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Some remarks on a WKB method for the nonselfadjoint
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Abstract

A formal method for approximating eigenvalues of the nonselfadjoint Zakharov–Shabat eigenvalue problem in the semi-
classical scaling is described. Analyticity of the potential is assumed and appears to be crucial. The method involves finding
appropriate paths between pairs of complex turning points, and reproduces the Y-shaped spectra observed by Bronski [Physica
D 97 (1996) 376]. An application to all-optical ultrashort pulse generation is briefly described, and the kind of tools that are
required to make the results rigorous are indicated. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The nonselfadjoint Zakharov–Shabat eigenvalue problem is the first-order system of differential equations
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where λ ∈ C is a complex eigenvalue parameter, and prime denotes differentiation with respect to x. The real-valued
functions A(x) > 0 and S(x) are given potentials, and � is a positive parameter. This linear eigenvalue problem
was put forward by Zakharov and Shabat [11] as one half of the Lax pair for the solution of the focusing nonlinear
Schrödinger equation by the inverse-scattering transform method. The corresponding nonlinear initial value problem
for the complex field ψ(x, t) is
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The first step in studying the behavior of solutions of this initial value problem in the semiclassical limit of � ↓ 0 is
therefore the asymptotic spectral analysis of the scattering problem (1) as � ↓ 0 while the functions A(x) and S(x)

are held fixed.
The eigenvalue problem (1) is not selfadjoint, or more precisely (1) cannot be written as the eigenvalue problem for

any selfadjoint operator with some function of λ playing the role of the eigenvalue, and consequently the spectrum
is not confined to any particular curve in the complex λ-plane for fixed � > 0. The spectrum is symmetric under
complex-conjugation, and the continuous spectrum includes the entire real λ-axis. Beyond these facts, there is the
analytical “shadow bound” of Deift, Venakides and Zhou: 2 that all discrete eigenvalues lie in the “O(�)-blurred”
shadow of the curve λ = λ(x) given parametrically by

(λ + 1
2S

′(x))2 + A(x)2 = 0, x ∈ R (3)

plus a strip of uniform widthO(�) around the real axis. This estimate excludes neither the possibility of eigenvalues
accumulating in open domains of the complex λ-plane, nor that of eigenvalues accumulating near, but not on, the
real axis as � tends to zero.

Very careful numerical calculations carried out by Bronski [2] seemed to indicate that there was, however, more
to the story. These experiments strongly suggested that at least for some fixed real functions A(x) and S(x), the
discrete eigenvalues of (1) accumulate in the limit � ↓ 0 on some system of curves in the complex λ-plane, that the
total number of eigenvalues scales like �−1, and that the discrete spectral measures converge to something that has
singular support on the curves, but that is absolutely continuous with respect to Lebesgue measure when restricted
to the curves.

It is pointed out in that same paper that these features are not captured by a direct WKB analysis of the differential
equation (1) because unlessλ satisfies (3) for some realx, there are no real turning points and the WKB eigenfunctions
do not appear to break down for any real x. The “paradox” of this kind of WKB analysis is that every value of λ that
is contained within the turning point curve defined by (3) appears to be an eigenvalue, whereas every other value of
λ appears not to be an eigenvalue. These formal results are in contradiction with the numerical experiments, which
show that eigenvalues can accumulate on curves either inside or outside the turning point curve.

In this paper, we show how an appropriate complexification of the WKB method allows the calculation of the
curves of spectral accumulation, and also the asymptotic density of eigenvalues on the curves. The method we
describe is formal, and rigorous proofs that the WKB eigenvalues provided by the method are accurate up to errors
that are o(�) will be given in a future publication. We describe the procedure in general in Section 2, and then in
Section 3 we apply it to the specific case A(x) = S(x) = sech(2x), for which Bronski’s experiments indicated the
asymptotic appearance of a fascinating “Y-shaped” semiclassical spectrum. The spectral curves predicted by our
method agree with the published numerical results. We briefly describe in Section 4 an application of the method to
the problem of ultrashort pulse generation in optical fibers, and finally offer in Section 5 some indications of how
some of these formal results might be proved.

2. Description of the method

2.1. Reduction to the Schrödinger equation with a complex potential

It is straightforward to rewrite the system of first-order equations (1) as a semiclassically scaled Schrödinger
equation with a slightly perturbed complex-valued potential. To do this, suppose that λ is not on the turning point

2 This is referenced in [2] as a private communication, but to date seems not to have appeared elsewhere in the literature.



P.D. Miller / Physica D 152–153 (2001) 145–162 147

curve defined by (3) and make the change of variables

y±(x; λ) = u2(x; λ) exp(iS(x)/(2�)) ± u1(x; λ) exp(−iS(x)/(2�))√
A(x) ± i(λ + S′(x)/2)

, (4)

where an arbitrary smooth nonvanishing branch of the square root is selected in each case. One then finds that (1)
is equivalent to the two independent eigenvalue equations

�
2y′′

±(x; λ) = {V0(x; λ) + �2F±(x; λ)}y±(x; λ), (5)

where the leading-order potential V0(x; λ) is given by

V0(x; λ) = −[(λ + 1
2S

′(x))2 + A(x)2], (6)

and the corrections are given by
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− [(A(x) ± i(λ + S′(x)/2))1/2]′′

(A(x) ± i(λ + S′(x)/2))1/2
. (7)

Let us restrict attention to those potentials for which A(x) and S′(x) vanish sufficiently rapidly as |x| → ∞. Then,
it is easy to see that the change of variables does not alter the notion of discrete spectrum; that is, finding the discrete
spectrum of (1) is equivalent to finding the values of λ with I(λ) > 0 for which (5) has an L2(R) solution. Note
that by construction, the two Schrödinger equations rpresented by Eq. (5) for y+(x; λ) and y−(x; λ) have the same
discrete spectrum, since they both come from the same eigenvalue problem (1). The ratio y+(x; λ)/y−(x; λ) of
bound states at an eigenvalue λ, although bounded in x, may not have the same limiting value as x tends to positive
and negative infinity. Also, with this restriction the corrections F±(x; λ) to the potential are uniformly bounded
rapidly decreasing functions of real x.

Our goal is to compute each eigenvalue λ of (5) up to an error of size o(�), since with this accuracy and the
assumption that the eigenvalues are separated by a quantity whose reciprocal isO(�−1), we can obtain a leading-order
formula for the asymptotic spectral measure. A claim that we leave unjustified at the moment is that for this purpose
it is sufficient to determine the discrete spectrum of the equation

�
2y′′(x; λ) = V0(x; λ)y(x; λ) (8)

with the same accuracy. That is, each eigenvalue of (5) is O(�2) away from an eigenvalue of (8). This statement
requires a perturbation argument that we outline in Section 5. In any case, from now on we focus attention on the
asymptotic spectral analysis of the reduced problem (8).

2.2. Finding real paths between pairs of complex turning points. Complex arcs of asymptotic spectrum

Consider for a moment the selfadjoint case of (8) when the function V0(x; λ) is a real-valued function of x for
some λ; more precisely, a potential well. One of the important heuristics used in constructing solutions y(x; λ) of
(8) in this case is that the leading-order WKB solutions V0(x; λ)−1/4exp(φ(x; λ)/�) with (φ′(x; λ))2 = V0(x; λ)
are only to be trusted in as much as they are not exponentially large as � ↓ 0. Thus, one assumes exponentially
small decaying solutions outside the turning points, and matches through the two turning points on each side into
a central region where the WKB eigenfunctions, though not exponentially small, are bounded. It is here that the
matching takes place determining the WKB eigenvalues λ = λWKB

k . Matching from the oscillatory region out into
the classically forbidden region is not sensible because exponentially small matching errors can lead to unbounded
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errors in the forbidden region. The heuristic of working with only bounded solutions therefore appears in this context
in the form of the “directional character of connection formulae” [4].

Since in our application the potential function V0(x; λ) is complex-valued for I(λ) > 0, we have no real turning
points for all λ except for those satisfying (3). If we assume the potential functions A(x) and S(x) to be real-analytic,
then we may consider studying the asymptotics of solutions of (8) on some contour in the complexx-plane connecting
−∞ to +∞ and lying “near” the real axis, in hopes of threading the contour through a pair of complex turning points
and applying similar matching heuristics as in the selfadjoint case. Given a pair of complex roots x+(λ) and x+(λ)

of V0(x; λ) = 0, an analogous treatment becomes possible if there exists an “appropriate” contour C connecting
x = −∞ to x = +∞ via the two complex turning points x−(λ) and x+(λ). We write C = (C−, C0, C+) where C−
connects x = −∞ to x = x−(λ), C0 connects x = x−(λ) to x = x+(λ), and C+ connects x = x+(λ) to x = +∞.
Let λ be fixed. By “appropriate”, we mean that the following four conditions hold:

1. The function V0(x; λ) is holomorphic in x for all x in the region of the complex x-plane enclosed by C and the
real x-axis.

2. For all x ∈ C−,

R

{∫ x

x−(λ)

√
V0(z; λ) dz

}
�= 0 (9)

with the integral being taken along C−, and C− can be chosen so that the angle between C− and C0, measured
in either the positive or negative direction, is greater than 2π/3.

3. For all x ∈ C+,

R

{∫ x

x+(λ)

√
V0(z; λ) dz

}
�= 0 (10)

with the integral being taken along C+, and C+ can be chosen so that the angle between C+ and C0, measured
in either the positive or negative direction, is greater than 2π/3.

4. For all x ∈ C0,

R

{∫ x

x−(λ)

√
V0(z; λ) dz

}
= 0 (11)

with the integral being taken along C0. We call C0 a real path.

The first item is needed to ensure that the approximate eigenfunction can be continued back to the real x-axis
(see Section 5). The next two items ensure the existence of an exponentially small WKB eigenfunction outside the
turning points (the angle condition is a technical one required for good behavior of the local WKB eigenfunction
near the turning points). Because these two criteria are inequalities, there is some freedom in the precise placement
of the “decay” paths C− and C+; for later simplicity, we assume that for sufficiently large |x|, C− and C+ lie on the
real axis. The fourth item ensures that the turning points are connected by a path on which both WKB eigenfunctions
are bounded as � tends to zero.

This final item is the most illuminating, as it is easily reinterpreted as a differential equation for the real path C0

in the complex x-plane. If x = u + iv, then a field of curves is defined by the differential relation

R{
√
V0(u + iv; λ)(du + i dv)} = 0. (12)

An appropriate real path C0 exists when this differential equation has a heteroclinic orbit connecting the two fixed
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Fig. 1. The complex x-plane. Left: for λ not on an asymptotic spectral arc, there is no real path connecting x−(λ) and x+(λ). Right: for λ on an
asymptotic spectral arc, the real path C0 exists connecting the two complex turning points. Note that by the square root vanishing of

√
V0(x; λ)

at the turning points, there are three candidate real paths emanating from each turning point.

points x−(λ) and x+(λ). Suppose that for a pair of complex turning points we have the condition

R

{∫ x+(λ)

x−(λ)

√
V0(z; λ) dz

}
= 0. (13)

Then, there exists an orbit of (12) that connects the two endpoints. This orbit is a candidate for a real path
if in addition it does not pass through the point at x = ∞, or through any other points of nonanalyticity of√
V0(x; λ).
We can perhaps emphasize at this point that, given a pair of turning points that are distinct throughout a domain

in the complex λ-plane, the reality relation (13) itself determines a curve in the complex λ-plane. If λ is on one of
these curves, then subject to the heteroclinic orbit C0 avoiding any singularities and the existence of appropriate
“decay” paths C+ and C−, the standard WKB procedure can be expected to apply to determine whether λ is in fact
an o(�) distance away from an eigenvalue. We therefore expect that as � tends to zero, the discrete eigenvalues of
(8) will accumulate on the union of curves in the complex λ-plane described by the formula (13), with the union
being taken over pairs of complex turning points. The curves in the complex λ-plane on which all four conditions
are satisfied, giving rise to an admissible contour C = (C−, C0, C+), will be called asymptotic spectral arcs. See
Fig. 1.

In Section 5, we outline how perturbation methods can be used to show that existence of a WKB eigenfunction
of the reduced Schrödinger equation, Eq. (8) implies that of a true eigenfunction of (8), for a suitable adjustment
(byO(�2)) of the WKB eigenvalue. This argument holds on the special contour C = (C−, C0, C+). An additional
step is then required in the rigorous analysis to show that no errors are introduced in the analytic continuation of
the true eigenfunction back down to the real axis. Once we have an eigenfunction of (8) on the real axis, we then
invoke perturbation theory once again to show the existence of an eigenfunction of (5), and therefore of the original
Zakharov–Shabat eigenvalue problem (1), with a nearby eigenvalue.

2.3. Bohr–Sommerfeld quantization on the arcs. Asymptotic distribution of proportionality constants

Applying standard WKB theory [4] on the contour C = (C−, C0, C+), either through matching expansions
or by constructing uniformly valid approximations with the help of the parabolic cylinder equation, one finds the
eigenvalue condition

1

π�
I

{∫ x+(λ)

x−(λ)

√
V0(z; λ) dz

}
− 1

2
∈ Z, (14)

which can be interpreted as a Bohr–Sommerfeld quantization rule for λ on the appropriate asymptotic spectral arc
corresponding to the condition (13) with the turning points x−(λ) and x+(λ). Given a real parameterization λ = λ(s)
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of the arc, the asymptotic spectral measure on the arc is

dµWKB(s) = 1

π�

d

ds

∣∣∣∣∣I
{∫ x+(λ(s))

x−(λ(s))

√
V0(z; λ(s)) dz

}∣∣∣∣∣ ds. (15)

In the asymptotic analysis of the inverse-scattering problem [7], it appears to be important to know that the error in
this leading-order formula (15) for the asymptotic discrete spectral measure is not merely O(1) (the measure itself
isO(1/�)), but actually an order of magnitude smaller,O(�). Estimation of the error requires analysis significantly
more detailed than that outlined in Section 5, which is concerned only with one eigenvalue at a time, and then with
only crude convergence properties.

Associated with each discrete eigenvalue λk of the Zakharov–Shabat eigenvalue problem (1) with I(λk) > 0,
and equally important in the inverse-scattering theory, is a proportionality constant γk defined as follows. Let the
eigenfunction be normalized as x → −∞ by the condition

lim
x→−∞

[
u1(x; λk)

u2(x; λk)

]
exp

(
iλkx

�

)
=
[

1

0

]
. (16)

Then, the proportionality constant is determined by the asymptotics for x → +∞:

lim
x→+∞

[
u1(x; λk)

u2(x; λk)

]
exp

(−iλkx

�

)
= 1

γk

[
0

1

]
. (17)

Let n±(λ) denote the increment of the argument of A(x) ± i(λ + 1
2S

′(x)) as x varies from −∞ to +∞, divided by
2π . Denote by S̄∞ the mean asymptotic phase:

S̄∞ = 1
2 (S(−∞) + S(+∞)). (18)

Then, by the change of variables (u1, u2) �→ (y+, y−), the proportionality constant can be defined in two ways:

γk = (−1)n+(λk)exp

(−iS̄∞
�

)
lim

x→+∞
y+(−x; λk)

y+(x; λk)
=−(−1)n−(λk)exp

(−iS̄∞
�

)
lim

x→+∞
y−(−x; λk)

y−(x; λk)
. (19)

When the eigenvalue λk is “inside” the turning point curve defined by (3), then the index n+(λk) + n−(λk) of the
quantity A(x)2 + (λ + 1

2S
′(x))2 is odd [2]. In this case, it is easy to see that

lim
x→+∞

y+(−x; λk)

y+(x; λk)
= lim

x→+∞
y−(−x; λk)

y−(x; λk)
. (20)

For eigenvalues inside the turning point curve, it therefore appears to be possible to deduce a leading-order formula for
the proportionality constants γk from the appropriately constructed global WKB solutions of (8) for y(x; λWKB

k ).
That is, one can obtain a consistent asymptotic formula for γk by substituting a uniformly valid approximation
yWKB(x; λWKB

k ) for either y+(x; λk) or y−(x; λk) in (19). For eigenvalues outside the turning point curve, the large
|x| asymptotics of at least one of the functions y+(x; λk) or y−(x; λk) will not agree with those of the bound state
y(x; λ0) and therefore it is not clear how to determine the proportionality constants from properties of the solutions
of the reduced equation, Eq. (8).

Moreover, note that while an eigenvalue λ of (5) and an eigenvalue λ0 of (8) may be o(�) close, the corresponding
L2(R) eigenfunctions, when normalized so that

y±(x; λ)
y(x; λ0)

exp

(
i(λ − λ0)x

�

)
→ 1, x → −∞, (21)
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may not satisfy

y±(x; λ)
y(x; λ0)

exp

(−i(λ − λ0)x

�

)
→ 1 + o(1), x → +∞. (22)

That is, true eigenfunctions and approximate eigenfunctions may not define the same proportionality constants.
Clearly, more work is required to obtain accurate information about the distribution of the γk as � tends to zero.
An accurate formula for the distribution of the γk appears to be a key ingredient in the finite time analysis of the
inverse-scattering problem in the semiclassical limit [7].

3. Application: the Y-shaped spectra observed by Bronski

Here, we apply the method to a special case studied by Bronski [2]. Namely, we take

A(x) = S(x) = sech(2x). (23)

The first step is to catalog for fixed λ ∈ C the zeros in the complex x-plane of −V0(x; λ) = (λ+ 1
2S

′(x))2 +A(x)2.
These are the complex turning points. In this case, the potential V0(x; λ) is periodic with fundamental period π i.
In the fundamental period strip −π/2 < I(x) ≤ π/2 of the complex x-plane, there are two fourth-order poles of
V0(x; λ) located at x = ±iπ/4 (for all λ). There are also eight λ-dependent zeros of V0(x; λ) in each period strip,
typically distinct and therefore simple. When λ is purely imaginary, there are four zeros in each strip that lie on the
imaginary x-axis, two between each pair of poles; the remaining four zeros in the fundamental period strip make
up a quartet: (x,−x, x∗,−x∗). For λ not purely imaginary, this nice symmetry of the complex turning points is
broken.

For some λ, there can be double zeros of V0(x; λ). These are not difficult to characterize, simply by considering
simultaneously the equations V0(x; λ) = 0 and V ′

0(x; λ) = 0. It is interesting to consider embedding the potential
in a family indexed by a parameter ξ :

−V0,ξ (x; λ) = (λ + 1
2ξS

′(x))2 + A(x)2, (24)

so that V0(x; λ) = V0,1(x; λ). Then, the double roots appear for only four values of λ = λD:

λD = iσ

√
1

2
+ 1 + τ

√
1 − 8ξ2

8ξ2

(
1 − 1 + τ

√
1 − 8ξ2

4

)
, σ = ±1, τ = ±1. (25)

and are given by the solution of the transcendental equation

tanh(2x) = 1 + τ
√

1 − 8ξ2

4iσξ
. (26)

For 0 < ξ < 1/
√

8, the values λ = λD for which there exist double roots of V0,ξ (x; λ) = 0 lie on the imaginary
axis, while for ξ > 1/

√
8 these values of λ form a quartet: (λ,−λ, λ∗,−λ∗). The value ξ = 1/

√
8 was obtained in

[2] with the use of a “fixed but small �” perturbation argument to determine the value of ξ for which the eigenvalues
first move off of the imaginary axis into the complex plane, ultimately (for ξ = 1) forming the branches of a
“Y-shaped” spectrum. We will soon see that taking ξ = 1 in the above formula for the special values of λ yields
the endpoints of the two branches of the Y in the complex λ-plane. The particular numerical values we obtain are

λD = iσ

√
1

2
+ 1 + iτ

√
7

8

(
1 − 1 + iτ

√
7

4

)
, σ = ±1, τ = ±1, (27)
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which give excellent predictions of the endpoints of the branches of the Y as seen in Bronski’s numerical experiments
[2].

We first determine eight distinct complex turning points in the fundamental period strip for λ = 0.2i in order to
later apply analytic continuation to the roots with respect to λ. The deformation 0 < ξ ≤ 1 is useful in obtaining
the turning points for the potentials (23). When ξ = 0, there are four roots labeled as follows: x1 is the negative
real root, and x3 = x1 + iπ/2. x2 is the positive real root, and x4 = x2 + iπ/2. Applying analytic continuation
to these distinct roots with respect to the parameter ξ allows these four roots to be calculated for ξ = 1. The pair
x1 and x2 moves into the lower half-plane, maintaining the symmetry x2 = −x∗

1 . The pair x3 and x4 undergoes a
similar process along the way to ξ = 1. The four remaining roots in the fundamental period strip for ξ = 1 are on
the imaginary axis and are labeled x5, x6, x7, and x8 in order of increasing imaginary part. So, x5 lies below −iπ/4,
x6 lies between −iπ/4 and zero, x7 lies between zero and iπ/4, and x8 lies above iπ/4. This process gives us an
unambiguous labeling of the eight roots in the fundamental period strip for ξ = 1 and λ = 0.2i. Fixing now ξ = 1,
we obtain the roots for other values of λ by analytically continuing these along the “L-shaped” path from 0.2i to
R(λ) + 0.2i and then fromR(λ) + 0.2i to λ.

We have already calculated the four values of λ = λD for which there are double roots in the complex x-plane.
These are branch points for the root functions xi(λ) defined above, and using the branches defined above by our
L-shaped path of continuation, the branch cuts emanate from the branch points and are straight vertical rays connect-
ing each branch point to infinity. The monodromy around each branch point is as follows. For a counterclockwise
analytic continuation of the roots around the endpoint λD in the first quadrant:

x1 → x1, x2 → x6, x3 → x5 + π i, x4 → x4,

x5 → x3 − π i, x6 → x2, x7 → x7, x8 → x8. (28)

Similarly, for a counterclockwise analytic continuation of the roots around the endpoint λD in the second quadrant:

x1 → x6, x2 → x2, x3 → x3, x4 → x5 + π i,

x5 → x4 − π i, x6 → x1, x7 → x7, x8 → x8. (29)

The next step is to determine the values of λ for which there exists a contour consisting of a real path C0 between two
complex turning points along with two decay paths C− and C+. These are the values of λ for which WKB analysis
becomes possible for determining the eigenvalues. For each pair of complex turning points, we can consider the
complex-valued integral appearing in the relation (13). Denote this integral by

Ijk(λ) =
∫ xk(λ)

xj (λ)

√
V0(z; λ) dz. (30)

In particular, we will want to consider I12(λ), I16(λ), and I26(λ). We construct well-defined branches of these
functions by choosing straight-line paths of integration and definite signs of the square root for λ = 0.2i and
applying analytic continuation along the same L-shaped path as was used to define the roots. The monodromy of
the roots then implies that these three functions, along with their negatives, form six branches of the same analytic
function defined on a six-sheeted Riemann surface over the λ-plane. See Fig. 2.

The conditionsR(I12(λ)) = 0,R(I16(λ)) = 0, andR(I26(λ)) = 0 yield three curves in the λ-plane. The images
of these curves in the upper half-plane are plotted in Fig. 3 along with the turning point curve defined by (3) and
the two branch points λ = λD, indicated with circles. The curve R(I12(λ)) = 0 coincides with the imaginary axis,
the curve R(I16(λ)) = 0 has negative slope, and the curve R(I26(λ)) = 0 has positive slope. The other equations
R(Ijk(λ)) = 0, as well as equations corresponding to pairs of turning points in different period strips, may also
have solutions yielding curves in the λ-plane, but these curves play no role in the WKB analysis of the potentials
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Fig. 2. The six branches of the complex phase integral over the upper half λ-plane. The branch points and the corresponding cuts are shown in
each figure, and the letters near the cuts indicate how the six sheets are identified pairwise along the cuts.

(23) for the same kind of reasons that will shortly eliminate portions of the curves indicated in Fig. 3 from further
consideration. For simplicity, we therefore restrict attention from now on to the three curves indicated in Fig. 3. The
semiclassical spectra observed by Bronski [2] would seem to lie on the union of these three curves.

To continue the analysis of the points on the curves in Fig. 3, we must look more carefully at the complex x-plane,
and the geometry of the solutions of the differential equation (12) therein. As a means of illustration, we used a
simple Euler scheme to compute numerical approximations to the three orbits of (12) emerging at 120◦ angles from
each fixed point xi(λ). We call these the critical orbits of (12). The first value of λ we consider is on the imaginary
axis, which is the solution set of R(I12(λ)) = 0, below the point of mutual intersection of all three curves. This
situation is shown in Fig. 4. On the left is the λ-plane as in Fig. 3, with the value of λ under consideration indicated
with a square box. On the right is a plot of the critical orbits of (12) in the fundamental period strip in the complex
x-plane. The complex turning points are indicated with circles, and the fourth-order poles of the function V (x; λ)

Fig. 3. The three curvesR(I12(λ)) = 0,R(I16(λ)) = 0, andR(I26(λ)) = 0. The dashed line is the turning point curve given by (3). The branch
points where there exist double complex turning points are indicated with circles.
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Fig. 4. The x-plane corresponding to λ = 0.2i.

are indicated with diamonds. There is a real path C0 connecting the complex turning points x1(λ) and x2(λ), and
there also exist appropriate decay paths C− and C+, indicated schematically with dashed lines. As mentioned above,
these decay paths are unlike the real path C0 in that they are only determined by inequalities along with some global
topological information, and therefore there is some freedom in their precise placement. However, in each case
that we claim the decay contours C+ and C− exist, we have checked the relevant inequality numerically along the
particular paths shown in the figure. Note that, while there are three orbits of (12) connected to each complex turning
point, there are an infinite number of orbits meeting at each fourth-order pole. The local orbit structure of (12) near
such a pole is illustrated in Fig. 5.

The critical orbits of (12) corresponding to a value of λ on the imaginary axis just below the triple intersection
point of the curves in Fig. 3 is shown in Fig. 6. Here, we see that the complex turning point x6(λ) is moving up very
close to the real path C0 that continues to connect x1(λ) and x2(λ). The decay paths C+ and C− continue to exist as
well. This proximity becomes more pronounced as λ approaches the triple intersection point, which occurs roughly
for λ = 0.28i. Fig. 7 shows the critical orbits of (12) in the complex x-plane at the triple intersection point. Clearly,
the real path between x1(λ) and x2(λ) now passes through the third turning point x6(λ), meeting it in a corner
with a 120◦ angle. This explains how the three conditions R(I12(λ)) = 0, R(I16(λ)) = 0, and R(I26(λ)) = 0 are
satisfied simultaneously at the triple intersection point. For this special value of λ, there is a connected chain of two
heteroclinic orbits of (12). The decay paths C+ and C− exist and may be chosen as shown in the figure with dashed
lines.

Fig. 5. The local orbit structure of (12) near a double pole of
√
V0(x; λ).
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Fig. 6. The x-plane corresponding to λ = 0.24i.

Fig. 7. The x-plane corresponding to λ = 0.28i, essentially the triple intersection point of the three curves in Fig. 3.

We now consider how the degenerate situation at the triple intersection point unfolds along the remaining five
directions in the complex λ-plane. First, we continue along the imaginary axis, the solution of R(I12(λ)) = 0,
just above the triple intersection point. The critical orbits of (12) are shown in Fig. 8 for this case. The essential
observation is that the two halves of the real path C0 now meet at a double pole of

√
V0(x; λ). This means that

the WKB approximations have an essential singularity along the contour (C−, C0, C+), and makes further WKB

Fig. 8. The x-plane corresponding to λ = 0.32i.
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Fig. 9. The x-plane corresponding to a value of λ for which there exists a real path C0 but no appropriate decay path C−.

analysis impossible, even though appropriate decay paths C+ and C− exist. The same phenomenon continues for
all λ on the imaginary axis above the triple intersection point. This restricts the WKB analysis to the portion of the
curve R(I12(λ)) = 0 that lies below the triple intersection point.

We now turn our attention to the graph of the relation R(I26(λ)) = 0, which is the curve with positive slope in
Fig. 3. We first consider a value of λ on this curve just below the triple intersection point. The critical orbits of (12)
are shown in Fig. 9. We see that by unfolding the triple intersection point in this direction we maintain the half of
the real path C0 between x2(λ) and x6(λ) avoiding any singularities. The decay path C+ is also preserved. However,
it is not possible to find a decay path C− connecting the turning point x = x6(λ) to x = −∞. This is because the
remaining two orbits of (12) emanating from x = x6(λ) close onto themselves and meet at the pole x = −iπ/4.
Since all decay paths C− must emerge from the turning point and stay between these two curves, it is impossible for
any such curve to connect to x = −∞. This phenomenon continues as λ moves away from the triple intersection
point in this direction. WKB analysis is not possible along the portion of the graph ofR(I26(λ)) = 0 that lies below
the triple intersection point.

The situation is more favorable when the triple intersection point is unfolded along the graph of R(I26(λ)) = 0
in the other direction. As shown in Fig. 10, the passage through the triple intersection point causes one of the orbits
emerging from x6(λ) to cross the separatrix, and this makes the point x = −∞ reachable from the turning point
by a decay path C−. On this portion of the curve, WKB analysis is possible on the contour (C−, C0, C+) in the
complex x-plane. The possibility of WKB analysis continues as one moves up the graph of R(I26(λ)) = 0 in the

Fig. 10. The x-plane corresponding to a value of λ on a branch of the Y. Here there exists a real path C0 and also appropriate decay paths C−
and C+.
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Fig. 11. The x-plane corresponding to a value of λ about halfway up a branch of the Y.

λ-plane. A plot of the critical orbits of (12) corresponding to a point roughly halfway along the graph between the
triple intersection point and the branch point λD is shown in Fig. 11. As λ is moved very close to the branch point
λD, trouble appears yet again on the horizon. As shown in Fig. 12, the double complex turning point that occurs at
the branch point is clearly the coalescence of the turning points x2(λ) and x6(λ). The real path is correspondingly
very short in this case. As λ is continued along the graph of R(I26(λ)) = 0 through the branch point λD, the two
turning points involved coalesce and separate in the orthogonal direction. Above the branch point, there is still a
real path between the turning points as shown in Fig. 13. However, it is no longer possible to find appropriate decay
paths C− or C+. This unfortunate situation continues along the whole portion of the graph ofR(I26(λ)) = 0 lying
above the branch point.

We therefore come to the conclusion that all four prerequisites for WKB analysis on a contour (C−, C0, C+) are
satisfied for λ on that portion of the graph of R(I26(λ)) = 0 lying between the triple intersection point and the
branch point λD. The analogous statement applies to the graph of the relationR(I16(λ)) = 0, which is the curve with
negative slope in Fig. 3. This follows from the fact that for the potentials (23), reflection about the imaginary axis
in the λ-plane corresponds to reflection about the imaginary axis in the x-plane. These two curve segments, taken
together with the portion of the graph of R(I12(λ)) = 0 for which WKB analysis can proceed, form a Y-shaped
curve in the λ-plane. This curve coincides to the eye exactly with the accumulation locus of discrete eigenvalues
observed by Bronski [2]. On this Y-shaped curve, the approximate eigenvalues are obtained as the solutions of the
Bohr–Sommerfeld quantization rule (14).

Fig. 12. The x-plane corresponding to a value of λ on a branch of the Y just below the branch point λD.
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Fig. 13. The x-plane corresponding to a value of λ on a branch of the Y just above the branch point λD. Although there exists a real path between
the complex turning points, there no longer exist appropriate decay paths C+ and C−.

Note that for the reader’s convenience, we wanted to apply the method to potentials (23) that had been studied
numerically in the literature [2]. In some respects, however, this particular choice is unnecessarily complicated.
The transcendental nature of these particular potentials makes a direct exhaustive treatment impossible since there
are an infinite number of possible pairs of complex turning points that might contribute a priori to the asymptotic
spectrum. In view of simplicity, a better choice to illustrate the method might indeed have been rational potentials
like A(x) = S(x) = (x2 + a2)−1 for some a ∈ R.

4. Application: ultrashort pulse generation in nonlinear optical fibers

One of the most important applications of the semiclassically scaled focusing nonlinear Schrödinger equation (2)
is as a model for the all-optical generation of ultrashort pulse trains for subsequent modulation and transmission of
high bit-rate signals in optical fibers. The idea is that electronic switching methods for creating trains of pulses are
inherently frequency limited by the speed of the electronics, whereas the frequency of optical processes is potentially
very large by comparison, and presents one avenue for the development of terabit per second transmission systems.

The semiclassical scaling of (2) occurs naturally in optical fibers, essentially because of the small ratio of the
frequency of an electronic input signal and the frequency of an optical carrier. See [6] for a detailed discussion of
this point. In optical fiber applications, the independent variable x is a retarded time coordinate for a disturbance
ψ(x, t) observed at a distance t along the fiber. Ignoring the initial condition for the moment, the soliton solution of
(2) has duration (width in x) of �� 1. It has an amplitude proportional to the imaginary part of the corresponding
eigenvalue λk of (1) and a temporal shift per unit propagation distance (velocity dx/dt) proportional to the real part
of λk .

Of course the initial condition ψ(x, 0) = A(x)exp(iS(x)/�) encodes a large number of solitons in the semiclassi-
cal limit. It has been pointed out [2,3] that the asymptotic spectral arcs essentially define initial condition dependent
nonlinear dispersion relations for solitons in the semiclassical limit. That is, while for fixed � solitons can have any
value of amplitude and velocity, these become highly correlated in the semiclassical limit, with the spectral arcs
giving the asymptotic relation between one and the other.

For sufficiently chirped initial (temporally broad, electronically generated) pulses, we can suppose that the
Y-shaped asymptotic spectrum is the rule. For such spectra, the evolution is quite complicated for propagation
distances t = O(1). The nonlinear interference patterns of the solitons in this regime is the subject of current
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investigations [7], and can be very regular [3,9] locally. But for longer propagation distances t = O(1/�), while the
field remains complicated in near the temporal center of the signal x = 0 due to the eigenvalues in the “neck” of the
Y, isolated soliton pulses emerge far “upstream” and “downstream” for x = O(1/�), corresponding to eigenvalues
in the two branches of the Y. In the “window” of t and x bothO(1/�), one observes a rank-ordered train of ultrashort
soliton pulses. Once these pulse trains are generated, they may be diverted and modulated to encode a data stream.

The utility of a tool that supplies the asymptotic spectral arcs given the analytic potentials A(x) and S(x) is
clear for applications like the generation of pulse trains described here. Even more useful would be an associated
“inverse” procedure, by means of which potentials A(x) and S(x) could be determined from prescribed asymptotic
spectral arcs, say corresponding to the branches of the Y. For example, one could try to find functions A(x) and S(x)

so that each branch of the Y had an isolated point with a vertical tangent. The pulses corresponding to the solitons
with eigenvalues in the neighborhood of such a critical point would all be stationary in some frame of reference,
and would be ideally adapted to minimizing the effects of the Gordon–Haus jitter instability.

Although the formula (13) for the asymptotic spectral arcs is complicated, certain features relevant to applications
are easy to extract explicitly. In the limit of long propagation distances t = O(1/�), the real part of the eigenvalue of
the fastest soliton determines the asymptotics of the total size of the disturbance. In this connection, the formula (25)
for the endpoints λD of the Y-shaped spectrum (more generally, λ values for which there exist double turning points
in the complex x-plane), gives a simple way to characterize these gross features of the asymptotic disturbance. A
general formula for this maximum field expansion rate, assuming only that the potentials A(x) and S(x) generate
a Y-shaped asymptotic spectrum whose “branches” have finite nonzero slope, is given by the supremum ofR(λD)

over all simultaneous solutions (λD, x) of the equations V0(x; λD) = 0 and V ′
0(x; λD) = 0.

5. Making some results rigorous

In this section, we speculate upon how one might prove an assertion like

Proposition 1. Let K be a compact subset of an asymptotic spectral arc; suppose that K contains no points
of intersection with other spectral arcs. There exists a constant cK > 0 such that whenever λ0 ∈ K satisfies
the Bohr–Sommerfeld quantization condition (14) and � is sufficiently small, there exists an eigenvalue λ of the
Zakharov–Shabat problem (1) with |λ − λ0| ≤ cK�

2.

If discrete eigenvalues can also be excluded from accumulating elsewhere in the complex plane, then with the
O(�) separation of the approximate WKB spectrum on the asymptotic spectral arcs, the convergence of the discrete
spectral measure to the asymptotic spectral measure implied on each arc by the Bohr–Sommerfeld quantization
rule (14) will follow as well. However, as noted above for some applications (e.g. semiclassical inverse-scattering
theory) more precise control on each eigenvalue may be required.

In proving the proposition it seems advantageous to first work on the contour C associated with the spectral arc
containing K and establish the validity of the WKB approximation for the reduced equation (8) in L2(C, ds) where
s is some real parameterization of C with s ∼ x for large x. Then, invoke analyticity of the solutions of (8) in the
domain enclosed by the contour C and the real axis to obtain a solution in L2(R) of the same equation. Finally,
perturbation theory will be necessary to put back the terms �2F±(x; λ) and yield a solution of (5) in L2(R) and
therefore an eigenfunction of (1).

The correct setting for the WKB approximation of bound state eigenfunctions on the contour C is the method
of comparison equations [4]. Given that λ0 lies on an asymptotic spectral arc, it is possible to find a global change
of variables that transforms the reduced Schrödinger equation (8) into the parabolic cylinder equation with a small
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bounded correction. One writes y(x) = f (x)w(s(x)) and chooses f (x)2 = 1/s′(x). If for some value of t ,

t − s(x)2 = −V0(x; λ)
s′(x)2

, (31)

then Eq. (8) becomes

�
2w′′(s) + (t − s2)w(s) = �2[ 1

2 s
′(x)−3s′′′(x) − 3

4 s
′(x)−4s′′(x)2]w(s). (32)

The relation (31) will define an invertible change of variables mapping the contour C to the real s-axis if the turning
points are made to coincide under the transformation. This will be the case if t = t (λ0), where

t (λ) = 2

π

∫ x+(λ)

x−(λ)

√
−V0(z; λ) dz, (33)

where the path of integration is C0 and the differential
√−V0(z; λ) dz, real and nonzero by assumption, is taken to

be positive. Note that this defines t as an analytic function of λ in the compact subset K of the asymptotic spectral
arc under consideration; it may be analytically continued for λ in a fixed but small strip on either side of K . Under
this change of variables, the error terms on the right-hand side of (32) can be reinterpreted as functions of s. These
complex-valued coefficient functions are uniformly bounded in s.

We are assuming that not only doesλ0 lie on an asymptotic spectral arc so that the above transformation is possible,
but also that λ0 satisfies the quantization condition (14). This is equivalent to the statement that t = t (λ0) is an exact
eigenvalue of the parabolic cylinder equation in L2(C, ds). The unperturbed problem, (32) without the terms on the
right-hand side, is thus completely understood; the spectrum is purely discrete (t = 2�(n+ 1

2 ) for n = 0, 1, 2, . . . )
and nondegenerate. Analytic perturbation theory can be used to include the effect of the neglected terms on the
right-hand side of (32). There is some complication because the change of variables s(x) depends parametrically on
λ and therefore on t (λ), which is expected to change slightly under perturbation. Writing t0 = t (λ0) and δ = t − t0,
the perturbed problem can be expressed in terms of an operator Tε,δ of the form:

Tε,δw(s) = �2w′′(s) + (t0 − s2)w(s) − {(εg(s; δ) − δ)w(s)}, (34)

where ε = �2 and εg(s; δ) is the right-hand side of (32), including the dependence on t (λ). We want to study
the deformation of the simple eigenvalue t0 using the Kato–Rellich theorem [8,10]. Most of the results of the
Kato theory of analytic families of operators carry over to families depending holomorphically on two complex
parameters. Consider � fixed. With respect to the complex parameters ε and δ, Tε,δ is an analytic family of type
(A) [8]; this follows from the fact that the terms depending on the parameters are bounded on L2(C, ds). Zero
is an eigenvalue of T0,0, and the Kato–Rellich theorem guarantees that there is for |ε|2 + |δ|2 sufficiently small a
nondegenerate eigenvalue τ(ε, δ) of Tε,δ that is analytic in the two variables and satisfies τ(0, 0) = 0.

The eigenvalue τ(ε, δ) is constructed as a convergent Rayleigh–Schrödinger series. The radius of convergence
of this series can be bounded below in terms of the size of the resolvent of the unperturbed operator on a small
circle around the origin in the complex τ -plane; the circle must separate the spectrum [8,10] and thus must beO(�)

in diameter (this is a property of the spectrum of the unperturbed parabolic cylinder equation). The resolvent is
obtained directly by variation of parameters using parabolic cylinder functions solving the unperturbed problem
for t on the circle about t0. Using this bound, the radius of convergence must be shown to be bounded below by a
quantity sufficiently large to ensure the validity of the theory in the region of interest, when ε = �2 for sufficiently
small �. An implicit function theorem argument can then be used to show that the condition τ(ε, δ) = 0 defines δ

as a function of ε, with δ(0) = 0. Using estimates for τ(ε, δ) following from majorization of the series [8], it then
must be shown that δ(�2) = O(�2).
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The Kato–Rellich theory, suitably adapted for analytic families depending on two complex parameters, therefore
gives an exact eigenvalue t = t0 + δ(�2) of the perturbed parabolic cylinder equation (32). Inverting (33) at this
eigenvalue, one obtains a value λ̃0 = λ(t) for which the reduced Schrödinger equation (8) has an exact L2(C, ds)
solution. Since solutions of (8) are analytic where V0(x; λ̃0) is, and since by assumption there are no singularities
of the potential between the contour C = (C−, C0, C+) and the real x-axis, the bound solution for λ = λ̃0 whose
existence is guaranteed by the perturbation argument above can be analytically continued down to the real axis.
If there had been singularities of V0(x; λ̃0) in the way, it might be possible for the bound state solution to have
intermediate branch points and therefore have no single-valued analytic continuation down to the real axis. Since we
are assuming that C− and C+ coincide with the real x-axis for |x| sufficiently large, this continuation is in L2(R).
The perturbed value λ̃0 = λ(t) is therefore an exact eigenvalue of (8) posed on the domain of interest, the real
x-axis. The distance between λ0 and λ̃0 is bounded as stated in the proposition if the estimates described above are
satisfied. Note that under the process of analytic continuation down to the axis, the true eigenfunction of (8) may
become exponentially large. This fact suggests the difficulty with any WKB method that involves only information
about the potentials on the real x-axis.

Now it is possible to work on the real x-axis, where the functions F±(x; λ) are uniformly bounded as functions
of x (they are unbounded on the contour C). One should now apply the Kato–Rellich theory once again to study the
behavior of the eigenvalue λ̃0 under the perturbation taking Eq. (8) to Eq. (5). Because the perturbation depends on
the eigenvalue parameter λ, this case must be handled as before, using aC2 analytic family to study the deformation
of a zero eigenvalue. This time, setting δ = λ − λ̃0 and ε = �2, we study the operator family T̃ε,δ defined in L2(R)

by

T̃ε,δy± = �2y′′
± − V0(x; λ̃0)y± − {(V0(x; λ̃0 + δ) − V0(x; λ̃0) + εF±(x; λ̃0 + δ))y±}. (35)

In principle, degeneracy could be introduced in the process of analytic continuation to the real x-axis because of
interference of eigenvalues of (8) that are not captured by the WKB analysis on the arc containing λ0 (for example,
eigenvalues coming from a different pair of complex turning points). However, let us assume that the exact eigenvalue
λ̃0 of (8) is not degenerate. Then, the Kato–Rellich theory gives us an eigenvalue τ̃ (ε, δ) of the operator T̃ε,δ that
is analytic in ε and δ and satisfies τ̃ (0, 0) = 0. As before, it is necessary to estimate the radius of convergence of
the Rayleigh–Schrödinger series for τ̃ and use the implicit function theorem to obtain δ as a function of ε, valid out
to ε = �2 and bounded by a quantity of order �2. These estimates will be harder to obtain this time, because much
less is known about the resolvent and separability of the spectrum of T̃0,0 than before. In particular, there is some
danger because in working on the real x-axis the known eigenfunctions may be exponentially large and therefore
difficult to control; similar things could well be true about the unperturbed resolvent. Nonetheless, the agreement
of the predictions of the method with numerical experiments suggests that such estimates can indeed be obtained.

6. Conclusion

In this paper, we have described how under the assumptions of real-analyticity of the potential functions A(x)

and S(x), and sufficient decay of A(x) and S′(x) for large |x|, the WKB method can be complexified to determine
certain asymptotic spectral arcs on which discrete eigenvalues of the nonselfadjoint Zakharov–Shabat eigenvalue
problem are expected to accumulate in the limit of small �. Once the arcs are found, a Bohr–Sommerfeld like
quantization rule gives the distribution of eigenvalues on each arc. The method makes predictions that are verified
by the numerical calculations of Bronski [2].

The method does not address whether there can be semiclassical eigenvalues in the neighborhood of a value of
λ for which there is no contour (C−, C0, C+) of the type described in the text. Although the procedure described
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here is effective, it is not obvious that the asymptotic spectral arcs so obtained lie in the “shadow” of the turning
point curve as required by the bound of Deift, Venakides, and Zhou.

Obviously, analyticity of the potential functions A(x) and S(x) is crucial for the analysis. The reliance of the
method on analyticity suggests the extreme sensitivity of the results with respect to small changes of the potentials.
Given analytic functions A(x) and S(x) may be modified by an analytic perturbation that is arbitrarily small in
some reasonable norm on the real axis, and the perturbed potentials may have essentially different properties in
the complex plane, and consequently the semiclassical spectra can be very unstable. This sort of phenomenon is
well-known for nonselfadjoint Schrödinger operators [1,5]. The most obvious way to approximate the semiclassical
spectrum for nonanalytic potentials A(x) and S(x) would be to analytically approximate the potentials on the real
axis. In a scheme of, say, rational approximation, higher order approximants would involve an increasing number
of complex turning points. The asymptotic spectrum of the approximants may become more and more complicated,
consisting of more and more asymptotic spectral arcs, as the approximation improves. Through a limiting process,
one can imagine that the asymptotic point spectrum for nonanalytic potentials may well be dense in two-dimensional
regions of the complex plane. Indeed, this was foreseen by some and feared to be the case for all potentials prior to
the publication of Bronski’s numerical experiments.

Further instability may be expected in the asymptotic calculation of the proportionality constants, where there may
be difficulty even for analytic potentials, as touched on in Section 2.3. Work in progress [7] on the semiclassical
inverse-scattering problem for the focusing nonlinear Schrödinger equation suggests that small perturbations in
the asymptotic distribution of the proportionality constants can lead to large contributions to the leading-order
asymptotics (on the other hand, the semiclassical inverse theory seems to be fairly robust with respect to perturbations
of the Bohr–Sommerfeld eigenvalue density). It is therefore very important for the analysis to be extended to include
sufficiently accurate formulas for the γk .
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