
piecewise-constant initial disturbanceu(x) shown in Fig. 2
being antisymmetrical and therefore having zero total ma
We setU252U15U, L25L15L, so that

E
2`

1`

u~x!dx50. ~25!

This special case has been considered in Ref. 16 and als
been studied using anad hocvariational approach in Ref. 17
Equation ~12! for this potential reduces to the followin
parametric curve forp (p15p25p here!,

l21lp coth~pL!1
p2

2 sinh2~pL!
50, ~26!

with p being given by

p5Al22U2. ~27!

It can be shown that there are no real solutions forl of ~26!,
and so this disturbance with zero mass cannot evolve a
nonlinear superposition of solitons~2!. The eigenvaluel
~and therefore, the parameterp) must be complex. Such
complex solutions bifurcate from the continuous spectr
~the imaginaryl-axis! at the values given by
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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FIG. 4. Snapshots from three numerical simulations of the modified Korteweg–de Vries equation with ‘‘zero-mass’’ square well initial data. Left:U51 and
t50.1485. Middle:U52.5 andt50.12. Right:U55 andt50.126.
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lnL56
ip

2A2
~2n11!, ~28!

and the bifurcations occur whenU is tuned through the val
uesU5Un

(0) defined by

Un
(0)L56

p

2A2
~2n11!. ~29!

The corresponding value of the parameterp is

pnL5 iyn5
ip

2
~2n11!. ~30!

Here, the superscript (0) in Eq.~29! refers to the potentia
u(x) having zero total mass. The solutions~28! of ~26! cor-
respond to spectral singularities of the eigenvalue prob
~5! whenU5Un

(0) ; the so-determined values ofl are zeros
of the functiona(l) ~and so poles of the transmission coe
ficient! on the imaginaryl-axis. Note here the contrast wit
the situation for the KdV equation and for the mKdV equ
tion with u(x).0. In those cases, the eigenvalue probl
only admits spectral singularities atl50, a distinguished
point in the continuous spectrum.8 As remarked earlier, such
singularities are nongeneric and hence structurally unst
and expected to vanish under perturbation~e.g., small
changes in the value of the amplitude parameterU). The
question is: whenU is varied in the neighborhood of th
bifurcation pointUn

(0) , does the spectral singularity disa
pear into the continuous spectrum, or emerge into the
quadrant of thel-plane as abona fideeigenvalue branch?

We choose to answer this question with perturbat
analysis of the eigenvalue relation~26!. Thus we seek a so
lution of ~26! as a perturbation from the solution~28!,

l5ln1dl, U5Un
(0)1dU, p5pn1dp. ~31!

At the first order of perturbation theory we obtain

dl5
A2yn1 i ~12yn

2/2!

11yn
2/2

sign~Un
(0)! dU. ~32!

Heren50,1,2,3,. . . . Because the eigenvalue condition~26!
was derived assuming thatR(l)>0, we can only consis-
tently admit solutions for whichR(dl)>0. Thus, this per-
turbation analysis establishes the existence of complex
genvalues in the discrete spectrum as a bifurcation from
continuous spectrum~i.e., from the imaginaryl-axis!, when
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the amplitudeexceedsthe critical value~29!. Each complex
eigenvalue branch so obtained corresponds to the gener
of a breather~4! in the course of the evolution under th
modified Korteweg–de Vries Eq.~1! from the zero-mass ini-
tial conditionu(x). The first breather is generated when t
amplitudeU exceeds the first critical valueU0

(0)5p/2A2L
'1.11/L, the second at 3U0

(0) , and so on. Here we assum
without any loss of generality thatU.0. If U,U0

(0) then
there are no discrete eigenvalues whatsoever and co
quently only a dispersive oscillatory tail is formed during t
evolution. It is important to note that for large amplitudesU
~we can takeU.0 without loss of generality! of the initial
disturbance,R(l) has the asymptotic value~18!, andI(l)
tends to zero. An ‘‘almost’’ real value for the eigenvalu
means that the corresponding breather~4! will resemble a
nonlinear superposition of a pair of solitons~2! of the same
amplitude but opposite polarities over long time interva
with a weak interaction between them. We call this situat
a quasistationary coupled soliton pair.

The process of breather formation from a rectangu
well initial disturbance, with both polarities and zero ma
~i.e., U152U25U,L15L251) is illustrated with three
snapshots of numerical simulations of the modifi
Korteweg–de Vries equation in Fig. 4. The left-hand plot
a snapshot of the evolution for an initial disturbance w
U,U0

(0) that is not sufficiently energetic to generate a
breathers at all. The plot in the middle of Fig. 4 shows
snapshot from an evolution forU0

(0),U,2U0
(0) for which

one breather forms. Finally, in the right-hand plot of Fig.
we present the results of an evolution for 2U0

(0),U
,3U0

(0) when two breathers are generated. In each case
number of breathers is in full agreement with the abo
analysis. Also, the numerical simulations confirm that
solitons form in this case.

IV. TRANSITION FROM SOLITONS TO BREATHERS
FOR BOX INITIAL CONDITIONS

The bifurcation of a complex conjugate pair into a re
pair or vice versa can occur as the potential is continuou
tuned through a physically reasonable family. To illustra
this phenomenon, and to appreciate the complexity of
eigenvalue problem~5!, we study the general potential~11!
numerically. That is, we explicitly write down the eigenvalu
conditiona(l)50, which for the potential~11! has an obvi-
ous analytic continuation into the right half-plane@R(l)
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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FIG. 5. The discrete spectrum~here
complex-valued! for the rectangular
well disturbance. HereU152U255,
L151, andL2 is varied. Left: the real
parts of the eigenvalues as functions
L2 . Right, the corresponding imagi
nary parts.
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>0# and then we use a numerical root-finding procedure
find solutions of this equation in the complex plane for d
ferent values of the potential parameters. Here we stud
detail the discrete spectrum for the two-peaked disturba
u(x) with opposite polarities given by~11! with parameters
U5U152U255, L151, and then we allowL2 to vary be-
tween zero andL1 . Therefore, we are now providing ne
detailed results that interpolate between the two cases p
ously studied in the literature and reviewed in Sec. III. A
cording to the analytical results whenL250, there are two
real discrete eigenvalues in the spectrum, but whenL25L1

there should be two complex pairs of eigenvalues. The
merical root-finding results we now describe tune contin
ously between these two limiting cases.

The results of our calculations are presented in Fig
For smallL2 we have two real eigenvalues~which we label
as s1 and s2!, representing two solitons, as forL250. As L2

increases, the second real eigenvalue, s2, decreases an
appears into the continuous spectrum atL250.05. For 0.05
,L2,0.15 we have only one real eigenvalue, s1, repres
ing just one soliton. ForL250.15 a complex eigenvalue~la-
beled as b1! is born, corresponding to a breather. It emerg
into the first quadrant from the imaginaryl-axis with a finite
imaginary part. In between the disappearance of s2 and
appearance of b1, there are no spectral singularities~embed-
ded eigenvalues! in the continuous spectrum, so it is n
clear if in any sense the breather b1 is a continuation of
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soliton branch s2. Next, this complex eigenvalue, b1, c
lesces with its complex-conjugate on the real axis atL2

50.6 and the double eigenvalue that results unfolds forL2

.0.6 as a pair of distinct real eigenvalues~labeled s3 and
s4!. This is exactly the phenomenon we mentioned earl
with the bifurcation happening at a certain structurally u
stable potentialu(x). At this point in the tuning of the pa-
rameterL2 , we now have three real eigenvalues~s1, s3, and
s4! and the corresponding initial disturbance should evo
under the modified Korteweg–de Vries equation~1! into
three solitons. However, whenL2 is further increased toL2

50.68, the real eigenvalue s4 disappears, being abso
into the continuous spectrum atl50. The next bifurcation
occurs whenL250.73, at which point a new complex eigen
value, labeled b2, is born, again from the imaginary axis w
a finite imaginary part. AtL250.79 the two remaining rea
eigenvalues~s1 and s3! coalesce and the double eigenval
is unfolded for slightly largerL2 as another complex eigen
value, b3,~and its complex conjugate!. Finally, asL2→1 we
have the two complex eigenvalues~b2 and b3! only, in
agreement with the previous analysis. This example sh
quite a complicated picture of eigenvalue behavior and bif
cation, even for this relatively simple form of the initial dis
turbance~11!, and we infer that there will be a correspondin
complicated pattern of soliton and breather formation un
the evolution of the modified Korteweg–de Vries equati
~1! as parameters are varied.
FIG. 6. The evolution of a two-peaked initial disturbance withU152U255, L151, andL250.8. Left: t50.09. Right:t50.1485.
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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FIG. 7. The evolution of a two-peaked
initial disturbance withU152U255,
L151, and L250.75. Left: t50.03.
Right: t50.1485.
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Again using numerical simulations of~1!, we illustrate
the intermediate regimes of breather and soliton genera
by using the parameterL2 to tune between the strictly pos
tive and zero-mass cases. In these numerical simulation
rectangular well disturbance is represented by a~smoothed!
two-peaked form as in Fig. 2, with heightsU5U152U2

55, L151, while L2 is varied betweenL250 andL251. If
L25L151, we have a case of an initial disturbance with ze
mass, and it corresponds to the generation of two breath
b2 and b3. This scenario of the generation of two breathe
maintained at first asL2 decreases, but whenL250.8 one of
the breathers~b2! has a very small amplitude, and a simul
tion corresponding to this case is shown in Fig. 6. When
length parameter has decreased toL250.75 the larger, lead
ing breather~b3! has transformed into two solitons~s1 and
s3! of opposite polarity with nearly equal amplitudes
shown in Fig. 7. This bifurcation is exactly as predicted
the spectral theory, namely the coalescence of the com
eigenvalue corresponding to b3 with its complex conjuga
resulting in the two real eigenvalues corresponding to
solitons s1 and s3. DecreasingL2 through the range 0.6
,L2,0.68, a third soliton~s4! has been generated, and
snapshot from a corresponding simulation showing the p
ence of this soliton is shown in Fig. 8. WhenL250.5, the
two solitons s3 and s4 have combined and merged to bec
the breather b1; a numerical simulation corresponding to
case is shown in Fig. 9. When the length has been tu
down toL250.2 the breather has become much more os
latory and very small in amplitude; its eigenvalue quarte
on the verge of vanishing into the continuous spectrum~at
which point its energy will be converted into dispersive r
diation!. The corresponding simulation is shown in Fig. 1
Finally whenL2,0.1 the breather has vanished and a n
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soliton s2 has emerged from the continuous spectrum. At
point the evolution is similar to that illustrated in the low
right-hand graph of Fig. 3. The sequence of wave trans
mations illustrated in this sequence of numerical experime
corresponds exactly to the bifurcation of eigenvalues t
occurs with decreasingL2 as described above.

The formulas~8!, ~9!, and~10! can be used to indepen
dently verify that the numerical root-finding procedure h
found all of the eigenvalues in the right half-plane. Mor
over, if we are only concerned with the number of eigenv
ues, these formulas can be used to further put into con
the sequence of bifurcations shown in Fig. 5. To do this i
most convenient to letU152U25U, L151 and allow the
mass and energy of the initial disturbance to be varied, wh
the energy of a disturbance is

E5
1

2E2`

`

u2~x!dx. ~33!

The mass and energy are thenM5U(12L2) and E
5 1

2U
2(11L2). The plots in Fig. 11 show the numbers

eigenvalues corresponding to solitons and breathers ov
whole region of the (M ,E) plane. Along the dotted line in
Fig. 11, U55 andL2 increases from 0 atE5 1

2M
2 to 1 at

M50. Comparing this with Fig. 5, and keeping in mind th
a breather corresponds to a pair of conjugate eigenvalue
the right half-plane while a soliton corresponds to a sin
real eigenvalue in the right half-plane, we see that all eig
values in the discrete spectrum have been captured in F
over the whole range of the parameterL2 .

A comparison of Fig. 5 and Fig. 11 demonstrates that
onset of the branches s4 and s2 corresponds to the emerg
of a soliton eigenvalue out of the continuous spectrum as
FIG. 8. The evolution of a two-peaked
initial disturbance withU152U255,
L151, and L250.63. Left: t50.03.
Right: t50.1485.
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.



391Chaos, Vol. 10, No. 2, 2000 Modified Korteweg–de Vries equation
FIG. 9. The evolution of a two-peaked
initial disturbance withU152U255,
L151, and L250.5. Left: t50.06.
Right: t50.135.
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mass increases through the threshold valuesp/2 and 3p/2,
respectively, in agreement with~24!. Indeed the only unique
lines on the soliton eigenvalues plot of Fig. 11 are those
which M5p/2 and 3p/2, with all other curves also occur
ring in the breather eigenvalue pairs plot. Therefore bifur
tions of solitons from the continuous spectrum only occur
these threshold values of the mass. However, as the ma
the initial disturbance is increased these bifurcations can
respond to either the emergence of a soliton from the c
tinuous spectrum or the subsuming of a soliton into the c
tinuous spectrum.This result shows that the intuition that
soliton should emerge froml50 at the thresholds as the
mass is increased is patently false. As the mass increase
these transitions which occur for all real-valued potenti
and are characterized generally in terms of the mass inte
by ~24!, can correspond toeither soliton birth or soliton
death events.

All the curves of the left-hand plot of Fig. 11, except f
M5p/2 and 3p/2 and 2E5M2 correspond to bifurcations
of breather eigenvalue pairs from the continuous spectr
Here the more common occurrence is that as the mas
increased breather eigenvalue pairs are subsumed into
continuous spectrum, although as with the soliton eigen
ues the opposite can also occur.

In general we can state that for initial disturbances w
large mass and energy, i.e., close to 2E5M2, the generation
of solitons will be favored. Conversely, for disturbances w
small mass, but finite energy, i.e., close toM50, the genera-
tion of breathers is favored. Indeed, for the two-peak ini
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disturbance considered here solitons are not generated
M<0.5. Between these two limits a complicated pattern
bifurcations occurs and no general statement can be mad
an arbitrary initial disturbance.

V. CONCLUSIONS

In this article, we have studied the initial-value proble
for the modified Korteweg–de Vries equation~1! with a
positive coefficient for the cubic nonlinear term~so the equa-
tion admits solitons! using both analytical methods based
the AKNS system~5! for the inverse scattering method, an
direct numerical simulations. Our aim has been to determ
the kinds of initial disturbance which can lead to solitons
the one hand, and breathers on the other. We have con
our study to piecewise-constant initial conditions for analy
cal convenience, but would claim that the conclusions dra
from these cases are representative of more general in
conditions.

Solitons correspond to real-valued eigenvalues in
discrete spectrum of the AKNS system, and are typica
generated by initial disturbances of a dominant polarity a
sufficient mass. On the other hand, breathers correspon
complex-valued eigenvalues, and are typically generated
initial disturbances with very small mass and sufficient e
ergy. Further we have shown that breathers can eithe
generated by coincident solitons of opposite polarities~i.e., a
quasistationary coupled soliton pair!, corresponding to a
complex unfolding of a double real eigenvalue, or c
FIG. 10. The evolution of a two-
peaked initial disturbance withU15
2U255, L151, andL250.2. Left: t
50.03. Right:t50.1485.
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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FIG. 11. The number of eigenvalues as a function of the mass and energy for the two-peaked initial disturbance withU152U25U andL151. The total
number of eigenvalues, number of soliton eigenvalues, and number of breather eigenvalue pairs are given by the formulas~8!, ~9!, and~10!. The numbers of

eigenvalues in each plot is only calculated above the dashed curveE5
1
2M2, upon whichL250. The dotted line corresponds toU55, for which the

eigenvalue bifurcations are shown in Fig. 5.
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emerge spontaneously from the continuous spectrum
bifurcation of a zero of the reciprocala(l) of the transmis-
sion coefficient.

Our direct numerical simulations of the modifie
Korteweg–de Vries equation show in detail the formation
both breathers and solitons, together with an oscillatory
in good agreement with our analysis and the consequent
oretical predictions. As a final remark, we want to emphas
again that all of our statements concerning eigenvalues o
scattering problem~5! also immediately imply analogou
facts for the initial-value problem for all commuting flow
~e.g., nonlinear Schro¨dinger, sine-Gordon, etc.!.

ACKNOWLEDGMENTS

Simon Clarke and Roger Grimshaw acknowledge
Australian Research Council under Grant No. A898004
Peter Miller was supported by a Monash University Log
Fellowship. Efim Pelinovsky and Tatiana Talipova were su
ported by RFBR under Grant No. 99-05-65576, by the A
tralian Research Council under Grant No. A39702096,
by INTAS under Grant No. 99-1068. The authors would li
to thank D. Pelinovsky and V. E. Zakharov for useful com
ments and pointing our attention to a number of relev
references.

1T. Perelman, A. Fridman, and M. El’yashevich, ‘‘A modifie
Korteweg-de Vries equation in electrodynamics,’’ Sov. Phys. JETP39,
643–646~1974!.

2E. Pelinovsky and V. Sokolov, ‘‘Nonlinear theory for the propagation
electromagnetic waves in size-quantized films,’’ Radiophys. Quan
Electron.19, 378–382~1976!.
Downloaded 18 Jan 2001  to 141.211.61.121.  Redistribution subject to
a

f
il,
e-
e
he

e
.

-
-
d

-
t

3R. Grimshaw, E. Pelinovsky, and T. Talipova, ‘‘The modifie
Korteweg–de Vries equation in the theory of large-amplitude inter
waves,’’ Nonlinear Processes in Geophysics4, 237–250~1997!.

4T. Talipova, E. Pelinovsky, K. Lamb, R. Grimshaw, and P. Hollowa
‘‘Cubic nonlinearity effects at the intense internal wave propagation
Trans. Russ. Acad. Sci., Earth Section364, 824–827~1999!.

5I. S. Pavlov,Quasiplane Waves in Two-dimensional Elastic Systemin
Physical Technologies in Industry~Nizhny Novgorod, 1998!, pp. 18–21.

6G. L. Lamb,Elements of Soliton Theory~Wiley, New York, 1980!.
7R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris,Solitons and
Nonlinear Wave Equations~Academic, London, 1982!.

8P. G. Drazin and R. S. Johnson,Solitons: An Introduction~Cambridge
University Press, Cambridge, England, 1993!.

9J. Satsuma and N. Yajima, ‘‘Initial value problems of one-dimensio
self-modulation of nonlinear waves in dispersive media,’’ Suppl. Pr
Theor. Phys.55, 284–306~1974!.

10Z. V. Lewis, ‘‘Semiclassical solution of the Zakharov–Shabat scatter
problem for phase-modulated potentials,’’ Phys. Lett.112A, 99–103
~1985!.

11F. Kh. Abdullaev and E. N. Tsoy, ‘‘The evolution of two optical beams
self-focusing media,’’ Physica D~submitted!.

12Yu. A. Berezin, Modeling Nonlinear Wave Processes~VNU Science,
Utrecht, 1987!.

13D. J. Kaup, ‘‘Coherent pulse propagation: A comparison of the comp
solution with the McCall–Hahn theory and others,’’ Phys. Rev. A16,
704–719~1977!.

14J. Burzlaff, ‘‘The soliton number of optical soliton bound states for tw
special families of input pulses,’’ J. Phys. A21, 561–566~1988!.

15M. Desaix, D. Anderson, M. Lisak, and M. L. Quiroga-Teixeiro, ‘‘Varia
tionally obtained approximate eigenvalues of the Zakharov–Shabat s
tering problem for real potentials,’’ Phys. Lett. A212, 332–338~1996!.

16D. J. Kaup and L. R. Scacca, ‘‘Generation of 0p pulses from a zero-area
pulse in coherent pulse propagation,’’ J. Opt. Soc. Am.70, 224–230
~1980!.

17D. J. Kaup and B. A. Malomed, ‘‘Variational principle for the Zakharov
Shabat equations,’’ Physica D84, 319–328~1993!.
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.


