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Abstract. A linear Y-junction waveguide device is designed using a generalization of the theory of soli-

tonic potentials for the linear SchroÈ dinger equation. This Y-junction device, unlike other adiabatic

Y-junctions, has the advantage that it may be directly written into a planar medium with homogeneous

saturable nonlinearity by a strong light beam. The generalized theory provides the error terms that are

introduced when the parameters of a solitonic potential are allowed to vary in the propagation direction,

and shows that under certain adiabaticity conditions the error is small although the deformation of the

potential is signi®cant. At the operating wavelength for which the device is designed to function optimally,

the Y-junction has two approximate bound modes that we ®nd explicitly. Each mode has the property that

when it is excited at the neck of the junction, it exits in only one of the two output ports. In this way, the

device functions like a standard modal splitter in a multimode slab waveguide. When the wavelength is

detuned, modal beating is introduced that degrades the optimal switching characteristics. We describe this

e�ect in terms of four universal coupling functions using perturbation theory.
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1. Introduction

Passive dielectric linear Y-junctions are fundamental elementary components
of planar lightwave integrated circuits used for signal demultiplexing appli-
cations. A junction designed for such a purpose1 consists of a single input
port or `trunk' and two (or more) output ports or `branches'. In idealized
operation, a linear superposition of signals propagating into the device along
the trunk is divided without loss such that each signal exits through only one
branch. There are two types of demultiplexing Y-junction of interest here:

1Other design purposes include power division. In this case, the goal is simpler: simply the predictable

splitting of input power among the output branches with minimal loss. There is no need for the device

to di�erentiate among multiple input signals. See Weissman et al. (1989), Shirafuji and Kurazono (1991),

Ni et al. (1995) and Hsu and Lee (1998) for some applications.
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wavelength demultiplexers and mode demultiplexers. Wavelength demulti-
plexing Y-junctions have a trunk that is a single-moded waveguide over a
range of wavelengths of interest, and the coupling of this mode into the
branches depends on the wavelength; if designed perfectly for operation at
two di�erent wavelengths kL and kR, say, the trunk mode at wavelength kL
(respectively kR) excites only the mode of the left (respectively right) branch.
Thus, the two wavelength components present in an input signal are sepa-
rated at the output. See Negami et al. (1989) and Weissman (1995) for design
examples. On the other hand, mode demultiplexing Y-junctions are designed
for operation at a ®xed wavelength (although they tend to have robust
performance over a range of wavelengths). The trunk is multi-moded at
the operating wavelength, and ideally, each of the trunk modes excited at the
input is channeled to a distinguished branch upon output. Some design
examples can be found in Kapon and Thurston (1987), Yuan et al. (1994),
Love et al. (1996), Henry and Love (1997), Besley et al. (1998b).

The choice of geometry for the junction waveguides proposed in the lit-
erature often appears to be driven, understandably, by issues of practicality
of fabrication by known techniques. Thus, most proposed designs are com-
binations of elementary components like straight channels and ®xed-angle
tapers, and virtually all designs have step-index pro®les, so that only a few
di�erent materials, or a few steps of an exposure process, are required for
fabrication.

On the other hand, many of well-established rules that hold in these rel-
atively simple situations can be violated in a favourable way if one drops
these design restrictions by allowing arbitrary reasonable spatial variations in
the refractive index in the planar waveguide. For example, exploiting the
separability of the wave equation in unusual coordinate systems, Marcatili
(1985) showed that as long as one is willing to admit smooth spatial varia-
tions in the refractive index, one can build a taper with no losses whatsoever,
either in terms of power transfer among bound modes or coupling to radi-
ation. This result clearly indicates that the common rules of thumb con-
cerning power loss in tapers hold only under the fabrication-favorable
assumptions about the refractive index of the sort described above.

There are similar results for certain kinds of junction devices for which the
distribution of refractive index in the planar waveguide is prescribed by a
mathematical machine intimately connected with soliton theory (Miller
1996; Miller and Akhmediev 1996, 1998). Using these techniques, one can
design multiport junction waveguides with N input and N output ports, all
single-moded, that function simultaneously as N absolutely lossless power
dividers, one for each input port. The power transfer characteristics can be
prescribed fairly arbitrarily in the design process. Not surprisingly, the
lossless behavior of these devices requires their operation at a particular
wavelength.
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Because these `solitonic' waveguides, like the simpler waveguides proposed
by Marcatili, would require precise and spatially detailed control on the
refractive index during fabrication, it seems these designs must wait in the
knowledge bank for further advances in fabrication technology. On the other
hand, the coincidental mathematical connection of the design of the solitonic
waveguides with soliton theory actually has far-reaching implications for
device fabrication using existing technology.

The idea is simply that a usefully large number of the solitonic waveguides
correspond to planar refractive index distributions that are identical to those
self-induced in a homogeneous planar (focusing or defocusing) Kerr medium
by a monochromatic linearly polarized optical ®eld. In the simplest cases, the
®eld inducing the index change is just a nonlinear superposition of spatial
Kerr solitons. The corresponding index pro®les are the multiport junction
solitonic waveguides (Miller 1996; Miller and Akhmediev 1996). If the soli-
tons are co-propagating, that is, as `higher-order' solitons, then the ®eld
induces a periodic index distribution. This periodic index distribution has
multiple exact bound modes (Floquet or Bloch modes) at the appropriate
wavelength (Besley et al. 1997, 1998a).

Therefore, fabricating a solitonic waveguide can be as easy as launching a
system of pump beams into a homogeneous Kerr medium. As they provide
the solitonic waveguide, the pump beams must be maintained while the de-
vice is being used to guide weaker signal beams.2 This means that the signal
beams must di�er in either wavelength or polarization from the pump, simply
in order to be distinguished at the output. If one uses a di�erent wavelength
for the signal, then in the absence of material resonances and unusually
phase-matched parametric processes, the signal beam simply propagates in
the (®xed) potential induced by the pump. Unfortunately, the detuning of the
wavelength of the signal from that of the pump slightly perturbs the dif-
fraction coe�cients of the linear propagation so that the solitonic waveguide
theory does not hold in the strict sense. The losses introduced by the detuning
are, however, small, and may be taken into account perturbatively (Besley
et al. 1998a; Miller et al. 2000). On the other hand, if one launches the signal
beam at the same wavelength as the pump but in the orthogonal linear
polarization, then the signal is in¯uenced not only by the induced index of the
pump, but also by four-wave mixing terms which again ruin the solitonic
waveguide theory in its idealized form. However, it has recently been shown
(Kang et al. 1996) that if the pump and signal polarizations are mutually
incoherent, then the four-wave mixing terms may be neglected and the soli-
tonic waveguide theory again holds. For both methods of separating the
pump from the signal, laboratory experiments have shown that signal beams

2Weakness of the signals is generally needed so that they do not a�ect the refractive index themselves, but

see also Chen et al. (1996).
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can indeed be guided by the pump. In connection with the scheme of using a
signal of a di�erent wavelength from the pump, De la Fuente et al. (1991)
used bright spatial solitons to induce waveguides in homogeneous materials
and observed guidance of signals of other wavelengths, Luther-Davies and
Xiaoping (1992a, b) used dark spatial solitons in organic media to do the
same, and Chen et al. (1996) observed similar e�ects in photorefractive me-
dia. The AlGaAs experiments reported by Kang et al. (1996) show that the
phase-incoherence method of suppressing four-wave mixing e�ects in the
scheme of polarization-orthogonal pump and signal actually works well into
the nonlinear regime for the signal.

Many of the materials in which these experiments have been performed are
highly nonlinear and consequently the Kerr nonlinearity is at best a crude
approximation for the true response of the medium. Thus, the authors of
these papers report seeing self-guided beam structures that are unfamiliar
within the context of cubic SchroÈ dinger solitons. In particular, beams that
split into two as they propagate were reported in Chen et al. (1996) and
Luther-Davies and Xiaoping (1992a). In reference to guiding weak signals
with these strong pumps, the authors identi®ed these structures as nonlin-
early induced Y-junctions. It is possible to analyze the splitting phenomenon
in more detail if one posits a mathematical model for the nonlinear response
of the medium that is slightly more complicated that the Kerr e�ect, but still
contains new physics. A reasonable correction to a focusing Kerr nonlin-
earity that models saturation of the refractive index for high intensities is a
small defocusing quintic term (that is, a negative correction to the refractive
index proportional to the square of the intensity). Such a simple model is in
fact very good for some experimental materials, like the polymer polydi-
acetylene para-toulene sulfonate (PTS) (Lawrence et al. 1994). As has been
observed numerically (Artigas et al. 1997) and analyzed using multiscale
asymptotics (Besley et al. 1999), this small non-Kerr correction destabilizes
the periodic double-soliton and causes it to split asymmetrically into two
solitons with di�erent propagation directions accompanied by only a small
amount of radiation.

Because the non-Kerr correction is small, the splitting process can be
considered as an adiabatic one that is `locally Kerr' and can be described
approximately by multiscale perturbation theory based on integrable soliton
mathematics (Besley et al. 2000). Analogously, the propagation of signal
beams in a solitonic Y-junction induced in a material like PTS can be studied
by an adiabatic deformation of the theory already in place, with losses of
similar magnitude to the usual adiabatic losses for waveguide junctions, ta-
pers, and so on.

In this paper, we study in detail the linear guidance properties of these
adiabatic solitonic Y-junctions. We begin by reviewing the design and
properties of solitonic waveguides, a class of lossless structures indexed by
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several parameters. For some values of the parameters, one can obtain
multimode periodic waveguides that can serve as Y-junction trunks, while
for other values of the parameters one can ®nd X-junctions whose output
arms might serve as Y-junction branches. We propose a Y-junction
waveguide by letting the parameters depend on z, the coordinate in the
propagation direction, in such a way that the multimode trunk gradually
opens up into the two branches of the X-junction. We show that, when
operated at a particular wavelength (a design parameter) the junctions
behave as modal splitters in the usual sense, guiding each of two inde-
pendent Floquet modes of the periodic trunk into a unique output branch.
As a particular example, we consider the speci®c adiabatic deformation
that would be self-induced by a double-soliton pump beam launched into
saturating material like PTS. In order to permit the possible use of the
device at di�erent wavelengths (so that if the device is written with light,
the signal may be di�erentiated from the pump without using two polar-
ization components, for example) we study the way the mode switching
characteristics depend on the operating wavelength. Although we imagine
that these solitonic junctions would be easiest to implement all-optically by
using a nonlinear process to write the waveguide, the adiabatic theory that
we develop applies in more general circumstances, when the adiabatic de-
formation of the solitonic waveguide parameters is speci®ed arbitrarily,
assuming that the resulting structure can be fabricated by more conven-
tional means.

2. Solitonic planar refractive index distributions

As is well-known, the paraxial approximation applied to Maxwell's equa-
tions for monochromatic ®elds in a weakly inhomogeneous medium leads
promptly to the linear SchroÈ dinger equation as a model for beam propaga-
tion. Assume light of vacuum wavelength k0 is propagating in a two-di-
mensional medium having laboratory coordinates xlab and zlab. Suppose the
refractive index in the medium is given by n�xlab; zlab) with background value
n0. Choose a convenient length scale L0, and a small dimensionless scaling
parameter d. Introducing dimensionless coordinates z � d2zlab=L0 and x �
dxlab=L0, the dimensionless frequency parameter b � 2pL0n0=k0, and the
representation of the electric ®eld vector as ~E � f �x; z� exp�ibz=d2�~e for some
unit vector~e, one ®nds

ib
of
oz
� 1

2

o2f
ox2
ÿ b2V0�x; z�f � 0; �1�

up to terms of order O�d2� where
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V0�x; z� � ÿ 1

2d2
n�xL0d

ÿ1; zL0d
ÿ2�2

n2
0

ÿ 1

" #
: �2�

For a given function V0�x; z�, the paraxial approximation becomes as accurate
as desired if it is possible to deform the index distribution n�xlab; zlab� as d
goes to zero in such a way that the function V0�x; z� remains ®xed. In this
limit, the physical index pro®le becomes wide (of size L0d

ÿ1), long (of size
L0d

ÿ2), and a shallow deformation of the background value (so that
nmax ÿ n0 � n0O�d�). In most applications, we will consider the scales to be
chosen so that at the operating wavelength k0 of interest, b � 1. Varying the
optical wavelength for a given physical index pro®le then means changing the
value of b.

We now recall the construction of solitonic potentials3 for the linear
SchroÈ dinger equation. These are special cases of V0�x; z� with qualitative
properties that are very useful for integrated optics applications, and more-
over for which the linear beam propagation problem can be solved exactly in
terms of explicit formulas for all initial conditions. More details can be found
in Miller and Akhmediev (1998) and in the Appendix of Miller et al. (2000).
We emphasize that, as our ultimate interest is one of device design for in-
tegrated planar waveguide optics, where the linear SchroÈ dinger equation is a
basic model for beam propagation, the design of a potential function rep-
resenting inhomogeneities in the medium to achieve speci®c results is of equal
interest to the study of the solutions of the equation for a given potential.
With this in mind, let us begin.

Regarding notation, we will use the inner product in L2�R� de®ned by

hf ���; g���i �:
Z 1
ÿ1

f �x��g�x�dx: �3�

Here and throughout, the star denotes complex conjugation. We use <�w�
and =�w� respectively for the real and imaginary parts of w.

2.1. ALGEBRAIC CONSTRUCTION OF EXACT SOLITONIC POTENTIALS

We are going to specify a waveguide consisting of a number of linear channels
oriented at various angles in a planar medium. Let N and M be independent
positive integers. M corresponds to the number of linear channels. N is,
roughly speaking, the number of internal degrees of freedom available for the
design of each channel; these become important only where the channels are

3In Miller and Akhmediev (1996) and Miller et al. (2000) these are called `separable potentials'.
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overlapping. Let M complex numbers fk, =�fk� > 0 be given along with M
constant vectors~g�1�0 ; . . . ;~g�M�0 in CN . Introduce the scalar expression

a�x; z; f� � fM �
XMÿ1
p�0

fpa�p��x; z�
 !

exp�ÿ2ifx�; �4�

and the N -component vector expression

~b�x; z; f� �
XMÿ1
p�0

fp~b�p��x; z�: �5�

Here, a�p��x; z� and b�p��x; z� are unknown coe�cient functions. We now de-
termine them from the given data by insisting that the following relations
hold for all k � 1; . . . ;M :

a�x; z; fk� �~g�k�y~b�x; z; fk�;
~b�x; z; f�k� � ÿa�x; z; f�k�~g�k�;

�6�

where

~g�k� �~g�k�0 exp�ÿ2if�2k z�: �7�

It is easy to check that these relations imply, for each ®xed x and z, a square
M � �N � 1� linear system for the unknowns a�k��x; z� and the components of
~b�k��x; z�; therefore one can write down exact formulas for these in terms of
determinants.

From the solution of this linear algebraic system, de®ne the solitonic po-
tential function

V0�x; z� �: ÿ 4
XN

n�1
b�Mÿ1�n �x; z��� ��2; �8�

and the radiation mode function

Wr�x; z; f� �: p
YM
k�1
jfÿ fkj2

 !ÿ1=2
a�x; z; f� exp�ÿ2if2z�: �9�

Finally, de®ne the bound modes Wb;k�x; z� for k � 1; . . . ;M to be linear
combinations of the functions a�x; z; f�j � exp�ÿ2if�2j z� for j � 1; . . . ;M that
are chosen to be orthonormal with respect to L2 in x for some ®xed z.
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The importance of these steps for optical applications is that the following
two things can be proved:
1. Each function Wr�x; z; f� for f 2 R and each function Wb;k�x; z� is a solution

of the linear SchroÈ dinger equation

i
of
oz
� 1

2

o2f
ox2
ÿ V0�x; z�f � 0: �10�

2. For each ®xed z, these functions form a complete orthonormal basis of the
function space L2�R�. The orthogonality conditions can be written in the
form:

hWr��; z; f�;Wr��; z; g�i � d�fÿ g�;
hWr��; z; f�;Wb;k��; z�i � 0;

hWb;k��; z�;Wb; j��; z; �i � dkj:

�11�

Since the L2 inner product is invariant under the unitary ¯ow of (10), the
coe�cients expressing Wb;k�x; z� in terms of a�x; z; f�k� exp�ÿ2if�2k z� can be
taken to be independent of z.

As indicated by the subscripts, the exact solutions Wb;k�x; z� represent
bound state solutions (subscript `b') that have ®nite L2 norm, while the exact
solutions Wr�x; z; f� represent for each real f unnormalizable solutions that
superpose to form radiation ®elds (subscript `r').

Remark. Any orthogonal basis of the bound state subspace spanned by
a�x; z; f�k� exp�ÿ2if�2k z� for k � 1; . . . ;M will do. This subspace is also spanned
by a�x; z; fk� exp�ÿ2if2kz� for k � 1; . . . ;M . It follows from the above or-
thogonality relations that the entire bound state subspace is orthogonal to all
radiations modes Wr�x; z; f� for real f. Within the bound state subspace, the
following bi-orthogonality relations hold:

ha��; z; fj� exp�ÿ2if2j z�; a��; z; f�k� exp�ÿ2if�2k z�i
� ÿdjk=�fk�

Y
m6�k

�f�k ÿ fm��f�k ÿ f�m�: �12�

These relations are often useful in ®nding a convenient orthogonal basis of
bound states. (

To solve the linear SchroÈ dinger equation (10) in general, one uses complete-
ness (Miller and Akhmediev 1998) to expand the solution in terms of the basis:

f �x; z� �
XM
k�1

Bb;k�z�Wb;k�x; z� �
Z 1
ÿ1

Br�z; f�Wr�x; z; f�df: �13�
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Substituting this expansion into (10), using the fact that the modes are
themselves exact solutions of (10) and then using the orthogonality relations
to separate the projections, the Equation (10) becomes simply

i
dBb;k

dz
�z� � 0; k � 1; . . . ;M ; i

oBr

oz
�z; f� � 0: �14�

These equations are the starting point for developing coupled-mode equa-
tions for perturbations of the solitonic waveguide pro®le V0�x; z�.

2.2. THE CASE OF M � 2 AND N � 1: TWO-SOLITON POTENTIALS

Here, we brie¯y consider the special cases of M � 2 and N � 1 in more detail.
This special case already contains rich behavior that we will exploit further in
later sections of this paper. We call these `two-soliton' potentials because for
all choices of the numbers f1; f2, and the scalars g�1�0 and g�2�0 , the function
w�x; z� :� 2ib�1��x; z� is a two-soliton solution of the nonlinear SchroÈ dinger
equation

i
ow
oz
� 1

2

o2w
ox2
� jwj2w � 0: �15�

The parameters fk then play the role of the soliton eigenvalues for the
Zakharov±Shabat eigenvalue problem (Zakharov and Shabat 1972). The
parameters g�k�0 are the corresponding proportionality constants.

In the context of planar waveguide optics, the Equation (15) has meaning
very similar to that of the linear SchroÈ dinger equation. As is well-known, it
describes the propagation of beams in homogeneous planar media subject to
the Kerr e�ect in which the refractive index of the material is altered by the
presence of an intense light beam. The ®eld intensity jwj2 � ÿV0 is a non-
linear self-consistent potential generated by the light beam. This correspon-
dence makes the study of solitonic potentials V0�x; z� especially attractive for
optical applications, since the possibility exists of using a strong light beam to
`write' the waveguide structure in a nonlinear medium, and then subsequently
using this structure to control the propagation of weaker signals that are
unable to change the refractive index themselves, but certainly are in¯uenced
by the presence of the induced potential V0�x; z�.

Taking M � 2 and N � 1, the algebraic procedure described above yields
the following formula for the potential V0�x; z�:

V0�x; z� � ÿ16 N
D

���� ����2; �16�
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where with

J :� f1 ÿ f2; K :� f�1 ÿ f2; and Gk :� g�k�0 exp�ÿ2i�f�kx� f�2k z��; �17�

the numerator and denominator are given by

N :� JK�=�f2�G2 � JK=�f1�G1 � J�K=�f2�jG1j2G2 � J �K�=�f1�G1jG2j2;
�18�

D :� jJ j2�1� jG1j2jG2j2� � jKj2�jG1j2 � jG2j2� ÿ 8=�f1�=�f2�<�G1G�2�:
�19�

The bi-orthogonality conditions above suggest that in the special case of
M � 2, a convenient orthonormal basis of bound states is given by the two
functions

Wb;1�x; z� :� a�x; z; f�1� exp�ÿ2if�21 z�
ka��; z; f�1� exp�ÿ2if�21 z�k2

;

Wb;2�x; z� :� a�x; z; f2� exp�ÿ2if22z�
ka��; z; f2� exp�ÿ2if22z�k2

:

�20�

Alternatively, both f�1 and f2 may be exchanged for their respective complex
conjugates. Explicit formulas for these modes are given in terms of the
function a evaluated at f � f�1 and f � f2:

a�x; z; f�1� exp�ÿ2if�21 z� � 2iJ�K=�f1�
Dg�1�0

�J �jG1j2G2 ÿ K�G1jG2j2 ÿ JG1�; �21�

a�x; z; f2� exp�ÿ2if22z� �
2iK=�f2�g�2��0

D
�2i=�f1�G1 ÿ J �jG1j2G2 ÿ K�G2�:

�22�

The radiation mode function Wr�x; z; f� can also be found explicitly, but we
will not need it below.

2.2.1. Periodic potentials and their bound states

As a special case of the above construction, one may take the real parts of the
numbers f1 and f2 to be the same. By a Galilean transformation, we may
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without loss of generality assume the real parts are both zero, so that f1 � im1

and f2 � im2 for some positive real numbers m1 > m2. It is easily checked that
in this case the potential function V0�x; z� is z-periodic with period
L � p=�m2

1 ÿ m2
2�. That is, the corresponding nonlinear SchroÈ dinger ®eld

w�x; z� is a second-order soliton.
The two functions Wb;1�x; z� and Wb;2�x; z� are independent exact bound

state solutions of the linear SchroÈ dinger equation with this periodic potential
V0�x; z�. Both solutions have Bloch form:

Wb;1�x; z� L� � lWb;1�x; z�; Wb;2�x; z� L� � lWb;2�x; z�; �23�

for all x and z, with the same Floquet multiplier l � exp�2im2
1L� �

exp�2im2
2L�. It is indeed very unusual for z-periodic potentials to have exact

bound state solutions; typically the SchroÈ dinger equation with a z-periodic
potential may be considered to be a PDE analogue of a parametrically forced
oscillator, and as in the classical example of Mathieu's equation, periodic
solutions usually do no exist. Therefore, one expects that these bound state
solutions are structurally unstable, and that they would disappear with the
introduction of a typical perturbation to the periodic potential V0�x; z�. The
mechanism for the destruction of the bound states in this case is a resonant
coupling to the radiation modes expressed by the function Wr�x; z; f�. For
small perturbations, it is a second-order e�ect and thus the modes may be
considered to be metastable. This structural instability and the associated
dynamics of the decay process have recently been investigated in detail
(Miller et al. 2000). Typical perturbations also introduce ®rst-order e�ects
that do not lead to the decay of the bound states but instead modify the
location of the Floquet multipliers on the unit circle. A bifurcation
occurs under which the multipliers for the two modes become distinct; this
implies the appearance of a distinguished basis of Floquet eigenfunctions,
which need not be proportional to Wb;1�x; z� and Wb;2�x; z� given above.
These phenomena were also described recently (Besley et al. 1997, 1998a) in
a context where the parameters g�1�0 and g�2�0 were selected to that V0�x; z� was
an even function of x. In this case, the Floquet eigenfunctions that persist to
®rst order under perturbation are of odd and even parity in x, and do not
correspond to the function a�x; z; f� exp�ÿ2if2z� evaluated at any of the
particular f values f1; f2; f

�
1, or f�2; they are orthonormal superpositions of

these.

2.2.2. Interacting well potentials and their bound states

In the generic case when the real parts of f1 and f2 do not agree, the potential
function V0�x; z� is qualitatively di�erent from the special case described

LINEAR GUIDANCE PROPERTIES 29



above. As z! �1, the potential is asymptotically a superposition of two
potential wells that are moving with respect to each other:

V0�x; z� � V �1��0 �x; z� � V �2��0 �x; z�; �24�

with the individual wells having the form

V �k��0 �x; z� � ÿ4m2
k sech

2�2mk�xÿ vkz� ÿ d�k �; �25�

where fk � ÿvk=2� imk for vk and mk real, and where d�k are numbers that
can be computed from g�1�0 and g�2�0 . That is, the nonlinear ®eld w�x; z� is a
lossless collision of two soliton beams. Without loss of generality, we as-
sume that v2 > v1. With this assumption, the two bound modes Wb;1�x; z�
and Wb;2�x; z� are completely con®ned to one or the other potential well in
the limit z! �1. See Fig. 1 for pictures corresponding to the choices
f1 � 0:019� i, f2 � ÿ0:047� 0:4i, and g�1�0 � g�2�0 � 1. The two potential
wells interact with each other for ®nite z, and a mode that is isolated in a
single well for, say, large positive z will not necessarily be so con®ned for
large negative z. In fact, the energy for large negative z is always shared
between the wells (there is no scattering loss to radiation in the interaction),
and the amount in each well can be computed exactly (Miller and
Akhmediev 1996). Linear combinations of the two modes Wb;1�x; z� and
Wb;2�x; z� can be arranged to be con®ned in one or the other well for large
negative z. In this case (M � 2) these alternate solutions can be rather
simply obtained by evaluating a�x; z; f� exp�ÿ2if2z� for f � f1 and f � f�2
and normalizing.

Fig. 1. Density plots of the square modulus of the orthogonal bound solutions Wb;1�x; z� (left) and

Wb;2�x; z� (right) corresponding to f1 � 0:019� i; f2 � ÿ0:047� 0:4i and g�1�0 � g�2�0 � 1.
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3. Y-junctions and longitudinal deformation of solitonic potentials

The solitonic z-dependent potentials described in detail above have been
studied in several contexts, perhaps the most interesting of which is the ap-
plication to the design of all-optically induced special-purpose waveguides
for use in integrated planar optics. In this picture, the periodic potentials
described ®rst are models for periodic planar waveguides that have potential
applications as frequency detectors and spectral ®lters. At a prescribed op-
erating wavelength, such a device supports (within the applicability of the
paraxial approximation, that is, neglecting back-re¯ection) exactly two
bound modes that propagate permanently along the axis of the device. On
the other hand, the interacting well potentials are models for waveguide
junction devices. At a prescribed wavelength these devices support modes
that represent the e�cient channeling of optical energy through the X-shaped
waveguide junction with no loss to radiation. There is crosstalk,4 between the
linear channels, but there is no loss to radiation, and the crosstalk is precisely
quanti®able and can even be prescribed in the design parameters f1 and f2
(Miller and Akhmediev 1996).

One can try to generalize these results, by considering how the two output
channels of the X-junction device might be viewed as branches of a
Y-junction, and thus be e�ectively spliced onto a single trunk corresponding
to the periodic waveguide device. Both pieces have two bound modes and one
might like to consider how, if the two devices were somehow smoothly
merged together, the light propagating along the trunk of the Y might be
divided among the two branches, and how the result depends upon which
modes of the trunk are excited.

The main idea is that one can obtain a Y-shaped potential by considering
the parameters f1 and f2 to depend on z in such a way that along the length of
the device they go from being purely imaginary (corresponding to the peri-
odic waveguide trunk) to having distinct real parts (corresponding to the
X-junction shape). This leads us to consider how the theory changes when the
parameters depend on z.

Let the parameters f1; . . . ; fM and the vectors~g�k� be arbitrary functions of
z (i.e. instead of taking them to be respectively constants and pure expo-
nential functions as before). Note that the linear algebraic procedure pre-
sented in Section 2 goes through as before, and speci®es the various
coe�cients a�p��x; z� and ~b�p��x; z�. From the formula (8) one then obtains a
potential function V0�x; z�. Similarly, one obtains from (9) the function
Wr�x; z; f� and then ®nds functions Wb;k�x; z� by applying the Gram±Schmidt
orthonormalization procedure to the functions

4Zero-crosstalk X-junctions can also be designed using solitonic potential theory. See Miller (1996).
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a�x; z; f�k�z�� exp ÿ2i
Z z

0

fk�s��2ds
� �

�26�

for k � 1; . . . ;M . With the parameters taken to be arbitrary functions of z in
this way,
1. A greater variety of waveguide shapes, encoded in the function V0�x; z�,

can be obtained.
2. The functions Wr�x; z; f� for f 2 R and Wb;1�x; z�; . . . ;Wb;M�x; z� still form a

complete orthonormal basis of L2�R� for each ®xed z, and can therefore be
used to expand any function of x and z in terms of z-dependent coe�cients.
The orthogonality relations are exactly the same as before.

The theory diverges from the exact solitonic potential theory given in Section 2
when we consider the evolution of these `modes' in z. They no longer satisfy
the linear SchroÈ dinger equation (10) corresponding to the deforming potential
function V0�x; z�. In Appendix A, the exact equations satis®ed by these func-
tions are derived and used to write the corresponding exact coupled-mode
equations for deformed two-soliton potentials. These equations are obtained
by projecting the solution of the linear SchroÈ dinger equation (10) with de-
forming potential V0�x; z� onto the orthonormal basis, and they take the form

i
dBb;1

dz
�z� � M �NA�

11 �z�Bb;1�z� �M �NA�
12 �z�Bb;2�z� �

Z 1
ÿ1

N �NA�
1 �z; f�Br�z; f�df

i
dBb;2

dz
�z� � M �NA�

21 �z�Bb;1�z� �M �NA�
22 �z�Bb;2�z� �

Z 1
ÿ1

N �NA�
2 �z; f�Br�z; f�df

i
oBr

oz
�z; f� � O�NA�

1 �z; f�Bb;1�z� � O�NA�
2 �z; f�Bb;2�z�

�
Z 1
ÿ1

K�NA��z; f; g�Br�z; g�dg; �27�

where the coe�cients are explicitly given in Appendix A.
The system (27) captures the exact dynamics of the Schr�odinger Equation

(10) with potential V0�x; z� constructed from the arbitrary given functions
f1�z�, f2�z�, g�1��z� and g�2��z�. The superscript (NA) on the matrix elements
indicates that their contribution to the dynamics re¯ects the e�ect of `non-
adiabatic' deformations in the potential. However, if the dependence of the
parameters fk on z is adiabatic, so that dfk=dz and idg�k�=dzÿ 2f�2k g�k� are
uniformly small in z, then the coe�cients on the right-hand side of (27) will be
small, with a size that is precisely quanti®ed in Appendix A. This means that
solutions of (27) will be close to solutions of the trivial system (14) over very
long distances in z. To be more precise, it follows from the explicit formulas in
Appendix A that if �2 is a small uniform bound for the derivatives dfk=dz and
the di�erences idg�k�=dzÿ 2f�2k g�k�, then the di�erence between the function
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Bb;k�z� computed on the one hand from the system (14) and on the other from
the system (27) will be O��2� over ®xed z-intervals as � goes to zero. On
expanding z-intervals of size O��ÿ1�, the error will still be small, O���.

In this paper, we will always consider the functions fk�z� to be of the form

fk�z� � ÿ
�

2
vk��z� � imk; �28�

where the mk are real constants, and where the real functions vk�Z � �z� are
bounded and have bounded derivatives with respect to their arguments.
Given these, we will further assume that

g�k��z� � g�k��0� exp ÿ2i
Z z

0

fk�s��2ds
� �

: �29�

In this case, it is easy to verify the adiabaticity with the estimate

X2
k�1

sup
z2R

��� dfk

dz
�z�
��� � �2

2

X2
k�1

sup
Z2R

���dvk

dZ
�Z�
��� � O��2�: �30�

This means that on length scales of size �ÿ1 we may simply drop the terms on
the right-hand side of (27) at the cost of uniformly small O��� error. However,
one of the main messages we want to deliver in this paper is that with the
above adiabaticity assumptions on fk�z�, the deformation in the transverse
direction x is signi®cant over length scales z � O��ÿ1� where the coupling of
the modes is negligible. That is, the `centers of mass' of the individual po-
tential wells can be changed by an order O�1� amount over z distances that
scale like �ÿ1, and the e�ect of mode coupling can still be neglected. This
opens the door the several new possibilities in all-optical device design for
planar optical waveguides, including the design of e�ective Y-junctions.

4. Further corrections for wavelength detuning

In our analysis of beam propagation in solitonic Y-junction waveguides we
will need to take into account small shifts in the operating wavelength. This
leads to additional terms in the coupled-mode equations as we will now see.
Consider the e�ect of slightly changing the frequency parameter b in the
neighborhood of b � 1, starting with an equation of the form

i�1� n� of
oz
� 1

2

o2f
o~x2
ÿ �1� n�2V0�~x; z�f � 0; b � 1� n; �31�
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for some ®xed function V0�~x; z�, say specifying a Y-junction as a deformed
solitonic potential. In transcribing this equation from (1) in the beginning
Section 2, we have written ~x instead of x because we anticipate the utility of a
change of variables: x � ~x

�����������
1� n
p

. Making this change of variables, we obtain
for f � f �x; z�,

i
of
oz
� 1

2

o2f
ox2
ÿ �V0�x; z� � W �x; z��f � 0; �32�

where W �x; z� � �1� n�V0�x=
�����������
1� n
p

; z� ÿ V0�x; z�.
This perturbation W �x; z� is uniformly small for all x and z as n goes to

zero. This makes it easy to incorporate directly into the coupled mode
equations. Expanding the solution of (32) in the complete orthonormal basis
corresponding to the deforming background potential V0�x; z� as described in
Section 3, and projecting onto the basis elements Wb;k�x; z� for k � 1; 2 and
Wr�x; z; f�, we ®nd the equations

i
dBb;1

dz
�z� � M11�z�Bb;1�z� �M12�z�Bb;2�z� �

Z 1
ÿ1

N1�z; f�Br�z; f�df

i
dBb;2

dz
�z� � M21Bb;1�z� �M22Bb;2�z� �

Z 1
ÿ1

N2�z; f�Br�z; f�df

i
oBr

oz
�z; f� � O1�z; f�Bb;1�z� � O2�z; f�Bb;2�z� �

Z 1
ÿ1

K�z; f; g�Br�z; g�dg;

�33�

where

Mkj�z� :� M �NA�
kj �z� � hWb;k��; z�;W ��; z�Wb;j��; z�i;

Nk�z; f� :� N �NA�
k �z; f� � hWb;k��; z�;W ��; z�Wr��; z; f�i;

Ok�z; f� :� O�NA��z; f� � hWr��; z�;W ��; z�Wb;k��; z�i;
K�z; f; g� :� K�NA��z; f; g� � hWr��; z; f�;W ��; z�Wr��; z; g�i:

�34�

Note that as a consequence of the reality of the correction W �x; z�, the cor-
responding contributions to the matrix elements Mjk form a Hermitian
symmetric matrix, the contributions to Ok�z; f� are the complex conjugates of
those to Nk�z; f�, and the contribution to K�z; f; g� is a Hermitian kernel.

In the application we will consider very soon, the correction W will scale
like �, where � is the small parameter introduced at the end of Section 3. From
the discussion at the end of that section, it should be clear that with this
scaling, the corrections coming from the wavelength perturbation W �x; z� will
dominate any contributions from the nonadiabaticity of the potential
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deformation over length scales in z of length proportional to �ÿ1. This leads
to very simple equations of motion in which nonadiabatic e�ects can be
neglected.

5. Beam propagation in solitonic Y-junction waveguides

We now use the coupled-mode equations, which describe the exact dynamics
of beam propagation in a deformed and possibly wavelength-detuned soli-
tonic waveguide to describe the switching and frequency response properties
of a Y-junction waveguide. As stated in Section 3, we will always take fk�z� to
be of the form (28), with mk being constants and where the velocity functions
vk��� are uniformly bounded. Usually we will further consider the velocity
functions to satisfy vk�0� � 0 and vk��1� � v1k , so the velocities ultimately
saturate and become constant. Also, v2�Z� � v1�Z� for all Z � 0. In this case,
we know that for small �, the correction terms on the right-hand side of (27)
will be negligible over distances z of size �ÿ1. At the same time, over these
distances the deformation of the potential V0�x; z� in the transverse x direc-
tion is an order O�1� e�ect.

5.1. A SOLITONIC Y-JUNCTION WRITTEN WITH LIGHT

As a speci®c example of such functions vk�Z�, we now describe one way they
may be obtained from a self-consistent nonlinear problem. Suppose one tried
replacing the integrable cubic nonlinear SchroÈ dinger equation (15) where it
occurs in the solitonic potential theory with the cubic-quintic SchroÈ dinger
equation:

i
ow
oz
� 1

2

o2w
ox2
� jwj2w � �2jwj4w; �35�

where � > 0 is a small parameter. That is, one considers potential functions
V0�x; z� � ÿjw�x; z�j2 where now w�x; z� satis®es (35) rather than (15). With
this sign on the quintic term, the Equation (35) describes the propagation of
intense light beams in a homogeneous medium like PTS where the Kerr
e�ect is corrected with a saturation of the dependence of the refractive index
on the intensity. For extreme intensities the Kerr e�ect gives way to the
quintic term which has the opposite sign. However, for more physical
moderate intensities the quintic term introduces a slight weakening of the
Kerr e�ect that is appropriate for the modeling of saturable media, like
polymer and photorefractive materials. As we pointed out in Section 1, the
advantage of this thought experiment is that adiabatic solitonic Y-junctions
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associated with self-consistent potentials of the cubic±quintic model (35) can
be written in the medium simply by launching a pump beam with an ap-
propriate pro®le. Similar Y-junction waveguides have been created in the
laboratory using exactly this idea (Luther-Davies and Xiaoping 1992a; Chen
et al. 1996).

It has been observed numerically (Artigas et al. 1997) that the in¯uence of
the quintic term in (35) for small � on the quasiperiodic two-soliton state of
the cubic equation (that corresponds to the periodic waveguides described
either) causes its destabilization. The two solition components gradually
separate from one another, gaining independence. Ultimately, the two soli-
tons split apart completely and the perturbation does not further a�ect them
qualitatively.

These e�ects can be described analytically (Besley et al. 2000) using mul-
tiscale asymptotics. For small �, the inverse-scattering transform that is the
nonlinear mode decomposition diagonalizing the dynamics of the unper-
turbed Equation (15) remains useful in the study of (35) as a starting point
for perturbation theory. The solition eigenvalues fk of the Zakharov±Shabat
eigenvalue problem (Zakharov and Shabat 1972) are no longer constant
when w evolves according to (35) rather than (15), but become slowly
varying. The method of multiple scales applied in the scattering transform
domain shows that the soliton eigenvalues fk may be taken to be of the form
(28). This analysis results in a simple model for the interaction of two par-
ticles in one dimension with the coordinates x1�Z� and x2�Z�, where Z � �z.
The model takes the simple form of Newton's equations:

m1
d2x1
dZ2
� F1�x1; x2; m1;m2�; m2

d2x2
dZ2
� F2�x1; x2; m1;m2�; �36�

and the link to (28) is that the functions vk�Z� are just the velocities dxk=dZ of
the respective particles. Most of the work involved is in the computation of
the force functions Fk. However, these force functions conserve the total
momentum, which allows the problem to be reduced to a similar equation for
the relative displacement y�Z� � x2�Z� ÿ x1�Z�, and then a scaling symmetry
can be used to reduce the number of independent parameters from two (m1

and m2) to one, a normalized e�ective mass, ~M . Thus, with q :� y
�����������
m1m2
p

and
S :��m1m1�3=2Z, the dynamical equations can be put in the form

~M
d2q
dS2

� F �q; ~M�; �37�

for a one-parameter family of force functions F.
As described in Besley et al. (2000), the (q, dq/dS) phase plane for this

system exhibits a single unstable ®xed point at the origin. Five orbits have the
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same energy as the ®xed point: the ®xed point itself considered as an orbit,
and two branches each of the stable and unstable manifolds making up the
separatrix in the usual fashion. All of the separatrix branches become parallel
to the q axis for large q, which corresponds to the force F being of essentially
®nite range and dying out for large q. So, typical orbits starting near the
origin in the phase plane ultimately wind up along the unstable manifold,
where the velocity saturates to a constant value.

From solutions of the dynamical system (37), one unravels the changes of
variables and obtains corresponding solutions of (36). In turn, these give the
soliton eigenvalues fk�z� in the form (28) and the corresponding propor-
tionality constants g�k��z�. These are then used to construct the approximate
solution w�x; z� � 2ib�1��x; z� of (35), according to the algebraic procedure
described in Sections 2 and 3. The qualitative agreement between this per-
turbative calculation and numerical simulations of (35) is demonstrated in
Fig. 2. The (essentially identical) pictures in Fig. 2 should be viewed by the
reader as plots of the potential V0�x; z� of a Y-junction planar waveguide
device (the potential well is deepest where the plot lightest, and the potential
goes to zero on the black background) of exactly the type described earlier.

5.2. EFFICIENT TRUNK MODE SPLITTING

The main observation is that, regardless of whether the vk�Z� are supplied by
a nonlinear theory or are simply cooked up subject to the assumptions

Fig. 2. Left: the ®eld jw�x; z�j2 as obtained by perturbation theory. Right: the ®eld jw�x; z�j2 as obtained by

numerical simulation of the perturbed Equation (35). In both pictures m1 � 1;m2 � 0:4, and �2 � 0:00125.

The initial velocities were both taken to be zero, and x1�0� was a small negative number while x2�0� was a
small positive number. This choice perturbs the initial phase point slightly away from the ®xed point at the

origin.
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outlined above in a brute-force exercise of engineering (see Section 6 for an
example of the latter), the splitting and separation of the coordinates x1 and
x2 by an order one amount always takes place over scales of length �ÿ1, and
on this scale the dynamics is well approximated up to terms of size O��� by
(14).

This means that the functions Wb;1�x; z� and Wb;2�x; z� de®ned in Section 3
when the parameters f1 and f2 satisfy (28) are independent approximate
modes of the adiabatic solitonic Y-junction. The approximation improves as
� decreases in magnitude. Moreover, since each of these modes smoothly
connects a Floquet mode of the z-periodic trunk of the junction onto exactly
one of the two modes of the branches pictured in Fig. 1, these modes describe
an adiabatic modal splitting process. These facts are illustrated in Figs. 3 and
4. Using the functions vk�Z� determined from perturbation theory applied to
(35), the adiabatic potential theory of Section 3 is applied to compute the
potential V0�x; z� of the Y-junction (this is basically what is illustrated in
Fig. 2). Then, Fig. 3 compares the corresponding adiabatic bound mode
Wb;1�x; z� with the result of a numerical integration of the linear SchroÈ dinger
equation with the Y-junction potential V0�x; z� for �2 � 0:00125. Fig. 4 does
the same with the adiabatic mode Wb;2�x; z�. There is indeed a small error
associated with the adiabatic approximation, but it is order O��� and thus
vanishes in the adiabatic limit. We emphasize again the auxiliary role played
by the particular choice of the functions vk�Z�; virtually any bounded smooth
functions can be used to the same e�ect. This fact underscores the enormous
range of possibilities for device design available using solitonic potentials.

Fig. 3. Left: a plot of the square modulus of the approximate mode Wb;1�x; z� of the adiabatic solitonic

Y-junction. Right: corresponding numerical simulation of the linear SchroÈ dinger equation with adiabat-

ically deforming two-soliton potential. The nonadiabaticity parameter is �2 � 0:00125, and the channel

depth parameters are m1 � 1 and m2 � 0:4.
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The pictures in Figs. 3 and 4 demonstrate the fact that solitonic Y-junc-
tions of the type described here will perform very well as e�cient switching
devices. The fact that, once the two output ports of device separate, the
approximate bound modes Wb;k�x; z� are very close to those of the X-junction
(see Fig. 1) implies both the con®nement of each mode to one or the other of
the output ports (again up to a small error of size O���) and the explicit form
of the excitation required at the trunk of the Y-junction in order to channel
the light in a particular direction.

5.3. WAVELENGTH DETUNING AND FREQUENCY RESPONSE

The adiabatic Y-junction device described above is designed to operate at a
particular wavelength k0 where by choice of units we have b � 1 in the linear
SchroÈ dinger equation. The e�ect of detuning the wavelength slightly is
modeled by the same equation with the same potential function V0�x; z�, but
with b 6� 1. It is easily illustrated using numerical integration of the linear
SchroÈ dinger equation, as in Fig. 5. The e�ect of detuning the wavelength
appears to be a dynamical exchange of energy between the two modes that
resembles a beating process. Roughly speaking, how much light is trans-
mitted into each of the two output ports depends on what superposition of
the two modes is excited when the trunk of the Y opens up.

We want to consistently extend our model to capture this e�ect when
b � 1� n and n is small. The main di�culty in a formal treatment by the
method of multiple scales would appear to be the presence of two indepen-
dent small parameters, � and n. We remedy this situation immediately by

Fig. 4. Left: a plot of the square modulus of the approximate mode Wb;2�x; z� of the adiabatic solitonic

Y-junction. Right: corresponding numerical simulation of the linear SchroÈ dinger equation with adiabat-

ically deforming two-soliton potential. The parameters are the same as in Fig. 3.
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making the assumption that n � q�, where q is considered to be a ®xed
parameter as � tends to zero.

As explained in Section 4, the appropriate modi®ed equation (in a slightly
deformed transverse variable) is

i
of
oz
� 1

2

o2f
ox2
ÿ �V0�x; z� � W �x; z��f � 0; �38�

where V0�x; z� is the potential for an adiabatic Y-junction planar waveguide
(with nonadiabaticity parameter �) the perturbation W �x; z� has the form

W �x; z� � �1� q��V0�x=
�������������
1� q�

p
; z� ÿ V0�x; z�

� q� V0�x; z� ÿ x
2

oV0

ox
�x; z�

� �
�1� O����: �39�

With q ®xed as � tends to zero, this perturbation to the potential is formally
of size �. Therefore, unlike the nonadiabatic correction terms on the right-
hand side of (33) that are of size �2 and contribute negligibly to the dynamics
for z � O��ÿ1�, the contribution from the change in operating wavelength is
larger and will be important on these scales. Note that the O��� error in (39) is
uniform in x because V0�x; z� and all of its x derivatives vanish exponentially
for large x.

So, all of the terms on the right-hand side of (33) are uniformly O���, and
the dominant terms are all contributed by the function W �x; z� given by (39).

Fig. 5. The e�ect of wavelength detuning on the Y-junction. Left: numerical integration of the linear

SchroÈ dinger equation with b � 1:1 and initial condition Wb;1�x; 0�. Right: the same for the initial condition

Wb;2�x; 0�. The nonadiabaticity parameter is �2 � 0:00125. These pictures should be compared with Figs. 3

and 4.
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With these observations, we may begin the analysis of (33). Our initial
conditions will be

Bb;k�0� � Bb;k0; Br�0; f� � 0; �40�

for some constants Bb;k0, so we assume only that there is initially no energy in
the radiation spectrum. Assume power series expansions

Bb;k � B�0�b;k � �B�1�b;k � O��2�; Br�f� � B�0�r �f� � O���; �41�

and introduce the slow scale Z � �z. For functions of both scales z and Z, we
use the chain rule to replace

o
oz
! o

oz
� � o

oZ
: �42�

Inserting these expansions into (33) and collecting powers of � we ®nd at
leading order simply:

B�0�b;k � B�0�b;k�Z�; B�0�r �f� � 0: �43�

The vanishing of the radiation mode amplitude at this order is the only
solution consistent with the initial conditions. At order O���, we obtain the
equations:

i
oB�1�b;1

oz
� M �1�11 B�0�b;1�Z� �M �1�12 B�0�b;2�Z� ÿ i

oB�0�b;1

oZ
�Z�;

i
oB�1�b;2

oz
� M �1�21 B�0�b;1�Z� �M �1�22 B�0�b;2�Z� ÿ i

oB�0�b;2

oZ
�Z�;

�44�

where M �1�jk are the leading contributions of the matrix elements Mjk (see
below). At this order, we also ®nd an equation for the correction to the
radiation mode amplitude that we will not need. Note that the result (43)
from leading order implies that there are no contributions from the radiation
mode amplitude Br to these equations for the corrections to Bb;k at this order.

To continue with the analysis, we need to have approximations ± consistent
with the assumptions about the functions f1�z� and f2�z� and convergent in the
limit of � going to zero ± of the matrix elements Mjk. The approximations need
to be uniformly valid as �! 0 for long scales z � O��ÿ1�. Formally speaking,
this means that we need to obtain approximations of the form

Mjk�z� � �M �1�jk �z; Z � �z��1� O����; �45�
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where the error term is uniformly small for all z and for Z held ®xed. We
already have from the estimates of the nonadiabatic contributions and from
(39) that

Mjk�z� � hWb;j��; z�;W ��; z�Wb;k��; z�i�1� O����

� q� Wb;j��; z�; V0��; z� ÿ ���
2

oV0

ox
��; z�

� �
Wb;k��; z�

� �
�1� O����: �46�

At this point, we need corresponding approximations of the potential V0�x; z�
and the bound modes Wb;1�x; z� and Wb;2�x; z� of the type described above
that additionally are uniformly valid for all x since they appear inside the
inner product integral. These approximations are of the form

V0�x; z� � ~V0�x; z;Z��1� O����;
Wb;k�x; z� � ~Wb;k�x; z;Z��1� O����; �47�

where the error terms are uniform in the sense described above. The required
approximation ~V0 is given exactly by the formula (16), wherein we simply
substitute

Gk ! exp�ÿ2mk�xÿ xk�Z��� exp�2imkz� ihk�; fk ! imk; �48�

with the position xk�Z� being de®ned in terms of the velocity vk�Z� by

xk�Z� :� xk�0� �
Z Z

0

vk�s�ds; �49�

and with the initial position and phase

xk�0� :� 1

2mk
log jg�k�0 j; hk :�=�log�g�k�0 ��: �50�

Similar approximations ~Wb;1 and ~Wb;2 for the basis of bound modes are given
by (20) along with the formulas (21) and (22) subject to the same substitu-
tions (48). Note here that the normalization `constants' in the denominators
of (20) are indeed constant up to an O��� error term that is uniformly small
for all z � O��ÿ1�. This procedure ultimately yields the required expressions:

M �1�jk �z;Z� � q ~Wb;j��; z; Z�; ~V0��; z; Z� ÿ ���
2

o ~V0

ox
��; z; Z�

� �
~Wb;k��; z;Z�

� �
:

�51�

For ®xed Z, these functions are periodic in z with period L � p=�m2
1 ÿ m2

2�.
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Continuing with the solution of (44), we see that the corrections B�1�b;k will
only be bounded functions of z if the right-hand side has zero mean value. We
therefore choose the dependence of B�0�b;k on Z exactly to remove the mean
secular terms. That is, we set

i
oB�0�b;1

oZ
�Z� � M �1�11 �Z�B�0�b;1�Z� �M �1�12 �Z�B�0�b;2�Z�;

i
oB�0�b;2

oZ
�Z� � M �1�21 �Z�B�0�b;1�Z� �M �1�22 �Z�B�0�b;2�Z�;

�52�

where the mode coupling coe�cients are de®ned by

M �1�jk �Z� :�
1

L

Z L

0

M �1�jk �z;Z�dz: �53�

It follows from the speci®cation of the mode coupling coe�cients that all of
the dependence on Z enters via the two functions x1�Z� and x2�Z�. Moreover,
it is not hard to see that they only depend on the di�erence y�Z� �
x2�Z� ÿ x1�Z� between these two functions. We may thus rewrite them as

M �1�jk �Z� � qKjk�y�Z�; m1;m2�; �54�

where we have factored out the ratio parameter q � n=�. The advantage of
this observation is that the same four universal functions Kjk�y; m1;m2� de-
scribe the exchange of energy between the two bound modes regardless of the
origin of the functions x1�Z� and x2�Z�.

Computing these universal functions requires, according to (53) and (51),
evaluating two integrals for each value of y and the parameters m1 and m2. In
fact, by exchanging the order of integration, the averaging step (53) can be
done ®rst and moreover explicitly since the periodic dependence on z is quite
simple; thus the integral (53) can be computed by residues. Rather than
giving details here, we direct the interested reader to Besley et al. (2000)
where a very similar (but more involved) calculation is presented. This an-
alytical averaging step reduces the computation of the universal functions
Kjk�y; m1;m2� to a single integral (51) over x 2 R. For given values of the
parameters m1 and m2, this integral may then be calculated numerically for
each ®xed value of y.

Fig. 6 shows a plot of the universal coupling coe�cients for m1 � 1 and
m2 � 0:4. The cross-coupling coe�cients K12 and K21 vanish as y !1 and
the output waveguide ports separate. This is an expected result, since in
this limit the approximate bound modes Wb;k�x; z� are localized in one or
the other waveguide channel. These output channels are individually
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single-moded waveguides with distinct propagation constants, and it is well-
known (Snyder and Love 1983) that if they are separated by a large trans-
verse distance the coupling will be negligible.

It is also easy to see directly from the de®nition of the coupling coe�cients
that they are all real-valued, and that K21 � K12. These features guarantee
that the total bound power

P �0�b :� jB�0�b;1j2 � jB�0�b;2j2 �55�

is a constant of motion under the asymptotic model (52). This statement
means that the conservation of bound power only holds approximately in the
true system (38) on length scales Z � O�1� or z � O��ÿ1�. On longer scales,
there will be signi®cant losses to forward-propagating radiation modes.

We determine the behavior of the modes by integrating (52), which takes
the form

i
dB�0�b;1

dz
�z� � nK11�y��z�; m1;m2�B�0�b;1�z� � nK12�y��z�; m1;m2�B�0�b;2�z�;

i
dB�0�b;2

dz
�z� � nK21�y��z�; m1;m2�B�0�b;1�z� � nK22�y��z�; m1;m2�B�0�b;2�z�;

�56�

when we think of B�0�b;k as functions of z rather than Z � �z. Although we
assumed that � and n were proportional to obtain (56), we may now simply
take them to be independent. In fact, the physically important situation is to

Fig. 6. The universal coupling functions Kjk�y; 1; 0:4�.
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consider � ®xed but small, which determines the geometry of the potential
V0�x; z� and thus the waveguide dimensions, and then vary n. Since the ratio
parameter q � n=� was presumed ®xed while � # 0 in out analysis, we expect
that the integration of (56) should give valid results as long as � is small and n
is not too small or too large compared to �. In Fig. 7, we compare the results
of numerical integration of the model system (56) with direct numerical in-
tegration of (38) over a range of values of n for �2 � 0:00125, m1 � 1, and
m2 � 0:4. The initial condition for the Equation (38) is f �x; 0� � Wb;1�x; 0�
and the corresponding initial condition for (56) is B�0�b;1�0� � 1 and

Fig. 7. Mode di�erentiation spectra for the solitonic Y-junction. Top: the result of integrating the system

(52) for initial conditions B�0�b;1�0� � 1 and B�0�b;2�0� � 0. Bottom: the result of numerical integration of the

partial di�erential equation for the initial conditions f �x; 0� � Wb;1�x; 0�. In both cases, �2 � 0:00125,

m1 � 1:0, m2 � 0:4, and the integration is carried out to z � 200.
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B�0�b;2�0� � 0. The plots show the values of jBb;k�z�j2 for z � 200, a position well
beyond the opening of the branches of the Y-junction; this means that the
relative velocity y0��z� is nearly saturated to its asymptotic constant value. It
follows from the behavior of the universal coupling coe�cients Kjk as func-
tions of y, that for large z the two bound mode amplitudes become constant
in modulus, and thus these mode di�erentiation spectra as computed for
z � 200 are not expected to change further for larger z.

The fact that P �0�b is conserved by (56) is re¯ected in the fact that the two
curves in the top plot add up to one. On the other hand, the
higher-order scattering losses that are not captured by the system (56) are
indeed evident in the bottom plot, where the bound power is plotted as well.
Fig. 8 is similar to Fig. 7 but for an initial condition for (38) of
f �x; 0� � Wb;2�x; 0� and correspondingly for (56) of B�0�b;1�0� � 0 and

B�0�b;2�0� � 1.

The qualitative agreement between the predictions of the model system
(56) and the numerical integration of the full SchroÈ dinger Equation (38) is
obvious from these ®gures. It is also clear that, as anticipated, the asymptotic
results obtained from (56) are most accurate for n � �. As n increases for �
®xed, higher-order e�ects like radiative losses in the periodic trunk of the
junction (these are quanti®ed in Miller et al. (2000)) become more important.
More subtle but also clear is the failure of the asymptotic theory of n� �. In
this regime, the numerical simulations of (38) indicate a slight spectral shift of
the peak of optimal performance. This e�ect is connected with the nonadi-
abatic terms formally of order O��2� that were neglected, but that dominate
in this regime.

Not only do these plots indicate the accuracy of the simple model (56) in
comparison with a much more computationally intensive beam propagation,
but they also show that in those experiments for which the signal must use a
di�erent wavelength from the pump beam that induces the Y-junction, some
signal wavelengths are more desirable than others. It is clear that the most
sharply de®ned mode splitting occurs in the neighborhood of the central peak
in the transmission spectra, and therefore in such experiments, the best
performance would be expected for signal wavelengths arbitrarily close to,
but not equal to, the pump wavelength. The performance is therefore limited
only by the spectral width of auxiliary ®ltering components used in the ex-
periments. But reasonably good mode di�erentiation also occurs in certain
sidebands of the transmission spectrum, the ®rst of which occurs in these
plots (that is, for the particular values of �;m1, and m2 used here) near
n � �0:075. Of course, in those experiments in which four-wave mixing ef-
fects are made negligible, there is no di�culty with launching the signal beam
in either trunk mode at exactly the optimal wavelength at the center of the
transmission spectrum.
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6. Conclusion

The solitonic waveguides are a family of special z-dependent potentials for
the linear SchroÈ dinger equation in which multi-moded beam propagation is
completely lossless. The family of solitonic waveguides is indexed by pa-
rameters including the numbers fk. For ®xed values of the parameters, soli-
tonic waveguides already exhibit complex spatial structure, allowing the
design of multiport power dividing junctions, directional couplers, z-periodic
channels, and so on. In this paper, we have shown that by allowing the

Fig. 8. Mode di�erentiation spectra for the solitonic Y-junction. Top: the result of integrating the system

(52) for initial conditions B�0�b;1�0� � 0 and B�0�b;2�0� � 1. Bottom: the result of numerical integration of the

partial di�erential equation for the initial conditions f �x; 0� � Wb;2�x; 0�. In both cases, �2 � 0:00125,

m1 � 1:0, m2 � 0:4, and the integration is carried out to z � 200.
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parameters to be adiabatic functions of z, in a way that is precise, the
guidance properties are only slightly degraded over propagation distances in
which the waveguide deformation is signi®cant. We have applied these results
to the analysis of a Y-junction waveguide that can be induced in a homo-
geneous nearly-Kerr nonlinear medium like PTS by the decay of a double
soliton beam into two single solitons, showing that the device functions as an
e�cient mode splitter. In order to accommodate experimental situations
where the signal beam must be of a di�erent wavelength from the pump, we
used perturbation theory to compute the e�ect of such detuning on the mode
splitting characteristics, in the regime where the detuning is small, but still a
larger e�ect than the nonadiabaticity of the junction. E�cient switching re-
mains possible in a small neighborhood of the design wavelength as well as in
the neighborhood of several side-peaks in the transmission spectrum.

As a concrete example, we have studied the particular adiabatic variation of
the two-soliton waveguide that arises naturally in the nonlinear process of
beam splitting in saturable materials, in which nonlinear propagation is
modeled by the cubic±quintic nonlinear SchroÈ dinger equation (35). This is
because we believe that devices like this can already be implemented with
current experimental techniques, and it will not be long before the leap is made
from isolated laboratory experiments to practical, repeatable implementation.

On the other hand, we want to emphasize that our results all remain valid in
the presence of arbitrary adiabatic variations of the solitonic waveguide pa-
rameters. The center of mass functions x1�Z� and x2�Z� do not have to come
from a nonlinear theory for the resulting adiabatic solitonic waveguide to
have useful mode splitting properties, as long as the nonadiabaticity param-
eter � is su�ciently small. To demonstrate this point, we now give a design of
an adiabatic solitonic Y-junction for which the two branch ports and the
trunk port are all parallel outside the splitting region. We again choose m1 � 1
and m2 � 0:4 and �2 � 0:00125. The two designs we propose are shown in
Fig. 9. In the left-hand plot, we introduced adiabatic deformation of the
parameters f1 and f2 with the use of the functions x1�Z� � ÿx2�Z� where

x2�Z� �
0; Z � 2
Tlinear�Z�; 2 � Z � 5
5; Z � 5,

8<: �57�

with the transition function

Tlinear�Z� :� 5

3
�Z ÿ 2�: �58�

These displacements provide a straight-line transition between two exact
z-periodic solitonic waveguides, one in which the centers of mass are identical
and thus the waveguide is obviously periodic, and one in which the centers of
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mass are far apart, and thus the periodicity is less obvious. A smoother
version of the same transition is given in the right-hand plot. Here, we used
in®nitely smooth functions x1�Z� � ÿx2�Z� obtained by simply replacing the
straight-line transition function by

Tsmooth�Z� :� 5

2
1� tanh tan

p
2

2

3
�Z ÿ 2� ÿ 1

� �� �� �� �
: �59�

The pictures are qualitatively very similar, suggesting that not much is gained
by the smoothness of the transition, as long as the derivatives of the functions
xk�Z� (these are just the velocities vk�Z�) are bounded. Then one may take �
su�ciently small for ®xed coordinate functions and achieve arbitrarily ac-
curate mode splitting. For both of these Y-junction waveguides, the mode
splitting e�ciency at this value of � is expected to be qualitatively similar to
that illustrated in Figs. 3 and 4 for the same excitations of the trunk channel.

Appendix A: Coupled-mode equations for deformed solitonic potentials

In this appendix, we show how the coupled-mode equations (14) are altered
by allowing the parameters f1; . . . ; fM to di�er from constants as functions of
z, and the vectors~g�1�; . . . ;~g�M� to di�er from pure exponentials. We begin by
observing that in the ®xed-parameter case described in Section 2, the function
a�x; z; f� satis®es for each complex f the equation

i
oa
oz
� 1

2

o2a
ox2
ÿ V0a � ÿ2f2a: �60�

Fig. 9. Two adiabatic mode-splitting solitonic Y-junctions with parallel trunks and branches. Left:

angular branching. Right: in®nitely smooth branching. In both cases, �2 � 0:00125.
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Next we observe that in the ®xed-parameter case, a�x; z; f� only depends on z
through the quantities ~g�k� which satisfy

d~g�k�

dz
�z� � ÿ2if�2k ~g

�k��z�: �61�

This means that (60) can be rewritten as

2
XM
k�1

f�2k

XN

n�1
g�k�n

oa

og�k�n

ÿ f2k
XN

n�1
g�k��n

oa

og�k��n

 !
� 1

2

o2a
ox2
ÿ V0a � ÿ2f2a: �62�

There is no direct reference to any z-dependence in this equation. By its
construction, a may be considered to be a complex analytic function of x; f,
and quantities ~g�k� and fk and their complex conjugates for k � 1; . . . ;M :

a � a�x; f; ffkg; ff�kg; f~g�k�g; f~g�k��g�: �63�

The potential V0 depends on all of these quantities except for f:

V0 � V0�x; ffkg; ff�kg; f~g�k�g; f~g�k��g�: �64�

Equation (62) is therefore an identity that is a consequence of the algebraic
construction alone.

This means that (62) continues to hold when the quantities f~g�j�g; ffjg, as
well as f are taken to be arbitrary functions of the longitudinal parameter z.
In this more general case, the chain rule applied to (63) gives

oa
oz
� df

dz
oa
of
�
XM
k�1

dfk

dz
oa
ofk
� df�k

dz
oa
of�k
�
XN

n�1

dg�k�n

dz
oa

og�k�n

� dg�k��n

dz
oa

og�k��n

 ! !
:

�65�

Comparing this expression with (62), we can write a SchroÈ dinger-like equa-
tion that holds in the deformed case:

i
oa
oz
� 2f2a� 1

2

o2a
ox2
ÿ V0a � i

df
dz

oa
of
� i
XM
k�1

dfk

dz
oa
ofk
� df�k

dz
oa
of�k

� �

�
XM
k�1

XN

n�1
i
dg�k�n

dz
ÿ 2f�2k g�k�n

� �
oa

og�k�n

 

� i
dg�k��n

dz
� 2f2kg�k��n

� �
oa

og�k��n

!
: �66�
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In this equation, the terms on the left-hand side may all be considered to be
functions of the independent variables x and z. By contrast, the terms on the
right-hand side involve derivatives with respect to quantities that are related
to the algebraic structure of a, that is, derivatives with respect to the variables
indicated in (63).

As explained in Section 3, the radiation mode function Wr�x; z; f� for f real
(independent of z) is obtained, just as in the undeformed case, from the
formula (9). This leads to the partial di�erential equation satis®ed by the
radiation mode function:

i
oWr

oz
� 1

2

o2Wr

ox2
ÿ V0Wr

� i
Wr

2

XM
k�1

�fÿ fk�ÿ1
dfk

dz
� �fÿ f�k�ÿ1

df�k
dz

� �

� i exp�ÿ2if2z�
U�f; ffkg; ff�kg�

XM
k�1

dfk

dz
oa
ofk
� df�k

dz
oa
of�k

� �
� exp�ÿ2if2z�

U�f; ffkg; ff�kg�

�
XM
k�1

XN

n�1
i
dg�k�n

dz
ÿ 2f�2k g�k�n

� �
oa

og�k�n

� i
dg�k��n

dz
� 2f2kg�k��n

� �
oa

og�k��n

 !
;

�67�
where

U�f; ffkg; ff�kg� � p
YM
k�1
jfÿ fkj2

 !1=2

: �68�

The terms containing a on the right-hand side could be re-written in terms of
Wr, but this is not essential for the observations to follow. For the bound
modes of the two-soliton potential (M � 2 and N � 1), we use the bi-
orthogonality relation to choose

Wb;1 � c1a�x; f�1; ffkg; ff�kg; fg�k�g; fg�k��g� exp ÿ2i
Z z

0

f1�s��2ds
� �

; �69�

and

Wb;2 � c2a�x; f2; ffkg; ff�kg; fg�k�g; fg�k��g� exp ÿ2i
Z z

0

f2�s�2ds
� �

; �70�

where c1 and c2 are chosen so that kWb;kk2 � 1 for k � 1; 2. They depend
only on f1 and f2, and therefore possibly on z. This leads to the equations
satis®ed by the bound modes:
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i
oWb;1

oz
� 1

2

o2Wb;1

ox2
ÿ V0Wb;1 � iWb;1

d

dz
log c1 � c1 exp ÿ2i

Z z

0

f1�s��2ds
� �

� i
df�1
dz

oa
of
� i
XM
k�1

dfk

dz
oa
ofk
� df�k

dz
oa
of�k

� �"

�
XM
k�1

XN

n�1
i
dg�k�n

dz
ÿ 2f�2k g�k�n

� �
oa

og�k�n

 

� i
dg�k��n

dz
� 2f2kg�k��n

� �
oa

og�k��n

!#
; �71�

where on the right-hand side a is evaluated for f � f�1, and

i
oWb;2

oz
� 1

2

o2Wb;2

ox2
ÿ V0Wb;2 � iWb;2

d

dz
log c2 � c2 exp ÿ2i

Z z

0

f2�s�2ds
� �

� i
df2
dz

oa
of
� i
XM
k�1

dfk

dz
oa
ofk
� df�k

dz
oa
of�k

� �"

�
XM
k�1

XN

n�1
i
dg�k�n

dz
ÿ 2f�2k g�k�n

� �
oa

og�k�n

 

� i
dg�k��n

dz
� 2f2kg�k��n

� �
oa

og�k��n

!#
; �72�

where on the right-hand side a is evaluated for f � f2.
The aim of writing down the exact equations satis®ed by the basic func-

tions is to use them in expressing the linear SchroÈ dinger equation (10) as a
coupled-mode system, by projecting onto the basis functions. Restricting to
the case of M � 2 and N � 1, we ®rst expand the solution of (10) in terms of
the (deforming) orthonormal basis:

f �x; z� � Bb;1�z�Wb;1�x; z� � Bb;2�z�Wb;2�x; z� �
Z 1
ÿ1

Br�z; f�Wr�x; z; f�df:

�73�

The coe�cients are simply

Bb;k�z� � hWb;k��; z�; f ��; z�i; Br�z; f� � hWr��; z; f�; f ��; z�i: �74�

Next, insert this expansion into (10) and use the equations satis®ed by the
approximate modes to eliminate the z-derivatives of Wr and Wb;k wherever
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they appear. Finally, use the exact orthogonality conditions to separate the
modes and therefore deduce (coupled) equations for the mode amplitudes
Bb;1�z�; Bb;2�z�, and Br�z; f�. We introduce some simplifying notation: let
R1�x; z� denote the right-hand side of the evolution equation (71) for Wb;1, let
R2�x; z� denote the right-hand side of the evolution equation (72) for Wb;2,
and let R�x; z; f� denote the right-hand side of the evolution equation (67) for
Wr. Then, the exact equations of motion for the mode amplitude take the
form of the system

i
dBb;1

dz
�z� � M �NA�

11 �z�Bb;1�z� �M �NA�
12 �z�Bb;2�z� �

Z 1
ÿ1

N �NA�
1 �z; f�Br�z; f�df

i
dBb;2

dz
�z� � M �NA�

21 �z�Bb;1�z� �M �NA�
22 �z�Bb;2�z� �

Z 1
ÿ1

N �NA�
2 �z; f�Br�z; f�df

i
oBr

oz
�z; f� � O�NA�

1 �z; f�Bb;1�z� � O�NA�
2 �z; f�Bb;2�z�

�
Z 1
ÿ1

K�NA��z; f; g�Br�z; g�dg; �75�

where for k � 1; 2 and j � 1; 2,

M �NA�
jk �z� :� ÿhWb;j��; z�;Rk��; z�i; �76�

for k � 1 and k � 2,

N �NA�
k �z; f� :� ÿhWb;k��; z�;R��; z; f�i;

O�NA�
k �z; f� :� ÿhWr��; z; f�;Rk��; z�i;

�77�

and ®nally,

K�NA��z; f; g� :� ÿhWr��; z; f�;R��; z; g�i: �78�

Note that according to the orthogonality relation, the kernel K�NA��z; f; g�
contains a singular term proportional to d�fÿ g� coming from the ®rst term
on the right-hand side of (67).

For the adiabatic applications in the text, the crucial observation is that all
of these coe�cients are uniformly bounded in z when the deviations from the
constant-parameter case are controlled. In particular, for each (operator-
valued) coe�cient in the coupled-mode system, say C, there is a corre-
sponding constant K independent of all parameters, such that
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kCk � K sup
z2R

df1
dz

���� ����� df2
dz

���� ����� dg�1�

dz
� 2if�21 g�1�

���� ����� dg�2�

dz
� 2if�22 g�2�

���� ����� �
;

�79�

where k � k indicates an appropriate operator norm. This bound is the basis
for the analysis in the main text.
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