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We present the results of a large number of careful numerical experiments carried
out to investigate the way that the solution of the integrable focusing nonlinear
Schr�odinger equation with ­ xed initial data, when taken to be close to the semi-
classical limit, depends on analyticity properties of the data. In particular, we study
a family of initial data that have complex singularities at an adjustable distance from
the real axis. We also make use of a simple relation that provides the exact solution,
at the centre of the wave ­ eld, of the elliptic quasilinear system that appears formally
as a leading-order model for the semi-classical dynamics. Among other things, we
conclude that the semi-classical limit cannot be expected to be continuous with
respect to the initial data, even for real analytic data, if there are certain complex
singularities present. We argue that, in order to have well-posedness of the semi-
classical limit, the correct setting is a physically relevant space of functions with
compactly supported Fourier transforms.

Keywords: focusing nonlinear Schr�odinger equation;
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1. Introduction

The initial-value problem for the one-dimensional focusing cubic nonlinear Schr�o-
dinger equation

i Át + 1
2

2Áxx + jÁj2Á = 0; Á(x; 0) = A(x) exp(iS(x)= ); (1.1)

where A(x) and S(x) are real-valued amplitude and phase functions with A(x) and
S0(x) decaying rapidly as x ! 1, is known to arise in many physical contexts.
Most generally, (1.1) emerges from multiscale perturbation theory as the amplitude
equation describing the evolution of nearly monochromatic wave packets propagat-
ing in conservative one-dimensional systems in the presence of dispersion and weak
nonlinearity. The parameter is a dimensionless measure of the ratio of dispersive
e¬ects to nonlinear e¬ects.y The focusing version (1.1) of the nonlinear Schr�odinger
equation is obtained when the combined e¬ects of dispersion and nonlinearity tend

y This symbol is chosen purely by analogy with the quantum-mechanical interpretation of Schr�odinger
equations. In this paper, ~ is meant to be dimensionless and does not generally refer to Planck’s constant.
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to destabilize periodic wavetrains. The corresponding instability of (1.1) is the modu-
lational instability. This occurs, for example, in the theory of gravity waves on water,
and also in the theory of Langmuir waves in plasmas. In recent years, considerable
interest originating in the telecommunications industry has been directed toward the
problem (1.1) due to its multiple-scales derivation in the modelling of propagation
of intense optical pulses in ­ bres.

On the other hand, the initial-value problem (1.1) also appears occasionally in
physics in a non-perturbative way, without the need of appealing to wave packets
and multiscale asymptotics. For example (Antanovskii et al. 1997), the equivalent
system (1.3) to be given below describes the non-equilibrium thermodynamics of a
gas with density » and momentum distribution · that

(i) is in a parameter regime where the gas pressure decreases with increasing den-
sity, and

(ii) has a free energy function containing the simplest term modelling isotropic
dependence on local gradients of the gas density » .

The former feature is typical for van der Waals gases supercooled below the critical
(condensation) temperature, and the latter feature has been proposed as a phe-
nomenological model for capillarity (Antanovskii 1996). The parameter is, here, a
dimensionless measure of the surface tension.

We are particularly interested in the asymptotic behaviour of solutions of (1.1) for
small , particularly in the neighbourhood of ­ xed values of x and t. We refer to the
limit # 0 as the semi-classical limit. Now for small, it is known that solutions of
(1.1) develop features on typical dimensionless length and time-scales of size O( ),
and these scales are arbitrarily small as tends to zero. While this may at ­ rst
appear to be problematic in those applications when (1.1) is obtained as an envelope
equation, in fact semi-classical asymptotics for (1.1) can comfortably coexist with
the validity of the multiscale asymptotics leading to (1.1) in certain physically rele-
vant parameter regimes. For example, in a dramatic laboratory experiment carried
out by Sudo et al. (1989), optical pulses of 100 ps initial duration (this is the x-
variable) were launched into a dispersion-shifted optical ­ bre for which one expects
nonlinear processes to dominate the e¬ects of group velocity dispersion for short
propagation distances. The idea was to allow the modulational instability to break
up each launched pulse into many pulses each of much shorter duration. In this way,
a dispersion-shifted optical ­ bre could conceivably be used as a source of ultrashort
pulses for applications in terahertz telecommunications systems. Pulses sū ciently
short for such applications cannot be generated using electronic switching technol-
ogy, which is too slow for fundamental physical reasons. Therefore an optical process
is required. In the experiment reported in Sudo et al. (1989), the 100 ps electronically
generated pulses were observed to develop features on scales of duration 200 fs after
propagation in the ­ bre. This ratio of scales (micro-to-macro) suggests the extremely
small value of 0:002 in (1.1). But the carrier wavelength in these experiments
was 1319 nm, giving rise to an optical period of 4.41 fs, so that even after the pulse
break-up, each small-scale (200 fs) variation of the envelope contains ca. 50 optical
periods. This is striking experimental evidence of the validity of (1.1) as an envelope
equation in a strongly `semi-classical’ context where 0:002 in (1.1).

One way to address the semi-classical limit is to introduce the variables

» := jÁj2; · := Im(Á ¤ Áx); (1.2)

Proc. R. Soc. Lond. A (2002)



The focusing nonlinear Schr�odinger equation 137

in terms of which one ­ nds that (1.1) becomes exactly

» t + · x = 0;

· t +

µ
· 2

»

» 2

2

¶

x

=
2

4
((log » )xx » )x;

9
>=

>;
(1.3)

with initial data » (x; 0) = A(x)2 and · (x; 0) = A(x)2S0(x). It now appears more
attractive to set = 0 in this equivalent system, since there would remain terms
that could balance, and because the initial data are now generally independent of .
Thus, one feels justi­ ed in proposing the system of equations

» ¯t + · ¯x = 0;

· ¯t +

µ
· ¯

2

» ¯

» ¯
2

2

¶

x

= 0;

9
>=

>;
(1.4)

with initial data » ¯(x; 0) = A(x)2 and · ¯(x; 0) = A(x)2S0(x) as a model for the
asymptotic dynamics of (1.1), at least for su¯ ciently small t independent of .

The di¯ culty with this reasoning is that the quasilinear system of equations (1.4) is
elliptic rather than hyperbolic, and consequently the Cauchy problem posed at t = 0
is an ill-posed problem. Solutions to the initial-value problem for (1.4) can only exist
for analytic initial data. So the semi-classical asymptotics for (1.1) would appear to
distinguish between analytic initial data and (merely) in­ nitely di¬erentiable data.
This information alone is somewhat distressing from the point of view of physical
applications, where `noisy’ data are typical. More careful analysis is clearly required.

Using the tool of the inverse-scattering transform, which Zakharov & Shabat (1972)
showed exactly linearizes (1.1), some recent progress has been made in the semi-
classical analysis of (1.1). The ­ rst step in the analysis is to obtain the discrete
eigenvalues, associated auxiliary spectrum, and re®ection coē cient for a certain non-
self-adjoint linear operator that explicitly encodes the initial data A(x) and S(x), and
depends explicitly on in a singular way. For semi-classical asymptotics, one needs
corresponding asymptotic information about the spectrum. In a careful numerical
study, Bronski (1996) has shown that for S0(x) not identically zero the discrete
eigenvalues accumulate as # 0 on curves in the complex plane that depend on the
two functions A(x) and S(x) in the initial data. These curves were later explained
by Miller (2001) using turning point (WKB) theory. These results concerned the
distribution of eigenvalues for ­ xed initial data, but Bronski (2001) later studied
numerically the e¬ect on the spectral curves of small non-analytic perturbations of
the initial data, and found surprising sensitivity of the curve shapes for small . This
sensitivity of the spectrum would seem to suggest similar sensitivity in the solution
of (1.1). This sensitivity has indeed been observed in su¯ ciently resolved numerical
simulations (Bronski & Kutz 1999).

For S0(x) 0 (in which case by a gauge transformation one may simply assume
S(x) 0), formal WKB analysis predicts more stable properties of the spectrum.
Assuming that A(x) is bell shaped, one ­ nds (Ercolani et al. 1993) that the WKB
approximations for the eigenvalues all lie on the imaginary axis between iA and
iA, where A is the maximum value of A(x). On the other hand, the formal model
initial-value problem (1.4) with · ¯(x; 0) 0 remains ill posed and still requires ana-
lyticity of » ¯(x; 0) = A(x)2 for the existence of a solution. Therefore one expects the
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semi-classical asymptotics for the `slow phase’ case of S(x) 0 to display sensitiv-
ity to analytic properties of the function A(x) similar to what is expected for the
`fast-phase’ case, but the inverse-scattering theory is somewhat simpler because the
eigenvalues are more con­ ned.

In at least one case with S(x) 0, the spectrum of the Zakharov{Shabat operator
is known exactly. This is the family A(x) = A sech(x) for which Satsuma & Yajima
(1974) have computed the exact spectrum for all . With the use of this explicit
spectral data, exact solutions of (1.1) were constructed corresponding to values of
as small as 0:1 by Miller & Kamvissis (1998) (corresponding to 20 soliton eigenval-
ues) and the resulting pictures gave good evidence that » and · converged strongly
as # 0 to » ¯ and · ¯ satisfying (1.4) for jtj < t(1)(x), where t(1)(x) is a certain
-independent phase-transition boundary, the `primary caustic’. For times after the

primary caustic, the ­ elds » and · become oscillatory, but analysis of the exact solu-
tions provided good evidence that » and · continued to converge in the weak sense,
although not to any solution of (1.4). The oscillatory behaviour after the primary
caustic displays a regular spatio-temporal pattern of maxima, and this pattern was
observed to break down again at a second curve jtj = t(2)(x), a `secondary caustic’.
These reconstructions did not rule out the possibility of the existence of further,
`higher-order’ caustics.

Many of these observations for S(x) 0 and A(x) = A sech(x) have been recently
made rigorous by Kamvissis et al. (2002) by applying careful asymptotic analysis
to the matrix Riemann{Hilbert factorization problem, whose solution comprises the
inverse-scattering step in the solution of (1.1). The starting point for the analysis in
Kamvissis et al. (2002) is a set of purely re®ectionless scattering data with certain
asymptotic properties that are consistent with formal WKB theory in the slow phase
case of S(x) 0 with A(x) bell shaped but arbitrary. This ensemble of eigenvalues is
the exact scattering data for the Satsuma{Yajima case of A(x) = A sech(x), in which
case the rigorous asymptotics for the initial-value problem (1.1) follow. In the case
of more general A(x), the exact correspondence between the spectrum of the `true’
initial data and the WKB spectrum is lost, and while the asymptotics for the inverse
problem are rigorous, there is a gap in the argument that they provide the semi-
classical limit for (1.1). Nonetheless, the inverse theory applied to the WKB spectra
for S(x) 0 and A(x) with the following properties:y (i) A(x) is bell shaped and even
in x, (ii) A(x) is real analytic, (iii) A00(0) is strictly negative, and (iv) A(x) decays
exponentially for large jxj, does in fact provide an implicit algebraic representation of
the solution of the model problem (1.4) corresponding to the initial data · ¯(x; 0) 0

y The technical reason for these conditions is that together they imply that the WKB formula for the
density of states in the imaginary interval [0; iA(0)] is the restriction of a function analytic and bounded
in some `inverted teardrop’-shaped neighbourhood of this interval with the corner of the teardrop at
the origin. This property is essential for the analytic deformations of the Riemann{Hilbert problem
exploited in Kamvissis et al. (2002). For S(x) ² 0, the formal WKB theory is the same as for the
stationary Schr�odinger operator with potential V (x) = ¡A(x)2 and negative energy E equal to the
square of the imaginary eigenvalue for the Zakharov{Shabat operator. It follows that the width of the
potential well must be an analytic function of the bound state energy for the density of states to be
analytic in the interior of the range of energies. This explains the analyticity condition on A(x). Also,
if the potential well is too ®at at the bottom or top, then the density of states will be in­ nite at the
corresponding extreme values of the bound state energy. The convexity condition taken together with
analyticity ensures that the WKB density is analytic at the bottom of the well corresponding to the
point iA(0), and the decay condition on A(x) ensures that the WKB density is ­ nite at the top of the
well corresponding to the origin. This explains the convexity and decay conditions on A(x).
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and » ¯(x; 0) = A(x)2. We will give evidence in this paper that the condition of
analyticity is essential, while at least the condition of strict convexity at the maximum
is merely technical.

This paper will be concerned wholly with the slow phase case of S(x) 0. We have
carried out a large number of numerical simulations of the initial-value problem (1.1)
in order to investigate the sensitivity of the semi-classical behaviour with respect to
the analyticity properties of the function A(x). These simulations provide evidence
that for analytic functions A(x) there exists a ­ nite time-interval, independent of ,
in which the solution to the system (1.3) equivalent to (1.1) is close to the solution of
the ill-posed model problem (1.4). The length of this time-interval depends on `how
analytic’ the function A(x) is. If in a certain limit A(x) becomes non-analytic at
some (real) point x = x0, the primary caustic curve becomes attached to this point
at t = 0, i.e. t(1)(x0) = 0, and there is no time-interval at all in which the solution
of (1.3) is approximated by any solution of (1.4) uniformly for all x. On the other
hand, there are disjoint regions to either side of the primary caustic where » and ·
appear to be smooth and therefore should be well approximated by some solutions
of the elliptic system (1.4).

Where possible, we compare our numerical data with exact solutions of the ill-
posed initial-value problem for the elliptic system (1.4). These solutions are obtained
generally by solving a simultaneous system of algebraic equations in which x and t
appear as explicit parameters (Kamvissis et al. 2002). Below we will use a simple
reduction of the exact solution valid under the constraint x = 0 to estimate the
breaking time. Not only does this analysis provide evidence that solutions of (1.1)
for ­ nite approach (strongly in the variables » and · in some ­ nite time-interval)
corresponding solutions of the elliptic system (1.4) as tends to zero, but it will
also lead us to the conclusion that the semi-classical limit of (1.1) does not behave
continuously with respect to the initial data, even if those data are taken to lie in a
class of functions uniformly analytic in some strip about the real axis.

2. Numerical integration and data analysis

(a) Numerical integration scheme

The integrations of (1.1) considered here are all undertaken using a modi­ cation of
the Fourier split-step method for nonlinear Schr�odinger equations. A general descrip-
tion of this method can be found in Newell & Moloney (1992). Since all the initial
conditions considered are even and there is no symmetry breaking in the governing
equation, the implementation of the Fourier method uses cosine transforms rather
than full Fourier transforms. This has two advantages. First, the computational cost
is halved, which is a not an insigni­ cant consideration for these extremely sti¬ com-
putations. Second, the numerical growth of odd modes due to round-o¬ errors is
completely eliminated. All the numerical integrations were performed to 32 signi­ -
cant ­ gures of accuracy (quadruple precision on an SGI R10000). This was found to
be necessary to ensure accurate computations at values down to 0:025. For exam-
ple, for simulations with the previously discussed initial condition A(x) = 2 sech(x),
it was found that, independent of spatial and temporal resolution, signi­ cant errors
in the position of the primary caustic occurred when computations were performed
in double precision. As is increased, this loss of accuracy is manifested at larger
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times; for = 0:05 it was found that computations in double precision could not be
used to accurately determine the position of the secondary caustic.

Two factors determine the number of collocation points or Fourier modes used for
these computations. First, the microstructure must be accurately resolved. The size
of the microstructure is O( ), and so, as is decreased, the number of modes must be
increased. More important here is the need to accurately resolve the initial conditions
in the limit of non-analyticity. Truly non-analytic initial conditions cannot really be
considered with any discrete numerical scheme, as any initial condition de­ ned on
some discrete grid can be represented by an analytic Fourier series. Rather, we must
consider a sequence of initial conditions tending toward the limit of non-analyticity.
Thus the determining factor for spatial resolution here is that for the smallest value of

considered the initial condition is su¯ ciently resolved, such that no distinguishable
di¬erence in the numerical solution occurs as the resolution is decreased further.
The computations presented were all performed on the region x 2 [0; 4] (solutions
for negative x were simply obtained by re®ection), and for = 0:025 it was found
that 4097 cosine modes or collocation points were necessary to accurately resolve the
solution. This gives a spatial resolution of O(10¡3), which is an order of magnitude
smaller than any microstructure. To ensure temporal accuracy and stability it was
found that time-steps of length O(10¡6) were necessary for this spatial resolution.
The accuracy of the solution was monitored by calculating the energy (square of the
L2( ) norm) and Hamiltonian of the solution, de­ ned, respectively, as

E =

Z 1

¡ 1
jÁj2 dx; H =

Z 1

¡ 1
( 2jÁxj2 jÁj4) dx; (2.1)

both of which are conserved quantities for (1.1). The maximum absolute error over all
integrations for either of these quantities was observed to occur in the Hamiltonian
near the ­ rst breaking time, however this error was found to be less than O(10¡6).
The evolution of the Fourier spectrum was also monitored to ensure exponential
decay of the spectrum in the large-wavenumber tails at all times.

(b) Data analysis techniques, qualitative and quantitative

For the purpose of qualitative analysis, a useful representation of the output of
each numerical simulation is as a density plot of jÁ(x; t)j2 over the (x; t)-plane, in
which maxima appear lighter and minima darker. From such plots, we are able to
identify features of the solution like phase-transition boundaries or caustics, and also
to characterize the spatio-temporal patterns appearing on the microscales after wave
breaking.

The most important quantity associated with each simulation is a measure of
tc, the ­ rst time of wave breaking. This is the ­ rst time when the ­ eld jÁ(x; t)j2
as a function of x ­ rst fails to be `smooth’, by which we mean that signi­ cant
features appear on microscales of size in x. There is of course some arbitrariness
about quantifying the breaking time from the output data for ­ nite non-zero , but
because microstructure forms on spatio-temporal scales of size , we know that any
two reasonable methods for measuring the breaking time must disagree by at most
a small (order ) amount. We denote a numerical estimate of the breaking time by
t n u m and reserve the notation tc for the limiting value of the breaking time as tends
to zero. The former can depend on while the latter cannot.
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Speci­ cally, we looked for the ­ rst sudden jump in the time evolution of L2 norms
of the residual de­ ned as the right-hand side of (1.3), and also in the time evolution
of the potential energy functional

U [Á( ; t)] :=

Z 1

¡ 1
jÁ(x; t)j4 dx: (2.2)

Both of these quantities suddenly become quite large when narrow or large-amplitude
structures develop in the ­ eld » = jÁj2, and consequently we can use the correspond-
ing transition time as a de­ nition of t n u m .

Norms of the residual have the advantage that they are directly tied to the dis-
crepancy between the system (1.3) and the model problem (1.4), but the residual is
hard to compute accurately when the ­ eld jÁ(x; t)j2 decays to zero rapidly (faster
than Gaussian) with large x. On the other hand, from the point of view of ­ bre-optic
experiments, looking for large deviations in the potential energy is attractive because
U [Á] is equal to the intensity autocorrelation trace

Q(¢x; t) :=

Z 1

¡ 1
jÁ(x; t)j2jÁ(x ¢x; t)j2 dx (2.3)

evaluated at zero delay, ¢x = 0. In ­ bre-optic experiments it is not possible practi-
cally to measure the intensity I := jÁ(x; t)j2 directly at any given moment x; the only
observable quantities are in fact correlation traces like (2.3) and the invariant pulse
power corresponding to the L2 norm of Á( ; t). Both of these measures of breaking
time have the desirable property that they do not presume that the wave breaking
­ rst occurs at any one particular value of x. This makes the breaking time esti-
mates as useful in simulations when the primary caustic is ­ rst observed to form for
non-zero x as in simulations where the caustic ­ rst appears at x = 0.

3. Analytical method for determining breaking times

Given a real analytic bell-shaped function A(x), even in x and hence with maximum
value A achieved at x = 0, it is possible to express the exact solution of the Cauchy
problem for the elliptic system (1.4) in terms of the simultaneous solution of a system
of two algebraic equations, parametrized by x and t, in two unknowns (Kamvissis et
al. 2002). For t small, the system can be solved uniquely.

It is dī cult to obtain explicit information about the solution for general values
of x and t. However, when x = 0, the system of equations degenerates into a single
equation, which expresses t as an explicit function of » ¯. This relation is

jtj =
2

º
p

» ¯

Z ¡ iA ¡ 1(
p

» ¯)

0

E

µ
1

A(iy)2

» ¯

¶
dy; (3.1)

for » ¯ > A2, where E(m) is the complete elliptic integral of the second kind, and
A¡1( ) is an inverse function to A( ). It is assumed here that A00(0) is strictly negative.
Because A(x) is analytic and real for real x, with a maximum at x = 0, A(iy) is also
real for real y su¯ ciently small, and is increasing in jyj because A00(0) < 0. The
upper limit of integration refers precisely to the value of y > 0 for which A(iy) =p

» ¯ > A = A(0). Also, one has · 0 for x = 0.
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If it is known a priori that the semi-classical solution of (1.1) breaks down ­ rst
at x = 0, then the breaking time corresponds to the ­ rst time when » ¯ fails to be
analytic as a function of t. In any case, even if the solution of the elliptic system (1.4)
­ rst breaks down at a non-zero value of x, this calculation still gives an upper bound
for the breaking time that we denote by tu b . Thus, one is really interested in » ¯ as a
function of t, which requires inverting the relation (3.1). Under some conditions on
the function A(x), the right-hand side of (3.1) will de­ ne an analytic function of » ¯
for all » ¯ > A2. When this is the case, the earliest possible singularity t u b of » ¯(0; t)
corresponds to the ­ rst critical point of the right-hand side of (3.1), which may
occur for » ¯ = 1. Note that t is necessarily increasing with respect to » ¯ for » ¯ A2

su¯ ciently small. If the ­ rst critical point of the right-hand side of (3.1) is called
» ¯c

, then the x = 0 breaking time tu b for = 0 is de­ ned by simply substituting » ¯c

into the right-hand side of (3.1). Under less favourable circumstances, the function
A(x) can have a pair of complex singularities on the imaginary x-axis at which A(x)2

takes a ­ nite value » ¯max
. When this is the case, the right-hand side of (3.1) will fail

to be analytic at » ¯ = » ¯max
> A2. If there are no critical points of the right-hand

side of (3.1) for » ¯ 2 (A2; » ¯max
), then the function » ¯(t) obtained by inverting (3.1)

will ­ rst fail to be analytic at a time t u b obtained by evaluating (3.1) for » ¯ = » ¯max
.

Otherwise, the x = 0 breaking time t u b is determined as in the case above, which
essentially corresponds to » ¯max

= 1. One deduces whether » ¯max
< 1 simply by

looking at the function A(iy) for positive real y in the range where A(iy) is analytic
and increasing and setting » ¯max

equal to the maximum value of A(iy)2 in this range.
We now examine several particular cases of this analysis that are relevant to the

numerical simulations to be presented later.

Case 1: A(x) = 2 exp( x2 ). In this case, the upper limit of integration in (3.1)
is

iA¡1(
p

» ¯) =
q

log(
p

» ¯=2); (3.2)

and A(iy) = 2 exp(y2). The right-hand side of (3.1) is analytic for all » ¯ > A2 = 4.
The ­ rst critical point of t( » ¯) corresponds to a value of t u b = 0:188709.

Case 2: A(x) = 2 exp( x4). In this case, we have A00(0) = 0, and formula (3.1)
is not valid.

Case 3: A(x) = 2º exp( x2) + 2" exp( (x2 + ¾2)3=2). We consider ¼ > 0.
Unlike the other two cases, here A(x) is not entire unless " = 0. Thus, we also consider
" to be strictly positive here. The upper limit of integration in (3.1) cannot generally
be found explicitly and the implicit representation of iA¡1(

p
» ¯) must su¯ ce for

an application of numerical root ­ nding. For all non-zero ", the right-hand side of
(3.1) is analytic only for » ¯ 2 (A2; » ¯max

) = ((2 ¸ +2" exp( ¼ 3))2; (2 ¸ exp( ¼ 2) +2")2).
Passing to the subcase of ¸ = 0 and " = 1, it turns out that for ¼ su¯ ciently small,

the right-hand side of (3.1) de­ nes a strictly increasing function of » ¯ in its interval
of analyticity, and therefore the x = 0 critical time t u b is de­ ned by the time t for
» ¯ = » ¯max

. On the other hand, there exists a bifurcation value ¼ = ¼ b if such that
for ¼ > ¼ b if , there is a ­ rst critical point » ¯c

of the right-hand side of (3.1) in the
interval of analyticity (A2; » ¯max

) and thus, for ¼ > ¼ b if , the x = 0 critical time t u b

is de­ ned by evaluating the right-hand side of (3.1) for » ¯ = » ¯c
. On the other hand,

for ¼ < ¼ b if , the x = 0 critical time is given by t u b = t( » ¯max
). This information is

displayed in the solid curve in ­ gure 5a.
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Table 1. Initial data for the three series of numerical experiments

(In series C we ¯xed ~ = 0:05.)

parameters
series initial data Á(x; 0) = A(x) varied

A A(x) = 2e¡ (x 2 + ¼ 2 )3=2

¼ and ~
B A(x) = 2e¡ x 2

+ 2"e ¡ jxj3

" and ~
C A(x) = 2e¡ x 2

+ 2"e ¡ (x 2 + ¼ 2)3=2

" and ¼

1.00

0.10

0.01
0.01 0.10 0.01 0.10 0 0.2 0.4 0.6

10 - 12

10 - 9

10 - 6

10 - 3

100 10- 1

10- 2

10- 3

10- 4

10- 5

s
e e

(a) (b) (c)

Figure 1. Parameter values for the three series of numerical experiments.
(a) Series A; (b) series B; (c) series C.

A second subcase of interest is that of ¸ = 1. Here, one again ­ nds that for
su¯ ciently small ¼ there are no critical points of the right-hand side of (3.1) in the
interval of analyticity, and thus the endpoint determines the time t u b . An interesting
phenomenon is that for this range of values of ¼ , the limit lim"#0 t( » ¯max

) exists and
displays non-trivial structure as a function of ¼ , but this limit is not the same as the
clearly ¼ -independent value of t u b = 0:188 709 for " = 0 obtained above in x 3 for the
Gaussian initial data. This phenomenon is displayed in ­ gure 10b.

4. The numerical experiments

We carried out three series of numerical experiments. In each series, the form of the
initial condition was ­ xed, and two parameters were varied. In series A and series B,
one of the parameters varied was , while in series C we ­ xed = 0:05 and varied
two independent parameters in the initial condition. The three series of experiments
are summarized in table 1 and ­ gure 1.

(a) Series A: e® ects of complex singularities in the initial data

In series A we studied the e¬ect of the presence of a singularity of the initial
condition A(x) on the imaginary x-axis a distance ¼ from the real axis. As shown
in table 1, the initial condition had the form A(x) = 2 exp( (x2 + ¼ 2)3=2), which
has a branch point for x = i ¼ but is real analytic for real x as long as ¼ > 0. In
this series of experiments, we varied both ¼ and . A representative family of plots
corresponding to the smallest value of in our experiments is shown in ­ gure 2.

When ¼ is large enough and ­ xed as tends to zero, the pattern observed is like
that shown in ­ gure 2d. In this plot, we see that the oscillations ­ rst appear at two
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Figure 2. Sample output from series A with ~ = 0:025.
(a) ¼ = 0, (b) ¼ = 0:25, (c) ¼ = 0:3, (d) ¼ = 0:5.

opposite points x = x0, rather than at x = 0. The t values of these points de­ ne
the breaking time tc. Now, to our knowledge, previous experiments had observed
the formation of higher-order caustics, but these phase-transition boundaries always
seemed to spontaneously appear due to a self-interaction of the wave pattern inside
the primary caustic. But ­ gure 2d shows that higher-order caustics can also arise
due to the nonlinear interference of wave patterns contained in lower-order caustics.
In any case, as ¼ is decreased for ­ xed , a new pattern emerges between the two
symmetrical cones of the primary caustic, as seen in ­ gure 2c. We refer to this new
pattern as a `beard’. For yet smaller values of ¼ , the beard extends to shorter times,
until it overtakes the two points x = x0 of wave breaking; this is shown in ­ gure 2b.
Once ¼ has become small enough for this to occur, the breaking time tc is de­ ned
by the earliest point of the beard, which occurs at x = 0. Finally, for ¼ small enough
compared with , the beard dominates the entire pattern as shown in ­ gure 2a, and
there is evidence that the breaking time de­ ned by the beard location at x = 0
becomes small as # 0. That is, the primary caustic t = t(1)(x) is connected to t = 0
at the origin and in the limit there is no open time-interval containing t = 0 in
which the elliptic model problem (1.4) provides a good description of the dynamics
uniformly in x. On the other hand, it appears that the caustic t = t(1)(x) does not
contract to t = 0 for all x, so there would seem to be regions to the left and right of the
oscillatory region where some solutions of (1.4) describe the asymptotic behaviour.
These two solutions do not need to be matched together in the centre. Incidentally,
we also found that, for values of ¼ much larger than the value corresponding to
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Figure 3. Sample output from series A with ¼ = 0:05.
(a) ~ = 0:025, (b) ~ = 0:05, (c) ~ = 0:075, (d) ~ = 0:1.

­ gure 2d, the two foci x = x0, well de­ ned in the limit # 0, ultimately merge into
one at x = 0, and there is no discernible beard.

We also want to illustrate the e¬ect of tuning down for a particular ­ xed initial
condition. A collection of corresponding plots from the numerical experiments of
series A is given in ­ gure 3. These plots indicate that the formation of a beard is
not only related to ¼ , the distance of the nearest singularity of the initial data from
the real x-axis. The key point is that a beard forms when ¼ is su¯ ciently small
compared with . Thus, whereas ­ gure 3a is qualitatively quite similar to the plot for
the non-analytic case of ¼ = 0 in ­ gure 2, we see that as increases for ­ xed ¼ the
beard contracts upward until at some value of it ceases to de­ ne the breaking time
t n u m (as in ­ gure 3c). Ultimately the wave breaking occurs at two distinct x values
as in ­ gure 3d. Although less well resolved than the plots in the previous ­ gure,y
this plot qualitatively resembles the `beardless’ ­ gure 2d.

We want to draw the reader’s attention to the structure of the `beard’ in ­ gure 2a.
The oscillations of jÁ(x; t)j2 that make up the microstructure are qualitatively dif-
ferent from the hexagonal lattice structures present in the `beardless’ plots. But
nonetheless they are regular. Using the language of integrable systems, we would
classify these oscillations in the `beard’ as being a modulated multiphase wave of
genus two. One of the nonlinear phases present in the representation of the wave-
form in terms of Riemann theta functions has a small amplitude compared with

y Less well resolved only from the point of view of the semi-classical limit, i.e. in the sense that ~
is bigger. As described in x 2 a, the numerical scheme we used to integrate (1.1) was always su¯ ciently
accurate for the range of values of ~ studied in this paper.
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Figure 4. Numerical data for » (0; t) := jÁ(0; t)j2 as a function of t for (a) ¼ = 0:05 and (b) ¼ = 0:5,
and several di® erent values of ~ shown with dashed curves. These are compared with the exact
solution » ¯(0; t) of the model (~ = 0) problem (1.4) computed using formula (3.1) and shown
with solid curves. At the t value where the solid curves stop, the solution of (1.4) fails to be
analytic and further continuation is not possible.

the others (i.e. one of the spectral gaps is small), so the wave pattern looks like
a cnoidal wavetrain (genus one) with a superimposed time-periodic modulation of
the peak amplitude. This would explain the `dashed-line’ structure within the beard
in part (a). It is intriguing that this plot is for ¼ = 0, where the initial data have
a real point of non-analyticity, and we expect immediate wave breaking at t = 0
(more concerning this below). So we are predicting that even if the initial data are
non-analytic at isolated points, the semi-classical behaviour for t > 0 close to the
singularity will be described by genus two theta functions, as when analytic initial
data break spontaneously at a strictly positive time.

Using the numerical data for any strictly positive ¼ , we can con­ rm semi-classical
convergence to the solution of the ill-posed model problem (1.4) by comparing
jÁ(0; t)j2 with the function » ¯(0; t) obtained by inverting the relation (3.1). The
results are shown in ­ gure 4 for ¼ = 0:05 (in ­ gure 4a) and ¼ = 0:5 (in ­ gure 4b)
for several di¬erent values of . The numerical data display strong convergence to
» ¯(0; t) as # 0 for those times until (3.1) can no longer be inverted, after which
time a single-valued solution of the elliptic model problem (1.4) no longer exists.

From each of the simulations in series A, we extracted an estimate t n u m of the
breaking time tc as described in x 2 b. The results are given in ­ gure 5. In ­ gure 5a
we give the estimated breaking time t n u m as a function of ¼ for several di¬erent
values of , as determined from the numerical data. However, also included in this
plot is a graph of the curve t u b for = 0 as a function of ¼ , as calculated from
the ­ rst singularity of the function » ¯(0; t) obtained by inverting (3.1). This latter
quantity does not always agree with the breaking time tc, since oscillations may
appear earlier at non-zero values of x, but it provides an upper bound that is sharp
when breaking ­ rst occurs at x = 0. The derivative discontinuity and sharp upturn
in this curve near ¼ = 0:9 correspond to a true bifurcation at some de­ nite point
¼ = ¼ b if . This bifurcation occurs because for ¼ < ¼ b if the function t( » ¯) is smooth
and monotonically increasing for A(0)2 < » ¯ < » ¯max

= 4, so the ­ rst singularity
always occurs for » ¯ = 4, while for ¼ > ¼ b if there is a local maximum of t( » ¯) in this
interval that causes the breakdown. The derivative of the function t( » ¯) vanishes at
» ¯ = 4 for ¼ = ¼ b if , which explains the continuity at the bifurcation point. We note
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Figure 5. (a) The estimated breaking time for series A as a function of the analyticity parameter
¼ for several di® erent values of ~. From top to bottom, the data curves correspond to ~ = 0:1,
0:075, 0:05, 0:025. The solid curve is the breaking time tub at x = 0 obtained for the limiting
case ~ = 0 from the analytical method described in the text. (b) Estimated breaking time for
series A with ¼ = 0 as a function of ~, and a ¯t to tnu m = 1:45~3 = 4 .

that for small the data curves follow the analytical prediction for the break time
both for su¯ ciently small ¼ and for sū ciently large ¼ . In both of these regimes, the
wave breaking actually occurs ­ rst at x = 0, whereas in the intermediate regime the
wave breaking occurs ­ rst for non-zero values of x and therefore the exact solution of
(1.4) that is encoded in formula (3.1) for x = 0 cannot capture the earliest interesting
events.

In ­ gure 5b, we compare the breaking times tn u m obtained for ¼ = 0 (for which the
theoretical breaking time at = 0 is for x = 0 is tu b = 0) with a ­ t to the function
t n u m = 1:45 3=4, thus con­ rming the contraction of the caustic curve t(1)(x) to t = 0
with decreasing . We have remarked in x 2 b that any method of estimating breaking
times for ­ nite non-zero can only be accurate up to an error the size of the typical
scales of the spatio-temporal microstructure that is present. As these are order ,
our estimates of breaking times have errors of a similar size. But the fact that the
data shown in ­ gure 5b indicate a breaking time t n u m large compared with while
still going to zero with , suggests that the ­ t to the data is sensible (we would have
to admit less con­ dence if the ­ t suggested an exponent greater than or equal to 1).

Now, it has been remarked that the analytical method given in Kamvissis et al.
(2002) for solving the elliptic system (1.4), and which for x = 0 degenerates into
inverting the explicit relation (3.1), fails when A00(0) = 0. We have also observed
that when ¼ = 0, there is no time-interval in which a solution of (1.4) exists, which
is indicated in the numerical simulations by the pulling back of the primary caustic
to t = 0. But for the ¼ = 0 initial data we have A(x) = 2 exp( jxj3), which not only
fails to be analytic at x = 0 but also when considered as a real function of real x
satis­ es A00(0) = 0. Thus it is of some interest to determine whether the pulling back
of the primary caustic as # 0 is connected with the non-analyticity or with the
non-convexity. To examine this question, we also carried out numerical simulations
of (1.1) for several values of with the initial condition Á(x; 0) = A(x) = 2 exp( x4).
These data are analytic but have an in®ection point at the peak (x = 0). The output
of two of our simulations is given in ­ gure 6. Here, we see that as is halved, the
breaking time t n u m hardly changes at all, in contrast with the data given in ­ gure 5b
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x x

Figure 6. For comparison, two simulations with initial data
A(x) = 2 exp(¡x4 ). (a) ~ = 0:025, (b) ~ = 0:05.

for the non-analytic case of A(x) = 2 exp( jxj3). This suggests strongly that the
lack of convexity at the peak is only a technical obstruction to the construction
given in Kamvissis et al. (2002) of solutions of the elliptic system (1.4), whereas lack
of analyticity is an essential obstruction.

This indicates that the relation between the behaviour of even, bell-shaped initial
data exactly at the centre point x = 0 and the behaviour of the corresponding
solutions of (1.1) are rather subtle. For even data, one could consider the equivalent
initial/boundary-value problem for (1.1) on the half-line x > 0, where the solution
Á(x; t) satis­ es Neumann boundary conditions at x = 0, i.e. Áx(0; t) = 0. In this
interpretation, the above conclusions indicate that the initial data for the problem
on the half-line must not only be analytic for 0 < x < 1, but must also be analytic
at the boundary point x = 0 in the sense that the symmetric extension of the data has
a power series expansion at x = 0 for a solution of the elliptic model problem (1.4)
to exist uniformly for any positive time at all. If for the half-line problem, we give
the initial data Á(x; 0) = A(x) = 2 exp( x3) for x >0, then there exists an analytic
extension to all real x, but it is not even in x and the primary caustic is attached to
t = 0 at x = 0.

(b) Series B: e® ects of small non-analytic perturbations

In series B, we investigated the e¬ect of a non-analytic perturbation added to
pure Gaussian (and hence analytic) initial data, as the size of the perturbation is
varied with . As shown in table 1, the initial data for (1.1) in series B were of the
form Á(x; 0) = A(x) = 2 exp( x2) + 2" exp( jxj3). Here, " parametrizes the size of
the perturbation. Note that the perturbation term is not only small with " in the
absolute sense, but also in the relative sense when compared with A(x) for " = 0.

We chose a perturbation that, while not analytic at x = 0, was still of class
C2( ). Indeed, it has already been shown by Bronski & Kutz (1999) that non-smooth
(in particular, `tent-shaped’) perturbations can considerably degrade the structures
present in the evolution of an unperturbed analytic initial condition. We wanted
to make sure that the initial data were smooth enough that the classical nature of
solutions of the initial-value problem (1.1) for ­ xed was not an issue.

A representative sequence of simulations from series B for = 0:025 is shown
in ­ gure 7. These four experiments display the remarkable sensitivity of the semi-
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x x

Figure 7. Sample output from series B with ~ = 0:025.
(a) " = 0, (b) " = 10¡ 12 , (c) " = 10 ¡ 1 0 , (d) " = 0:05.

classical limit for (1.1) to the presence of non-analyticity in the initial data. Figure 7a
shows the evolution for = 0:025 of the unperturbed Gaussian initial condition
Á(x; 0) = A(x) = 2 exp( x2). This plot shows qualitatively similar features to those
obtained from exact solutions of (1.1) for Á(x; 0) = A(x) = 2 sech(x) in Miller &
Kamvissis (1998). Namely, there is a smooth ­ eld outside of a primary caustic curve
t(1)(x) anchored at t = tc and x = 0. Inside the primary caustic curve there is a
regular hexagonal lattice pattern of maxima indicating microstructure that is well
approximated (for small ) by a modulated genus two hyperelliptic solution of (1.1).
At the top of the ­ gure just before t = 0:5, one begins to see the formation of a
secondary caustic curve t = t(2)(x) separating the hexagonal pattern from a region
of more complicated microstructure. Now, in passing to ­ gure 7b corresponding to
" = 10¡12, there already appear qualitative di¬erences in the evolution, not so much
in the location of the primary caustic, but more in the details of the pattern of
maxima inside the caustic. However, by the time " is increased only to a value of
" = 10¡10, a beard has formed that changes the shape of the primary caustic. This
caustic becomes larger and gets closer to t = 0 as " is increased (see ­ gure 7d).

In fact, the contraction of the primary caustic to t = 0 is due not only to the
size of ", but more accurately to the size of " compared with . This is illustrated
in ­ gure 8, which indicates the region of " values where the transition in behaviour
occurs for a di¬erent larger value of . Here we see that the regular pattern within
the primary caustic survives for = 0:05 until " 10¡4, a much larger value (about
a hundred million times larger!) than in the experiments shown in ­ gure 7 for only
half the size.
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x x

Figure 8. Sample output from series B with ~ = 0:05. (a) " = 10¡ 5 , (b) " = 10¡ 4 .
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Figure 9. The estimated breaking time for series B as a function of the perturbation parameter
" for several di® erent values of ~. Top curve, ~ = 0:1; middle curve, ~ = 0:05; bottom curve,
~ = 0:025.

For each of the simulations in series B, we computed the estimated breaking time
t n u m as described in x 2 b. The results are shown in ­ gure 9. In this ­ gure, the esti-
mated breaking time t n u m is plotted as a function of " for several di¬erent values
of . Note that the analytical method for predicting the breaking time in series B
always gives the result t u b = 0 for all " > 0 because the data are non-analytic at
x = 0. We see clearly that for any given value of the breaking time is insensitive
to " for " su¯ ciently small, but that transition region of " is not uniform as # 0.
We conclude that the e¬ect of class C2( ) non-analytic perturbations is always that
the primary caustic is drawn back to t = 0 for any " in the limit # 0, but that for
any given there exist " su¯ ciently small that the e¬ect goes unnoticed.

(c) Series C: relative e® ects of size and proximity of
complex singularities of perturbations

In series C we ­ xed = 0:05, a value that we want to suppose is small enough to
be `in’ the semi-classical limit. We then computed estimated breaking times t n u m for
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Figure 10. The estimated breaking time tnu m for series C as a function of the analyticity parame-
ter ¼ for several di® erent values of the perturbation parameter ". (a) Numerical data for ~ = 0:05.
From top to bottom, the three spline-interpolated datasets correspond to " = 10¡ 4 , 10¡ 3 , 10¡ 2 .
(b) Analytical breaking time tu b at x = 0 for the theoretical limit ~ = 0. The horizontal line
corresponds to the theoretical breaking time for " = 0, which agrees well with the breaking time
observed in the unperturbed Gaussian simulation shown in ¯gure 7a. There are also ¯ve curves
shown in the plot corresponding to (from top to bottom), " = 10¡ 4 , 10¡ 3 , 10 ¡ 2 , 10¡ 1 , 100 . The
top two curves are so close as to be indistinguishable to the eye, and they thus represent the
limit of " tending to zero from above.

perturbed Gaussian initial conditions (cf. table 1) given by

Á(x; 0) = A(x) = 2 exp( x2) + 2" exp( (x2 + ¼ 2)3=2)

over a collection of parameter pairs ("; ¼ ). The plots of the particular simulations
in the series are qualitatively similar to those given in x 4 b for series B, so we omit
these here. However, for each experiment in series C we again computed the estimated
breaking time t n u m using the data-analysis methods described in x 2 b. These results
are shown in ­ gure 10. Figure 10a shows the estimated breaking times plotted against
¼ for " = 10¡4, " = 10¡3 and " = 10¡2 calculated from the numerical data for

= 0:05. For comparison, ­ gure 10b shows the analytical predictions for the breaking
times t u b at x = 0 obtained by inverting the relation (3.1) and looking for the earliest
singular point. From top to bottom, the curves in this plot correspond to " = 10¡4,
" = 10¡3, " = 10¡2, " = 10¡1 and " = 1, and the horizontal line corresponds to
" = 0. The top two curves corresponding to " = 10¡4 and " = 10¡3 are so close
to each other that they are indistinguishable to the eye. We interpret this as the
limit of the theoretical breaking time as " tends to zero from positive values. Note
that this limit does not agree with the theoretical breaking time for " = 0, which
is naturally independent of ¼ . From the numerical data in ­ gure 10a, we see that
for any given ", there exists a range of ¼ su¯ ciently large that the breaking time
is relatively insensitive to ¼ , while for ¼ smaller than some transition value the
breaking time decreases sharply as ¼ decreases. Again, this e¬ect is not uniform in ",
the perturbation size. If " is made smaller than before, then the transition value of
¼ is correspondingly smaller. We see from ­ gure 10a that when " is su¯ ciently small
(for the ­ xed value of for which the simulations in series C were carried out) the
transition point of the curve has disappeared to the left of ¼ = 0, and consequently
for such " the breaking time becomes more or less independent of ¼ all the way down
to ¼ = 0, the non-analytic case. This is the e¬ect of the ­ niteness of in this series
of simulations.
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5. Banach spaces of analytic functions

The numerical simulations presented above seem to suggest a limited kind of stability
for small as long as sū cient control is placed upon the admissible perturbations.
But one wants to know what to expect as is made smaller than any other scales in
the problem, and we truly are in the semi-classical limit. Clearly, to have any hope of
stability for the limit in any sense, one must have both analytic unperturbed initial
data and also a class of admissible perturbations consisting of analytic functions.
And to measure the e¬ects of perturbations of a small `size’ one must work with a
set of analytic functions that make up a Banach space. This requires making some
choices because, for example, the subspace of all real analytic functions in L2( ) is
not closed with respect to the natural L2( ) norm. So what are the right function
spaces, and what are the right norms?

One general way to equip spaces of analytic functions with a norm is consistent
with all of the experiments we have presented in this paper for which the initial
data for (1.1) were analytic. Let Ā denote the `strip space’ of real analytic functions
Á(x) of real x that can be continued into the complex x-plane throughout the open
symmetric strip surrounding the real axis of uniform width 2 ¯ , and that decay to
zero uniformly as x tends to in­ nity within the strip. Introduce the norm

kÁk 1
¯ := sup

x 2 R; jyj<¯

jÁ(x + iy)j: (5.1)

Since uniform limits of analytic functions are themselves analytic, this norm makes
A 1

¯ , the subset of functions in Ā that are uniformly bounded as jyj ! ¯ , into a
Banach space. So for example, in the numerical experiments of series A or series C
with the parameter ¼ held ­ xed, all of the initial data are contained in A1

¯ for all
¯ < ¼ , and the terms proportional to " in series C can be considered to be small
with " in the k k 1

¯ norm. The strip spaces may be equipped with other norms as
well. For example replacing the L 1 norm over lines parallel to the real axis in our
de­ nition by the L2 norm gives the structure of a Banach space to the subset A2

¯ of
A ¯ containing functions for which the norm is ­ nite. The spaces A2

¯ are the Gevray
spaces. They di¬er essentially from the A 1

¯ spaces only in that they admit more
singular behaviour (e.g. negative one fourth root singularities) at the boundary of
the strip, so A 1

¯ A2
¯ . Since our immediate usage of these spaces does not involve

behaviour on the boundary (if singularities were to appear on the boundary, we would
just make ¯ smaller), either of these Banach spaces, or indeed other ones similarly
de­ ned as subsets of the basic strip space A ¯ , will su¯ ce.

Another way to give analytic functions a Banach space structure is to work in
band-limited function spaces. Let FK denote the linear subspace of L2( ) consisting
of functions Á(x) whose Fourier transforms Á̂(k) vanish identically for almost all k
with jkj > K. We equip this space with the L2 norm, and then by the Plancherel
theorem we see that this makes FK into a Banach space (it is closed). The functions
in FK are necessarily analytic in x; in fact it is a consequence of Paley{Wiener theory
that the union of the FK spaces consists of those functions in L2( ) that continue
for complex x into entire functions of exponential type. Therefore if Á(x) 2 FK ,
we also have Á(x) 2 A 1

¯ for all ¯ > 0, so these spaces are more restrictive than
the strip spaces de­ ned above. In fact, none of the initial data for our numerical
experiments ­ t into any of the FK spaces; even the entire cases A(x) = 2 exp( x2)
and A(x) = 2 exp( x4) have Fourier transforms that are not compactly supported.
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In spite of the fact that it is hard to write down a function Á(x) that is in an FK space
without Fourier theory, the Banach spaces FK are particularly attractive from the
point of view of physical applications, since the norm is just the usual L2( ) energy
norm. Moreover, it is quite reasonable to suppose that in applications, initial data
may be considered to be smoothed by a band-limiting process. For example, in optical
experiments like those reported in Sudo et al. (1989), noisy pulses generated by a
laser can easily be routed through a band-pass Fabry{Perot ­ lter prior to launching
into the optical ­ bre. This process e¬ectively yields an ensemble of initial data for
(1.1) that is uniformly in some FK space, where K is the half-width of the ­ lter
transmission peak.

One disadvantage of the FK spaces is that due to the nonlinearity they are not
preserved under the evolution of the focusing nonlinear Schr�odinger equation (1.1) for
any > 0. A space preserved under the evolution might appear more useful, since the
evolution under (1.1) to some t > 0 of one initial condition Á(x) could be interpreted
as another initial condition, just as good as the ­ rst. But we need to emphasize
that we are interested in taking the limit # 0 before examining the behaviour of
the solution at di¬erent values of t > 0. Since -independent analytic initial data
of the form Á(x) = A(x) will evolve semi-classically for t > 0 su¯ ciently small into
the WKB form Á(x; t) A(x; t) exp(iS(x; t)= ) with S(x; t) 6 0, the asymptotic
solution Á(x; t) of (1.1) fails to exist as an ordinary function for any t > 0. Thus, the
strip spaces also fail to be invariant under the semi-classical evolution of (1.1). So
we take the point of view in this paper that the `semi-classical nonlinear Schr�odinger
equation’ is a map taking some class of smooth, -independent initial data (e.g. A 1

¯
or FK ) to certain output data (e.g. coordinates of caustic curves), that we would
like, ideally, to be continuous functionals.

In fact, the calculations presented in ­ gure 10b show that the control of being
in the strip space A1

¯ and working with perturbations that are uniformly small in
the corresponding norm is not su¯ cient to yield stability of the asymptotic # 0
behaviour. This is because one sees that for ­ xed ¼ > 0 and for any positive ¯ < ¼ , the
perturbation of the Gaussian under consideration has a k k 1

¯ norm that is arbitrarily
small as " tends to zero from above. But the theoretical calculations based on the
exact solution of the elliptic problem (1.4) at x = 0 show clearly that for any ¼ > 0

lim
"#0

t u b 6= t u b j"= 0; (5.2)

i.e. the time of ­ rst wave breaking at x = 0 in the semi-classical limit is not a
continuous functional on the Banach space A 1

¯ for any ¯ < ¼ .
The calculations and numerical simulations presented here do not allow us to make

any de­ nitive statements regarding stability of such functionals on the band-limited
function spaces FK . However, since all functions in FK are necessarily entire, there
can be no complex singularities on the imaginary x-axis of the type that leads to
the discontinuity (5.2). We feel compelled to conjecture that all reasonable features
of the semi-classical behaviour of solutions of (1.1)|features like weak limits of »
and · in the vicinity of ­ xed x and t not on any caustic curve, or the t coordinate
of a particular caustic curve at a given ­ xed value of x|are stable with respect to
perturbations in any given FK space (i.e. are continuous functionals on FK). One
would expect the modulus of continuity to not be uniform with respect to K.
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6. Conclusion

Whereas semi-classical or dispersionless limits for `stable’ integrable partial di¬eren-
tial equations are fairly well understood (Jin et al . 1999; Lax & Levermore 1983a{c),
we are only beginning to explore the corresponding questions for `unstable’ problems
like the focusing nonlinear Schr�odinger equation (1.1). The formal semi-classical limit
of (1.1) meant to be valid for su¯ ciently small times independent of turns out to
be an ill-posed initial-value problem (1.4) that can only be solved for analytic initial
data. It is therefore clear that for small some kind of extreme sensitivity to the
presence in the initial data of points of non-analyticity either on or possibly just
su¯ ciently close to the real x-axis should be expected. The three series of numerical
experiments presented in this paper were undertaken to investigate this sensitivity.
The simple formula (3.1) giving the exact solution to the model problem (1.4) for
appropriate data was also very useful in this analysis.

A quantitative observation based on images like those shown in ­ gures 2, 3, 7
and 8 is that the presence of non-analytic points of the initial data near the real
x-axis leads to the formation of `beards’ on a regular background wave pattern.
When these non-analytic points are far from the real axis, or when the perturbation
is not too large, the beards do not change the caustic curves much, and tend to
in®uence the patterns of maxima within the caustics. In some of the plots, we see
the hexagonal pattern characteristic of modulated genus two wavetrains go over
into a `chain-link’ pattern possibly characteristic of higher genus. But when the
analytic points become close to the real axis, or if the perturbation is sū ciently
large, the beard dominates the whole wave pattern and completely determines the
primary caustic. In our experiments, the wave pattern within the beard attached to
the non-analytic point x = 0 in the semi-classical limit does not appear to be too
irregular. This suggests the intriguing possibility that in the semi-classical limit, the
nonlinear Schr�odinger equation (1.1) automatically and immediately (i.e. on time-
scales much shorter than ) `repairs’ isolated non-analytic points in the initial data
by passing locally to a modulated multiphase waveform of sū ciently large but ­ nite
genus.

A second qualitative observation is that the ­ rst wave breaking does not always
occur at x = 0, although the initial data are even and bell shaped as a function of
real x. The clearest example of breaking ­ rst occurring for a symmetric pair of non-
zero x values x0 is the evolution of the non-convex initial data Á(x; 0) = A(x) =
2 exp( x4) shown in ­ gure 6, but it is also seen in the plot corresponding to ¼ = 0:5
in ­ gure 2. For this latter simulation, a careful look at ­ gure 4b gives circumstantial
evidence that the exact solution of the elliptic model problem (1.4) evaluated at
x = 0 fails to be analytic at exactly the time that the two wave envelopes born
at x = x0 at the breaking time merge at x = 0. Now it is familiar from weak
dispersion theory that the cusp points of caustic curves are typically encoded in the
model problem analogous to (1.4) as singular points in the solutions. On the other
hand, one does not ordinarily expect the caustic curves themselves to be obtainable
directly from this leading-order model; they arise either from a Gurevich{Pitaevskii
type matching procedure (Gurevich & Pitaevskii 1974) for connecting to a solution
of higher-order Whitham equations supposed to be valid within the caustic, or from
a global theory like the variational theory of Lax & Levermore (1983a). However,
our numerical experiments in conjunction with the exact solution of the elliptic
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problem (1.4) a¬orded by the relation (3.1) suggest that the point where the two
caustic envelopes overlap is also encoded in the quasilinear leading-order problem.

This last point underscores the utility of the simple formula (3.1) for determin-
ing semi-classical asymptotic properties of the solution of the nonlinear Schr�odinger
equation for absolutely arbitrary initial data of the type we have considered in this
paper. For such data when is small, inversion of this explicit formula (i.e. merely
turning the graph of the explicit function t( » ¯) on its side) provides a very accurate
prediction » ¯(0; t) for the square modulus jÁ(0; t)j2 of the solution of the full nonlin-
ear Schr�odinger equation (1.1) at x = 0 until wave breaking occurs. Although there
is no general proof at the moment (see Kamvissis et al. (2002) for a special case), all
evidence to date points to the conclusion that the solution of the equivalent prob-
lem (1.3) is strongly approximated by the solution of the elliptic model problem (1.4),
uniformly in x for all t until the ­ rst singularity forms in the latter solution. At the
worst, a simple formula like (3.1) for the solution of the model problem can assist
expensive sti¬ numerical simulations of the full nonlinear Schr�odinger equation close
to the semi-classical limit. And at best, it can provide an alternative to them. The
time of ­ rst appearance of a singularity in the function » ¯(0; t) is expected to provide
an upper bound on the breaking time, a bound that is sharp in cases when the waves
break at x = 0.

One of the predictions of the exact solution to the elliptic model problem a¬orded
by the relation (3.1) is that certain properties of the semi-classical limit for the
focusing nonlinear Schr�odinger equation do not necessarily depend continuously on
the size of a real analytic perturbation of the initial data, even if the size of the
perturbation is controlled uniformly in a strip about the real axis with non-trivial
width in the imaginary direction. In making this statement, we are thinking of
going to zero before any other perturbation parameters. As shown in ­ gure 10, it
is not the size of the perturbation that matters in determining the time of the ­ rst
singularity of » ¯ at x = 0, but rather whether it is present at all and whether it has
complex singularities.

This sort of instability of semi-classical asymptotics is not unique to the focusing
nonlinear Schr�odinger problem. Indeed it has been observed in the defocusing case
as well by Forest & McLaughlin (1998). These authors show that certain piecewise-
constant initial data evolve in such a way as to never `break’, while any C 1 smoothing
of these data, however ­ ne, leads to wave breaking and the subsequent onset of
O( ) wavelength oscillations in the amplitude of the solution in ­ nite time. This
is especially interesting because the defocusing nonlinear Schr�odinger equation, for
which the semi-classical asymptotics were expounded by Jin et al. (1999), is one of
the well-understood, `stable’ problems.

For the focusing nonlinear Schr�odinger equation it appears that complex singular-
ities in the initial data can lead to the discontinuity of certain functionals associated
with the semi-classical limit of (1.1) even for data analytic on the real x-axis. This
fact leads us to suspect that the right spaces to consider in order to obtain stability of
the limit are spaces of entire functions, like the band-limited spaces FK discussed in
x 5. These spaces are especially interesting from the point of view of physical appli-
cations of the focusing nonlinear Schr�odinger equation, because ­ ltering processes
that can lead to e¬ectively band-limited initial data are quite natural and familiar in
the laboratory setting. For appropriately `pre-­ ltered’ initial data, the semi-classical
limit for (1.1) may be quite stable indeed.
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