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Asymptotics of Semiclassical Soliton Ensembles: Rigorous

Justification of the WKB Approximation

Peter D. Miller

1 Introduction

Many important problems in the theory of integrable systems and approximation the-

ory can be recast as Riemann-Hilbert problems for a matrix-valued unknown. Via the

connection with approximation theory, and specifically the theory of orthogonal poly-

nomials, one can also study problems from the theory of random matrix ensembles and

combinatorics. Roughly speaking, solving a Riemann-Hilbert problem amounts to re-

constructing a sectionally meromorphic matrix from given homogeneous multiplicative

“jump conditions” at the boundary contours of the domains of meromorphy, from “prin-

cipal part data” given at the prescribed singularities, and from a normalization condi-

tion. So, many asymptotic questions in integrable systems (e.g., long time behavior and

singular perturbation theory) and approximation theory (e.g., behavior of orthogonal

polynomials in the limit of large degree) amount to determining asymptotic properties

of the solutionmatrix of a Riemann-Hilbert problem from given asymptotics of the jump

conditions and principal part data.

In recent years a collection of techniques has emerged for studying certain as-

ymptotic problems of this sort. These techniques are analogous to familiar asymptotic

methods for expanding oscillatory integrals, and we often refer to them as “steepest-

descent” methods. The basic method first appeared in the work of Deift and Zhou [5].

The first applications were to Riemann-Hilbert problems without poles, in which the

solution matrix is sectionally holomorphic. Later, some problems were studied in which
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there were a number of poles—a number held fixed in the limit of interest—in the solu-

tion matrix (see, for example, the paper [2] on the long-time behavior of the Toda lattice

with rarefaction initial data). The previous methods were extended to these more com-

plicated problems through the device of making a local change of variable near each

pole in some small domain containing the pole. The change of variable is chosen so that

it has the effect of removing the pole at the cost of introducing an explicit jump on the

boundary of the domain around the pole in which the transformation is made. The result

is a Riemann-Hilbert problem for a sectionally holomorphic matrix, which can be solved

asymptotically by pre-existing “steepest-descent” methods. Recovery of an approxima-

tion for the original sectionally meromorphic matrix unknown involves putting back the

poles by reversing the explicit change of variables that was designed to get rid of them

to begin with.

Yet another category of Riemann-Hilbert problems consists of those problems

where the number of poles is not fixed, but becomes large in the limit of interest, with

the poles accumulating on some closed set F in the finite complex plane. A problem

of this sort has been addressed [8] by making an explicit transformation of the type

described above in a single fixed domain G that contains the locus of accumulation F of

all the poles. The transformation is chosen to get rid of all the poles at once. In order to

specify it, discrete data related to the residues of the poles must be interpolated at the

corresponding poles by a function that is analytic and nonvanishing in all of G. Once

the poles have been removed in this way, the Riemann-Hilbert problem becomes one

for a sectionally holomorphic matrix, with a jump at the boundary of G given in terms

of the explicit change of variables. In this way, the poles are “swept out” from F to the

boundary of G resulting in an analytic jump. There is a strong analogy in this procedure

with the concept of balayage (meaning “sweeping out”) from potential theory.

In establishing asymptotic formulae for suchRiemann-Hilbert problems, it is es-

sential that one makes judicious use of the freedom to place the boundary of the domain

in which one removes the poles from the problem. Placing this boundary contour in the

correct position in the complex plane allows one to convert oscillations into exponential

decay in such a way that the errors in the asymptotics can be rigorously controlled. If

the poles accumulate with some smooth density on F ⊂ G, the characterization of the

correct location of the boundary of G can be determined by first passing to a continuum

limit of the pole distribution in the resulting jumpmatrix on the boundary ofG, and then

applying analytic techniques or variational methods. The continuum limit is justified as

long as the boundary of G remains separated from F.

This idea leads to an interesting question.What happens if the boundary ofG, as

determined from passing to the continuum limit, turns out to intersect F? Far from being
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a hypothetical possibility, this situation is known to occur in at least three different

problems.

(1) The semiclassical limit of the focusing nonlinear Schrödinger hierarchy with

decaying initial data. See [8]. This is an inverse-scattering problem for the nonselfad-

joint Zakharov-Shabat operator. On an ad hoc basis, one replaces the true spectral data

for the given initial condition with a formal WKB approximation. There is no jump in

the Riemann-Hilbert problem associated with inverse-scattering for the modified spec-

tral data, but there are poles accumulating asymptotically with the WKB density of

states on an interval F of the imaginary axis in the complex plane of the eigenvalue.

The methods described above turn out to yield rigorous asymptotics for this modified

inverse-scattering problem as long as the independent time variable in the equation is

not zero. For t = 0, the argument of passing to the continuum limit in the pole density

leads one to choose the boundary of G to coincide in part with the interval F. Strangely,

if one sets t = 0 in the problem from the beginning, an alternative method due to Lax

and Levermore [10, 11, 12] and extended to the nonselfadjoint Zakharov-Shabat operator

with real potentials by Ercolani, Jin, Levermore, and MacEvoy [6] can be used to carry

out the asymptotic analysis in this special case; this alternative method is not based on

matrix Riemann-Hilbert problems, and therefore when taken together with the methods

described in [8] does not result in a uniform treatment of the semiclassical limit for all

x and t. At the same time, the Lax-Levermore method that applies when t = 0 fails in

this problem when t �= 0.

(2) The zero-dispersion limit of the Korteweg-de Vries equation with potential

well initial data. As pointed out above, the original treatment of this problem by Lax

and Levermore [10, 11, 12] was not based on asymptotic analysis for a matrix-valued

Riemann-Hilbert problem. But it is possible to pose the inverse-scattering problemwith

modified (WKB) spectral data as a matrix-valued Riemann-Hilbert problem and ask

whether the “steepest descent” techniques for such problems could be used to reproduce

and/or strengthen the original asymptotic results of Lax and Levermore. In particular,

we might point out that the Lax-Levermore method only gives weak limits of the con-

served densities, and that a modification due to Venakides [13] is required to extract

any pointwise asymptotics (i.e., to reconstruct the microstruture of the modulated and

rapidly oscillatory wavetrains giving rise to the leading-order weak asymptotics). On

the other hand, “steepest descent” techniques for matrix-valued Riemann-Hilbert prob-

lems typically give pointwise asymptotics automatically. It would therefore be most

useful if these techniques could be applied to provide a new and unified approach to

this problem.
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If one tries to enclose the locus of accumulation of poles (WKB eigenvalues for

the Schrödinger operatorwith a potentialwell)with a contour and determine the optimal

location of this contour for zero-dispersion asymptotics, it turns out that the contour

must contain the support of a certain weighted logarithmic equilibrium measure. It is a

well-known consequence of the Lax-Levermore theory that the support of thismeasure is

a subset of the interval of accumulation ofWKBeigenvalues. Consequently, the enclosing

contour “wants” to lie right on top of the poles in this problem, and the approach fails. In

a sense this failure of the “steepest descent”method ismore serious than in the analogous

problem for the focusing nonlinear Schrödinger equation because the contour is in the

wrong place for all values of x and t (the independent variables of the problem), whereas

in the focusingnonlinear Schrödinger problem themethod fails generically only for t = 0.

(3) The large degree limit of certain systems of discrete orthogonal polynomials.

Fokas, Its, and Kitaev [7] have shown that the problem of reconstructing the orthogonal

polynomials associated with a given continuous weight function can be expressed as

a matrix-valued Riemann-Hilbert problem. It is not difficult to modify their construc-

tion to the case when the weight function is a sum of Dirac masses. The correspond-

ing matrix-valued Riemann-Hilbert problem has no jump, but has poles at the support

nodes of the weight. The solution of this Riemann-Hilbert problem gives in this case the

associated family of discrete orthogonal polynomials. If one takes the nodes of support

of the discrete weight to be distributed asymptotically in some systematic way, then

it is natural to ask whether “steepest descent” methods applied to the corresponding

Riemann-Hilbert problem with poles could yield accurate asymptotic formulae for the

discrete orthogonal polynomials in the limit of large degree. Indeed, similar asymptotics

were obtained in the continuous weight case [3] using precisely these methods.

Unfortunately, when the poles are encircled and the optimal contour is sought,

it turns out again to be necessary that the contour contains the support of a certain

weighted logarithmic equilibrium measure (see [9] for a description of this measure)

which is supported on a subset of the interval of accumulation of the nodes of

orthogonalization (i.e., the poles). For this reason, the method based on matrix-valued

Riemann-Hilbert problems would appear to fail.

In this paper, we present a new technique in the theory of “steepest descent”

asymptotic analysis for matrix Riemann-Hilbert problems that solves all three prob-

lems mentioned above in a general framework. We illustrate the method in detail for

the first case described above: the inverse-scattering problem for the nonselfadjoint

Zakharov-Shabat operator withmodified (WKB) spectral data, which amounts to a treat-

ment of the semiclassical limit for the focusing nonlinear Schrödinger equation at the

initial instant t = 0. This work thus fills in a gap in the arguments in [8] connecting
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the rigorous asymptotic analysis carried out there with the initial-value problem for the

focusing nonlinear Schrödinger equation. Application of the same techniques to the zero

dispersion limit of the Korteweg-de Vries equation will be the topic of a future paper,

and a study of asymptotics for discrete orthogonal polynomials using these methods is

already in preparation [1].

The initial-value problem for the focusing nonlinear Schrödinger equation is

ih̄
∂ψ

∂t
+

h̄2

2

∂2ψ

∂x2
+ |ψ|2ψ = 0, (1.1)

subject to the initial conditionψ(x, 0) = ψ0(x). In [8], this problem is considered for cases

when the initial data ψ0(x) = A(x) where A(x) is some positive real function R → (0,A].
The function A(x) is taken to decay rapidly at infinity and to be even in x with a single

genuine maximum at x = 0. Thus A(0) = A, A ′(0) = 0, and A ′′(0) < 0. Also, the function

A(x) is taken to be real-analytic.With this given initial data, one has a unique solution of

(1.1) for each h̄ > 0. To study the semiclassical limit thenmeans determining asymptotic

properties of the family of solutions ψ(x, t) as h̄ ↓ 0.

This problem is associated with the scattering and inverse-scattering theory for

the nonselfadjoint Zakharov-Shabat eigenvalue problem [14]:

h̄
du

dx
= −iλu+A(x)v, h̄

dv

dx
= −A(x)u+ iλv, (1.2)

for auxiliary functions u(x; λ) and v(x; λ). The complex number λ is a spectral parameter.

Under the conditions on A(x) described above, it is known only that for each h̄ > 0 the

discrete spectrum of this problem is invariant under complex conjugation and reflection

through the origin. However, a formal WKBmethod applied to (1.2) suggests for small h̄

a distribution of eigenvalues that are confined to the imaginary axis. The same method

suggests that the reflection coefficient for scattering states obtained for real λ is small

beyond all orders.

It is therefore natural to propose a modification of the problem. Rather than

studying the inverse-scattering problem for the true spectral data (which is not known),

simply replace the true spectral data by its formal WKB approximation in which the

eigenvalues are given by a quantization rule of Bohr-Sommerfeld type, and in which the

reflection coefficient is neglected entirely. For each h̄ > 0, this modified spectral data is

the true spectral data for some other (h̄-dependent) initial conditionψh̄
0 (x). Since there is

no reflection coefficient in the modified problem, it turns out that for each h̄ the solution

of (1.1) corresponding to the modified initial data ψh̄
0 (x) is an exact N-soliton solution,

with N ∼ h̄−1. We call such a family of N-soliton solutions, all obtained from the same
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functionA(x) by aWKB procedure, a semiclassical soliton ensemble, or SSE for short. We

will be more precise about this idea in Section 2. In [8], the asymptotic behavior of SSEs

was studied for t �= 0. Although the results were rigorous, it was not possible to deduce

anything about the true initial-value problem for (1.1) with ψ0(x) ≡ A(x) because the

asymptotic method failed for t = 0. In this paper, we will explain the following new

result.

Theorem 1.1. Let A(x) be real-analytic, even, and decaying with a single genuine max-

imum at x = 0. Let ψh̄
0 (x) be for each h̄ > 0 the exact initial value of the SSE corre-

sponding to A(x) (see Section 2). Then, there exists a sequence of values of h̄, h̄ = h̄N

for N = 1, 2, 3, . . . , such that

lim
N→∞ h̄N = 0 (1.3)

and such that for all x �= 0, there exists a constant Kx > 0 such that

∣∣ψh̄N

0 (x) −A(x)
∣∣ ≤ Kx h̄

1/7−ν
N , for N = 1, 2, 3, . . . (1.4)

for all ν > 0. �

As ψh̄
0 (x) is obtained by an inverse-scattering procedure applied to WKB spec-

tral data, this theorem establishes in a sense the validity of the WKB approximation for

the Zakharov-Shabat eigenvalue problem (1.2). It says that the true spectral data and

the formally approximate spectral data generate, via inverse-scattering, potentials in

the Zakharov-Shabat problem that are pointwise close. The omission of x = 0 is merely

technical; a procedure slightly different from that wewill explain in this paper is needed

to handle this special case. We will indicate as we proceed the modifications that are

necessary to extend the result to the whole real line. The pointwise nature of the asymp-

totics is important; the variational methods used in [6] suggest convergence only in

the L2 sense. Rigorous statements about the nature of the WKB approximation for the

Zakharov-Shabat problem are especially significant because the operator in (1.2) is non-

selfadjoint and the spectrum is not confined to any axis; furthermore Sturm-Liouville

oscillation theory does not apply.

2 Characterization of SSEs

Each N-soliton solution of the focusing nonlinear Schrödinger equation (1.1) can be

found as the solution of a meromorphic Riemann-Hilbert problem with no jumps; that

is, a problemwhose solutionmatrix is a rational function of λ ∈ C. TheN-soliton solution
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depends on a set of discrete data. Given N complex numbers λ0, . . . , λN−1 in the upper

half-plane (these turn out to be discrete eigenvalues of the spectral problem (1.2)), and

N nonzero constants γ0, . . . , γN−1 (which turn out to be related to auxiliary discrete

spectrum for (1.2)), and an index J = ±1, one considers the matrix m(λ) solving the

following problem.

Riemann-Hilbert Problem 2.1 (meromorphic problem). Find a matrixm(λ)with the fol-

lowing two properties:

(1) Rationality: m(λ) is a rational function of λ, with simple poles confined to

the values {λk} and the complex conjugates. At the singularities

Res
λ=λk

m(λ) = lim
λ→λk

m(λ)σ
(1−J)/2
1

[
0 0

ck(x, t) 0

]
σ
(1−J)/2
1 ,

Res
λ=λ∗

k

m(λ) = lim
λ→λ∗

k

m(λ)σ
(1−J)/2
1

[
0 −ck(x, t)

∗

0 0

]
σ
(1−J)/2
1 ,

(2.1)

for k = 0, . . . ,N− 1, with

ck(x, t) :=

(
1

γk

)J N−1∏
n=0

(
λk − λ∗n

)
N−1∏
n=0
n�=k

(
λk − λn

) exp
(
2iJ
(
λkx+ λ2kt

)
h̄

)
. (2.2)

(2) Normalization:

m(λ) −→ I, as λ −→ ∞. (2.3)

Here, σ1 denotes one of the Pauli matrices

σ1 :=

[
0 1

1 0

]
, σ2 :=

[
0 −i

i 0

]
, σ3 :=

[
1 0

0 −1

]
. (2.4)

The function ψ(x, t) defined from m(λ) by the limit

ψ(x, t) = 2i lim
λ→∞ λm12(λ) (2.5)

is the N-soliton solution of the focusing nonlinear Schrödinger equation (1.1) corre-

sponding to the data {λk} and {γk}.
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The index J will be present throughout this work, so it is worth explaining its

role from the start. It turns out that if J = +1, then the solutionm(λ) of Riemann-Hilbert

Problem 2.1 has the property that for all fixed λ distinct from the poles, m(λ) → I as

x → +∞. Likewise, if J = −1, then m(λ) → I as x → −∞. So as far as scattering theory

is concerned, the index J indicates an arbitrary choice of whether we are performing

scattering “from the right” or “from the left.” Both versions of scattering theory yield the

same function ψ(x, t) via the relation (2.5), and are in this sense equivalent. However,

the inverse-scattering problem involves the independent variables x and t for (1.1) as

parameters, and it may be the case that for different choices of x and t, different choices

of the parameter J may be more convenient for asymptotic analysis of the matrix m(λ)

solving Riemann-Hilbert Problem 2.1. That this is indeed the case that was observed

and documented in [8]. So we need the freedom to choose the index J, and therefore we

need to carry it along in our calculations.

A semiclassical soliton ensemble (SSE) is a family of particular N-soliton solu-

tions of (1.1) indexed by N = 1, 2, 3, 4, . . . that are formally associated with given initial

data ψ0(x) = A(x) via an ad hoc WKB approximation of the spectrum of (1.2). Note that

the initial data ψ0(x) = A(x) may not exactly correspond to a pure N-soliton solution

of (1.1) for any h̄, and similarly that typically none of the N-soliton solutions making

up the SSE associated with ψ0(x) = A(x) will agree with this given initial data at t = 0.

We will now describe the discrete data {λk} and {γk} that generate, via the solu-

tion of Riemann-Hilbert Problem 2.1 and the subsequent use of formula (2.5), the SSE

associated with a function ψ0(x) = A(x). We suppose that A(x) is an even function of x

that has a single maximum at x = 0, and is therefore “bell-shaped.” We will need A(x)

to be rapidly decreasing for large x, and we will suppose that the maximum A := A(0) is

genuine in that A ′′(0) < 0. Most importantly in what follows, we will assume that A(x)

is a real-analytic function of x.

The starting point is the definition of the WKB eigenvalue density function ρ0(η)

ρ0(η) :=
η

π

∫x+(η)
x−(η)

dx√
A(x)2 + η2

, (2.6)

defined for positive imaginary numbers η in the interval (0, iA), where x−(η) and x+(η)

are the (unique by our assumptions) negative and positive values of x for which iA(x) =

η. The WKB eigenvalues asymptotically fill out the interval (0, iA), and ρ0(η) is their

asymptotic density. This function inherits analyticity properties in η from those of A(x)

via the functions x±(η). Our assumption thatA(x) is real-analyticmakes ρ0(η) an analytic

function of η in its imaginary interval of definition. Also, our assumption thatA(x) should

be rapidly decreasing makes ρ0(η) analytic at η = 0, and our assumption that A(x)
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has nonvanishing curvature at its maximum makes ρ0(η) analytic at η = iA. From this

function it is convenient to define a measure of the number of WKB eigenvalues between

a point λ ∈ (0, iA) on the imaginary axis and iA:

θ0(λ) := −π

∫ iA
λ

ρ0(η)dη. (2.7)

Now, each N-soliton solution in the SSE for A(x) will be associated with a par-

ticular value h̄ = h̄N, namely

h̄ = h̄N := −
1

N

∫ iA
0

ρ0(η)dη =
1

Nπ

∫∞
−∞ A(x)dx, (2.8)

where N ∈ Z+. In this sense we are taking the values of h̄ themselves to be “quantized.”

Clearly for any givenA(x), h̄N = O(1/N)which goes to zero asN becomes large. For each

N ∈ Z+, we then define the WKB eigenvalues formally associated with A(x) according to

the Bohr-Sommerfeld rule

θ0
(
λk
)
= πh̄N

(
k+

1

2

)
, for k = 0, 1, 2, . . . ,N− 1 (2.9)

and the auxiliary scattering data by

γk := −i(−1)
K exp

(
−

i(2K+ 1)θ0(λk)

h̄N

)
. (2.10)

Here,K is an arbitrary integer. Clearly theBohr-Sommerfeld rule (2.9) implies that choos-

ingdifferent integer values ofK in (2.10)will yield the same set of numbers {γk}. However,

we take the point of view that the right-hand side of (2.10) furnishes an analytic function

that interpolates the {γk} at the {λk}; for different K ∈ Z these are different interpolating

functions which is a freedom that we will exploit to our advantage. In fact, we will only

need to consider K = 0 or K = −1.

For A(x) given as above, the SSE is a sequence of exact solutions of (1.1) such

that the Nth element ψh̄N(x, t) of the SSE (i) solves (1.1) with h̄ = h̄N as given by

(2.8) and (ii) is defined as the N-soliton solution corresponding to the eigenvalues

{λk} given by (2.9) and the auxiliary spectrum {γk} given by (2.10) via the solution of

Riemann-Hilbert Problem 2.1 with h̄ = h̄N. For each N, we restrict the SSE to t = 0 to

obtain functions

ψh̄N

0 (x) := ψh̄N(x, 0). (2.11)
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It is this sequence of functions that is the subject of Theorem 1.1. In the following sec-

tions we will set up a new framework for the asymptotic analysis of SSEs in the limit

N → ∞, a problem closely related to the computation of asymptotics of solutions of (1.1)

for fixed initial data ψ0(x) = A(x) in the semiclassical limit.

3 Removal of the poles

The asymptotic method we will now develop for studying Riemann-Hilbert Problem 2.1

for SSEs is especially well adapted to studying the case of t = 0, where the method

described in detail in [8] fails. To illustrate the new method, we therefore set t = 0 in

the rest of this paper. Also, we anticipate the utility of tying the value of the parameter

J = ±1 to the remaining independent variable x by setting

J := sign(x). (3.1)

In all subsequent formulae in which the index J appears it should be assumed to be

assigned a definite value according to (3.1).

We now want to convert Riemann-Hilbert Problem 2.1 into a new Riemann-

Hilbert problem for a sectionally holomorphic matrix so that the “steepest-descent”

methods can be applied. As mentioned in the introduction, in [8] this transformation can

be accomplished by encircling the locus of accumulation of the poles, here the imagi-

nary interval (0, iA), with a loop contour in the upper half-plane and making a specific

change of variables based on the interpolation formula (2.10) for some value of K ∈ Z

in the interior of the region enclosed by the loop and also in the complex-conjugate re-

gion. One then tries to choose the position of the loop contour in the complex plane that

is best adapted to asymptotic analysis of the resulting holomorphic Riemann-Hilbert

problem. The trouble with this approach is that it turns out that for t = 0 the “cor-

rect” placement of the contour requires that part of it should lie on a subset of the

imaginary interval (0, iA), that is, right on top of the accumulating poles! For such a

choice of the loop contour, the boundary values taken by the transformed matrix on

the outside of the loop would be singular and the “steepest descent” theory would not

apply.

So taking the point of view that making any particular choice of K ∈ Z in (2.10)

leads to problems, we propose to simultaneously make use of two distinct values of K in

passing to a Riemann-Hilbert problem for a sectionally holomorphic matrix. Consider

the contours illustrated in Figure 3.1, arranged such that {λ0, . . . , λN−1} ⊂ DL ∪DR. For

λ ∈ DL, set
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CL DL DR
CR

CM

Figure 3.1 The geometry of contours introduced in the complex λ-plane. The up-

permost common point of the contours CL , CM , and CR is λ = iA. The six-fold

self-intersection point is the origin λ = 0.

M(λ) :=m(λ)σ
(1−J)/2
1


1 0

i

(
N−1∏
k=0

λ− λ∗k
λ− λk

)
exp

(
2iλ|x|− iθ0(λ)

h̄N

)
1

σ
(1−J)/2
1 . (3.2)

For λ ∈ DR, set

M(λ) :=m(λ)σ
(1−J)/2
1


1 0

−i

(
N−1∏
k=0

λ− λ∗k
λ− λk

)
exp

(
2iλ|x|+ iθ0(λ)

h̄N

)
1

σ
(1−J)/2
1 .

(3.3)

To preserve the conjugation symmetry1 m(λ∗) = σ2m(λ)
∗σ2 of the matrix m(λ) that is

the unique solution of Riemann-Hilbert Problem 2.1, for λ ∈ D∗
L ∪ D∗

R we set M(λ) :=

σ2M(λ
∗)∗σ2. Finally, for all other complex λ set M(λ) = m(λ). So rather than enclosing

the poles in a loop and making a single change of variables inside, we are splitting the

region inside the loop in half, and we are using different interpolants (2.10) of the {γk} at

the {λk} in each half of the loop. Some of the properties of the transformed matrix M(λ)

are the following.

1Note that we are denoting by A∗ the componentwise complex conjugate of the matrix A, and we reserve the
notation A† for the conjugate-transpose.
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Proposition 3.1. The matrix M(λ) is analytic in C \ Σ where Σ is the union of the con-

tours CL, CR, and CM, and their complex conjugates. Moreover, M(λ) takes continuous

boundary values on Σ. �

Proof. The function θ0(λ) is analytic inDL andDR if CL and CR are chosen close enough

to the imaginary axis since ρ0(η) is analytic there. By using the residue relation (2.1) and

the interpolation formula (2.10) alternatively for K = 0 and K = −1, one checks directly

that the poles of m(λ) are canceled by the explicit Blaschke factors in (3.2) and (3.3).

�

Proposition 3.2. LetM±(λ) denote the boundary values taken on the oriented contour Σ,

where the subscript “+” (resp., “−”) indicates the boundary value taken from the left

(resp., from the right). Then for λ ∈ CL,

M−(λ)
−1M+(λ) = σ

(1−J)/2
1


1 0

i

(
N−1∏
k=0

λ− λ∗k
λ− λk

)
exp

(
2iλ|x|− iθ0(λ)

h̄N

)
1

σ
(1−J)/2
1 .

(3.4)

For λ ∈ CR,

M−(λ)
−1M+(λ) = σ

(1−J)/2
1


1 0

i

(
N−1∏
k=0

λ− λ∗k
λ− λk

)
exp

(
2iλ|x|+ iθ0(λ)

h̄N

)
1

σ
(1−J)/2
1 .

(3.5)

For λ ∈ CM,

M−(λ)
−1M+(λ)

= σ
(1−J)/2
1


1 0

i

(
N−1∏
k=0

λ− λ∗k
λ− λk

)
exp

(
2iλ|x|

h̄N

)
· 2 cos

(
θ0(λ)

h̄N

)
1

σ
(1−J)/2
1 .

(3.6)

On the contours in the lower half-plane the jump relations are determined by the sym-

metry M(λ) = σ2M(λ
∗)∗σ2. All jump matrices are analytic functions in the vicinity of

their respective contours. �

Proof. This is also a direct consequence of (3.2) and (3.3). The analyticity is clear on CL

and CR since θ0(λ) is analytic there, while on CM one observes that as a consequence of
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the Bohr-Sommerfeld quantization condition (2.9), the cosine factor precisely cancels

the poles on CM contributed by the product of Blaschke factors. �

Although we have specified the contour CM to coincide with a segment of the

imaginary axis, the reader will see that the same statements concerning the analyticity

ofM(λ) and the continuity of the boundary values on Σ also hold when CM is taken to be

absolutely any smooth contour in the upper half-plane connecting λ = 0 to λ = iA. Given

a choice of CM, the contours CL and CR must be such that the topology of Figure 3.1

is preserved. We also have specified that CL and CR should lie sufficiently close to CM

(a distance independent of h̄N) so that θ0(λ) is analytic in DL and DR. Later we will

also exploit the proximity of these two contours to CM to deduce decay properties of

certain analytic functions on these contours from their oscillation properties on CM by

the Cauchy-Riemann equations.

Taken together, Propositions 3.1 and 3.2 indicate that the matrix M(λ) satisfies

a Riemann-Hilbert problem without poles, but instead having explicit homogeneous

jump relations on Σ given by the matrix functions on the right-hand sides of (3.4), (3.5),

and (3.6). The normalization of M(λ) at infinity is the same as that of m(λ) since no

transformation has been made outside a compact set, so if M(λ) can be recovered from

its jump relations and normalization condition, then the SSE itself can be obtained for

t = 0 from (2.5) with m(λ) replaced by M(λ).

4 The complex phase function

Wenow introduce a further change of dependent variable involving a scalar function that

is meant to capture the dominant asymptotics for the problem. Let g(λ) be a complex-

valued function that is independent of h̄, analytic for λ ∈ C\(CM∪C∗
M) taking continuous

boundary values, satisfies g(λ) + g(λ∗)∗ = 0, and g(∞) = 0. Setting

N(λ) :=M(λ) exp

(
−

g(λ)σ3

h̄

)
, (4.1)

we find that for λ ∈ CL,

N−(λ)
−1N+(λ) = σ

(1−J)/2
1

[
1 0

aL(λ) 1

]
σ
(1−J)/2
1 , (4.2)

where

aL(λ) := i

(
N−1∏
k=0

λ− λ∗k
λ− λk

)
exp

(
2iλ|x|− iθ0(λ) − 2Jg(λ)

h̄N

)
. (4.3)
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Similarly, for λ ∈ CR, we find

N−(λ)
−1N+(λ) = σ

(1−J)/2
1

[
1 0

aR(λ) 1

]
σ
(1−J)/2
1 , (4.4)

where

aR(λ) := i

(
N−1∏
k=0

λ− λ∗k
λ− λk

)
exp

(
2iλ|x|+ iθ0(λ) − 2Jg(λ)

h̄N

)
. (4.5)

Finally, for λ ∈ CM,

N−(λ)
−1N+(λ) = σ

(1−J)/2
1

exp
(
iθ(λ)

h̄N

)
0

aM(λ) exp

(
−

iθ(λ)

h̄N

)
σ

(1−J)/2
1 , (4.6)

where

aM(λ) := i

(
N−1∏
k=0

λ− λ∗k
λ− λk

)
exp

(
2iλ|x|− Jg+(λ) − Jg−(λ)

h̄N

)
· 2 cos

(
θ0(λ)

h̄N

)
, (4.7)

θ(λ) := iJ
(
g+(λ) − g−(λ)

)
. (4.8)

This means that given a function g(λ) with the properties described above, one

finds that the matrixN(λ) satisfies another holomorphic Riemann-Hilbert problem with

jump conditions determined from (4.2), (4.4), and (4.6). Because g(∞) = 0 and g(λ) is

analytic near infinity, it follows that the correct normalization condition for N(λ) is

again that N(λ) → I as λ → ∞. These same conditions on g(λ) show that if N(λ) can be

found from its jump conditions and normalization condition, then the SSE can be found

via (2.5) with m(λ) replaced by N(λ).

The function g(λ) is called a complex phase function. The advantage of introduc-

ing it into the problem is that by choosing it correctly, the jumpmatrices (4.2), (4.4), and

(4.6) can be cast into a form that is especially convenient for analysis in the semiclassical

limit of h̄N → 0. The idea of introducing the complex phase function to assist in finding

the leading-order asymptotics and controlling the error in this way first appeared in [4]

as a modification of the “steepest-descent” method proposed in [5].

5 Pointwise semiclassical asymptotics of the jump matrices

For our purposes, we would like to have each element of the jump matrix for N(λ) of

the form exp(f(λ)/h̄N) for some appropriate function f(λ) that is independent of h̄N.
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While this is not true strictly speaking, it becomes a good approximation in the limit

h̄N → 0 with λ held fixed (the approximation is not uniform near λ = 0 or λ = iA). In

this section, we describe the pointwise asymptotics of the jump matrix for N(λ) with

the aim of writing all nonzero matrix elements asymptotically in the form exp(f(λ)/h̄N)

with a small relative error whose magnitude we can estimate.

Roughly speaking, the intuition is that the product over k of Blaschke factors

should be replaced with an exponential of a sum over k of logarithms. The latter sum

goes over to an integral that scales like h̄−1N in the semiclassical limit. On the contour

CM, the cosine that cancels the poles must also be incorporated into the asymptotics.

The branch of the logarithm that is convenient to use here is most conveniently

viewed as a function of two complex variables

L0η(λ) := log
(
− i(λ− η)

)
+

iπ

2
. (5.1)

As a function of λ for fixed η, it is a logarithm that is cut downwards in the negative

imaginary direction from the logarithmic pole at λ = η. Equivalently, L0η(λ) can be viewed

as the branch of the multivalued function log(λ− η) for which arg(λ− η) ∈ (−π/2, 3π/2).
Suppose η ∈ CM. The boundary value of L0η(λ) taken on CM as λ approaches from the left

(resp., right) side is denoted by L0η+(λ) (resp., L
0
η−(λ)). The average of these two boundary

values is denoted by L
0

η(λ).

All the results we need will come from studying the asymptotic behavior of two

quotients:

S(λ) :=

(
N−1∏
k=0

λ− λ∗k
λ− λk

)
exp

(
−

1

h̄N

( ∫ iA
0

L0η(λ)ρ
0(η)dη+

∫0
−iA

L0η(λ)ρ
0(η∗)∗ dη

))
,

(5.2)

T(λ) :=

(
N−1∏
k=0

λ− λ∗k
λ− λk

)
exp

(
−

1

h̄N

( ∫ iA
0

L
0

η(λ)ρ
0(η)dη+

∫0
−iA

L
0

η(λ)ρ
0(η∗)∗ dη

))
(5.3)

× 2 cos

(
θ0(λ)

h̄N

)
.

The function S(λ) is analytic and nonvanishing for λ ∈ C+ \ CM. We denote by Ω ⊂ C+

the domain of analyticity of ρ0(λ) restricted to the upper half-plane, so that by our

assumptions on A(x), CM ⊂ Ω. Then, due to the zeros of the cosine on the imaginary

axis, which match the poles of the product below λ = iA and are not cancelled above

λ = iA, T(λ) is analytic and nonvanishing for λ ∈ Ω \ V , where V is the vertical ray from

λ = iA to infinity along the positive imaginary axis. The domain of analyticity for T(λ)
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is a subset of Ω rather than of the whole upper half-plane due to the presence of the

averages of the logarithms in the integrand of (5.3). Whereas these are boundary values

defined a priori only on CM, the integrals extend from CM to analytic functions in the

domain Ω+ \ V via the introduction of the function θ0(λ) (cf. equation (5.18)).

Lemma 5.1. For all λ in the upper half-plane with h̄N ≤ |�(λ)| ≤ B, where B is positive

and sufficiently small, but fixed as h̄N → 0,

S(λ) = 1+O

(
h̄N

|�(λ)|

)
. (5.4)

�

Proof. We define the function m(η) by

m(η) := −

∫η
0

ρ0(ξ)dξ. (5.5)

This analytic function takes the imaginary interval [0, iA] to the real interval [0,M]where

M = m(iA) =
1

π

∫∞
−∞ A(x)dx. (5.6)

Since ρ0(ξ) does not vanish on CM, we have the inverse function η = e(m) defined for

m near the real interval [0,M]. Using these tools, we get the following representation

for S(λ):

S(λ) = exp
(
− Ĩ(λ)

)
, where Ĩ(λ) =

N−1∑
k=0

Ĩk(λ),

Ĩk(λ) :=
1

h̄N

∫mk+h̄N/2

mk−h̄N/2

[
L0−e(m) (λ) − L0e(m) (λ)

]
dm

−
[
L0−e(mk)

(λ) − L0e(mk)
(λ)
]
,

(5.7)

with mk :=M− h̄N(k+ 1/2). Expanding the logarithms, we find that

Ĩk(λ) =
1

h̄N

∫mk+h̄N/2

mk−h̄N/2

dm

∫m
mk

dζ

∫ζ
mk

dξ

[
2e ′′(ξ)λ3 − 2e ′′(ξ)e(ξ)2λ+ 4e ′(ξ)2e(ξ)λ

(λ2 − e(ξ)2)2

]
.

(5.8)
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This quantity is clearly O(h̄2N) for λ fixed away from CM. Now, when |�(λ)| = o(1) as

h̄N ↓ 0, we can estimate the denominator in the integrand to obtain two different bounds

2e ′′(ξ)λ3 − 2e ′′(ξ)e(ξ)2λ+ 4e ′(ξ)2e(ξ)λ
(λ2 − e(ξ)2)2

= O

(
1

�(λ)2

)
, (5.9)

2e ′′(ξ)λ3 − 2e ′′(ξ)e(ξ)2λ+ 4e ′(ξ)2e(ξ)λ
(λ2 − e(ξ)2)2

= O

(
1

|i�(λ) − e(ξ)|2

)
. (5.10)

The idea is to use the estimate (5.9) when e(mk) is close to i�(λ) and to use the

estimate (5.10) for the remaining terms. Suppose first �(λ) is bounded between 0 and A,

that is, there are small fixed positive numbers δ1 and δ2 so that δ1 ≤ �(λ) ≤ A− δ2, and

let ε = ε(h̄N) be a small positive scale tied to h̄ and satisfying h̄N � ε � 1, and let L1 be

chosen from 0, . . . ,N− 1 so that e(mL1
) is as close as possible to i(�(λ)+ε), and likewise

let L2 be chosen from 0, . . . ,N − 1 so that e(mL2
) is as close as possible to i(�(λ) − ε).

Using (5.9) we then find that

L2−1∑
k=L1

Ĩk(λ) = O

(
h̄Nε

�(λ)2

)
(5.11)

because the sum containsO(ε/h̄N) terms and the volume of the region of integration for

each term is O(h̄3N), and we must take into account the overall factor of 1/h̄N. Now in

each of the remaining terms Ĩk(λ), we have

1

|i�(λ) − e(ξ)|2
= O

(
1(

mk −m(i�(λ))
)2
)

(5.12)

so using (5.10) and summing over k we get both

L1−1∑
k=0

Ĩk(λ) = O

(
h̄N

ε

)
,

N−1∑
k=L2

Ĩk(λ) = O

(
h̄N

ε

)
. (5.13)

The total estimate of Ĩ(λ) is then optimized by a dominant balance among the three

partial sums. This balance requires taking ε ∼ |�(λ)|, upon which we deduce that under

our assumptions on λ, we indeed have

Ĩ(λ) = O

(
h̄N

|�(λ)|

)
and consequently S(λ) − 1 = O

(
h̄N

|�(λ)|

)
, (5.14)

when �(λ) is bounded between 0 and A. When �(λ) ≈ 0 or �(λ) ≈ A, the estimate (5.9)

should be used only for those terms that correspond to m near zero or m near M,
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respectively. In both of these exceptional cases, the same estimate is found. When �(λ)

is bounded below by A, there is no need to use the estimate (5.9) at all, and the relative

error is of order h̄N uniformly in �(λ). This completes the proof. �

We now use this information about S(λ) to effectively replace the sums of loga-

rithms by integrals, at least on some portions of the contour Σ.

Proposition 5.2. Suppose that the contour CL is independent of h̄N and that for some

sufficiently small positive number B, CL lies in the strip −B ≤ �(λ) ≤ 0 and meets the

imaginary axis only at its endpoints and does so transversely. Then

aL(λ) = i exp

(
1

h̄N

(
2iλ|x|+

∫ iA
0

L0η(λ)ρ
0(η)dη+

∫0
−iA

L0η(λ)ρ
0(η∗)∗ dη− 2Jg(λ)

))

× exp

(
−

iθ0(λ)

h̄N

)(
1+O

(
h̄N

|λ|

)
+O

(
h̄N

|λ− iA|

))
,

(5.15)

as h̄N goes to zero through positive values, for all λ ∈ CL with |λ| > h̄N and |λ− iA| > h̄N.

�

Proposition 5.3. Suppose that the contour CR is independent of h̄N and that for some

sufficiently small positive number B, CR lies in the strip 0 ≤ �(λ) ≤ B and meets the

imaginary axis only at its endpoints and does so transversely. Then

aR(λ) = i exp

(
1

h̄N

(
2iλ|x|+

∫ iA
0

L0η(λ)ρ
0(η)dη+

∫0
−iA

L0η(λ)ρ
0(η∗)∗ dη− 2Jg(λ)

))

× exp

(
iθ0(λ)

h̄N

)(
1+O

(
h̄N

|λ|

)
+O

(
h̄N

|λ− iA|

))
,

(5.16)

as h̄N goes to zero through positive values, for all λ ∈ CR with |λ| > h̄N and |λ− iA| > h̄N.

�

Proof of Propositions 5.2 and 5.3. These propositions follow directly from Lemma 5.1

upon using the transversality of the intersections with the imaginary axis to replace

O(1/|�(λ)|) by O(1/|λ|) +O(1/|λ− iA|). �

We notice that the first factor on the second line in (5.15) and the first factor

on the second line in (5.16) are both exponentially small as h̄N goes to zero through

positive values, as a consequence of the fact that ρ0(η)dη is an analytic negative real
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measure on CM. This follows from the Cauchy-Riemann equations and the geometry of

Figure 3.1. It will be a very useful fact for us shortly.

Now we turn our attention to the function T(λ). The result analogous to

Lemma 5.1 is the following.

Lemma 5.4. For all λ in the upper half-plane with h̄N ≤ |�(λ)| ≤ B, where B is positive

and sufficiently small, but fixed as h̄N → 0,

T(λ) = 1+O

(
h̄N

|�(λ)|

)
. (5.17)

�

Proof. We begin with the jump condition

∫ iA
0

L0η+(λ)ρ
0(η)dη+

∫0
−iA

L0η+(λ)ρ
0(η∗)∗ dη

=

∫ iA
0

L0η−(λ)ρ
0(η)dη+

∫0
−iA

L0η−(λ)ρ
0(η∗)∗ dη− 2iθ0(λ)

(5.18)

relating the boundary values of the logarithm L0η(λ) on the imaginary axis. Using this

jump relation and the definition of L
0

η(λ) as the average of the boundary values of L
0
η+(λ)

and L0η−(λ), we see that for �(λ) < 0, we have

T(λ) = S(λ)

(
1+ exp

(
−

2iθ0(λ)

h̄N

))
, (5.19)

while for �(λ) > 0, we have

T(λ) = S(λ)

(
1+ exp

(
2iθ0(λ)

h̄N

))
. (5.20)

Now, using the fact that ρ0(η) is an analytic function satisfying ρ0(η) ∈ iR+ for η ∈ CM,

we see by the Cauchy-Riemann equations that in both cases, the exponential relative

error term is of the order e−K|�(λ)|/h̄N for some K > 0. Since this is negligible compared

with the relative error associated with the asymptotic approximation of S(λ) given in

Lemma 5.1, the proof is complete. �

Unfortunately, we need asymptotic information about T(λ) right on the imagi-

nary axis, which contains the contour CM, so we need to improve upon Lemma 5.4. We

begin to extract this additional information by noting that under some circumstances,

it is easy to show that T(λ) remains bounded in the vicinity of the imaginary axis.

Lemma 5.5. If either (i) λ is real or (ii) |λ| = A and �(λ) > 0, and if for some B > 0

sufficiently small |�(λ)| < B, then T(λ) is uniformly bounded as h̄N → 0. �
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Proof. It suffices to show that S(λ) is bounded under the same assumptions, because

from (5.19) and (5.20) and the Cauchy-Riemann equations, we see easily that |T(λ)| ≤
2|S(λ)|.

Using the function m(·) and its inverse e(·), we have the following:

h̄N log |S(λ)| =

N−1∑
k=0

H
(
mk

)
h̄N −

∫M
0

H(m)dm, (5.21)

where

H(m) := log

∣∣∣∣λ+ e(m)

λ− e(m)

∣∣∣∣. (5.22)

When λ ∈ R, we see immediately that H(m) ≡ 0, and therefore |S(λ)| ≡ 1 and hence

|T(λ)| ≤ 2.

Now consider λ = iAeiθ with θ sufficiently small independent of h̄N. The idea is

that of the terms on the right-hand side of (5.21), the discrete sum is a Riemann sum

approximation to the integral. The Riemann sum is constructed using the midpoints

of N equal subintervals as sample points. If H ′′(m) is bounded uniformly, then this

sort of Riemann sum provides an approximation to the integral that is of order N−2 or

equivalently h̄2N. In this case, we deduce that S(λ) = 1+O(h̄N) and in particular this is

bounded as h̄N tends to zero. But as λ approaches the imaginary axis, the accuracy of

the approximation is lost.

For λ = iAeiθ, the function H(m) satisfies H(0) = H ′(M) = 0 and takes its maxi-

mum when m =M, with a maximum value

H(M) = log

∣∣∣∣ cot(θ

2

)∣∣∣∣. (5.23)

Therefore, as θ tends to zero, H(m) becomes unbounded, growing logarithmically in θ.

As a consequence of this blowup the approximation of the integral by the Riemann sum

based onmidpoints for |λ| = A fails to be second-order accurate uniformly in θ. However,

because the maximum of H(m) always occurs at the right endpoint, it is easy to see

that when the error becomes larger than O(h̄2N) in magnitude its sign is such that the

Riemann sum is always an underestimate of the value of the integral, and consequently

the right-hand side of (5.21) is negative. This is concretely illustrated in Figure 5.1where

we have taken the example of the Gaussian function A(x) =
√
πe−x

2

in order to supply

the function ρ0(η) and therefore the function e(m) needed to build H(m). In this case,

A =
√
π and M = 1. The error of the Riemann sum is worst when θ = 0. In this case it

is easy to see that the discrepancy contributed by only the subinterval adjacent to the
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θ = 0.0125

θ = 0.05

θ = 0.2

N = 20, Gaussian data
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)
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θ = 0.0125
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θ = 0.2

N = 10, Gaussian data

H
(m
)
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0.0 0.2 0.4 0.6 0.8 1.0

m

Figure 5.1 Themidpoint rule Riemann sums approximating the integral, pictured

here for the Gaussian initial dataA(x) =
√
πe−x

2

. When the peak ofH(m) becomes

underresolved for small θ, the Riemann sums underestimate the value of the inte-

gral by an amount that is of the order h̄N .

logarithmic singularity of H(m) is (1 − log 2)h̄N + O(h̄2N), which clearly dominates the

O(h̄2N) error contributed by the majority of the subintervals bounded away fromm =M.

Consequently, for those λ on the circle |λ| = A for which log |S(λ)| is not asymptotically

small in h̄N, it is negative, and therefore S(λ) is uniformly bounded for |λ| = A, as is T(λ).

�

Using this information, we can finally extract enough information about T(λ) on

the imaginary axis to approximate aM(λ) for λ ∈ CM.
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iA

0

Cλ

Figure 5.2 The contour C of the Cauchy integral argument.

Proposition 5.6. Let CM be a fixed contour from λ = 0 to λ = iA lying between CL and

CR, possibly coinciding with the imaginary axis. Then, for µ > 0 arbitrarily small,

aM(λ) = i exp

(
1

h̄N

(
2iλ|x|+

∫ iA
0

L
0

η(λ)ρ
0(η)dη+

∫0
−iA

L
0

η(λ)ρ
0(η∗)∗ dη

− Jg+(λ) − Jg−(λ)

))(
1+O

(
h̄
1−µ
N

|λ|

)
+O

(
h̄
1−µ
N

|λ− iA|

))
,

(5.24)

as h̄N goes to zero through positive values, for all λ ∈ CM with |λ| > h̄N and |λ−iA| > h̄N.

�

Proof. Let C be the closed contour illustrated in Figure 5.2. This counter-clockwise ori-

ented contour consists of two vertical segments, one horizontal segment that lies on the

real axis, and an arc of the circle of radius A centered at the origin. The function T(λ) is

analytic on the interior of C and is continuous on C itself. In fact it is analytic on most

of the boundary, failing to be analytic only at λ = 0 and λ = iA. Therefore for any λ in

the interior, we may write

T(λ) = 1+
1

2πi

∮
C

T(s) − 1

s− λ
ds. (5.25)
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If we let Cin denote the part of C with |�(s)| < h̄N, and let Cout denote the remaining

portion of C, then we get

∣∣T(λ) − 1
∣∣ ≤ 1

2π

∫
Cin

|T(s) − 1|

|s− λ|
|ds|+

1

2π

∫
Cout

|T(s) − 1|

|s− λ|
|ds|. (5.26)

Using the estimate guaranteed by Lemma 5.4 in the integral over Cout, and the uniform

boundedness of T(s) (and therefore of T(s) − 1) guaranteed by Lemma 5.5 in the integral

over Cin, we find

∣∣T(λ) − 1
∣∣ ≤ Kin h̄N sup

s∈Cin

1

|s− λ|
− Kout h̄N log h̄N sup

s∈Cout

1

|s− λ|
(5.27)

for some positive constants Kin and Kout. Replacing the logarithm by a slightly cruder

estimate of h̄−µN for arbitrarily small positive µ completes the proof. �

We have therefore succeeded in showing that, at least away from the self-

intersection points of the contour Σ, the jump matrices for N(λ) as defined by (4.2)

for λ ∈ CL, (4.4) for λ ∈ CR, and (4.6) for λ ∈ CM are well approximated in the semi-

classical limit h̄N → 0 by matrices in which all nonzero matrix elements are of the

form exp(f(λ)/h̄N) with f(λ) being independent of h̄N. The fact that this approximation

is valid even when the “active” contour CM is taken to be right on top of the poles of

the meromorphic Riemann-Hilbert problem for m(λ) is an advantage over the approach

taken in [8].

Using these approximations, we can introduce an ad hoc approximation of the

matrix N(λ). First, define

φ̃(λ) := 2iλ|x|+

∫ iA
0

L
0

η(λ)ρ
0(η)dη

+

∫0
−iA

L
0

η(λ)ρ
0(η∗)∗ dη− Jg+(λ) − Jg−(λ), for λ ∈ CM,

(5.28)

and for λ ∈ CL or CR, define

τ(λ) := 2iλ|x|+

∫ iA
0

L0η(λ)ρ
0(η)dη+

∫0
−iA

L0η(λ)ρ
0(η∗)∗ dη− 2Jg(λ). (5.29)

Then we pose the following problem.

Riemann-Hilbert Problem 5.7 (formal continuum limit). Given a complex phase func-

tion g(λ) find a matrix Ñ(λ) satisfying

(1) Analyticity: Ñ(λ) is analytic for λ ∈ C \ Σ.
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(2) Boundary behavior: Ñ(λ) assumes continuous boundary values on Σ.

(3) Jump conditions: The boundary values taken on Σ satisfy

Ñ+(λ) = Ñ−(λ)σ
(1−J)/2
1

 1 0

i exp

(
τ(λ) − iθ0(λ)

h̄N

)
1

σ
(1−J)/2
1 (5.30)

for λ ∈ CL,

Ñ+(λ) = Ñ−(λ)σ
(1−J)/2
1

 1 0

i exp

(
τ(λ) + iθ0(λ)

h̄N

)
1

σ
(1−J)/2
1 (5.31)

for λ ∈ CR, and

Ñ+(λ) = Ñ−(λ)σ
(1−J)/2
1

 exp
(
iθ(λ)

h̄N

)
0

i exp

(
φ̃(λ)

h̄N

)
exp

(
−

iθ(λ)

h̄N

)
σ

(1−J)/2
1 (5.32)

for λ ∈ CM. For all other λ ∈ Σ (i.e., in the lower half-plane), the jump is determined by

the symmetry Ñ(λ) = σ2Ñ(λ
∗)∗σ2.

(4) Normalization: Ñ(λ) is normalized at infinity

Ñ(λ) −→ I as λ −→ ∞. (5.33)

6 Choosing g(λ) to arrive at an outer model

Let R(λ) be defined by the equation R(λ)2 = λ2 + A(x)2, the fact that R(λ) is an analytic

function for λ away from the imaginary interval I := [−iA(x), iA(x)], and the normaliza-

tion that for large λ, R(λ) ∼ −λ. For η ∈ I ∩ CM, let

ρ(η) := ρ0(η) +
R+(η)

πi

∫−iA(x)
−iA

ρ0(s∗)∗ ds
(η− s)R(s)

+
R+(η)

πi

∫ iA
iA(x)

ρ0(s)ds

(η− s)R(s)
. (6.1)

It is easy to check directly that for all η ∈ I∩CM, we have ρ(η) ∈ iR+. Also, using the fact

that ρ0(s) is purely imaginary on the imaginary axis, and that R(s) is purely imaginary

in the domain of integration, where it satisfies R(−s) = −R(s), we see that

ρ(0) = ρ0(0). (6.2)
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Furthermore, it follows easily from (6.1) that for all η ∈ I ∩ CM, we have

0 ≤ −iρ(η) ≤ −iρ0(η), (6.3)

with the lower constraint being achieved only at the endpoint2 of I, λ = iA(x), and the

upper constraint being achieved only at the origin in accordance with (6.2).

Now, set

g(λ) :=
J

2

∫0
−iA(x)

L0η(λ)ρ(η
∗)∗ dη+

J

2

∫ iA(x)
0

L0η(λ)ρ(η)dη. (6.4)

This function satisfies all of the basic criteria set out earlier: it is analytic inC\(CM∪C∗
M)

and takes continuous boundary values, it satisfies g(λ) + g(λ∗)∗ = 0, and it satisfies

g(∞) = 0 because

∫0
−iA(x)

ρ(η∗)∗ dη+
∫ iA(x)
0

ρ(η)dη = 0. (6.5)

Note that g(λ) is analytic across CM for λ above iA(x). Consequently, θ(λ) = 0 for all

such λ. For λ ∈ CM below iA(x), θ(λ) becomes (cf. equation (4.8))

θ(λ) = −π

∫ iA(x)
λ

ρ(η)dη. (6.6)

We now describe a number of important consequences of our choice of g(λ).

Proposition 6.1. For all λ ∈ I ∩ CM = [0, iA(x)], φ̃(λ) = 0. �

To prove the proposition, we first point out that

lim
λ→0
λ∈CM

φ̃(λ) = 0, (6.7)

simply as a consequence of the fact that both ρ0(η) and ρ(η) are purely imaginary on

CM. Next we point out that

φ̃ ′(λ) = 0 (6.8)

whenever λ ∈ [0, iA(x)]. This follows from a direct calculation in which all integrals are

evaluated by residues and the formula (2.6) is used.

2It is often convenient to think of the function ρ(η) being extended to all of CM by setting ρ(η) ≡ 0 for λ
above the endpoint iA(x). In this case one views the lower constraint as being active on the whole imaginary
interval [iA(x),iA].
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Next we consider φ̃(λ) for λ ∈ CM \ [0, iA(x)], that is, above the endpoint of the

support. Clearly, φ̃(λ)+iθ(λ) is the boundary value onCM of an analytic function defined

near CM in DL. Since the boundary value taken below the endpoint is iθ(λ) because

φ̃(λ) ≡ 0 there, and the boundary value taken above the endpoint is φ̃(λ) because θ(λ) ≡ 0

there, we obtain the formula

φ̃(λ) = iθ+(λ) = −iπ

∫ iA(x)
λ

ρ+(η)dη (6.9)

valid for λ ∈ CM above iA(x), where by ρ+(η) for η in the imaginary interval (iA(x), iA)

we mean the function ρ(η) defined by (6.1) for η in the imaginary interval (0, iA(x)),

analytically continued from (0, iA(x)) in the clockwise direction about the endpoint λ =

iA(x). In particular, for such λ we have

φ̃ ′(λ) = iπρ+(λ). (6.10)

Carrying out the analytic continuation, we find from (6.1) that for η ∈ (iA(x), iA),

ρ+(λ) =
R(λ)

πi

∫−iA(x)
−iA

ρ0(s∗)∗ ds
(λ− s)R(s)

+
R(λ)

πi
P.V.

∫ iA
iA(x)

ρ0(s)ds

(λ− s)R(s)
. (6.11)

From this formula we see easily that for all λ strictly above the endpoint iA(x), ρ+(λ)

is positive real. Consequently, from (6.10) and since φ̃(λ) = 0 for λ = iA(x), we get the

following result.

Proposition 6.2. The function φ̃(λ) is negative real and decreasing in the positive imag-

inary direction for λ ∈ CM \ [0, iA(x)]. �

Now we consider the behavior of the function τ(λ) on CL and CR. From the defi-

nitions of the functions τ(λ) and φ̃(λ), we see that for λ ∈ CL,

τ(λ) = φ̃(λ) + iθ(λ) − iθ0(λ), (6.12)

and for λ ∈ CR,

τ(λ) = φ̃(λ) − iθ(λ) + iθ0(λ). (6.13)

That is, the analytic function τ(λ) takes boundary values from the left on CM equal to

φ̃(λ)+iθ(λ)−iθ0(λ) and from the right on CM equal to φ̃(λ)−iθ(λ)+iθ0(λ). First consider

the situation to the left or right of the imaginary interval [0, iA(x)]. Since φ̃(λ) ≡ 0 in
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[0, iA(x)], the function τ(λ) on CL will be the analytic continuation of iθ(λ) − iθ0(λ) from

CM and the function τ(λ) on CR will be the analytic continuation of −iθ(λ) + iθ0(λ) from

CM. From (6.3) we see that for η ∈ [0, iA(x)] one has ρ0(η) − ρ(η) ∈ iR+. Therefore, it

follows from the Cauchy-Riemann equations that for λ in portions of CL and CR close

enough (independently of h̄N) to the interval [0, iA(x)] one has

�(τ(λ)) < 0 (6.14)

for λ on both CL and CR. Furthermore, it follows from the fact that ρ0(η) ∈ iR+ that

�(−iθ0(λ)) < 0 for λ ∈ CL and �(iθ0(λ)) < 0 for λ ∈ CR. Therefore,

�
(
τ(λ) − iθ0(λ)

)
< 0 (6.15)

for λ ∈ CL near the portion of CM below iA(x), and

�
(
τ(λ) + iθ0(λ)

)
< 0 (6.16)

for λ in the analogous portion of CR. Next consider the situation to the left or right of

the portion of CM lying above the endpoint λ = iA(x). Since θ(λ) ≡ 0 and �(φ̃(λ)) < 0

for λ ∈ [iA(x), iA] we see that for CL and CR close enough (again independently of h̄N)

to this part of CM we again find that we have (6.15) on CL and (6.16) on CR. This shows

that the jumpmatrix on both contours CL and CR is an exponentially small perturbation

of the identity for small positive h̄N, pointwise in λ bounded away from the origin

and iA.

For λ ∈ [0, iA(x)], the jump matrix for Ñ(λ) factors (recall φ̃(λ) ≡ 0 here):exp
(
iθ(λ)

h̄N

)
0

i exp

(
−

iθ(λ)

h̄N

)


=

1 −i exp

(
iθ(λ)

h̄N

)
0 1

[0 i

i 0

]1 −i exp

(
−

iθ(λ)

h̄N

)
0 1

 .

(6.17)

Let LL and LR be two boundaries of a lens surrounding [0, iA]. See Figure 6.1. Using the

factorization (6.17), we now define a new matrix function O(λ). In the region between

LL and CM set

O(λ) := Ñ(λ)σ
(1−J)/2
1

1 i exp

(
−

iθ(λ)

h̄N

)
0 1

σ
(1−J)/2
1 . (6.18)
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CL CR

LL LR

CM

Figure 6.1 Introduction of the lens boundaries LL and LR .

In the region between CM and LR, set

O(λ) := Ñ(λ)σ
(1−J)/2
1

1 −i exp

(
iθ(λ)

h̄N

)
0 1

σ
(1−J)/2
1 . (6.19)

Elsewhere in the upper half-plane set O(λ) := Ñ(λ). And in the lower half-plane define

O(λ) by symmetry: O(λ) = σ2O(λ
∗)∗σ2.

These transformations imply jump conditions satisfied by O(λ) on the contours

in Figure 6.1 since the jump conditions for Ñ(λ) are given. For λ ∈ LL we have

O+(λ) = O−(λ)σ
(1−J)/2
1

1 −i exp

(
−

iθ(λ)

h̄N

)
0 1

σ
(1−J)/2
1 (6.20)

which is an exponentially small perturbation of the identity except near the endpoints.

And for λ ∈ LR we have

O+(λ) = O−(λ)σ
(1−J)/2
1

1 −i exp

(
iθ(λ)

h̄N

)
0 1

σ
(1−J)/2
1 (6.21)
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which is also a jump that is exponentially close to the identity. For λ ∈ [0, iA(x)] we get

O+(λ) = O−(λ)

[
0 i

i 0

]
(6.22)

as a consequence of the factorization (6.17). Since O(λ) := Ñ(λ) for all λ in the upper

half-plane outside the lens bounded by LL and LR, we see thatO(λ) satisfies the following

jump condition on CL:

O+(λ) = O−(λ)σ
(1−J)/2
1

 1 0

i exp

(
τ(λ) − iθ0(λ)

h̄N

)
1

σ
(1−J)/2
1 , (6.23)

the following jump relation on CR:

O+(λ) = O−(λ)σ
(1−J)/2
1

 1 0

i exp

(
τ(λ) + iθ0(λ)

h̄N

)
1

σ
(1−J)/2
1 , (6.24)

and the following jump relation on the imaginary interval [iA(x), iA] ⊂ CM:

O+(λ) = O−(λ)σ
(1−J)/2
1

 1 0

i exp

(
φ̃(λ)

h̄N

)
1

σ
(1−J)/2
1 . (6.25)

All three of these matrices are exponentially close to the identity matrix pointwise in λ

for interior points of their respective contours.

The matrix O(λ) is related to Ñ(λ) by explicit transformations. However, taking

the pointwise limit of the jumpmatrix forO(λ) leads us to the following adhoc Riemann-

Hilbert problem.

Riemann-Hilbert Problem 6.3 (outer problem). Find a matrix Õ(λ) satisfying:

(1) Analyticity: Õ(λ) is analytic for λ ∈ C \ I, where I is the imaginary interval

[−iA(x), iA(x)].

(2) Boundary behavior: Õ(λ) assumes boundary values that are continuous ex-

cept at λ = ±iA(x), where at worst inverse fourth-root singularities are admitted.

(3) Jump condition: for λ ∈ I,

Õ+(λ) = Õ−(λ)

[
0 i

i 0

]
. (6.26)
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(4) Normalization: Õ(λ) is normalized at infinity:

Õ(λ) −→ I as λ −→ ∞. (6.27)

It is not difficult to solve this problem explicitly in terms of algebraic functions.

Proposition 6.4. The unique solution of Riemann-Hilbert Problem 6.3 is

Õ(λ) :=
1

2R(λ)β(λ)

R(λ) − λ− iA(x) R(λ) + λ+ iA(x)

R(λ) + λ+ iA(x) R(λ) − λ− iA(x)

 , (6.28)

where R(λ)2 = λ2 +A(x)2 and

β(λ)4 =
λ+ iA(x)

λ− iA(x)
, (6.29)

with both functions R(λ) and β(λ) being analytic in C \ I, normalized according to

R(λ) ∼ −λ and β(λ) ∼ 1 as λ → ∞. �

Using the matrix Õ(λ), we define an “outer” model for the matrixN(λ) as follows.

The idea is to recall the relationship between the matrix Ñ(λ) and O(λ), and simply

substitute Õ(λ) for O(λ) in these formulae. For λ in between LL and CM, we use (6.18)

to set

N̂out(λ) := Õ(λ)σ
(1−J)/2
1

1 −i exp

(
−

iθ(λ)

h̄N

)
0 1

σ
(1−J)/2
1 . (6.30)

For λ in between CM and LR, we use (6.19) to set

N̂out(λ) := Õ(λ)σ
(1−J)/2
1

1 i exp

(
iθ(λ)

h̄N

)
0 1

σ
(1−J)/2
1 . (6.31)

For all other λ in the upper half-plane, set N̂out(λ) := Õ(λ), and in the lower half-

plane set N̂out(λ) := σ2N̂out(λ
∗)∗σ2. The important properties of this matrix are the

following.

Proposition 6.5. The matrix N̂out(λ) is analytic for all complex λ except at the contours

LL, LR, the imaginary interval [0, iA(x)], and their complex-conjugates. It satisfies the
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following jump conditions:

N̂out,+(λ) = N̂out,−(λ)σ
(1−J)/2
1

1 i exp

(
−

iθ(λ)

h̄N

)
0 1

σ
(1−J)/2
1 , for λ ∈ LL,

N̂out,+(λ) = N̂out,−(λ)σ
(1−J)/2
1

1 i exp

(
iθ(λ)

h̄N

)
0 1

σ
(1−J)/2
1 , for λ ∈ LR,

N̂out,+(λ) = N̂out,−(λ)σ
(1−J)/2
1

×

exp
(
iθ(λ)

h̄N

)
0

i exp

(
−

iθ(λ)

h̄N

)
σ

(1−J)/2
1 , for λ ∈ [0, iA(x)],

(6.32)

with the jumpmatrices on the conjugate contours in the lower half-plane being obtained

from these by the symmetry N̂out(λ
∗) = σ2N̂out(λ)

∗σ2. In particular, note that for λ ∈
[0, iA(x)], we have N̂out,−(λ)

−1N̂out,+(λ) = Ñ−(λ)
−1Ñ+(λ). Also, ifD is any given open set

containing the endpoint λ = iA(x), then N̂out(λ) is uniformly bounded for λ ∈ C\(D∪D∗)

with a bound that depends only on D and not on h̄N. �

7 Local analysis

In justifying formally the local model N̂out(λ), we ignored the fact that the pointwise

asymptotics for the jump matrices for O(λ) that we used to obtain the matrix Õ(λ) were

not uniform near the origin or near the moving endpoint λ = iA(x). We also neglected

the breakdown of the asymptotics for aL(λ), aR(λ), and aM(λ) near the points λ = 0

and λ = iA. Consequently, we do not expect the outer model N̂out(λ) to be a good ap-

proximation to N(λ) near λ = 0, λ = iA(x), or λ = iA. In this section, we examine the

neighborhoods of these three points in more detail, and we will obtain accurate local

models for N(λ) in the corresponding neighborhoods.

7.1 Local analysis near λ = 0

7.1.1 Local behavior of the matrix elements aL(λ), aR(λ), and aM(λ). Let ε and δ be

small scales tied to h̄N such that h̄N � δ � ε � 1 as h̄N ↓ 0. Let L be defined as the

unique integer for which exactlyN−L of the numbers λ0, . . . , λN−1 lie strictly below iε on

the positive imaginary axis. We want to compute uniform asymptotics for S(λ) defined

by (5.2) for λ ∈ CL ∪ CR, and for T(λ) defined by (5.3) for λ ∈ CM when |λ| ≤ δ.
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Lemma 7.1. When �(λ) ≥ 0 and |λ| ≤ δ and with L defined as indicated in the preceding

paragraph,

exp

(
−

L−1∑
k=0

Ĩk(λ)

)
= 1+O

(
h̄N

ε

)
. (7.1)

�

Proof. We recall the integral formula (cf. equation (5.8))

Ĩk(λ) =
1

h̄N

∫mk+h̄N/2

mk−h̄N/2

dm

∫m
mk

dζ

∫ζ
mk

dξg(λ, ξ), (7.2)

in which we expand the integrand in partial fractions:

g(λ, ξ) =
e ′′(ξ)

λ+ e(ξ)
+

e ′′(ξ)
λ− e(ξ)

−
e ′(ξ)2

(λ+ e(ξ))2
+

e ′(ξ)2

(λ− e(ξ))2
. (7.3)

Since �(λ) ≥ 0, for mk − h̄N/2 ≤ ξ ≤ mk + h̄N/2 and k = 0, . . . , L− 1, we get

1

|λ+ e(ξ)|
≤ 1

|λ− e(ξ)|
≤ 1

|iδ− e(ξ)|

≤ 1∣∣∣iδ− e
(
mk −

h̄N

2

)∣∣∣ = O

 1∣∣∣m(δ) −mk +
h̄N

2

∣∣∣
 .

(7.4)

For such ξ we therefore have

g(λ, ξ) = O

 1∣∣∣m(δ) −mk +
h̄N

2

∣∣∣2
 , (7.5)

so summing over k gives

L−1∑
k=0

Ĩk(λ) = O

h̄2N

L−1∑
k=0

1∣∣∣m(δ) −mk +
h̄N

2

∣∣∣2


= O

(
h̄N

∫M
m(ε)

dm

(m−m(δ))2

)
= O

(
h̄N

ε

)
,

(7.6)

because δ � ε, which proves the lemma. �

So only the fraction of terms Ĩk(λ) with k ≥ L contribute significantly to the sum

for Ĩ(λ). It is easy to check directly that exp(−Ĩk(λ)) is an analytic function for |λ| ≤ δ
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whenever 0 ≤ k ≤ L − 1, so it makes no difference in these terms whether it is L0η(λ) or

L
0

η(λ) that appears in the definition of Ĩk. Therefore, the terms in S(λ) and T(λ) that can

be significant for λ near the origin are thus

S
(0)
1 (λ) :=

(
N−1∏
k=L

λ− λ∗k
λ− λk

)
exp

(
1

h̄N

∫mL+h̄N/2

0

(
L0e(m) (λ) − L0−e(m) (λ)

)
dm

)
,

T
(0)
1 (λ) :=

(
N−1∏
k=L

λ− λ∗k
λ− λk

)
exp

(
1

h̄N

∫mL+h̄N/2

0

(
L
0

e(m) (λ) − L
0

−e(m) (λ)
)
dm

)

× 2 cos

(
θ0(λ)

h̄N

)
.

(7.7)

Here we have written the integrals in the exponent using the change of variables m =

m(η). So Lemma 7.1 simply says that S(λ) = S
(0)
1 (λ)(1+O(h̄N/ε)) and T(λ) = T

(0)
1 (λ)(1+

O(h̄N/ε)) uniformly for |λ| < δ. When λ is close to the origin along with the points λk

contributing to T(λ), the ladder of discrete nodes appears to become equally spaced.

The next lemma shows that this is indeed the case.

Lemma 7.2. Let λ̃N−k for k = 1, 2, 3, . . . be the sequence of numbers defined by the

relation

λ̃N−k := −
h̄N

ρ0(0)

(
k−

1

2

)
, (7.8)

which results from expanding the Bohr-Sommerfeld relation (2.9) for λN−k small, and

keeping only the dominant terms. Define

S
(0)
2 (λ) :=

(
N−1∏
k=L

λ− λ̃∗k
λ− λ̃k

)
exp

(
1

h̄N

∫mL+h̄N/2

0

(
L0e ′(0)m (λ) − L0−e ′(0)m (λ)

)
dm

)
,

T
(0)
2 (λ) :=

(
N−1∏
k=L

λ− λ̃∗k
λ− λ̃k

)
exp

(
1

h̄N

∫mL+h̄N/2

0

(
L
0

e ′(0)m (λ) − L
0

−e ′(0)m (λ)
)
dm

)

× 2 cos

(
πρ0(0)

h̄N
(iA− λ)

)
.

(7.9)

Then, for �(λ) ≥ 0 and |λ| ≤ δ,

T
(0)
1 (λ) = T

(0)
2 (λ)

(
1+O

(
ε2

h̄N
log

(
ε

h̄N

)))
, (7.10)

where we suppose that the scale ε is further constrained so that the relative error is

asymptotically small. If λ is additionally bounded outside of some sector containing the
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positive imaginary axis, then

S
(0)
1 (λ) = S

(0)
2 (λ)

(
1+O

(
ε2

h̄N

))
. (7.11)

�

Proof. We begin by observing that for k = L, . . . ,N − 1, the distance between λk and

λ̃k is much smaller than the distance between λk and λk+1, as long as ε � h̄
1/2
N . More

precisely, we have

∣∣λ̃k − λk
∣∣ = O

(
h̄2N(N− k)2

)
. (7.12)

Decompose the quotients as follows:

T
(0)
1 (λ)

T
(0)
2 (λ)

= D(λ)C(λ)L(λ),
S
(0)
1 (λ)

S
(0)
2 (λ)

= D(λ)L(λ), (7.13)

where

D(λ) :=

N−1∏
k=L

λ− λ∗k
λ− λk

λ− λ̃k

λ− λ̃∗k
,

C(λ) := cos

(
π

h̄N

∫ iA
λ

ρ0(η)dη

)
sec

(
− πN−

π

h̄N
ρ0(0)λ

)
,

(7.14)

L(λ) := exp

(
1

h̄N

∫mL+h̄N/2

0

([
L
0

e(m) (λ) − L
0

e ′(0)m (λ)
]

−
[
L
0

−e(m) (λ) − L
0

−e ′(0)m (λ)
])

dm

)
,

L(λ) := exp

(
1

h̄N

∫mL+h̄N/2

0

([
L0e(m) (λ) − L0e ′(0)m (λ)

]
−
[
L0−e(m) (λ) − L0−e ′(0)m (λ)

])
dm

)
.

(7.15)

First we deal with L(λ) and L(λ). Since e(m) is smooth and m is small we have

e(m) − e ′(0)m = O(ε2). Also, the interval of integration is O(ε) in length. Although the

integrands in (7.15) are not pointwise small, upon integration it follows that

L(λ) = 1+O

(
ε3

h̄N

)
, L(λ) = 1+O

(
ε3

h̄N

)
, (7.16)
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uniformly for all λ in the upper half-plane satisfying |λ| ≤ δ. Here we are assuming that

ε � h̄
1/3
N .

For the moment, we drop the conditions �(λ) ≥ 0 and |λ| ≤ δ and instead consider

λ to lie on the sides of the square centered at the origin, one of whose sides is parallel

to the real axis and intersects the positive imaginary axis halfway between the points

λ = λ̃L and λ = λ̃L−1. Note that the estimate (7.12) implies that the sides of the square

intersect the real and imaginary axes a distance from the origin that is approximately ε.

Therefore the square asymptotically contains the closed disk |λ| ≤ δ because δ � ε. We

will show that for λ on the four sides of the square, both D(λ) and C(λ) are very close

to one. We write D(λ) in the form

D(λ) =

N−1∏
k=L

(
1+

λ̃∗k − λ∗k
λ− λ̃∗k

)(
1+

λ̃k − λk

λ− λ̃k

)−1
. (7.17)

First consider the top of the square: for �(λ) = −i(λ̃L + λ̃L−1)/2, we easily see that

∣∣λ− λ̃k
∣∣ ≥ ih̄N

ρ0(0)

(
k− L+

1

2

)
,

1∣∣λ− λ̃∗k
∣∣ = O

(
1

ε

)
, (7.18)

for k = L, . . . ,N− 1. Combining this with (7.12), we get

λ̃∗k − λ∗k
λ− λ̃∗k

= O

(
h̄2N(N− k)2

ε

)
,

λ̃k − λk

λ− λ̃k
= O

 h̄2N(N− k)2

h̄N

(
k− L+

1

2

)
 . (7.19)

Summing these estimates over k (it is convenient to approximate sums by integrals in

doing so), we find that

N−1∏
k=L

(
1+

λ̃∗k − λ∗k
λ− λ̃∗k

)
= 1+O

(
ε2

h̄N

)
,

N−1∏
k=L

(
1+

λ̃k − λk

λ− λ̃k

)−1
= 1+O

(
ε2

h̄N
log

(
ε

h̄N

))
.

(7.20)

Consequently, for λ on the top of the square,

D(λ) = 1+O

(
ε2

h̄N
log

(
ε

h̄N

))
. (7.21)

An estimate of the same form holds when λ is on the bottom of the square, where
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�(λ) = i(λ̃L + λ̃L−1)/2. When λ is on the left or right side of the square, so that |�(λ)| =

−i(λ̃L + λ̃L−1)/2, both |λ − λ̃∗k|
−1 and |λ − λ̃k|

−1 are O(ε−1). By the same arguments as

above, we then have for such λ that

D(λ) = 1+O

(
ε2

h̄N

)
. (7.22)

Now we look at C(λ) on the same square. Generally, for such λ which are of order ε in

magnitude, we have

C(λ) = 1+O

(
ε2

h̄N

)
sec

(
− πN−

π

h̄N
ρ0(0)λ

)
. (7.23)

When λ is on the top or bottom of the square, we have∣∣∣∣ sec(− πN−
π

h̄N
ρ0(0)λ

)∣∣∣∣ ≤ 1, (7.24)

and when λ is on the left or right sides of the square, the same quantity is exponentially

small. It follows easily that for λ on any of the sides of the square,

C(λ) = 1+O

(
ε2

h̄N

)
. (7.25)

So uniformly on the four sides of the square, we have

D(λ)C(λ) = 1+O

(
ε2

h̄N
log

(
ε

h̄N

))
. (7.26)

But the product D(λ)C(λ) is analytic within the square, so by the maximum principle

it follows that the same estimate holds for all λ on the interior of the square, and in

particular for all λ in the upper half-plane with |λ| ≤ δ. This shows that

T
(0)
1 (λ) = T

(0)
2 (λ)

(
1+O

(
ε2

h̄N
log

(
ε

h̄N

)))
(7.27)

holds for all such λ.

Now to control the relationship between S
(0)
1 (λ) and S

(0)
2 (λ) we consider λ to lie

outside of some symmetrical sector about the positive imaginary axis, of arbitrarily

small nonzero opening angle 2α independent of h̄N. Since �(λ) ≥ 0, we get

∣∣λ− λ̃∗k
∣∣ ≥ ∣∣λ− λ̃k

∣∣ ≥ |̃λk|

sin(α)
=

ih̄N

(
N− k−

1

2

)
ρ0(0)| sin(α)|

. (7.28)
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Combining this result with (7.12), we find

λ̃∗k − λ∗k
λ− λ̃∗k

= O
(
h̄N(N− k)

)
,

λ̃k − λk

λ− λ̃k
= O

(
h̄N(N− k)

)
. (7.29)

Summing these estimates over k one finds that

D(λ) = 1+O

(
ε2

h̄N

)
. (7.30)

Combining this with the estimate (7.16) of L(λ) − 1, we find that

S
(0)
1 (λ) = S

(0)
2 (λ)

(
1+O

(
ε2

h̄N

))
, (7.31)

for all λ in the upper half-plane with |λ| < δ and bounded outside of the sector of opening

angle 2α about the positive imaginary axis. This completes the proof. �

Without any approximation, S(0)2 (λ) can be rewritten in the form

S
(0)
2 (λ) = (−iζ)

−iζ(iζ)−iζ
Γ

(
1

2
+ iζ

)(
N+ iζ

)N+iζ
Γ

(
N+

1

2
− iζ

)
Γ

(
1

2
− iζ

)(
N− iζ

)N−iζ
Γ

(
N+

1

2
+ iζ

) (7.32)

and T
(0)
2 (λ) can be rewritten in the form

T
(0)
2 (λ) =

2π

Γ

(
1

2
− iζ

)2 (−iζ)−2iζ
(
N+ iζ

)N+iζ
Γ

(
N+

1

2
− iζ

)
(
N− iζ

)N−iζ
Γ

(
N+

1

2
+ iζ

) , (7.33)

where N := N − L and we are introducing a transformation ϕ0 to a local variable ζ

given by

ζ = ϕ0(λ) := −
iρ0(0)λ

h̄N
. (7.34)

These formulae come from evaluating the logarithmic integrals exactly, which is possi-

ble because e(m) has been replaced by the linear function e ′(0)m, taking advantage of

the equal spacing of the λ̃k to write the product explicitly in terms of gamma functions,

and then using the reflection identity for the gamma function to eliminate the cosine

from T
(0)
2 (λ). Now, the integer N is large, approximately of size ε/h̄N. But for |λ| ≤ δ, N

is asymptotically large compared to ζ because δ � ε. These observations allow us to

apply Stirling-type asymptotics to S
(0)
2 (λ) and T

(0)
2 (λ).
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Lemma 7.3. In addition to all prior hypotheses, suppose that δ2 � εh̄N. Then,

S
(0)
2 (λ) = e2iζ(−iζ)−iζ(iζ)−iζ

Γ

(
1

2
− iζ

)
Γ

(
1

2
+ iζ

)(1+O

(
δ2

εh̄N

))
,

T
(0)
2 (λ) =

2πe2iζ(−iζ)−2iζ

Γ

(
1

2
− iζ

)2
(
1+O

(
δ2

εh̄N

))
.

(7.35)

�

Proof. Asymptotically expanding the gamma functions for large N, we find that

S
(0)
2 (λ) = e2iζ(−iζ)−iζ(iζ)−iζ

Γ

(
1

2
+ iζ

)
Γ

(
1

2
− iζ

) · ∆(ζ,N) · (1+O

(
1

N

))
,

T
(0)
2 (λ) =

2πe2iζ(−iζ)−2iζ

Γ

(
1

2
− iζ

)2 · ∆(ζ,N) · (1+O

(
1

N

))
,

(7.36)

where

∆
(
ζ,N

)
:=

(
N+ iζ

)N+iζ(
N+ iζ+

1

2

)N+iζ
(
N− iζ+

1

2

)N−iζ
(
N− iζ

)N−iζ . (7.37)

Next, expanding ∆(ζ,N), one gets worse error terms

∆
(
ζ,N

)
= 1+O

((
δ

h̄N

)2
1

N

)
. (7.38)

Combining these estimates and noting that 1/N = O(h̄N/ε) completes the proof of

the lemma. �

With these results in hand, we can easily establish the following.

Proposition 7.4. Let λ be in the upper half-plane, with |λ| ≤ h̄αN, where 3/4 < α < 1,

and let λ be bounded outside of some fixed symmetrical sector containing the positive

imaginary axis. Then
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S(λ) = e2iζ(−iζ)−iζ(iζ)−iζ
Γ

(
1

2
+ iζ

)
Γ

(
1

2
− iζ

)(1+O
(
h̄
4α/3−1
N

))
, (7.39)

where ζ = ϕ0(λ) := −iρ
0(0)λ/h̄N. �

Proof. According to Lemmas 7.1, 7.2, and 7.3, the total relative error is a sum of three

terms

O

(
h̄N

ε

)
, O

(
ε2

h̄N

)
, O

(
δ2

εh̄N

)
. (7.40)

Note that since h̄N � δ, the order h̄N/ε term is always dominated asymptotically by the

order δ2/εh̄N term. The error is optimized by picking ε so that the two possibly dominant

terms are in balance. This forces us to choose ε ∼ δ2/3. The proposition follows upon

taking δ = h̄αN. �

Proposition 7.5. Let λ be in the upper half-plane, with |λ| ≤ h̄αN, where 3/4 < α < 1.

Then for all ν > 0, however small,

T(λ) =
2πe2iζ(−iζ)−2iζ

Γ

(
1

2
− iζ

)2 (
1+O

(
h̄
4α/3−1−ν
N

))
, (7.41)

where ζ = ϕ0(λ) := −iρ
0(0)λ/h̄N. �

Proof. In this case, according to Lemmas 7.1, 7.2, and 7.3, the total relative error is a sum

of three different terms

O

(
h̄N

ε

)
, O

(
ε2

h̄N
log

(
ε

h̄N

))
, O

(
δ2

εh̄N

)
. (7.42)

Again, since h̄N � δ, the order h̄N/ε term is always dominated asymptotically by the

order δ2/εh̄N term. For any σ > 0, we have

ε2

h̄N
log

(
ε

h̄N

)
= O

(
ε2

h̄N

(
ε

h̄N

)σ)
. (7.43)

So we can eliminate the logarithm at the expense of a slightly larger error. Taking δ = h̄αN

as in the statement of the proposition, and using the cruder estimate (7.43), the nearly

optimal value of ε to minimize the total relative error is achieved by a dominant balance
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between the right-hand side of (7.43) and the term of order δ2/εh̄N. The balance gives

ε = h̄
β
N, with

β =
2α+ σ

3+ σ
. (7.44)

With this choice of ε, the total relative error is of the order h̄γN, with

γ = 2α− 1− β =
4α+ 2(α− 1)σ− 3

3+ σ
<

4

3
α− 1 (7.45)

with the inequality following because σ > 0 and α < 1. The inequality fails in the limit

σ → 0. Therefore, for each arbitrarily small ν > 0, we can find a σ > 0 sufficiently small

that γ > 4α/3− 1−ν. This gives us a slightly less optimal estimate of the relative error:

simply O(h̄
4α/3−1−ν
N ), which completes the proof. �

7.1.2 The model Riemann-Hilbert problem. To repair the flaw in our model N̂out(λ) for

the matrix N(λ) related to the nonuniformity of the approximation of the jump matri-

ces near the origin, we need to provide a different approximation of N(λ) that will be

valid when |λ| ≤ h̄αN for some α ∈ (3/4, 1). The local failure of the “outer” approxima-
tion is gauged by the deviation of the matrix quotient N(λ)N̂out(λ)

−1 from the identity

matrix near the origin. It turns out to be more convenient to study a conjugated form

of this matrix (which also deviates from the identity for λ near the origin). Namely, for

|λ| ≤ h̄αN, set

F(λ) : = e−iθ(0)σ3/(2h̄N) σ
(1−J)/2
1

(
iσ1
)
Õ(λ)−1N(λ)

× N̂out(λ)
−1Õ(λ)

(
− iσ1

)
σ
(1−J)/2
1 eiθ(0)σ3/(2h̄N)

(7.46)

if �(λ) < 0 and

F(λ) := e−iθ(0)σ3/(2h̄N) σ
(1−J)/2
1 Õ(λ)−1N(λ)N̂out(λ)

−1Õ(λ)σ
(1−J)/2
1 eiθ(0)σ3/(2h̄N)

(7.47)

if�(λ) > 0. It is easy to check that as a consequence of the boundary conditions satisfied

by the matrix Õ(λ) on the imaginary axis near the origin, the conjugating factors are

analytic throughout the disk |λ| ≤ h̄αN, and are uniformly bounded there independently

of h̄N.

For later convenience, we assume, without loss of generality, that the auxiliary

contours CL, CR, LL, and LR are straight rays in some h̄N-independent neighborhood of
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the origin. It is easy to write down the jump conditions satisfied by F(λ) on these four

rays and also on the positive imaginary axis. We find that

F+(λ) = F−(λ)

[
1 aL(λ)e

−iθ(0)/h̄N

0 1

]
, for λ ∈ CL,

F+(λ) = F−(λ)

[
1 0

aR(λ)e
iθ(0)/h̄N 1

]
, for λ ∈ CR,

F+(λ) = F−(λ)

[
1 0

−ie−i(θ(λ)−θ(0))/h̄N 1

]
, for λ ∈ LL,

F+(λ) = F−(λ)

[
1 −iei(θ(λ)−θ(0))/h̄N

0 1

]
, for λ ∈ LR,

(7.48)

and for λ ∈ CM,

F+(λ) = F−(λ)

×


1+

[
iaM(λ) + eφ̃(λ)/h̄N

]
−iei(θ(λ)−θ(0))/h̄N

[
iaM(λ) + eφ̃(λ)/h̄N

]
−ie−i(θ(λ)−θ(0))/h̄N

[
iaM(λ) + eφ̃(λ)/h̄N

]
1−

[
iaM(λ) + eφ̃(λ)/h̄N

]
 .

(7.49)

The jump relations satisfied by F(λ) on the complex conjugate contours in the lower

half-plane follow from these by the symmetry F(λ) = σ2F(λ
∗)∗σ2.

Now, for λ ∈ CL with |λ| ≤ h̄αN,

aL(λ)e
−iθ(0)/h̄N = i exp

(
τ(λ) − iθ0(λ) − iθ(0)

h̄N

)
· S(λ)

= i exp

(
φ̃(λ) + i(θ(λ) − θ(0)) − 2iθ0(λ)

h̄N

)
· S(λ)

= i exp

(
i(θ(λ) − θ(0)) − 2i(θ0(λ) − θ0(0))

h̄N

)
· S(λ)

= ieπζS(λ)
(
1+O

(
h̄2α−1N

))

= ie(2i+π)ζ (−iζ)−iζ(iζ)−iζ
Γ

(
1

2
+ iζ

)
Γ

(
1

2
− iζ

)(1+O
(
h̄
4α/3−1
N

))
,

(7.50)

where in the last line ζ = ϕ0(λ) with the change of coordinate being given by (7.34).

In these steps, we used the relation (6.12), the fact that from Proposition 6.1 we get
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φ̃(λ) ≡ 0, and, according to (2.7) and the quantization condition (2.8) on h̄N, 2θ0(0)/h̄N =

2πN ∈ 2πZ. We have also used the fact that

1

ρ0(0)

(
2
dθ0

dλ
(0) −

dθ

dλ
(0)

)
= π (7.51)

which follows directly from the definition (2.7) of θ0(λ), the definition (6.6) of θ(λ), and

the relation (6.2). In a similar way, for λ ∈ CR with |λ| ≤ h̄αN, we get

aR(λ)e
iθ(0)/h̄N = ie(2i−π)ζ (−iζ)−iζ(iζ)−iζ

Γ

(
1

2
+ iζ

)
Γ

(
1

2
− iζ

)(1+O
(
h̄
4α/3−1
N

))
, (7.52)

and for λ ∈ LL ∪ CM ∪ LR with |λ| ≤ h̄αN,

e±i(θ(λ)−θ(0))/h̄N = e∓πζ
(
1+O

(
h̄2α−1N

))
, (7.53)

with ζ = ϕ0(λ). Finally, when λ ∈ CM and |λ| ≤ h̄αN we have for arbitrarily small ν > 0,

iaM(λ) + eφ̃(λ)/h̄N = eφ̃(λ)/h̄N [1− T(λ)] = 1− T(λ)

= 1−
2πe2iζ(−iζ)−2iζ

Γ

(
1

2
− iζ

)2 (
1+O

(
h̄
4α/3−1−ν
N

))

= 1−
2πe2iζ(−iζ)−2iζ

Γ

(
1

2
− iζ

)2 +O
(
h̄
4α/3−1−ν
N

)
,

(7.54)

again with ζ = ϕ0(λ). The last step follows because 2πe2iζ(−iζ)−2iζ/Γ(1/2− iζ)2 is uni-

formly bounded on CM.

Let �CL, �CR, �LL, �LR, and �CM denote the straight rays that agree with the corre-

sponding contours in a fixed neighborhood of the origin in the λ-plane, but lying in the

ζ-plane (according to (7.34), ζ is a simple rescaling of λ by a positive number). These

rays are oriented contours, with the same orientation as the original contours: �CM, �LL,

and �LR are oriented outwards from the origin toward infinity, and �CL and �CR are ori-

ented inwards from infinity toward the origin. Let the union of these contours with their

complex conjugates be denoted Σ0. Consider the following Riemann-Hilbert problem.

Riemann-Hilbert Problem 7.6 (local problem near the origin). Find a matrix F̂(ζ) with

the following properties:
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(1) Analyticity: F̂(ζ) is analytic for ζ ∈ C \ Σ0.

(2) Boundary behavior: F̂(ζ) assumes continuous boundary values on Σ0.

(3) Jump conditions: the boundary values taken on Σ0 satisfy

F̂+(ζ) = F̂−(ζ)

1 ie(2i+π)ζ (−iζ)−iζ(iζ)−iζ
Γ(1/2+ iζ)

Γ(1/2− iζ)

0 1

 , ζ ∈ �CL,

F̂+(ζ) = F̂−(ζ)

 1 0

ie(2i−π)ζ (−iζ)−iζ(iζ)−iζ
Γ(1/2+ iζ)

Γ(1/2− iζ)
1

 , ζ ∈ �CR,

F̂+(ζ) = F̂−(ζ)

[
1 0

−ieπζ 1

]
, ζ ∈ �LL,

F̂+(ζ) = F̂−(ζ)

[
1 −ie−πζ

0 1

]
, ζ ∈ �LR,

F̂+(ζ) = F̂−(ζ)

×


2−

2πe2iζ(−iζ)−2iζ

Γ(1/2− iζ)2
ie−πζ

[
2πe2iζ(−iζ)−2iζ

Γ(1/2− iζ)2
− 1

]
ieπζ

[
2πe2iζ(−iζ)−2iζ

Γ(1/2− iζ)2
− 1

]
2πe2iζ(−iζ)−2iζ

Γ(1/2− iζ)2

 , ζ ∈ �CM.

(7.55)

On the contours in the lower half-plane, the jump conditions are implied by the

symmetry F̂(ζ∗) = σ2F̂(ζ)
∗σ2.

(4) Normalization: F̂(ζ) is normalized at infinity

F̂(ζ) −→ I as ζ −→ ∞. (7.56)

Unfortunately, we cannot solve Riemann-Hilbert Problem 7.6 explicitly. Luck-

ily, we will not require an explicit solution. However, existence of a solution is an issue

that must be resolved, and we need to obtain a decay estimate that quantifies the nor-

malization condition (7.56). These questions are addressed via the abstract theory of

Riemann-Hilbert problems.

Proposition 7.7. The local model Riemann-Hilbert Problem 7.6 has a unique solution

satisfying F̂(ζ) = I + O(1/ζ) as ζ → ∞, uniformly with respect to direction. Also,

det(F̂(ζ)) ≡ 1. �
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Proof. Each Riemann-Hilbert problem is equivalent to an inhomogeneous system of

linear singular integral equations. It must be shown that the matrix singular inte-

gral operator associated with these equations is of Fredholm type, with index zero.

Then it must be shown that there are no homogeneous solutions, at which point one

has existence and uniqueness of a solution to the inhomogeneous system. Finally, one

maps the solution of the integral equations to the unique solution of the Riemann-

Hilbert problem and it remains to verify the rate of decay to the identity matrix as

ζ → ∞.

The theory we will use is the theory of matrix Riemann-Hilbert problems on

self-intersecting contours, with boundary values taken in spaces of Hölder continu-

ous functions. This theory is summarized in a self-contained way in the appendix

of [8].

The first step is to establish that the operator of the associated system of sin-

gular integral equations is Fredholm index zero on an appropriate space of functions.

As described in [8], this follows from two facts. First, on each ray of the contour Σ0 the

jump matrix v
F̂
(ζ) := F̂−(ζ)

−1F̂+(ζ) is uniformly Lipschitz with respect to ζ, and differs

from the identity by a quantity that is O(1/ζ) for large ζ. Second, the limiting values of

the jump matrix, taken as ζ → 0 along each ray of Σ0, are consistent with a bounded

solution F̂(ζ) near ζ = 0. This means the following. Suppose that F̂(ζ) has a limiting

value, say a matrix F̂0, as ζ → 0 inside one of the sectors of C \ Σ0. Using the limit-

ing value of the jump matrix v
F̂
(ζ) at the origin along one of the rays of Σ0 bounding

that sector, one can compute the limiting value of F̂(ζ) at the origin in the neighboring

sector. This procedure can be continued, moving from sector to sector of C \ Σ0 in the

same direction, until one arrives once again in the original sector, with a matrix F̂1.

The consistency condition is simply that F̂1 = F̂0, which upon elimination of F̂0 can be

viewed as a cyclic relation among the limiting values of the jump matrix v
F̂
(ζ) taken

along each ray of Σ0 as ζ → 0. It is easily checked that this cyclic relation indeed holds

for Riemann-Hilbert Problem 7.6.

The second step is to establish existence and uniqueness of the solution F̂(ζ).

The fact that the associated singular integral equations are Fredholm index zero means

that, in a certain precise sense, the Fredholm alternative applies to our Riemann-Hilbert

problem. The inhomogeneity is the normalization to the identity matrix at ζ = ∞. The

corresponding homogeneousRiemann-Hilbert problemhas exactly the same formexcept

that the normalization condition is replaced by the condition F̂(ζ) → 0 as ζ → ∞. We

will have a unique solution of Riemann-Hilbert Problem 7.6 if it can be shown that

no such homogeneous solutions exist. For this purpose, it is sufficient that the jump

matrix v
F̂
(ζ) should have a certain symmetry with respect to Schwartz reflection through
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the real axis in the ζ-plane. For the orientation of Σ0 described above, the required

relation is

v
F̂

(
ζ∗
)−1
= v

F̂
(ζ)† (7.57)

for ζ ∈ Σ0 ∩ C+. It is easily checked, using the symmetry v
F̂
(ζ∗) = σ2vF̂

(ζ)∗σ2 and struc-

tural details of v
F̂
(ζ) in the upper half-plane, that this relation holds, and this means

that Riemann-Hilbert Problem 7.6 has a unique solution F̂(ζ).

The third step is to establish that the unique solution F̂(ζ) decays to the iden-

tity for large ζ like 1/ζ. The Hölder theory that we have been using generally provides a

solution F̂(ζ)under these circumstances that takes boundary values onΣ0 that areHölder

continuous with exponent µ and that differs from the identity matrix by O(1/ζµ) as

ζ → ∞, for all µ strictly less than 1. This fact can be traced to the compact embedding

of each Hölder space into all Hölder spaces with strictly smaller exponents. The com-

pactness is needed to establish the Fredholm property of the Riemann-Hilbert problem.

So to obtain the required decay, we need an additional argument. The condition that is

required to obtain theO(1/ζ) decay is that a signed sum of themean values of ζ·(v
F̂
(ζ)−I)

taken as ζ → ∞ along each ray of Σ0 (the signs are related to the orientation of the

individual rays) is zero [8]. Now along each ray of Σ0 except for �CM and its conjugate

(i.e., the imaginary axis in the ζ-plane), v
F̂
(ζ) decays to the identity exponentially fast

as ζ → ∞. So these rays do not contribute to the sum and it is only necessary to check

the imaginary axis. When ζ ∈ �CM,

ζ · (v
F̂
(ζ) − I

)
=

i

12

[
−1 ie−πζ

ieπζ 1

]
+O

(
1

ζ

)
, (7.58)

as ζ → ∞, and for ζ on the negative imaginary axis oriented upwards,

ζ · (v
F̂
(ζ) − I

)
=

i

12

[
−1 −ieπζ

−ie−πζ 1

]
+O

(
1

ζ

)
, (7.59)

as ζ → ∞. The limits of these quantities do not exist as ζ → ∞ due to the oscillations

on the off-diagonal. But the mean values exist and are equal, and it turns out that they

enter the sum with opposite signs due to the orientation of the contour rays. Thus, the

required sum of signed mean values indeed vanishes. This, along with the analyticity

of the jump matrix v
F̂
(ζ) along each ray of Σ0 establishes that F̂(ζ) − I = O(1/ζ) as

ζ → ∞.
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Finally, we check that det(F̂(ζ)) = 1. Taking determinants in the jump relations

we see that on all rays of the contour, det(F̂+(ζ)) = det(F̂−(ζ)). Since the boundary val-

ues taken by F̂(ζ) on Σ0 are continuous, we discover that det(F̂(ζ)) is an entire function.

Since this function tends to one at infinity, it follows from Liouville’s theorem that

det(F̂(ζ)) ≡ 1. This completes the proof of the proposition. �

7.1.3 The local model forN(λ) near λ = 0. From (7.46) and (7.47) we can express N(λ)

in terms of F(λ) for |λ| ≤ h̄αN. For �(λ) < 0, we have

N(λ) = Õ(λ)
(
iσ1
)
σ
(1−J)/2
1 eiθ(0)σ3/(2h̄N)

× F(λ)e−iθ(0)σ3/(2h̄N) σ
(1−J)/2
1

(
− iσ1

)
Õ(λ)−1N̂out(λ)

(7.60)

and for �(λ) > 0, we have

N(λ) = Õ(λ)σ
(1−J)/2
1 eiθ(0)σ3/(2h̄N) F(λ)e−iθ(0)σ3/(2h̄N) σ

(1−J)/2
1 Õ(λ)−1N̂out(λ).

(7.61)

To obtain a local model forN(λ) near the origin, we simply replace F(λ) in these formulae

by the approximation F̂(ϕ0(λ)). With |λ| ≤ h̄αN, we set for �(λ) < 0,

N̂origin(λ) : = Õ(λ)
(
iσ1
)
σ
(1−J)/2
1 eiθ(0)σ3/(2h̄N)

× F̂
(
ϕ0(λ)

)
e−iθ(0)σ3/(2h̄N) σ

(1−J)/2
1

(
− iσ1

)
Õ(λ)−1N̂out(λ)

(7.62)

and for �(λ) > 0, we set

N̂origin(λ) : = Õ(λ)σ
(1−J)/2
1 eiθ(0)σ3/(2h̄N)

× F̂
(
ϕ0(λ)

)
e−iθ(0)σ3/(2h̄N) σ

(1−J)/2
1 Õ(λ)−1N̂out(λ).

(7.63)

Themost important properties of thismatrix function are easily seen to be the following.

Proposition 7.8. The matrix N̂origin(λ) is a piecewise analytic function of λ in the disk

|λ| < h̄αN, with jumps only on the locally straight-line contours CL, CR, LL, LR, and CM,

and their conjugates in the lower half-disk. The jump relations satisfied by N̂origin(λ) on

these contours are the following:
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N̂origin,−(λ)
−1N̂origin,+(λ)

= σ
(1−J)/2
1

 1 0

ieiθ(0)/h̄N e(2i+π)ζ (−iζ)−iζ(iζ)−iζ
Γ(1/2+ iζ)

Γ(1/2− iζ)
1

σ(1−J)/21 , λ ∈ CL,

N̂origin,−(λ)
−1N̂origin,+(λ)

= σ
(1−J)/2
1

 1 0

ie−iθ(0)/h̄N e(2i−π)ζ (−iζ)−iζ(iζ)−iζ
Γ(1/2+ iζ)

Γ(1/2− iζ)
1

σ(1−J)/21 , λ ∈ CR,

N̂origin,−(λ)
−1N̂origin,+(λ)

= σ
(1−J)/2
1

[
1 i(e−iθ(λ)/h̄N − eπζe−iθ(0)/h̄N )

0 1

]
σ
(1−J)/2
1 , λ ∈ LL,

N̂origin,−(λ)
−1N̂origin,+(λ)

= σ
(1−J)/2
1

[
1 i(eiθ(λ)/h̄N − e−πζeiθ(0)/h̄N )

0 1

]
σ
(1−J)/2
1 , λ ∈ LR,

N̂origin,−(λ)
−1N̂origin,+(λ) = σ

(1−J)/2
1 v(λ)σ

(1−J)/2
1 , λ ∈ CM,

(7.64)

where

v11 := eiθ(λ)/h̄N

(
1+

(
1− e−πζ−i(θ(λ)−θ(0))/h̄N

)
Z
)
,

v12 := iZ
(
eπζ+i(θ(λ)−θ(0))/h̄N + e−πζ−i(θ(λ)−θ(0))/h̄N − 2

)
,

v21 := i+ iZ,

v22 := e−iθ(λ)/h̄N

(
1+

(
1− eπζ+i(θ(λ)−θ(0))/h̄N

)
Z
)
,

(7.65)

with

Z :=
2πe2iζ(−iζ)−2iζ

Γ

(
1

2
− iζ

)2 − 1, (7.66)

and where ζ = ϕ0(λ). The jumps on the corresponding contours in the lower half-plane

are obtained from the symmetry N̂origin(λ
∗) = σ2N̂origin(λ)

∗σ2. The matrix N̂origin(λ)

is uniformly bounded for |λ| < h̄αN, with a bound that is independent of h̄N. Also,

det(N̂origin(λ)) ≡ 1 and when |λ| = h̄αN,

N̂origin(λ)N̂out(λ)
−1 = I+O

(
h̄1−αN

)
. (7.67)

�
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7.2 Local analysis near λ = iA

7.2.1 Local behavior of aL(λ), aR(λ), and aM(λ). As before, we suppose that ε and δ are

small scales satisfying h̄N � δ � ε � 1 as h̄N tends to zero. We redefine the integer L

so that exactly the first L of the numbers λ0, . . . , λN−1 lie on the positive imaginary axis

above i(A−ε). We will suppose that �(λ) ≤ A, and |λ−iA| ≤ δ and we will deduce asymp-

totic formulae for T(λ) given by (5.3) valid for such λ, and for S(λ) given by (5.2) when

λ is also bounded outside of some downward-opening sector with vertex at iA, in the

semiclassical limit h̄N → 0. First,we establish a result that is the analogue of Lemma 7.1.

Lemma 7.9. When �(λ) ≤ A and |λ − iA| ≤ δ and with L defined as indicated in the

preceding paragraph,

exp

(
−

N−1∑
k=L

Ĩk(λ)

)
= 1+O

(
h̄N

ε

)
. (7.68)

�

Proof. We again estimate Ĩk(λ) using the integral formula (7.2) with integrand g(λ, ξ)

given by (7.3). Given our conditions on λ, for mk − h̄N/2 ≤ ξ ≤ mk + h̄N/2 and k ≥ L

we have

1

|λ+ e(ξ)|
≤ 1

|λ− e(ξ)|
≤ 1

|i(A− δ) − e(ξ)|
≤ 1∣∣∣∣i(A− δ) − e

(
mk +

h̄N

2

)∣∣∣∣
= O

 1∣∣∣m(iA− iδ) −mk −
h̄N

2

∣∣∣
 .

(7.69)

For all such ξ we therefore have the estimate

g(λ, ξ) = O

 1∣∣∣∣m(iA− iδ) −mk −
h̄N

2

∣∣∣∣
 . (7.70)

Summing over k gives

N−1∑
k=L

Ĩk(λ) = O

h̄2N

N−1∑
k=L

1∣∣∣∣m(iA− iδ) −mk −
h̄N

2

∣∣∣∣2


= O

(
h̄N

∫m(iA−ε)
0

dm

(m(iA− iδ) −m)2

) (7.71)

which is O(h̄N/ε) because δ � ε, and the lemma is proved. �
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As was the case when λ was near the origin, only certain terms are important

when λ− iA is small, as a direct consequence of Lemma 7.9 and the fact that exp(−Ĩk(λ))

is analytic for such λ when k ≥ L. The important terms when |λ− iA| ≤ δ are

S
(iA)
1 (λ) :=

(
L−1∏
k=0

λ− λ∗k
λ− λk

)
exp

(
1

h̄N

∫M
mL+h̄N/2

(
L0e(m) (λ) − L0−e(m) (λ)

)
dm

)
,

T
(iA)
1 (λ) :=

(
L−1∏
k=0

λ− λ∗k
λ− λk

)
exp

(
1

h̄N

∫M
mL+h̄N/2

(
L
0

e(m) (λ) − L
0

−e(m) (λ)
)
dm

)

× 2 cos

(
θ0(λ)

h̄N

)
.

(7.72)

Lemma 7.9 states that S(λ) = S
(iA)
1 (λ)(1+O(h̄N/ε)) and T(λ) = T

(iA)
1 (λ)(1+O(h̄N/ε)) as

h̄N → 0 for |λ− iA| ≤ δ.

The analogue of Lemma 7.2 says that for λ − iA small the sequence of numbers

λ0, . . . , λL−1 contributing to S(λ) and T(λ) can be replaced essentially by a “straightened-

out” sequence with uniform density.

Lemma 7.10. Let λ̃k for k = 0, 1, 2, . . . be the sequence of numbers defined by the relation

λ̃k := iA+
h̄N

ρ0(iA)

(
k+

1

2

)
, (7.73)

which results from expanding the Bohr-Sommerfeld relation (2.9) for λk near iA and

keeping only the dominant terms. Define

S
(iA)
2 (λ) :=

(
L−1∏
k=0

λ− λ̃∗k
λ− λ̃k

)

× exp

(
1

h̄N

∫M
mL+h̄N/2

(
L0iA+e ′(M)(m−M) (λ) − L0−iA−e ′(M)(m−M) (λ)

)
dm

)
,

T
(iA)
2 (λ) :=

(
L−1∏
k=0

λ− λ̃∗k
λ− λ̃k

)

× exp

(
1

h̄N

∫M
mL+h̄N/2

(
L
0

iA+e ′(M)(m−M) (λ) − L
0

−iA−e ′(M)(m−M) (λ)
)
dm

)

× 2 cos

(
πρ0(iA)

h̄N
(iA− λ)

)
.

(7.74)
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Then, for �(λ) ≤ A and |λ− iA| ≤ δ,

T
(iA)
1 (λ) = T

(iA)
2 (λ)

(
1+O

(
ε2

h̄N
log

(
ε

h̄N

)))
, (7.75)

where we suppose that the scale ε is further constrained so that the relative error is

asymptotically small. If λ is additionally bounded outside of some downward opening

sector with vertex at iA, then

S
(iA)
1 (λ) = S

(iA)
2 (λ)

(
1+O

(
ε2

h̄N

))
. (7.76)

�

Proof. The proof of this lemma follows that of Lemma 7.2 almost exactly and will not

be repeated here. The only difference is that the square in that proof should be replaced

here by the rectangle whose top side is �(λ) = A and −ε ≤ �(λ) ≤ ε and whose bottom

is �(λ) = −i(λ̃L−1 + λ̃L)/2. �

Without any approximation, S(iA)2 (λ) and T
(iA)
2 (λ) can be rewritten in a more

transparent form by expressing the products in terms of gamma functions and evaluat-

ing the logarithmic integrals exactly. Introduce a local variable ζ in terms of a transfor-

mation ϕiA given by the relation

ζ = ϕiA(λ) := ρ0(iA)
λ− iA

ih̄N
, (7.77)

and let B be the positive constant

B := −
2iAρ0(iA)

h̄N
. (7.78)

In terms of these quantities, one finds that S(iA)2 (λ) and T
(iA)
2 (λ) take a simple form

S
(iA)
2 (λ) = (−iζ)iζΓ

(
1

2
− iζ

)
· V(ζ, B, L) ·W(ζ, B, L),

T
(iA)
2 (λ) =

2π(iζ)iζ

Γ

(
1

2
+ iζ

) · V(ζ, B, L) ·W(ζ, B, L), (7.79)
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where

V(ζ, B, L) :=

Γ

(
B− iζ+

1

2

)
Γ

(
B− L− iζ+

1

2

)
Γ

(
L− iζ+

1

2

) ,

W(ζ, B, L) :=
(B− L− iζ)B−L−iζ(L− iζ)L−iζ

(B− iζ)B−iζ
.

(7.80)

Now, B � L � |ζ| because B is proportional to h̄−1N and L is of the order of ε/h̄ while

|ζ| = O(δ/h̄N). So again we can use Stirling’s formula to extract the dominant asymptotic

contributions to S
(iA)
2 (λ) and T

(iA)
2 (λ) as h̄N tends to zero.

Lemma 7.11. As h̄N tends to zero through positive values,

S
(iA)
2 (λ) =

1√
2π

e−iζ(−iζ)−iζΓ

(
1

2
− iζ

)
·
(
1+O

(
δ2

εh̄N

))
,

T
(iA)
2 (λ) =

√
2πe−iζ(iζ)iζ

Γ

(
1

2
+ iζ

) ·
(
1+O

(
δ2

εh̄N

))
.

(7.81)

�

Proof. Using Stirling’s formula, one expands V(ζ, B, L) to find

V(ζ, B, L) =
e1/2−iζ√

2π

(
B− iζ+

1

2

)B−iζ
(
B− L− iζ+

1

2

)B−L−iζ(
L− iζ+

1

2

)L−iζ(1+O

(
h̄N

ε

))
.

(7.82)

The error here is dominated by the fact that L ∼ ε/h̄N is the smallest large number

involved. Now we expand the powers that remain in conjunction with those inW(ζ, B, L)

to find

V(ζ, B, L)W(ζ, B, L) =
e−iζ√
2π

(
1+O

(
h̄N

ε

))(
1+O

(
δ2

εh̄N

))
. (7.83)

Since δ � h̄N, the relative error is dominated by O(δ2/εh̄N). Using this expression for

the product VW in (7.79), the lemma is proved. �

In exactly the same way as in our study of the local behavior near the origin, we

may combine Lemmas 7.9, 7.10, and 7.11 and choose the “internal” scale ε in terms of δ

and h̄N to obtain asymptotics for S(λ) and T(λ) with optimized relative error.
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Proposition 7.12. Let �(λ) ≤ A, with |λ − iA| ≤ h̄αN, where 3/4 < α < 1, and let λ be

bounded outside some fixed symmetrical sector with vertex at iA and opening down-

ward. Then

S(λ) =
1√
2π

e−iζ(−iζ)−iζΓ

(
1

2
− iζ

)(
1+O

(
h̄
4α/3−1
N

))
, (7.84)

where ζ = ϕiA(λ). �

Proposition 7.13. Let �(λ) ≤ A, with |λ− iA| ≤ h̄αN, where 3/4 < α < 1. Then for all ν > 0,

however small,

T(λ) =

√
2πe−iζ(iζ)iζ

Γ

(
1

2
+ iζ

) (
1+O

(
h̄
4α/3−1−ν
N

))
, (7.85)

where ζ = ϕiA(λ). �

7.2.2 Why a local model near λ = iA is not necessary. In particular, it follows from

these considerations that both S(λ) and T(λ) are uniformly bounded functions on their

respective contours in any fixed neighborhood U of λ = iA. We claim that the quotient

of the jump matrices for N(λ) and N̂out(λ) is uniformly close to the identity matrix in U

as h̄N → 0. Since N̂out(λ) is, by definition, analytic throughout U, it suffices to show that

the jump matrix vN(λ) := N−(λ)
−1N+(λ) is uniformly close to the identity in U. This will

be the case if aL(λ), aR(λ), and aM(λ) are uniformly small on their respective contours.

Now for λ ∈ CM,

aM(λ) = i exp

(
φ̃(λ)

h̄N

)
T(λ), (7.86)

so, with φ̃(λ) being real and strictly negative for λ ∈ CM∩U according to Proposition 6.2

and T(λ) being bounded, we see that aM(λ) is in fact exponentially small as h̄N tends to

zero through positive values. Similarly, for λ ∈ CL,

aL(λ) = i exp

(
τ(λ) − iθ0(λ)

h̄N

)
S(λ) = i exp

(
φ̃(λ) − 2iθ0(λ)

h̄N

)
S(λ), (7.87)

where we have used (6.12) and the fact that θ(λ) ≡ 0 on CM above λ = iA(x). Since

θ0(iA) = 0, it is possible to choose the neighborhood U small enough (independent

of h̄N) so that �(φ̃(λ)− 2iθ0(λ)) < 0 throughout U. Since S(λ) is bounded, it then follows

that for λ ∈ CL ∩ U, aL(λ) is exponentially small as h̄N tends to zero through positive
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values. Virtually the same argument using (6.13) in place of (6.12) shows that aR(λ) is

also exponentially small for λ ∈ CR ∩U (it may be necessary to make U slightly smaller

to have �(φ̃(λ) + 2iθ0(λ)) < 0 throughout U). It follows that vN(λ) − I is exponentially

small uniformly for the contours within U.

For this reason we expect that the outer model N̂out(λ) will be a good approxi-

mation to N(λ) near λ = iA even though S(λ) − 1 and T(λ) − 1 are not small. We do not

need to construct a special-purpose local model for N(λ) in this case.

7.3 Local analysis near λ = iA(x)

7.3.1 A model Riemann-Hilbert problem and its explicit solution in terms of classical

special functions. Let D be a circular disk centered at λ = iA of sufficiently small

radius (independent of h̄N) that 0 �∈ D and iA �∈ D, and that LL and LR each have exactly

one intersection with ∂D (of course CM will have two intersection points with ∂D).

This situation is possible as long as x �= 0. The case of x = 0 is a degenerate case that

we will not treat in detail here.

Since x �= 0 and therefore A(x) < A, it follows from the definition (6.1) of ρ(η)

that as λ tends to iA(x) along I, θ(λ) vanishes like (λ− iA(x))3/2, and not to higher order.

Since θ(λ) may be extended from I to be an analytic function in D except for a branch

cut along the part of CM in D lying above the center, and since ρ(λ) extended to this cut

domain from I is nonzero, it is easy to see that the function

ϕiA(x) (λ) :=

(
θ(λ)

h̄N

)2/3
(7.88)

defines an invertible conformal mapping of all of D to its image. Consider the local

variable ζ defined by the relation ζ = ϕiA(x) (λ). The image of D in the ζ-plane is a

neighborhood of ζ = 0 that scales with h̄N such that it contains the disk centered at

ζ = 0with radius Ch̄
−2/3
N for some constant C > 0. The transformation (7.88) maps I∩D

to a ray segment of the positive real ζ-axis, and takes the portion of CM inD lying above

λ = iA(x) to a ray segment of the negative real ζ-axis. We suppose that the contours

LL and LR have been chosen so that ϕiA(x) (LL ∩ D) and ϕiA(x) (LR ∩ D) are straight ray

segments with angles −π/3 and π/3, respectively.

For ζ ∈ ϕiA(x) (D), the matrix S(ζ) := σ
(1−J)/2
1 O(ϕ−1iA(x) (ζ))σ

(1−J)/2
1 satisfies the

following jump relations:

S+(ζ) = S−(ζ)

[
0 i

i 0

]
(7.89)
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for ζ ∈ R+ ∩ϕiA(x) (D), oriented from right to left,

S+(ζ) = S−(ζ)

[
1 −ie−iζ

3/2

0 1

]
(7.90)

on the part of the ray arg(ζ) = −π/3 in ϕiA(x) (D), oriented toward the origin,

S+(ζ) = S−(ζ)

[
1 −ieiζ

3/2

0 1

]
(7.91)

on the part of the ray arg(ζ) = π/3 in ϕiA(x) (D), oriented toward the origin, and finally

S+(ζ) = S−(ζ)

[
1 0

ie−(−ζ)
3/2

1

]
(7.92)

for ζ ∈ R− ∩ ϕiA(x) (D), oriented from right to left. The jump relation on the negative

real ζ-axis follows from the formula (5.32) which applies because O(λ) = Ñ(λ) here.

In (5.32) one uses the fact that θ(λ) ≡ 0 for λ ∈ CM above iA(x), and the relation (6.9)

giving φ̃(λ) above iA(x) in terms of the analytic continuation of θ(λ) from I, which one

writes in terms of the local coordinate ζ.

As ζ → ∞ on all of the rays except for R+, the jump matrix for S(ζ) decays expo-

nentially to the identity matrix. These jump conditions were precisely the ones that were

neglected in obtaining the outer model. That is, the matrix S̃(ζ) := σ
(1−J)/2
1 Õ(ϕ−1iA(x) (ζ))

σ
(1−J)/2
1 defined for ζ ∈ ϕiA(x) (D) is analytic except on the positive real ζ-axis, where

it satisfies

S̃+(ζ) = S̃−(ζ)

[
0 i

i 0

]
. (7.93)

It follows that the matrix S̃(ζ) can be decomposed into a product of a holomorphic

prefactor depending on h̄N and a universal (i.e., independent of h̄N) local factor that

takes care of the jump. We therefore may write

S̃(ζ) = S̃hol(ζ)S̃loc(ζ), (7.94)

where S̃hol(ζ) is holomorphic in ϕiA(x) (D) and where
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arg(ζ) = π arg(ζ) = 0

arg(ζ) = −π/3

arg(ζ) = π/3

ζ(D)

Figure 7.1 The contour ΣiA(x) in the ζ-plane for Riemann-Hilbert Problem 7.14.

The boundary of the image ϕiA(x) (D), expanding as h̄N → 0, is shown as a dashed

curve.

S̃loc(ζ) :=
1√
2
(−ζ)σ3/4

[
1 1

−1 1

]
=

1√
2

[
(−ζ)1/4 (−ζ)1/4

−(−ζ)−1/4 (−ζ)−1/4

]
. (7.95)

Note that S̃hol(ζ) has determinant one. Its matrix elements are of size O(h̄
−1/6
N ) for ζ ∈

ϕiA(x) (D). It is easy to write down an explicit formula for S̃hol(ζ) because both S̃(ζ) and

S̃loc(ζ) are known.

We will now approximate S(ζ) by

Ŝ(ζ) := S̃hol(ζ)Sloc(ζ), (7.96)

where Sloc(ζ) is the solution of the following Riemann-Hilbert problem. Let ΣiA(x) be the

contour shown in Figure 7.1.

Riemann-Hilbert Problem 7.14 (local problem near λ = iA(x)). Find a matrix Sloc(ζ)

with the following properties:

(1) Analyticity: Sloc(ζ) is analytic for ζ ∈ C \ ΣiA(x) .

(2) Boundary behavior: Sloc(ζ) assumes continuous boundary values on ΣiA(x) .
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(3) Jump conditions: the boundary values taken on ΣiA(x) satisfy

Sloc
+ (ζ) = Sloc

− (ζ)

[
0 i

i 0

]
, for arg(ζ) = 0,

Sloc
+ (ζ) = Sloc

− (ζ)

[
1 −ie−iζ

3/2

0 1

]
, for arg(ζ) = −

π

3
,

Sloc
+ (ζ) = Sloc

− (ζ)

[
1 −ieiζ

3/2

0 1

]
, for arg(ζ) =

π

3
,

Sloc
+ (ζ) = Sloc

− (ζ)

[
1 0

ie−(−ζ)
3/2

1

]
, for arg(ζ) = π.

(7.97)

(4) Normalization: Sloc(ζ) is normalized at infinity so that

Sloc(ζ)S̃loc(ζ)−1 −→ I as ζ −→ ∞. (7.98)

We will describe how Riemann-Hilbert Problem 7.14 can be solved explicitly.

First, we make an explicit change of variable to a new matrix T (ζ) by setting

Sloc(ζ) = T (ζ)

[
e−(−ζ)

3/2/2+iπ/4 0

0 e(−ζ)
3/2/2−iπ/4

]
. (7.99)

If Sloc(ζ) satisfies Riemann-Hilbert Problem 7.14, then it follows that T (ζ) obeys the

following jump relations:

T+(ζ) = T−(ζ)

[
0 −1

1 0

]
, for arg(ζ) = 0,

T+(ζ) = T−(ζ)

[
1 1

0 1

]
, for arg(ζ) = ±π

3
,

T+(ζ) = T−(ζ)

[
1 0

1 1

]
, for arg(ζ) = π.

(7.100)

It is a general fact that N × N matrix functions that satisfy piecewise constant jump

conditions, like the matrix T (ζ) does, can be expressed in terms of solutions ofNth order

linear differential equations with meromorphic (and often rational, or even polynomial)

coefficients. In the 2 × 2 case, classical special functions therefore play a key role. In

this case, we see immediately from the fact that the boundary values taken by Sloc(ζ) on
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ΣiA(x) are continuous that the matrix

Q(ζ) :=
dT

dζ
(ζ)T (ζ)−1

=
dSloc

dζ
(ζ)Sloc(ζ)−1 −

3

4
(−ζ)1/2Sloc(ζ)

[
1 0

0 −1

]
Sloc(ζ)−1

(7.101)

is analytic for ζ ∈ C
∗. If we suppose that T (ζ) has a bounded derivative near the origin

in each sector of C \ ΣiA(x)—a hypothesis that must be verified later—then we see that

in fact Q(ζ) is analytic at the origin and is consequently an entire function of ζ.

To work out how Q(ζ) behaves for large ζ, we need to use the normalization

condition (7.98) for Sloc(ζ). We interpret (7.98) to mean both that

Sloc(ζ) =

(
I+O

(
1

ζ

))
S̃loc(ζ) (7.102)

and also that

dSloc

dζ
(ζ) =

(
I+O

(
1

ζ

))
dS̃loc

dζ
(ζ) +O

(
1

ζ2

)
S̃loc(ζ). (7.103)

Both (7.102) and (7.103) are again hypotheses that must be verified once we obtain a

solution for Sloc(ζ). They are not true a priori by virtue of (7.98) alone; for example the

decay rate in (7.98) might not be as fast as 1/ζ, and the error term might have rapid

oscillations that would make its derivative larger than 1/ζ2 thus violating (7.103). It

follows from our hypotheses that Q(ζ) must be a polynomial; in fact,

Q(ζ) =
3

4

[
0 −ζ

1 0

]
. (7.104)

With the matrix Q(ζ) explicitly known, we find that the matrix T (ζ) solves the

linear differential equation

dT

dζ
(ζ) =

3

4

[
0 −ζ

1 0

]
T (ζ). (7.105)

Upon introducing the new independent variable

ξ := −

(
3

4

)2/3
ζ (7.106)
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we see that the elements of the second row of T satisfy Airy’s equation

d2T2k

dξ2
= ξT2k, (7.107)

and that the elements of the first row are given by

T1k = −

(
4

3

)1/3
dT2k

dξ
. (7.108)

So which solutions of Airy’s equation are the appropriate ones for our purposes?

The first observation is that we need to specify different solutions of Airy’s equation in

each simply-connected region of the complex plane where T21(ξ) and T22(ξ) are analytic.

The assignment of solutions in these regionsmust be consistentwith the jumpconditions

and asymptotics for T (ζ). From the jump conditions for T (ζ), we can see that in fact T21(ξ)

is analytic inC\R, while T22(ξ) is analytic exceptwhen arg(ξ) = ±2π/3 or ξ ∈ R−.We now

want to use the normalization condition (7.102) to find sectors in which T21 and T22 are

exponentially decaying. Then we will be able to uniquely identify these functions with

particular solutions of Airy’s equation that also decay. From the presumed asymptotic

relation (7.102) we have (in terms of the variable ξ),

T21(ξ) = −

(
3

32

)1/6
e−iπ/4

e2ξ
3/2/3

ξ1/4

(
1+O

(
1

ξ1/2

))
,

T22(ξ) =

(
3

32

)1/6
eiπ/4

e−2ξ
3/2/3

ξ1/4

(
1+O

(
1

ξ1/2

))
,

(7.109)

as ξ → ∞ with −π < arg(ξ) < π. These show that T21(ξ) is exponentially decaying for

−π < arg(ξ) < −π/3 and also for π/3 < arg(ξ) < π, while T22(ξ) is exponentially decaying

for −π/3 < arg(ξ) < π/3. Significantly, both matrix elements are analytic throughout

the sectors where they are exponentially decaying for large ξ. As a basis of linearly

independent solutions of Airy’s equation we take the functions Ai(ξ) and Ai(ξe2iπ/3).

These decay in different sectors, and have the asymptotic expansions

Ai(ξ) =
1

2
√
π

e−2ξ
3/2/3

ξ1/4

(
1+O

(
1

ξ

))
(7.110)

as ξ → ∞ for −π < arg(ξ) < π, and

Ai
(
ξe2iπ/3

)
=

e−iπ/6

2
√
π

e2ξ
3/2/3

ξ1/4

(
1+O

(
1

ξ

))
(7.111)
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as ξ → ∞ for −π < arg(ξ) < −π/3. Comparing the expansion of Ai(ξe2iπ/3) with that of

T21(ξ) in the sector −π < arg(ξ) < −π/3, we find that here

T21(ξ) = −e
−iπ/1261/6

√
πAi

(
ξe2iπ/3

)
. (7.112)

Since T21 is analytic in the lower half ξ-plane, this relation holds identically for �(ξ) < 0.

Similarly, comparing the expansion of Ai(ξ) with that of T22(ξ) in the sector −π/3 <

arg(ξ) < π/3, we find that here

T22(ξ) = eiπ/461/6
√
πAi(ξ). (7.113)

Being as T22 is analytic for −2π/3 < arg(ξ) < 2π/3, this identity holds throughout the

sector of analyticity.

Restoring the original independent variable ζ, we find that for �(ζ) > 0,

T21(ζ) = −e
−iπ/1261/6

√
πAi

((
3

4

)2/3
ζe−iπ/3

)
(7.114)

and therefore throughout the same domain,

T11(ζ) = eiπ/12
(
32

3

)1/6√
πAi ′

((
3

4

)2/3
ζe−iπ/3

)
. (7.115)

For ζ with π/3 < arg(ζ) ≤ π or −π ≤ arg(ζ) < −π/3,

T22(ζ) = eiπ/461/6
√
πAi

(
−

(
3

4

)2/3
ζ

)
, (7.116)

and therefore throughout the same domain,

T12(ζ) = e3iπ/4
(
32

3

)1/6√
πAi ′

(
−

(
3

4

)2/3
ζ

)
. (7.117)

The sector of C \ ΣiA(x) that is contained in both of these domains is π/3 < arg(ζ) < π.

It is sufficient to have specified the matrix elements of T (ζ) in this sector, since it may

be consistently obtained in the remaining sectors of C\ΣiA(x) by making use of the jump

relations for T (ζ). The procedure is consistent because the cyclic product of these jump

matrices is the identity

[
1 0

1 1

][
1 1

0 1

]−1 [
0 −1

1 0

]−1 [
1 1

0 1

]−1
= I. (7.118)
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Once T (ζ) is known for ζ ∈ C \ ΣiA(x) , the original unknown matrix Sloc(ζ) solving

Riemann-Hilbert Problem 7.14 is obtained directly by the transformation (7.99). It suf-

fices to give a formula that holds for π/3 < arg(ζ) < π. We find

Sloc11 (ζ) = eiπ/3
(
32

3

)1/6√
πe−(−ζ)

3/2/2 Ai ′
((

3

4

)2/3
ζe−iπ/3

)
,

Sloc12 (ζ) = i

(
32

3

)1/6√
πe(−ζ)

3/2/2 Ai ′
(
−

(
3

4

)2/3
ζ

)
,

Sloc21 (ζ) = e−5iπ/661/6
√
πe−(−ζ)

3/2/2 Ai

((
3

4

)2/3
ζe−iπ/3

)
,

Sloc22 (ζ) = 61/6
√
πe(−ζ)

3/2/2 Ai

(
−

(
3

4

)2/3
ζ

)
.

(7.119)

We would have found a solution to Riemann-Hilbert Problem 7.14 if we can ver-

ify the two hypotheses (cf. equations (7.102) and (7.103)) we made regarding the in-

terpretation of the normalization condition (7.98) and the differentiability of Sloc(ζ) at

ζ = 0. One verifies these directly, using the explicit formulae given here.

7.3.2 The local model forN(λ) near λ = iA(x). To build a better model for N(λ) in the

disk D than N̂out(λ), we begin by recalling the exact relationship between the matrix

O(λ) and the matrix S(λ):

O(λ) = σ
(1−J)/2
1 S

(
ϕiA(x) (λ)

)
σ
(1−J)/2
1 (7.120)

for all λ ∈ D. The matrix Ñ(λ) is also explicitly related to O(λ). For λ ∈ D in the part of

the lens between the contours LL and CM,

Ñ(λ) = O(λ)σ
(1−J)/2
1

1 −i exp

(
−

iθ(λ)

h̄N

)
0 1

σ
(1−J)/2
1 , (7.121)

for λ ∈ D in the part of the lens between the contours CM and LR,

Ñ(λ) = O(λ)σ
(1−J)/2
1

1 iexp

(
iθ(λ)

h̄N

)
0 1

σ
(1−J)/2
1 , (7.122)

and for all other λ ∈ D, we simply have Ñ(λ) = O(λ). As we do not expect the difference

between N(λ) and the formal continuum limit approximation Ñ(λ) to be important in
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the diskD since it is isolated from the points λ = 0 and λ = iA, we can obtain a guess for

an approximation forN(λ) that should be valid inD simply by substituting Ŝ(ϕiA(x) (λ))

for S(ϕiA(x) (λ)) in these formulae.

Putting these steps together, the model for N(λ) for λ ∈ D that we will use is

defined as follows. For λ ∈ D in the lens between LL and CM, set

N̂endpoint(λ) := σ
(1−J)/2
1 Ŝ

(
ϕiA(x) (λ)

)1 −i exp

(
−

iθ(λ)

h̄N

)
0 1

σ
(1−J)/2
1 , (7.123)

for λ ∈ D in the lens between CM and LR, set

N̂endpoint(λ) := σ
(1−J)/2
1 Ŝ

(
ϕiA(x) (λ)

)1 i exp

(
iθ(λ)

h̄N

)
0 1

σ
(1−J)/2
1 , (7.124)

and for all other λ ∈ D, set

N̂endpoint(λ) := σ
(1−J)/2
1 Ŝ

(
ϕiA(x) (λ)

)
σ
(1−J)/2
1 , (7.125)

where Ŝ(ζ) is defined by (7.96). The most important properties of the matrix N̂endpoint(λ)

in the disk D are the following.

Proposition 7.15. The matrix N̂endpoint(λ) is piecewise analytic in the left and right half-

disks of D. On the imaginary axis (which bisects D) oriented in the positive imaginary

direction,

N̂endpoint,−(λ)
−1N̂endpoint,+(λ) = Ñ−(λ)

−1Ñ+(λ), (7.126)

that is, the local model has exactly the same jump as Ñ(λ). For λ ∈ D, the matrix function

N̂endpoint(λ) is bounded by a constant of order h̄
−1/3
N . Also, for λ ∈ ∂D,

N̂endpoint(λ)N̂out(λ)
−1 = I+O

(
h̄
1/3
N

)
. (7.127)

�

Proof. Computing the jumpmatrix for N̂endpoint(λ) is straightforward. To show the bound

on N̂endpoint(λ), we recall that S̃hol(ϕiA(x) (λ)) is bounded by a quantity of order h̄
−1/6
N ,

and note that the other factor of the same size comes from the factor Sloc(ϕiA(x) (λ)) via

the normalization condition on this matrix and the fact that ϕiA(x) (λ) grows like h̄
−2/3
N

for λ ∈ D. Similar reasoning using (7.102) establishes the error in matching onto N̂out(λ)

on the boundary of D. �
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8 The parametrix and its error

We are now in a position to put all of ourmodels together to build a guess for a uniformly

valid approximation of N(λ). Such a guess is called a parametrix.

8.1 Constructing the parametrix

To build the parametrix N̂(λ) as a sectionally holomorphic matrix function, we simply

combine the outer and local models. For all λ satisfying |λ| ≤ h̄αN, where the parameter

α is to be determined later, set

N̂(λ) := N̂origin(λ). (8.1)

For λ ∈ D, we set

N̂(λ) := N̂endpoint(λ), (8.2)

and by symmetry for all λ ∈ D∗ we set

N̂(λ) := σ2N̂endpoint
(
λ∗
)∗
σ2. (8.3)

Finally, for all remaining λ ∈ C, set

N̂(λ) := N̂out(λ). (8.4)

The parametrix N̂(λ) is holomorphic for λ ∈ C \ Σ̂, where Σ̂ is the contour illustrated in

Figure 8.1.

8.2 Estimating the error

To determine the accuracy of the parametrix, we compare it directly with the original

matrix N(λ). That is, we consider the error matrix defined by

E(λ) := N(λ)N̂(λ)−1. (8.5)

This matrix is sectionally analytic in the complex λ-plane, with discontinuities on a

contourΣE that is illustrated in Figure 8.2. Note that as a consequence of the symmetry of

N̂(λ) and N(λ) under complex conjugation, we have E(λ∗) = σ2E(λ)
∗σ2. If the parametrix
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Figure 8.1 The contour Σ̂. The circles at the top and bottom of the figure are the

boundaries of the disks D and D∗, respectively. The circle at the origin has radius

h̄αN . The contours to the left and right of the imaginary axis in the upper half-plane

are portions of the lens boundaries LL and LR , respectively. The remaining small

segments present in the upper half-plane for |λ| < h̄αN are parts of CL and CR .

is indeed a good model for N(λ), then we must be able to show that the matrix E(λ) is

uniformly close to the identity matrix in the whole complex plane.

While we do not know E(λ) explicitly like we know N̂(λ), we know from the

normalization condition of both factors that

E(λ) −→ I as λ −→ ∞. (8.6)

It turns out that we can also calculate explicitly the ratio of boundary values taken by

E(λ) from both sides on each arc of ΣE. That is, we know the jump matrix for E(λ), and

can express it explicitly in terms of N̂(λ) and the jump matrix for N(λ), both of which

are known.3 This means that the matrix E(λ) itself is a solution of a particular Riemann-

Hilbert problem for which we know the data. By solving this Riemann-Hilbert problem,

we will show that indeed E(λ) is uniformly close to the identity matrix.

3Or at least well-understood. We have characterized the parametrix for |λ| ≤ h̄αN in terms of the matrix

function F̂(ζ) for which we have an existence proof and a characterization, but not an explicit formula.
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Figure 8.2 The contour ΣE . We have Σ̂ ⊂ ΣE and the components of ΣE \ Σ̂ are

shown in dashed lines to make a clear comparison with Figure 8.1.

There are two kinds of arcs in the contour ΣE: “matching” arcs of the circles ∂D,

∂D∗, and |λ| = h̄αN where two different components of the parametrix have to match well

onto each other, and the remaining arcs within the disks and outside the disks where

the jump matrix for N̂(λ) should be a good approximation to that of N(λ).

Consider one of the arcs of ΣE oriented in some convenient way, and as usual

let the subscript “+” (resp., “−”) denote a boundary value taken on the arc from its left

(resp., right). We can easily see from the definition (8.5) that for λ on this arc,

E+(λ) = E−(λ)vE(λ) with vE(λ) := N̂−(λ)vN(λ)v̂N̂
(λ)−1N̂−(λ)

−1, (8.7)

where vN(λ) and v
N̂
(λ) denote the jump matrices on the arc for N(λ) and the parametrix

N̂(λ), respectively. If the arc under consideration is a “matching” arc, then the discon-

tinuity in E(λ) is wholly due to the mismatch of components of the parametrix, and the

jump matrix vN(λ) is therefore replaced with the identity matrix in (8.7). It then follows
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that an equivalent formula for vE(λ) on a “matching” arc is the following:

vE(λ) = N̂−(λ)N̂+(λ)
−1, for λ on a “matching” arc of ΣE. (8.8)

In this case, the two boundary values represent different components of the parametrix,

for example N̂out(λ) would play the role of N̂+(λ) and N̂endpoint(λ) would play that of

N̂−(λ) if the “matching” arc under consideration is an arc of ∂D, oriented clockwise.

The key fact that we need now is the following.

Proposition 8.1. The optimal value of the radius parameter α is α = 6/7. For this value

of α, and for all ν > 0 arbitrarily small,

vE(λ) − I = O
(
h̄
1/7−ν
N

)
(8.9)

uniformly for all λ ∈ ΣE. �

Proof. We begin by considering the “matching” arcs. We take the circle ∂D to be oriented

in the clockwise direction. Here we find

vE(λ) = N̂endpoint(λ)N̂out(λ)
−1 = I+O

(
h̄
1/3
N

)
, (8.10)

with the error estimate coming from Proposition 7.15. An estimate of the same form

necessarily holds on the “matching” arcs of ∂D∗ according to the conjugation symmetry

of E(λ). The remaining “matching” arcs lie on the circle |λ| = h̄αN, which again we take to

be oriented in the clockwise direction. Here we find

vE(λ) = N̂origin(λ)N̂out(λ)
−1 = I+O

(
h̄1−αN

)
, (8.11)

with the error estimate coming from Proposition 7.8.

We continue by considering the arcs of ΣE with |λ| < h̄αN. Using the fact recorded

in Proposition 7.8 that N̂origin(λ) has determinant one and is uniformly bounded, we

see from (8.7) that the important quantity to estimate is simply vN(λ)vN̂
(λ)−1 − I, the

difference between the jump matrix ratio and the identity. First, consider the portion of

the contour CL with |λ| < 1. Using Proposition 7.8 and (4.2), we find that here

vN(λ)vN̂
(λ)−1

= σ
(1−J)/2
1

 1 0

aL(λ) − ieiθ(0)/h̄N e(2i+π)ζ (−iζ)−iζ(iζ)−iζ
Γ(1/2+ iζ)

Γ(1/2− iζ)
1

σ
(1−J)/2
1 ,

(8.12)
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where ζ = ϕ0(λ). Using (7.50) and the uniform boundedness of the leading-order term on

the right-hand side of (7.50) for |λ| < h̄αN, we see that the matrix quotient in (8.12) differs

from the identity matrix by an order h̄4α/3−1N amount. Virtually the same argument using

(4.4) and (7.52) in conjunction with Proposition 7.8 establishes that on CR the matrix

quotient vN(λ)vN̂
(λ)−1 differs from the identity by a quantity of order h̄

4α/3−1
N . Next,

consider the contour LL for |λ| < h̄αN. On this contour, there is no jump for N(λ), so

vN(λ) = I in the formula (8.7) for vE(λ). But from the formula for v
N̂
(λ) for λ ∈ LL

given in Proposition 7.8, we see by ordinary Taylor expansion that for |λ| < h̄αN, we have

vE(λ)−I = O(h̄2α−1N ) for λ ∈ LL. Virtually the same argument yields the same estimate for

vE(λ) − I on LR with |λ| < h̄αN. Finally, consider the contour CM (the positive imaginary

axis) with |λ| < h̄αN. Using (4.6) and the jump matrix v
N̂
(λ) for λ ∈ CM recorded in

Proposition 7.8, we find that here

vN(λ)vN̂
(λ)−1

= σ
(1−J)/2
1

[
1+W+Z ieiθ(λ)/h̄N

(
W+ +W−

)
Z

e−iθ(λ)/h̄N
(
aM(λ) − i(1+ Z)

)
1+ i

(
W+ +W−

)
aM(λ)Z+W−Z

]
× σ

(1−J)/2
1 ,

(8.13)

where Z is given in terms of ζ = ϕ0(λ) by (7.66) and where

W± := 1− e±πζ+i(θ(λ)−θ(0))/h̄N . (8.14)

Note that W+ and W− are both of order h̄2α−1N for |λ| < h̄αN by Taylor expansion ar-

guments. Also, Z is uniformly bounded in the disk of radius h̄αN, and e±iθ(λ)/h̄N both

have modulus one for λ ∈ CM in this disk. Also, from (7.54) we get aM(λ) − i(1 + Z) =

O(h̄
4α/3−1−ν
N ) for all ν > 0 since φ̃(λ) ≡ 0 on this part of CM. This error dominates

those arising from Taylor approximation, and thus on CM with |λ| < h̄αN we find that

vN(λ)vN̂
(λ)−1 − I = O(h̄

4α/3−1−ν
N ). The corresponding estimates hold on the correspond-

ing contours in the lower half-disk, by conjugation symmetry. Putting this information

together with the uniform boundedness of N̂origin(λ) and its inverse, we find that for all

λ ∈ ΣE with |λ| < h̄αN,

vE(λ) − I = O
(
h̄
4α/3−1−ν
N

)
, (8.15)

for all ν > 0.

Now we proceed to study the jump matrix vE(λ) inside the disk D centered at

the endpoint λ = iA(x), assuming x �= 0 is fixed so that D is fixed and bounded away



Semiclassical Soliton Ensembles 449

from the origin and from λ = iA. The only contour we need to consider is the imagi-

nary axis. The jump matrix vE(λ) is given by (8.7). This time, the conjugating factors

of N̂endpoint,−(λ) and its inverse are not uniformly bounded in D as h̄N tends to zero.

According to Proposition 7.15 each conjugating matrix contributes an amplifying factor

of h̄−1/3N . Also according to Proposition 7.15, we have that v
N̂
(λ) is the same as the jump

matrix for Ñ(λ). Therefore, using (4.6) and (5.32), we find that

vN(λ)vN̂
(λ)−1 = σ

(1−J)/2
1

[
1 0

e−iθ(λ)/h̄N
(
aM(λ) − ieiφ̃(λ)/h̄N

)
1

]
σ
(1−J)/2
1 . (8.16)

Using Proposition 5.6 and the fact that �(φ̃) ≤ 0 while e−iθ(λ)/h̄N has modulus one on

CM within D, we get that vN(λ)vN̂
(λ)−1 = I+O(h̄1−µN ) for all µ > 0. Combining this with

the bounds on the conjugating factors, we find that within D,

vE(λ) − I = O
(
h̄
1/3−µ
N

)
, (8.17)

for all µ > 0. By conjugation symmetry, the same estimate holds for the jump matrix

vE(λ) when λ ∈ D∗.

Finally, we consider the parts of ΣE outside all of the disks, where we have

set N̂(λ) := N̂out(λ). On all of these parts of ΣE, Proposition 6.5 guarantees that the

conjugating factors N̂out,−(λ) and N̂out,−(λ)
−1 are uniformly bounded as h̄N tends to

zero. So it remains to determine the magnitude of the difference between the quotient

vN(λ)vN̂
(λ)−1 and the identity. First consider the part of CM between the disk at the

origin and the disk D. Using Proposition 6.5 to find v
N̂
(λ) and recalling (4.6), we find

vN(λ)vN̂
(λ)−1 = σ

(1−J)/2
1

[
1 0

e−iθ(λ)/h̄N
(
aM(λ) − i

)
1

]
σ
(1−J)/2
1 . (8.18)

Using Proposition 5.6 and the fact that φ̃(λ) ≡ 0 while e−iθ(λ)/h̄N has modulus one here

then allows us to conclude that vN(λ)vN̂
(λ)−1 = I+O(h̄1−α−µN ) for all µ > 0. Theα appears

because we need the estimate down to the outside boundary of the shrinking disk at the

origin. Next we look at the contours LL and LR. On these contours there is no jump for

N(λ), and we see directly from Proposition 6.5 that vN(λ)vN̂
(λ)−1 − I is exponentially

small as h̄N tends to zero through positive values. The next contour we examine is the

portion of CM lying above the disk D. Here we observe that N̂out(λ) has no jump, and

because we have on this contour the strict inequality �(φ̃(λ)) < 0, the matrix vN(λ) is
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exponentially close to the identity matrix. To see this, note that here

vN(λ) = σ
(1−J)/2
1

[
1 0

aM(λ) 1

]
σ
(1−J)/2
1 (8.19)

because θ(λ) ≡ 0. While the relative error in replacing aM(λ) by ieφ̃(λ)/h̄N is not small

near λ = iA, it is bounded. So the exponential decay afforded by the strict inequality

on the real part of φ̃(λ) is maintained. Virtually the same arguments show that on the

contours CL and CR outside of the disk at the origin, the quotient vN(λ)vN̂
(λ)−1 is again

an exponentially small perturbation of the identity matrix, since on these contours there

is again no jump of the parametrix N̂out(λ). Therefore, for all λ ∈ ΣE outside all disks,

we have

vE(λ) − I = O
(
h̄
1−α−µ
N

)
, (8.20)

for all µ > 0.

We come up with an overall estimate for vE(λ) − I for λ ∈ ΣE by combining the

estimates (8.10), (8.11), (8.15), (8.17), and (8.20), and optimizing the error by choosing

the parameter α. The optimal balance among all α ∈ (3/4, 1) comes from taking α = 6/7,

which gives an overall error estimate of

vE(λ) − I = O
(
h̄
1/7−ν
N

)
(8.21)

uniformly for all λ ∈ ΣE, for all ν > 0. This proves the proposition. �

The following is then a consequence of the L2 theory of Riemann-Hilbert prob-

lems (see the analogous discussion in [8]).

Proposition 8.2. For h̄N sufficiently small, the Riemann-Hilbert problem for E(λ) has a

unique solution. Let R > 0 be sufficiently large so that ΣE is contained in the circle of

radius R centered at the origin. Then uniformly for all λ outside of this circle, and for

all µ > 0 however small, the matrix E(λ) satisfies

E(λ) − I = O
(
h̄
1/7−ν
N

)
(8.22)

with the size of the matrix measured in any matrix norm. �

Proof. Only one thingmust be verified in order to deduce existence and uniqueness from

the general theory: the Cauchy-kernel singular integral operators defined on the contour

ΣE, which depends on h̄N because of the shrinking boundary of the circle at the origin,
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have L2(ΣE) norms that can be bounded uniformly in N. But this fact follows in this

case from the fact that for N sufficiently large, the circle |λ| = h̄αN intersects only radial

straight-line segments (we chose the contours to all be exactly straight lines in some

fixed neighborhood of the origin), so that the portion of ΣE near the origin simply scales

with h̄αN. The uniform bound we need can then be established using the fact that the

Cauchy operators commute with scaling. A similar result was established under more

general conditions in [8]. Once existence and uniqueness have been established, the

estimate of E(λ) follows from an integral representation formula for this matrix

E(λ) = I+
1

2πi

∫
ΣE

(s− λ)−1m(s)
(
vE(s) − I

)
ds (8.23)

in which the matrix function m(λ) for λ ∈ ΣE is an element of L2(ΣE) with a norm that is

bounded independently of h̄N (and in fact converges to the identity matrix in L2(ΣE) as

h̄N tends to zero). �

We are now in a position to prove our main result, which we presented as

Theorem 1.1 in the introduction.

Proof of Theorem 1.1. We have been setting t = 0 all along, so the functionψh̄N

0 (x) given

by (2.11) can be found from the matrix N(λ) by the relation (cf. equation (2.5))

ψh̄N

0 (x) = 2i lim
λ→∞ λN12(λ). (8.24)

Writing N(λ) = E(λ)N̂(λ) = N̂(λ) + (E(λ) − I)N̂(λ), we get

ψh̄N

0 (x) = 2i lim
λ→∞ λN̂12(λ) + 2i lim

λ→∞ λ
(
E11(λ) − 1

)
N̂12(λ)

+ 2i lim
λ→∞ λE12(λ)N̂22(λ).

(8.25)

Now, the first term on the right-hand side of (8.25) can be evaluated explicitly since

near λ = ∞ we have N̂(λ) ≡ N̂out(λ) ≡ Õ(λ), and we have an explicit formula (cf. equa-

tion (6.28)) for Õ(λ). We find

2i lim
λ→∞ λN̂12(λ) = A(x), (8.26)

which is the “true” initial data that we started with, before making any modifications

based on the WKB approximation of the spectral data. When we consider the second

term on the right-hand side of (8.25), we see that as a consequence of the normalization

of the matrices E(λ) and N̂(λ),

E(λ) = I+O

(
1

λ

)
, Ñ(λ) = I+O

(
1

λ

)
, (8.27)
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as λ → ∞. Therefore the second term on the right-hand side of (8.25) vanishes identi-

cally. Finally, for the third term on the right-hand side of (8.25) we can again apply the

normalization condition for N̂(λ) to obtain

2i lim
λ→∞ λE12(λ)N̂22(λ) = 2i lim

λ→∞ λE12(λ). (8.28)

Putting these steps together, we have

ψh̄N

0 (x) −A(x) = 2i lim
λ→∞ λE12(λ). (8.29)

The proof of the theorem is finished upon using the integral formula (8.23) for E(λ) and

Proposition 8.1. �

9 Discussion

Using the new technique of simultaneous interpolation of residues by two different ana-

lytic interpolating functions, combined with “steepest-descent” techniques for matrix-

valued Riemann-Hilbert problems, we have established the validity of the formal WKB

approximation of the spectrum in the nonselfadjoint Zakharov-Shabat eigenvalue prob-

lem (1.2) in the sense of pointwise convergence of the potentials. Strictly speaking, our

analysis applies to certain classes of potential functions whose most important prop-

erty for our purposes is their real analyticity, and then we obtain convergence for all

nonzero values of x.

In order to extend the result of Theorem 1.1 to x = 0, some different steps are

required. Since A(x)→ A as x → 0, the local analysis that we carried out independently

for λ ≈ iA (cf. Section 7.2) and for λ ≈ iA(x) (cf. Section 7.3) will need to be combined.

Consequently, a different local model for N(λ) will need to be constructed near λ =

iA = iA(0). Due to the presence of the gamma functions in the asymptotics established

in Section 7.2 and given in Propositions 7.12 and 7.13, it is likely that the construction

of the local model will require knowledge of the solution of a new Riemann-Hilbert

problem that, like that for the matrix F̂(ζ) in Section 7.1, cannot be solved explicitly.

Nonetheless, one expects that to establish the validity of Theorem 1.1 for x = 0 will

require only technical modifications of what we have done here.

Understanding the nature of the WKB approximation at the level of the poten-

tials is one step in a larger ongoing program to obtain corresponding information at the

level of the (unknown) spectrum itself. Indeed, quantifying the difference between the

true spectrum of a given potential A(x) and the WKB approximation of the spectrum, in
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terms of motion of eigenvalues, will be necessary before it can be proven that the rigor-

ous asymptotic analysis of SSEs is relevant to the problem of semiclassical asymptotics

for the initial-value problem for the focusing nonlinear Schrödinger equation (1.1). One

imagines that a study of the semiclassical limit for (1.1) should proceed by first gen-

erating from the given initial data ψ(x, 0) = A(x) the corresponding well-defined SSE,

and then using the fact that by combining the results of [8] with Theorem 1.1 from this

paper, one has a complete picture of the limiting behavior of the SSE for an open inter-

val of time t that is independent of h̄ and includes t = 0, and moreover that according

to Theorem 1.1 the SSE is pointwise close to the given initial data A(x) for t = 0. The

problem here is that the focusing nonlinear Schrödinger equation is known to havemod-

ulational instabilities whose exponential growth rates become arbitrarily large in the

semiclassical limit. There is, therefore, the very real possibility that while the SSE is

close to the initial data A(x) at t = 0, it is not close to the corresponding solution of

(1.1) for any positive t. In order to control the difference for positive time, it is nec-

essary to know in advance how much the SSE spectral data differs from the true (un-

known) spectral data, as it is the spectral data that is the starting point for analysis

(cf. Riemann-Hilbert Problem 2.1). One can imagine obtaining this sort of information

from the pointwise estimate given in Theorem 1.1 by Rayleigh-Schrödinger perturbation

theory.
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