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1 Introduction

This announcement concerns asymptotic properties of polynomials that are orthogonal

with respect to pure point measures supported on finite sets. Let N ∈ N be fixed, and

consider N distinct real nodes xN,0 < xN,1 < · · · < xN,N−1 to be given; together the

nodes make up the support of the pure point measures we consider. We use the nota-

tion XN := {xN,n}N−1
n=0 for the support set. Along with nodes we are given positive weights

wN,0, wN,1, . . . , wN,N−1, which are the magnitudes of the point masses located at the cor-

responding nodes. The discrete orthogonal polynomials associated with this data are

polynomials {pN,k(z)}N−1
k=0 where pN,k(z) is of degree exactly kwith a positive leading co-

efficient and where

N−1∑
j=0

pN,k

(
xN,j

)
pN,l

(
xN,j

)
wN,j = δkl. (1.1)

If pN,k(z) = c
(k)
N,kz

k + · · · + c(0)
N,k, then we denote by πN,k(z) the associated monic polyno-

mial pN,k(z)/c(k)
N,k. These polynomials exist and are uniquely determined by the orthogo-

nality conditions because the inner product associated with (1.1) is positive definite on
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span(1, z, z2, . . . , zN−1) but is degenerate on larger spaces of polynomials. The polynomi-

als pN,k(z) may be constructed from the monomials by a Gram-Schmidt process. A gen-

eral reference for properties of orthogonal polynomials specific to the discrete case is the

book of Nikiforov, Suslov, and Uvarov [25]. In contrast to the discrete orthogonal polyno-

mials, we refer to the polynomials orthogonal with respect to an absolutely continuous

measure as the continuous orthogonal polynomials.

We use the notation ZN for the set {0, 1, 2, . . . ,N−1}. Examples of classical discrete

weights are (see [1])

(i) Krawtchouk weight: on the nodes xN,j := (j + 1/2)/N for j ∈ ZN in the interval

(0, 1), we define the weight

wKraw
N,j (p, q) :=

NN−1√pq
qNΓ(N)

(
N− 1

j

)
pjqN−1−j. (1.2)

(ii) Hahn weight: on the infinite set of nodes xN,j := (j + 1/2)/N for j = 0, 1, 2, . . . ,

we define the weight

wN,j(b, c, d) :=
NN−1

Γ(N)
· Γ(b)Γ(c+ j)Γ(d+ j)
Γ(j+ 1)Γ(b+ j)Γ(c)Γ(d)

, (1.3)

where b, c, and d are real parameters. Special cases are the following. First, taking d = α

and b = 2−N− β, with α,β > 0, and taking the limit c → 1−N, we obtain the weight

wHahn
N,j (α,β) :=

NN−1

Γ(N)
·

(
j+ α− 1

j

)(
N+ β− 2− j

N− 1− j

)
(
N+ β− 2

β− 1

) , for j ∈ ZN, (1.4)

which is defined on the finite set of nodesXN := (ZN+1/2)/N. Second, taking d = 2−N−β

and b = α, with α,β > 0, and taking the limit c → 1−N, we obtain the weight

wAssoc
N,j (α,β) :=

NN−1

Γ(N)
· Γ(N)Γ(N+ β− 1)Γ(α)
Γ(j+ 1)Γ(α+ j)Γ(N−j)Γ(N+β−1−j)

, for j ∈ ZN, (1.5)

which is again defined on the nodes XN := (ZN + 1/2)/N.

Remark 1.1. In [1], the polynomials orthogonal with respect to the weight (1.3) are called

the Hahn polynomials, and in [5], the same weight (on the whole integers) is called the

Askey-Lesky weight. For the two special cases where the weight is supported on a finite

set of nodes, we now adopt the terminology used by Johansson [18], and thus refer to the
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weight (1.4) simply as the Hahn weight (corresponding to the Hahn polynomials) and we

refer to the weight (1.5) as the associated Hahn weight (corresponding to the associated

Hahn polynomials).

Our goal is to establish the asymptotic behavior of the polynomials pN,k(z) or

their monic counterparts πN,k(z) in the limit of large degree, assuming certain asymp-

totic properties of the nodes and the weights. In particular, the number of nodes must

necessarily increase to admit polynomials with arbitrarily large degree, and the weights

we consider involve an exponential factor with exponent proportional to the number of

nodes (such weights are sometimes called varying weights). We will obtain pointwise

asymptotics with precise error bound uniformly valid in the whole complex plane with

the exception of certain arbitrarily small open discs. Our assumptions on the nodes and

weights include as special cases all relevant classical discrete orthogonal polynomials,

but are significantly more general; in particular, we will consider nodes that are not nec-

essarily equally spaced.

1.1 Motivation and applications

In the context of approximation theory, there has been recent activity [10, 11] in the study

of polynomials orthogonal on the real axis with respect to general continuous varying

weights and the corresponding large degree pointwise asymptotics. One important ap-

plication of the results of [10, 11] is the proof of several universality conjectures of ran-

dom matrix theory. Thus, a natural question to ask is whether it is possible to extend the

results of [10, 11] to handle discrete weights, and obtain similar universality results for

the so-called discrete orthogonal polynomial ensembles (see Section 3.1).

Indeed, it has turned out recently that various problems of percolation models,

random tiling, queueing theory, nonintersecting paths, and representation theory can

be reformulated as asymptotic questions of discrete orthogonal polynomial ensembles

with very concrete weights (see, e.g., [5, 16, 17]). In these ensembles, the weights are all

classical (Meixner, Charlier, Krawtchouk, or Hahn). Using integral formulae for the cor-

responding orthogonal polynomials, the relevant asymptotics have been analyzed except

for the Hahn weight case. The weights handled in this paper include the Hahn weight

(and also Krawtchouk), and hence as a corollary, we obtain new asymptotic results for

the Hahn polynomials. As the discrete orthogonal polynomial ensemble for the Hahn

weight arises in the statistical analysis of random rhombus tilings of a hexagon, our

asymptotic results for Hahn polynomials yield new results on this problem (see Sec-

tion 3.2).
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1.2 Methodology

The method we use is the Riemann-Hilbert characterization of discrete orthogonal poly-

nomials, and an adaption of the Deift-Zhou method for the steepest-descent analysis of

Riemann-Hilbert problems. The Riemann-Hilbert problem for discrete orthogonal poly-

nomials has poles instead of usual jump conditions on a continuous contour, and the

poles are accumulating in the limit of interest to form a continuum.

There has been some recent progress [19, 24] in the integrable systems literature

concerning the problem of computing asymptotics for solutions of integrable nonlin-

ear partial differential equations (e.g., the nonlinear Schrödinger equation) in the limit

where the spectral data associated with the solution via the inverse-scattering transform

is made up of a large number of discrete eigenvalues. Significantly, inverse-scattering

theory also exploits much of the theory of matrix Riemann-Hilbert problems, and it turns

out that the discrete eigenvalues appear as poles in the corresponding matrix-valued un-

known. So, the methods recently developed in the context of inverse-scattering actually

suggest a general scheme by means of which an accumulation of poles in the matrix un-

known can be analyzed.

In this paper, we extend the method of [19, 24] and suggest a general and unifying

approach to handle Riemann-Hilbert problems for the situation when poles are accumu-

lating. Especially, we overcome the following two issues.

(a) How to transform a Riemann-Hilbert problem with pole conditions to a

Riemann-Hilbert problem with an analytic jump condition on a continuous contour so

that a formal continuum limit of poles can be rigorously justified and the Deift-Zhou

method can be applied.

(b)How to handle the upper constraint of the so-called equilibrium measure, and

thus to correctly formulate an appropriate g-function.

See Section 4 for more information about these ideas. Full details will be given in

the paper corresponding to this announcement.

1.3 Basic assumptions

We state here precise assumptions on the nodes XN and weights {wN,j}.

1.3.1 Conditions on the nodes. (1) The nodes lie in a bounded open interval (a, b) and

are distributed with a density ρ0(x).

(2) The density function ρ0(x) is real analytic in a complex neighborhood of the

closed interval [a, b], and satisfies
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∫b

a

ρ0(x)dx = 1, (1.6)

ρ0(x) > 0 strictly, for all x ∈ [a, b]. (1.7)

(3) The nodes are defined precisely in terms of the density function ρ0(x) by the

quantization rule

∫xN,j

a

ρ0(x)dx =
2j+ 1

2N
(1.8)

forN ∈ N and j ∈ ZN.

1.3.2 Conditions on the weights. (1) Without loss of generality, we write the weights

in the form

wN,j = (−1)N−1−je−NVN(xN,j)
N−1∏
n=0
n�=j

(
xN,j − xN,n

)−1

= e−NVN(xN,j)
N−1∏
n=0
n�=j

∣∣xN,j − xN,n

∣∣−1
,

(1.9)

where the family of functions {VN(x)} is a priori specified only at the nodes.

(2) We assume that for each sufficiently large N, VN(x) may be taken to be a real

analytic function defined in a neighborhood G of the closed interval [a, b], and that

VN(x) = V(x) +
γ

N
+
ηN(x)
N2

, (1.10)

where V(x) is a fixed real analytic function defined in G, γ is a constant, and

lim sup
N→∞ sup

z∈G

∣∣ηN(z)
∣∣ < ∞. (1.11)

Remark 1.2. In some applications it is desirable to generalize further by allowing γ in

(1.10) to be a real analytic function in G with γ ′(z) not identically zero. It is possible to

take into account such variation, but for simplicity we take γ to be constant in this paper.

For classical cases of Hahn and Krawtchouk weights, γ is indeed constant in scalings of

interest.

The familiar examples of classical discrete orthogonal polynomials correspond

to nodes that are equally spaced, say on (a, b) = (0, 1) (in which case we have ρ0(x) ≡ 1).
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In this special case, the product factor on the right-hand side of (1.9) becomes simply

N−1∏
n=0
n�=j

∣∣xN,j − xN,n

∣∣−1
=

NN−1

j!(N− j− 1)!
. (1.12)

By Stirling’s formula, taking the continuum limit of this factor (i.e., considering N → ∞
with j/N → x) shows that in these cases formula (1.9) leads to a continuous weight on

(0, 1) of the form

w(x) =

(
e−V(x)

xx(1− x)1−x

)N

(1.13)

up to an overall multiplicative constant.

Our choice of the form (1.9) for the weights is motivated by several specific ex-

amples of classical discrete orthogonal polynomials. The form (1.9) is sufficiently gen-

eral for us to carry out useful calculations related to proofs of universality conjectures

arising in statistical problems like the random rhombus tiling of a hexagon.

1.3.3 Conditions on the equilibrium measure. There is an additional assumption,

which is not as explicit as the previous two conditions. This assumption will be ex-

plained in the next subsection.

1.4 The equilibrium energy problem and third assumption on the weights

It has been recognized for some time (see [21] and the references therein) that, as in the

continuous orthogonal polynomial cases, the asymptotic behavior of discrete orthogonal

polynomials, in particular the distribution of zeros in (a, b), is related to a constrained

equilibrium problem for logarithmic potentials in a field ϕ(x) given by the formula

ϕ(x) := V(x) +

∫b

a

log |x− y|ρ0(y)dy (1.14)

for x ∈ (a, b). We can also view ϕ(x) as being defined via a continuum limit

ϕ(x) = − lim
N→∞

log(wN,j)
N

, (1.15)

where wN,j is expressed in terms of xN,j which in turn is identified with x. Thus at the

moment we are working with the formal continuum limit of the weightwN,j.

In the specific context of this paper, the fieldϕ(x) is a real analytic function in the

open interval (a, b) because V(x) and ρ0(x) are real analytic functions in a neighborhood
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of [a, b]. UnlikeV(x) and ρ0(x), however, the fieldϕ(x) does not extend analytically beyond

the endpoints of (a, b) due to condition (1.7).

Given the parameter c ∈ (0, 1), which has the interpretation of the ratio of the

degree k of the polynomial of interest to the number N of nodes, and the field ϕ(x) as

above, consider the quadratic functional

Ec[µ] := c

∫b

a

∫b

a

log
1

|x− y|
dµ(x)dµ(y) +

∫b

a

ϕ(x)dµ(x) (1.16)

of Borel measures µ on [a, b]. Let µc
min be the measure that minimizes Ec[µ] over the class

of measures satisfying the upper and lower constraints

0 ≤
∫
x∈B

dµ(x) ≤ 1

c

∫
x∈B

ρ0(x)dx (1.17)

for all Borel sets B ⊂ [a, b], and the normalization condition

∫b

a

dµ(x) = 1. (1.18)

The existence of a unique minimizer under the conditions enumerated in Sections 1.3.1

and 1.3.2 follows from the Gauss-Frostman Theorem; see [26] for details. We will often

refer to the minimizer as the equilibrium measure. It has been shown [21] that the equi-

librium measure is the weak limit of the normalized counting measure of the zeros of

pN,k(z) in the limitN → ∞ with c = k/N fixed.

That a variational problem plays a central role in asymptotic behavior is a famil-

iar theme in the theory of orthogonal polynomials. The key new feature contributed by

discreteness is the appearance of the upper constraint on the equilibrium measure (i.e.,

the upper bound in (1.17)). The upper constraint can be traced to the following well-

known fact.

Proposition 1.3. Each discrete orthogonal polynomial pN,k(z) has k simple real zeros.

All zeros lie in the range xN,0 < z < xN,N−1 and no more than one zero lies in the closed

interval [xN,n, xN,n+1] between any two consecutive nodes. �

Thus, the presence of the upper constraint proportional to the local density of

nodes is necessary for the interpretation of the equilibrium measure as the weak limit of

the normalized counting measure of zeros.



828 J. Baik et al.

The theory of the “doubly constrained” variational problem we are considering

is well established. In particular, the analytic properties we assume of V(x) and ρ0(x)

turn out to be unnecessary for the mere existence of the minimizer. However, it has been

shown in [20] that analyticity ofV(x) and ρ0(x) in a neighborhood of [a, b] guarantees that

µc
min is continuously differentiable with respect to x ∈ (a, b). Moreover, the derivative

dµc
min/dx is piecewise analytic, with a finite number of points of nonanalyticity that may

not occur at any x where both (strict) inequalities dµc
min/dx(x) > 0 and dµc

min/dx(x) <

ρ0(x)/c hold. We want to exploit these facts, which is why we have chosen to restrict

attention to analytic functions V(x) and ρ0(x).

For a method of computing the equilibrium measure from the coefficients in the

three-term recurrence relation for a special class of discrete weights, see [21]. See also

[9] for continuous weights.

For simplicity of exposition we want to exclude certain nongeneric phenomena

that may occur even under conditions of analyticity of V(x) and ρ0(x). Therefore, we in-

troduce the following assumptions.

1.4.1 Third assumption; conditions on the equilibrium measure. Let F ⊂ [a, b] denote

the closed set of x-values where dµc
min/dx(x) = 0. Let F ⊂ [a, b] denote the closed set of

x-values where dµc
min/dx(x) = ρ0(x)/c.

(1) Each connected component of F and F has a nonempty interior. Therefore, F

and F are both finite unions of closed intervals, where each closed interval that is part of

the union contains more than one point. Note that this does not exclude the possibility

that either F or F might be empty.

(2) For each open subinterval I of (a, b) \ F ∪F and each limit point z0 ∈ F of I, we

have

lim
x→z0,x∈I

1√
|x− z0|

dµc
min

dx
(x) = K with 0 < K < ∞, (1.19)

and for each limit point z0 ∈ F of I, we have

lim
x→z0,x∈I

1√
|x− z0|

[
1

c
ρ0(x) −

dµc
min

dx
(x)
]

= K with 0 < K < ∞. (1.20)

Therefore, the derivative of the minimizing measure meets each constraint exactly like a

square root.

(3) A constraint is active at each endpoint: {a, b} ⊂ F ∪ F.

It is difficult to translate these conditions on µc
min into sufficient conditions on c,

V(x), and ρ0(x). However, there is a sense in which they are satisfied generically.
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Remark 1.4. Relaxing the condition that a constraint should be active at each endpoint

requires specific local analysis near these two points. We expect that a constraint being

active at each endpoint is a generic phenomenon in the sense that the opposite situation

occurs only for isolated values of c. We know this statement to be true in all relevant

classical cases. For the Krawtchouk polynomials only the values c = p or c = q = 1 −

p correspond to an equilibrium measure that is not constrained at both endpoints (see

[13]). The situation is similar for the Hahn polynomials.

1.4.2 Voids, bands, and saturated regions. Under the conditions enumerated in Sec-

tions 1.3.1, 1.3.2, and 1.4.1, the minimizer µc
min partitions (a, b) into three kinds of subin-

tervals, a finite number of each, and each having a nonempty interior. There is a real

constant 
c, the Lagrange multiplier associated with the condition (1.18), so that with

the variational derivative defined as

δEc

δµ
(x) := −2c

∫b

a

log |x− y|dµ(y) +ϕ(x), (1.21)

we have, when µ = µc
min, the following types of subintervals.

Definition 1.5 (voids). A void Γ is an open subinterval of [a, b] of maximal length in which

µc
min(x) ≡ 0, and thus the minimizer realizes the lower constraint. For x ∈ Γ , we have the

strict inequality

δEc

δµ
(x) > 
c. (1.22)

Definition 1.6 (bands). A band I is an open subinterval of [a, b] of maximal length where

µc
min(x) is a measure with a real analytic density satisfying 0 < dµc

min/dx < ρ
0(x)/c, and

thus variations of the minimizer are free. For x ∈ I, the equilibrium condition is

δEc

δµ
(x) ≡ 
c. (1.23)

Definition 1.7 (saturated regions). A saturated region Γ is an open subinterval of [a, b] of

maximal length in which dµc
min/dx ≡ ρ0(x)/c, and thus the minimizer realizes the upper

constraint. For x ∈ Γ , the strict inequality is

δEc

δµ
(x) < 
c. (1.24)

See Figure 1.1 for an example of the voids, bands, and saturated regions associ-

ated with a hypothetical equilibrium measure.
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a
S B S B V B S B V B V B S

b

(1/c)ρ0(x)

(dµc
min/dx)(x)

Figure 1.1 The hypothetical minimizer illustrated here

partitions the interval (a,b) into voids (denoted V), bands

(denoted B), and saturated regions (denoted S).

Voids and saturated regions will also be called gaps when it is not necessary to

distinguish between these two types of intervals. The closure of the union of all subin-

tervals of the three types defined above is the interval [a, b]. From condition (1) in Sec-

tion 1.4.1, bands cannot be adjacent to each other; a band that is not adjacent to an end-

point of [a, b] has on each side either a void or a saturated region.

Some of our asymptotic results for the discrete orthogonal polynomials under

the above assumptions are stated in Section 2. In Section 3, the asymptotics of discrete

orthogonal polynomials are applied to discrete orthogonal polynomial ensembles, and

asymptotics of corresponding correlation functions are thus obtained. By specializing

to the Hahn ensemble, we arrive at specific results relevant in the problem of random

rhombus tiling of a hexagon. Our new methods for the asymptotic analysis of general

discrete orthogonal polynomials are discussed in Section 4.

2 Results: pointwise asymptotics of orthogonal polynomials

As stated in the introduction, we obtain pointwise asymptotics of the orthogonal poly-

nomials pN,k(z) for z in the complex plane except for a finite union of discs of arbitrarily

small but fixed radii in terms of a log transform of the equilibrium measure. These discs

are centered at the edges of the bands. The difficulty at the edge of the bands will be ex-

plained below (see Section 4). We hope to be able to handle the band edge problem in our

future publication.
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We actually present here formulae for the monic polynomials πN,k(z), rather than

the normalized polynomials pN,k(z). The asymptotics are given by different formulae in

five different regions of the complex plane excluding small discs around the edges of the

bands. These regions are (recall that [a, b] is the interval where the nodes are accumulat-

ing)

(a) outside the interval [a, b];

(b) voids in [a, b];

(c) bands in [a, b];

(d) saturated regions in [a, b];

(e) near the endpoints of [a, b] adjacent to a saturated region.

The results for the first three cases are analogous to the corresponding results for the

continuous orthogonal polynomials analyzed in [11]. Also the asymptotic formula for

πN,k near the endpoints of [a, b] adjacent to a void is analogous to the corresponding

asymptotics of continuous orthogonal polynomials whose weight is supported on a fi-

nite interval. The new cases that did not occur in the continuous orthogonal polynomial

theory are the regions (d) and (e). In these regions, the discrete nature of the support of

the weights is strongly present. Here we present only the three regions (c), (d), and (e).

Asymptotic formulae for z in regions (a) and (b) will appear in the full version of this

paper, together with the asymptotics of the leading coefficient c(k)
N,k which completes the

connection with the polynomials pN,k(z).

For simplicity, we take the limit k,N → ∞ while c = k/N is a fixed rational num-

ber. (Recall that k is the degree of the orthogonal polynomial, and N is the number of

nodes.) This means that if the fixed rational constant c is represented in lowest terms as

c = p/q, then we are taking k = Mp and N = Mq for M ∈ N. The more general case of

k/N = c+O(N−1) will be considered in a future publication.

In Theorems 2.1 and 2.3 below, the error bounds are different depending on the

following two situations of the support of the equilibrium measure.

Case I. There is at least one void interval and at least one saturated region.

Case II. There are only voids and bands, or only saturated regions and bands.

We have obtained a better error bound for Case II than for Case I. Whether this is

only a technical point, or whether this is in the very nature of discrete orthogonal poly-

nomials is not clear yet.

2.1 Bands

Theorem 2.1 (asymptotics of πN,k(z) in bands). Assume the conditions enumerated in

Sections 1.3.1, 1.3.2, and 1.4.1. Let c = k/N be fixed. Then, uniformly for z in any fixed
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compact subinterval in the interior of a band I,

πN,k(z) = exp

(
k

∫b

a

log |z− x|dµc
min(x)

)

·
[
2AI(z) cos

(
kπ

∫b

z

dµc
min(x) +ΦI(z)

)
+ εN(z)

]
,

(2.1)

where

εN(z) =



O

(
log(N)
N1/3

)
, Case I,

O

(
log(N)
N2/3

)
, Case II,

(2.2)

and AI(z) > 0 and ΦI(z) are real functions defined in terms of a Riemann theta function

associated to the hyperelliptic surface with cuts given by the bands. The functions AI

andΦI are uniformly bounded along with all derivatives. �

Remark 2.2. The error estimates quoted above are derived from the asymptotic proce-

dure we have devised for the case of node distributions associated with a general ana-

lytic density function ρ0(x). In the special case of equally spaced nodes (when ρ0(x) is

a constant function), we have recently found, using a different procedure, that the loga-

rithmic term log(N) in the error bound εN(z) can apparently be removed. At this time we

do not know whether this alternate procedure can be modified for nonconstant ρ0(x) so

as to remove the logarithm from the estimates in all cases.

2.2 Saturated regions

Theorem 2.3 (asymptotics of πN,k(z) in saturated regions). Assume the conditions enu-

merated in Sections 1.3.1, 1.3.2, and 1.4.1. Let c = k/N be fixed. Then, uniformly for z in a

saturated region Γ , but bounded away from any band edge points where the equilibrium

measure becomes unconstrained by a fixed distance, and from the endpoints a and b by

a distance of sizeN−2/3, we have

πN,k(z) = exp

(
k

∫b

a

log |z− x|dµc
min(x)

)

·
[(
φΓ (z) + εN(z)

) · 2 cos

(
πN

∫b

z

ρ0(x)dx
)

+ exponentially small

]
,

(2.3)

with εN(z) having the same error bound as in (2.2), where φΓ (z) is a real function de-

fined in terms of a Riemann theta function, uniformly bounded along with all derivatives
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and having at most one zero in Γ . If the saturated region Γ is adjacent to an endpoint

of [a, b], then φΓ (z) has no zeros in Γ . The exponentially small term is proportional to

exp(N[δEc/dµ − 
c]) where the variational derivative is evaluated on the equilibrium

measure. �

Since the zeros of the cosine function in (2.3) are exactly the nodes of orthogo-

nalization making up the set XN, and since the slope of the cosine is proportional toN at

the nodes, we have the following.

Corollary 2.4 (exponential confinement of zeros). Let J be a closed subinterval of a sat-

urated region where the equilibrium measure achieves the upper constraint. Then the

monic discrete orthogonal polynomial πN,k(z) has a zero uniformly close to each of the

nodes xN,n ∈ XN ∩ J, with the possible exception of one node. �

Remark 2.5. The factorφΓ (z)+εN(z) has at most one zero in Γ , and the zero can be present

for someN and not others. Also, the zero generally moves about in a quasiperiodic man-

ner as N is varied. So it seems that one should regard the situation in which this zero is

exponentially close to one of the nodes (which form a set of measure zero in J) as being

anomalous and quite rare. Therefore, one should generally expect to see a zero exponen-

tially close to each node in XN ∩ J.

Let K be a subinterval of the interval J that is the subject of Corollary 2.4 such

that there is a zero of πN,k(z) exponentially close to each node in XN ∩ K (so according

to Remark 2.5, one expects that it is typically consistent to take K = J). The exponential

confinement of the zeros in K has further consequences due to the rigidity of the zeros

for general discrete orthogonal polynomials described in Proposition 1.3. A particular

zero z0 ∈ K of πN,k(z), asymptotically exponentially localized near a node xN,n, can lie

on one side or the other of the node. But if z0 lies to the right of xN,n, then it follows from

Proposition 1.3 that the smallest zero greater than z0 must also lie to the right of xN,n+1

and so on, all the way to the right endpoint ofK. Likewise, if z0 lies to the left of xN,n, then

all zeros in K less than z0 also lie to the left of the nodes to which they are exponentially

attracted.

When we consider those zeros of πN,k(z) that converge exponentially fast to the

nodes (these are analogous to the Hurwitz zeros of the approximation theory literature,

whereas the possible lone zero ofφΓ (z) would be called a spurious zero), we therefore see

that there can be at most one “dislocation” (i.e., a closed interval of the form [xN,n, xN,n+1]

containing no Hurwitz zeros) in the pattern of zeros lying to one side or the other of the

nodes. See Figure 2.1.
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Figure 2.1 The Hurwitz zeros are exponentially close

to the nodes of orthogonalization in saturated regions

where the equilibrium measure achieves its upper con-

straint. Top: a pattern without any dislocation, where

all Hurwitz zeros (pictured as circles) lie to the right of

the nodes (vertical line segments) to which they are ex-

ponentially attracted. Bottom: a pattern with a disloca-

tion. Middle: there may only be one dislocation, but it

can move as parameters (e.g., c) are continuously var-

ied and a Hurwitz zero passes through one of the nodes.

Remark 2.6. It should perhaps be mentioned that there is nothing that prevents a zero of

πN,k(z) from coinciding exactly with one of the nodes xN,j ∈ XN.

Furthermore, due to Proposition 1.3, a spurious zero of πN,k(z) in the subinter-

val K of the saturated region Γ can only occur if the pattern of Hurwitz zeros in K has a

dislocation as in the bottom picture in Figure 2.1, in which case the spurious zero must

lie in the closed interval [xN,n, xN,n+1] associated with the dislocation. Equivalently, the

presence of a spurious zero in K ⊂ J ⊂ Γ indicates a dislocation in the pattern of Hurwitz

zeros.

From the analysis we have presented, it is not clear whether the presence of a

dislocation in the pattern of Hurwitz zeros implies that the function φΓ (z) has a (spu-

rious) zero in the corresponding closed interval [xN,n, xN,n+1], or equivalently whether

the absence of any zeros of φΓ (z) in a saturated region Γ means that the lone possible

dislocation in the pattern of Hurwitz zeros is indeed absent.

2.3 Near hard edges adjacent to a saturated region

Theorem 2.7 (asymptotics of πN,k(z) near hard edges). Assume the conditions enumer-

ated in Sections 1.3.1, 1.3.2, and 1.4.1. Let c = k/N be fixed. If the upper constraint is
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achieved at the endpoint z = b, then uniformly for b− CN−2/3 < z < b,

πN,k(z) = exp

(
k

∫b

a

log |z− x|dµc
min(x)

)

·
[(
φΓ (z) +O

(
log(N)
N1/3

))
Γ(1/2− ζb)√
2πeζb(−ζb)−ζb

2 cos

(
Nπ

∫b

z

ρ0(x)dx
)

+ exponentially small

]
,

(2.4)

asN → ∞, and uniformly for b < z < b+ CN−2/3,

πN,k(z) = exp

(
k

∫b

a

log |z− x|dµc
min(x)

)[
φoutside(z)

√
2πe−ζbζζb

b

Γ(1/2+ ζb)
+O

(
log(N)
N1/3

)]
,

(2.5)

as N → ∞, where ζb := Nρ0(b)(z − b) and the function φΓ (z) is the same function that

appears in (2.3). The function φoutside(z) is real valued, and nonvanishing, and like φΓ (z)

is constructed from Riemann theta functions and is along with all derivatives uniformly

bounded in z as N → ∞. There are similar formulae near the endpoint z = a when the

upper constraint is active there. The quantity Γ(1/2 − ζb) is the Euler gamma function,

while the subscript Γ refers to the saturated region adjacent to the hard edge. The expo-

nentially small term is proportional to exp(N[δEc/δµ − 
c]) evaluated on the equilibrium

measure. �

It is particularly interesting that the exponential attraction of the zeros to the

nodes of orthogonalization in XN, that we have seen is a feature of the asymptotics in

subintervals of [a, b] where the upper constraint is achieved by the equilibrium measure,

persists right up to the first and last nodes; in other words if the upper constraint is

achieved at z = a, then there is a zero exponentially close to xN,0 and if the upper con-

straint is achieved at z = b, then there is a zero exponentially close to xN,N−1.

More is true, however. From Proposition 1.3, we know that a zero z0 of πN,k(z)

that is exponentially close to the first node xN,0 must in fact satisfy the strict inequality

z0 > xN,0. Similarly, if a zero z0 is exponentially close to the last node xN,N−1, then it must

satisfy the strict inequality z0 < xN,N−1. Going back to the discussion in Section 2.2,

we see that if there is a hard edge at an endpoint of [a, b], then in the saturated region

adjacent to the hard edge there can be no dislocations in the pattern of Hurwitz zeros.

This is consistent with the fact (see Theorem 2.3) that the functionφΓ (z) does not vanish

in any saturated region adjacent to endpoints of [a, b] so that there is no spurious zero.

Remark 2.8. The fact that the asymptotic formulae presented in Theorem 2.7 are in terms

of the Euler gamma function is directly related to the discrete nature of the weights. In a
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sense, the poles of the functions Γ(1/2± ζa) and Γ(1/2± ζb) are “shadows” of the poles of

the Riemann-Hilbert problem that we will discuss in Section 4.

3 Applications

3.1 Discrete orthogonal polynomial ensembles

Recall thatXN = {xN,n}N−1
n=0 is the set of nodes in (a, b). In this section,we use the notation

wN(x) for a weight on XN; to connect with our previous notation, note simply that for a

node x = xN,j ∈ XN,

wN(x) = wN,j. (3.1)

Consider the joint probability distribution of finding k particles, say P1, . . . , Pk, at respec-

tive positions x1, . . . , xk in XN, to be given by the following expression:

P (particle Pj lies at the site xj, for j = 1, . . . , k)

= p(N,k)(x1, . . . , xk

)
:=

1

ZN,k

∏
1≤i<j≤k

(
xi − xj

)2 k∏
j=1

wN

(
xj

)
,

(3.2)

(we are using the symbol P (event) to denote the probability of an event) where ZN,k is a

normalization constant (or partition function) chosen so that

∑
admissable configurations of P1,...,Pk

p(N,k)(x1, . . . , xk

)
= 1. (3.3)

Since the distribution function is symmetric in all xj, we can consider the particles Pj to

be either distinguishable or indistinguishable, and only the normalization constant will

depend on this choice (the meaning of “admissable configurations” in (3.3) is different

in the two cases). The statistical ensemble associated with the density function (3.2) is

called a discrete orthogonal polynomial ensemble.

Discrete orthogonal polynomial ensembles arise in a number of specific contexts

(see, e.g., [5, 16, 17, 18]), with particular choices of the weight function wN(·) related (in

cases we are aware of) to classical discrete orthogonal polynomials. It is of some theoret-

ical interest to determine properties of the ensembles that are more or less independent

of the particular choice of weight function, at least within some class. Such properties

are said to support the conjecture of universality within the class of weight functions

under consideration.
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Some common properties of discrete orthogonal polynomial ensembles can be

read off immediately from formula (3.2). For example, the presence of the Vandermonde

factor means that the probability of finding two particles at the same site in XN is zero.

Thus, a discrete orthogonal polynomial ensemble always describes an exclusion process.

This phenomenon is the discrete analogue of the familiar level repulsion phenomenon in

random matrix theory. Also, since the weights are associated with nodes, the interpre-

tation is that configurations where particles are concentrated in sets of nodes where the

weight is larger are more likely.

The goal of this section is to establish asymptotic formulae for various statistics

associated with the ensemble (3.2) for a general class of weights in the continuum limit

N → ∞ with the number of particles k chosen so that for some fixed rational c ∈ (0, 1),

we have k = cN. Note that the number of particles kwill have the same role as the degree

of orthogonal polynomials k. We use the same assumptions on the nodes and weights as

in the rest of the paper (see Sections 1.3.1, 1.3.2, and 1.4.1). The main idea is that, as is

well known, the formulae for all relevant statistics of ensembles of the form (3.2) can be

written explicitly in terms of the discrete orthogonal polynomials associated with the

nodes XN and the weightswN,j = wN(xN,j).

To relate the statistics of interest to the discrete orthogonal polynomials, we first

define the so-called reproducing kernel (Christoffel-Darboux kernel)

KN,k(x, y) :=
√
wN(x)wN(y)

k−1∑
n=0

pN,n(x)pN,n(y), (3.4)

for x, y in the nodes. Using the Christoffel-Darboux formula [27], which holds for all or-

thogonal polynomials, even in the discrete case, the sum on the right telescopes:

KN,k(x, y) =
√
wN(x)wN(y)

c
(k−1)
N,k−1

c
(k)
N,k

· pN,k(x)pN,k−1(y) − pN,k−1(x)pN,k(y)
x− y

=
√
wN(x)wN(y)

πN,k(x) · c(k−1)
N,k−1pN,k−1(y)−c(k−1)

N,k−1pN,k−1(x) · πN,k(y)
x− y

.

(3.5)

Standard calculations (see, e.g., [23, 29]) of random matrix theory, in the case of so-called

β = 2 ensembles, yield the following exact formulae. The m-point correlation function

defined form ≤ k by

R(N,k)
m

(
x1, . . . , xm

)
:=

k!

(k−m)!

∑
(xm+1,...,xk)∈Xk−m

N

p(N,k)(x1, . . . , xk

)
, (3.6)
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where Xp
N denotes the pth Cartesian power of XN, can be expressed in terms of the dis-

crete orthogonal polynomials by the formula

R(N,k)
m

(
x1, . . . , xm

)
= det

(
KN,k

(
xi, xj

))
1≤i,j≤m

. (3.7)

B ⊂ XN, the one-point correlation function has the following interpretation:

∑
x∈B

R
(N,k)
1 (x) = E (number of particles in B), (3.8)

where E denotes the expected value. Similarly, the two-point correlation function has the

following interpretation:

∑
x,y∈B

R
(N,k)
2 (x, y) = E (number of (ordered) pairs of particles in B). (3.9)

Furthermore, the statistics defined for a set B ⊂ XN andm ≤ min(#B, k):

A(N,k)
m (B) := P (there are preciselym particles in the set B) (3.10)

(this probability is automatically zero if m > #B by exclusion) is well known to be ex-

pressible by the exact formula

A(N,k)
m (B) =

1

m!

(
−
dm

dtm

)∣∣∣∣
t=1

det
(
1− tKN,k

∣∣
B

)
, (3.11)

where KN,k is the operator (in this case a finite matrix, since B is contained in the finite

set XN) acting in 
2(XN) given by the kernel KN,k(x, y), and KN,k|B denotes the restriction

of KN,k to 
2(B).

This is by no means an exhaustive list of statistics that can be directly expressed

in terms of the orthogonal polynomials associated with the (discrete) weight wN(·). For

example, one may consider the fluctuations and in particular the variance of the number

of particles in an interval B ⊂ XN. The continuum limit asymptotics for this statistics

were computed in [18] for the Krawtchouk ensemble (see Proposition 2.5 of that paper)

with the result that the fluctuations are Gaussian; it would be of some interest to de-

termine whether this is a special property of the Krawtchouk ensemble or a universal

property of a large class of ensembles. Also, there are convenient formulae for statistics

associated with the spacings between particles; the reader can find such formulae in [8,

Section 5.6].

Depending on the location of interest, we have different results. We distinguish

again three regions: bands, voids, and saturated regions.
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3.1.1 In a band

Theorem 3.1 (universality of the discrete sine kernel). For a node x ∈ XN lying in a

band I,

KN,k(x, x) =
c

ρ0(x)
dµc

min

dx
(x)
(
1+O

(
log(N)
N

))
, (3.12)

where the error is uniform in compact subsets. For distinct nodes x and y in I,

KN,k(x, y) =
O(1)

N · (x− y)
, (3.13)

whereO(1) is uniform for x and y in a compact subsets. Also with a given node x ∈ I, and

for ξ and η such that

x+
ξ

Nρ0(x)KN,k(x, x)
∈ XN, x+

η

Nρ0(x)KN,k(x, x)
∈ XN, (3.14)

we have

1

KN,k(x, x)
KN,k

(
x+

ξ

Nρ0(x)KN,k(x, x)
, x+

η

Nρ0(x)KN,k(x, x)

)

=
sin(π · (ξ− η))
π · (ξ− η)

+O

(
log(N)
N

)
,

(3.15)

where the error is uniform for x in a compact subset of the band I, and ξ and η in a com-

pact set of R. �

Remark 3.2. Let ψc
min = dµc

min/dx. By the same analysis, we have the same limit for

ρ0(x)
cψc

min(x)
KN,k

(
x+

ξ

Ncψc
min(x)

, x+
η

Ncψc
min(x)

)
(3.16)

with the same error bound.

Remark 3.3. We believe that the logarithmic term log(N) in the error can be replaced by

1 whenever the nodes are equally spaced (see Remark 2.2), and it may be the case that

such an improved estimate holds more generally. In any case, the improved factor of 1/N

compared to either 1/N1/3 or 1/N2/3, as one might expect from the form of the error term

εN(z) in Theorems 2.1 and 2.3, is due to the particular structure of the kernel KN,k. Oper-

ators with this special type of kernel are called integrable operators (see [7, 15]).
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Let the operator Sx act on 
2(Z) with the kernel (see [4, 23])

Sx(i, j) =

sin

(
πcψc

min(x)
ρ0(x)

· (i− j)
)

π · (i− j) , i, j ∈ Z. (3.17)

Recall formula (3.11) for A(N,k)
m (B) and its interpretation (3.10) as a probability.

Theorem 3.4 (asymptotics of local occupation probabilities). Let BN ⊂ XN be a set ofM

nodes of the form

BN =
{
xN,j, xN,j+k1

, xN,j+k2
, . . . , xN,j+kM−1

}
, (3.18)

where #BN = M is independent ofN, and where

0 < k1 < k2 < · · · < kM−1 all in Z (3.19)

are also all independent of N. Set BN := {0, k1, k2, . . . , kM−1} ⊂ Z. Suppose also that

as N → ∞, xN,j = minBN → x with x lying in a band (and hence the same holds for

xN,j+kM−1
= maxBN). Then, asN → ∞,

det
(
1− tKN,k

∣∣
BN

)
= det

(
1− tSx

∣∣
BN

)
+O

(
log(N)
N

)
, (3.20)

for t in a compact set in C, and

A(N,k)
m

(
BN

)
=

1

m!

(
−
d

dt

)m∣∣∣∣
t=1

det
(
1− tSx

∣∣
BN

)
+O

(
log(N)
N

)
. (3.21)

�

3.1.2 In voids and saturated regions

Theorem 3.5 (exponential asymptotics of the one-point function in voids). Let Γ be a

void interval. For each compact subset F of Γ , there is a constant KF > 0 such that

KN,k(x, x) = O
(
e−KFN

)
, asN −→ ∞, (3.22)

holds for all nodes x ∈ XN ∩ F. Also, for distinct nodes x, y in XN ∩ F, we have

KN,k(x, y) =
O(e−KFN)
x− y

. (3.23)
�

Thus, the one-point function is exponentially small in void intervals as N → ∞,

going to zero with a decay rate that is determined by the size of δEc/δµ− 
c at the node x.
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Theorem 3.6 (exponential asymptotics of the one-point function in saturated regions).

Let Γ be a saturated region. For each compact subset F of Γ , there is a constantKF > 0 such

that

KN,k(x, x) = 1+O
(
e−KFN

)
, asN −→ ∞, (3.24)

holds for all nodes x ∈ XN ∩ F. Also, for distinct nodes x, y in XN ∩ F, we have

KN,k(x, y) =
O(e−KFN)
x− y

. (3.25)
�

Therefore, the one-point function is exponentially close to one in saturated re-

gions.

3.2 Random rhombus tiling of a hexagon

Let a, b, c be positive integers, and consider a hexagon with sides of lengths that proceed

in counterclockwise order, b, a, c, b, a, c. All interior angles of this hexagon are equal and

measure 2π/3 radians. We call this an abc-hexagon. See Figure 3.1 for an example of an

abc-hexagon. We denote by L the lattice points indicated in Figure 3.1. By definition, L

includes the points on the sides (P6, P1), (P1, P2), (P2, P3), and (P3, P4), but excludes the

points on the sides (P4, P5) and (P5, P6).

Consider tiling the abc-hexagon with rhombi having sides of unit length. Such

rhombi come in three different types (orientations) that we refer to as type I, type II,

and type III; see Figure 3.2. Rhombi of types I and II are sometimes collectively called

horizontal rhombi, while rhombi of type III are sometimes called vertical rhombi. The

“position” of each rhombus tile in the hexagon is a specific lattice point in L defined as

indicated in Figure 3.2. See Figure 3.3 for an example of a rhombus tiling.

MacMahon’s formula [22] gives the total number of all possible rhombus tilings

of the abc-hexagon as the expression

a∏
i=1

b∏
j=1

c∏
k=1

i+ j+ k− 1

i+ j+ k− 2
. (3.26)

Consider the set of all rhombus tilings equipped with uniform probability. It is of some

current interest to determine the behavior of various corresponding statistics of this en-

semble in the limit as a, b, c → ∞.

In the scaling limit of n → ∞ where

a = αn, b = βn, c = γn, (3.27)
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P1

a

P2

b

P3

c

P4

a

P5

b

P6

c

Figure 3.1 The abc-hexagon with vertices P1,...,P6 , and the

lattice L.

Type I Type II Type III

Figure 3.2 The three types of rhombi; the position of

each rhombus is indicated with a dot.

with fixed α,β, γ > 0, the regions near the six corners are “frozen” or “polar zones,” while

the inside of the hexagon is “temperate.” Cohn, Larsen, and Propp [6] showed that in

such a limit, the expected shape of the boundary of the frozen regions is given by the

inscribed ellipse. Moreover, the same authors also computed the expected number of ver-

tical rhombi in an arbitrary set U ∈ R
2. However, this calculation was provided without

specific error bounds. In [18], Johansson proved a large deviation result for the bound-

ary shape, and also proved weak convergence of the marginal probability of finding, say,
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Qm

Figure 3.3 A rhombus tiling of the abc-hexagon, and the lattice

Lm when m = 3; holes are represented by white dots and particles

are represented by black dots.

a vertical tile near a given location in a temperate region. The same paper also contains

an investigation of the related Aztec diamond tiling model and a proof that the fluctua-

tion of the boundary in this model is governed (in a proper scaling limit) by the so-called

Tracy-Widom law for large random matrices from the Gaussian unitary ensemble [28].

The same is expected to be true for rhombus tilings of hexagons, but this is still open.

In [18], Johansson expresses the induced probability for a given configuration of

vertical or horizontal rhombi on a given sublattice in terms of discrete orthogonal poly-

nomial ensembles with Hahn or associated Hahn weights. Even though the Hahn weight

is a classical weight, the relevant asymptotics for Hahn polynomials have not been previ-

ously established. However, the asymptotics of the previous sections may now be applied

to the special case of the Hahn polynomials, and this yields new results for the asymp-

totic properties of the hexagon tiling problem (see Theorems 3.8 and 3.10 below).

We first state the relation between hexagon tiling and discrete orthogonal poly-

nomial ensembles. We will assume, without loss of generality that a ≥ b (by the sym-

metry of the hexagon, the case when a ≤ b is completely analogous). Consider the mth
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vertical line of the lattice L counted from the left. We denote by Lm the intersection of

this line and L. In a given tiling, the points in Lm correspond to positions (in the sense

defined above) of a number of rhombi of types I, II, and III. We call the positions of hori-

zontal rhombi the particles, and the positions of vertical rhombi the holes. See Figure 3.3

for an example of Lm whenm = 3, illustrating the corresponding particles and holes.

The uniform probability distribution on the ensemble of tilings induces the prob-

ability distribution for finding particles and holes at particular locations in the one-

dimensional finite lattice Lm. A surprising result is due to Johansson [18] which states

that the induced probability distribution functions for holes and particles are both dis-

crete orthogonal polynomial ensembles with Hahn and associated Hahn weight func-

tions, respectively (see (1.4) and (1.5)).

Let Qm be the lowest point in the sublattice Lm. On the sublattice Lm, there are

always c particles and Lm holes. We set γm = c + Lm − 1. Now, let x1 < · · · < xc, where

xj ∈ {0, 1, 2, . . . , γm}, denote the (ordered) distances of the particles in Lm from Qm, and

let ξ1 < · · · < ξLm , where ξj ∈ {0, 1, 2, . . . , γm}, denote the distances of the holes in Lm

from Qm. In particular, we then have {x1, . . . , xc} ∪ {ξ1, . . . , ξLm } = {0, 1, 2, . . . , γm}. Let

P̃m(x1, . . . , xc) denote the probability of finding the particle configuration x1, . . . , xc, and

let Pm(ξ1, . . . , ξLm) denote the probability of finding the hole configuration ξ1, . . . , ξLm .

Proposition 3.7 (see [18, Theorem 4.1]). Let a, b, c ≥ 1 be given integers with a ≥ b. Set

am := |a−m| and bm := |b−m|. Then

P̃m

(
x1, . . . , xc

)
=

1

Z̃m

∏
1≤j<k≤c

(
xj − xk

)2 c∏
j=1

w̃
(
xj

)
, (3.28)

where Z̃m is the normalization constant (partition function), and where the weight func-

tion is the associated Hahn weight

w̃(n) := wAssoc
N,n

(
am + 1, bm + 1

)
=

C̃

n!(am + n)!(N− n− 1)!(N− n− 1+ bm)!
,

(3.29)

for a certain constant C̃. Also,

Pm

(
ξ1, . . . , ξLm

)
=

1

Zm

∏
1≤j<k≤Lm

(
ξj − ξk

)2 Lm∏
j=1

w
(
ξj

)
, (3.30)
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where Zm is the normalization constant, and where the weight function is the Hahn

weight

w(n) := wHahn
N,n

(
am + 1, bm + 1

)
= C

(n+ am)!(N− n− 1+ bm)!
n!(N− n− 1)!

, (3.31)

for a certain constant C. �

With

m = τn, (3.32)

for γ > 0, the scaling (3.27) is precisely the same scaling that we analyzed in Section 3.1.

Also we can explicitly compute the equilibrium measure for Hahn and associated Hahn

using either the result of [21], or solving the variational problem as in [9], which will ap-

pear in the full version of this paper. The calculations of the equilibrium measure and the

one-point correlation function imply that as n → ∞, the one-dimensional lattice Lm, af-

ter rescaling to finite size independent of n, consists of three disjoint intervals: one band,

surrounded by two gaps (either saturated regions or voids, depending on parameters).

The saturated regions and voids correspond to the frozen regions or polar zones, while

the central band is a temperate region. Hence, in particular, the endpoints of the band

when considered as functions of τ determine the typical shape of the boundary between

the polar and temperate zones of the rescaled abc-hexagon. Also the one-point function

converges pointwise except at the band edges, or at the boundary, to the equilibrium

measure. This was conjectured in [18] (including the edges), in which weak convergence

was obtained. Moreover, our computation of the one-point correlation function provides

the relevant error bounds, when we consider setsU contained in a single line Lm. One ex-

pects that, with additional analysis of the same formulae, it should be possible to show

that the error is locally uniform with respect to τ, in which case the same bounds should

hold for more general regions U ∈ R
2. We state our result in this direction as follows.

Theorem 3.8 (strong asymptotics with explicit error bounds). On the line Lm, where

m = τn and τ is fixed as n → ∞, the scaled holes ξj/n lying in the polar zones, uni-

formly bounded away from the rescaled expected boundary between the polar and tem-

perate zones, have a one-point function asymptotically convergent to either 1 (in the po-

lar zones near the vertices P2 and P5), or to 0 (in the polar zones near the vertices P1, P3,

P4, and P6), with an exponential rate of convergence of the order O(e−Kn) for some con-

stant K > 0. The one-point correlation function for the scaled holes ξ/n in the temper-

ate zone converges to the corresponding equilibrium measure with an error of the order
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O(1/n), which is uniformly valid away from the rescaled expected boundary between the

polar and temperate zones. �

Remark 3.9. We give the above error estimate asO(1/n) rather thanO(log(n)/n) because

the Hahn and associated Hahn polynomials are orthogonal on a set of nodes Xn that are

equally spaced.

In the temperate zone, in addition to the one-point function, which is the mar-

ginal distribution, we can control all k-point correlation functions under proper scaling.

One such consequence is the following theorem on the scaling limit for the locations of

the holes.

Theorem 3.10 (discrete sine kernel correlations). Let x > 0 be rational such that nx ∈
ZN and such that nx is in the temperate zone away from the expected boundary be-

tween the polar and temperate zones with uniform order in n. Let Bm = {nx, nx+ j1, nx+

j2, . . . , nx+ jM}, and set B = {0, j1, j2, . . . , jM}. Then

lim
n→∞ P (there are precisely p holes in the set Bm) =

1

p!

(
−
d

dt

)p∣∣∣∣
t=1

det
(
1− tS|B

)
,

(3.33)

where S acts on 
2(Z) with the kernel

S(i, j) =
sin(c(x)(i− j))

π(i− j)
, (3.34)

for some constant c(x). �

Remark 3.11. All of the results we have written down for holes have analogous state-

ments in terms of particles using the duality relation between the Hahn and associated

Hahn weights that will be explained in Section 4.2.

Remark 3.12. Once one obtains the asymptotics near the band edge of the equilibrium

measure for discrete orthogonal polynomial ensembles, fluctuation statistics of the

boundary curve will be computable. It is conjectured in [18] that the limiting law at the

band edge is the Tracy-Widom distribution known from the Gaussian unitary ensemble

of random matrix theory.

4 Riemann-Hilbert problems for discrete orthogonal polynomials

In this section, we discuss the main ideas of asymptotic analysis of discrete orthogonal

polynomials via a Riemann-Hilbert problem.
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4.1 The fundamental Riemann-Hilbert problem

We first introduce the Riemann-Hilbert problem characterization of discrete orthogo-

nal polynomials. For k ∈ Z, consider the matrix P(z;N,k) solving the following problem,

which is a discrete version of the analogous problem for continuous weights first used

in [14]. This Riemann-Hilbert problem with pole conditions has been known for a while

to be solved in terms of discrete orthogonal polynomials. An example is [3] in which the

authors used the Riemann-Hilbert problem to derive difference equations for a class of

discrete orthogonal polynomials.

Riemann-Hilbert Problem 1. Find a 2×2matrix P(z;N,k) with the following properties:

(1) Analyticity. P(z;N,k) is an analytic function of z for z ∈ C \ XN.

(2) Normalization. As z → ∞,

P(z;N,k)

(
z−k 0

0 zk

)
= I +O

(
1

z

)
. (4.1)

(3) Singularities. At each node xN,j, the first column of P is analytic and the sec-

ond column of P has a simple pole, where the residue satisfies the condition

Res
z=xN,j

P(z;N,k) = lim
z→xN,j

P(z;N,k)

(
0 wN,j

0 0

)
=

(
0 wN,jP11

(
xN,j;N,k

)
0 wN,jP21

(
xN,j,N, k

)
)
, (4.2)

�

for j = 0, . . . ,N− 1.

Proposition 4.1. Riemann-Hilbert Problem 1 has a unique solution when 0 ≤ k ≤ N − 1.

In this case,

P(z;N,k) =




πN,k(z)
N−1∑
j=0

wN,jπN,k(xN,j)
z− xN,j

c
(k−1)
N,k−1pN,k−1(z)

N−1∑
j=0

wN,jc
(k−1)
N,k−1pN,k−1(xN,j)
z− xN,j


 (4.3)

if k > 0 and

P(z;N, 0) =


1

N−1∑
j=0

wN,j

z− xN,j

0 1


 . (4.4)

�
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We analyze this Riemann-Hilbert problem asymptotically asN,k → ∞ by adapt-

ing the Deift-Zhou procedure developed in [12] and subsequent work. Due to the condi-

tions on the pole and the separation of the zeros of discrete orthogonal polynomials, we

have two difficulties which we mentioned in Section 1.2. In the following two sections,

we describe the main techniques we developed to overcome these difficulties. A complete

asymptotic analysis of the above Riemann-Hilbert problem will appear in the full ver-

sion of this paper.

In order to apply the usual Deift-Zhou method, we will transform the above

Riemann-Hilbert problem into a Riemann-Hilbert problem with jump conditions on con-

tinuous contours: a transformation from P 	→ R. For this new Riemann-Hilbert problem,

the formal limit of accumulation of nodes can be rigorously justified. However, in addi-

tion to the continuum limit ofN → ∞ (N being the number of nodes), we simultaneously

take the large degree limit k → ∞. In the analysis of [10, 11], a method for this limit is to

conjugate the Riemann-Hilbert problem with the so-called g-function that is defined as

a log transform of the equilibrium measure. It was crucial in the analysis of [10, 11] for

the continuous orthogonal polynomials that the equilibrium measure has only a lower

constraint. Actually the lower constraint yields an exponentially decaying factor. Hence,

the upper constraint condition (1.17) of the equilibrium measure for discrete orthogonal

polynomials generates an exponentially growing factor. In order to replace an exponen-

tially growing term with an exponentially decaying term, we introduce another transfor-

mation before we map P to R: we will introduce an intermediate Riemann-Hilbert prob-

lem for Q so that P 	→ Q 	→ R as an exact sequence of transformations. In Section 4.2,

we discuss the transformation P 	→ Q of reversing the triangularity of residue matrices,

that will eventually work in our favor turning exponentially growing terms into expo-

nentially decaying terms. In Section 4.3, we discuss the transformation Q 	→ R from a

Riemann-Hilbert problem with residue conditions to a Riemann-Hilbert problem with

jumps on continuous contours.

4.2 Selectively reversing triangularity of residue matrices

Riemann-Hilbert Problem 1 involves residue matrices that are upper-triangular. It will

be advantageous in general to modify the matrix P(z;N,k) in order to arrive at a new

Riemann-Hilbert problem in which we have selectively reversed the triangularity of the

residue matrices near certain individual nodes xN,j. Let ∆ ⊂ ZN where ZN := {0, 1, 2, . . . ,

N − 1} and denote the number of elements in ∆ by #∆ and the complementary set ZN \ ∆

by ∇. We will reverse the triangularity for those nodes xN,j for which j ∈ ∆. Consider

the matrix Q(z;N,k) related to the solution P(z;N,k) of Riemann-Hilbert Problem 1 as
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follows:

Q(z;N,k) := P(z;N,k)

[ ∏
n∈∆

(
z− xN,n

)]−σ3

= P(z;N,k)




∏
n∈∆

(
z− xN,n

)−1
0

0
∏
n∈∆

(
z− xN,n

)

 .

(4.5)

It is direct to check that the matrix Q(z;N,k) is, for k ∈ ZN, the unique solution of the

following Riemann-Hilbert problem.

Riemann-Hilbert Problem 2. Given a subset ∆ of ZN of cardinality #∆, find a 2 × 2ma-

trix Q(z;N,k) with the following properties:

(1) Analyticity. Q(z;N,k) is an analytic function of z for z ∈ C \ XN.

(2) Normalization. As z → ∞,

Q(z;N,k)

(
z#∆−k 0

0 zk−#∆

)
= I +O

(
1

z

)
. (4.6)

(3) Singularities. At each node xN,j, the matrix Q has a simple pole. If j ∈ ∇ where

∇ := ZN \∆, then the first column is analytic at xN,j and the pole is in the second column

such that the residue satisfies the condition

Res
z=xN,j

Q(z;N,k) = lim
z→xN,j

Q(z;N,k),


0 wN,j

∏
n∈∆

(
xN,j − xN,n

)2
0 0


 (4.7)

for j ∈ ∇. If j ∈ ∆, then the second column is analytic at xN,j and the pole is in the first

column such that the residue satisfies the condition

Res
z=xN,j

Q(z;N,k) = lim
z→xN,j

Q(z;N,k)




0 0

1

wN,j

∏
n∈∆
n�=j

(
xN,j − xN,n

)−2
0


 , (4.8)

for j ∈ ∆. �

Note that the (21)-entry of the residue matrix in (4.8) is the reciprocal of the

(12)-entry of the residue matrix in (4.7). When we make the choice that ∆ contains the
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a y1 y2 y3 y4 b

Σ
�
0

Σ∇
0

Σ
�
0

Σ∇
0

Σ
�
0

(1/c)ρ0(x)

(dµc
min/dx)(x)

Figure 4.1 A schematic diagram showing the relation of

the minimizer µc
min(x) to the interval systems Σ∇

0 and Σ∆
0 .

The nodes xN,j ∈ (a,b) are indicated on the x-axis with

triangles; their density is proportional to the upper con-

straint. The common endpoints of subintervals of Σ∇
0 and

Σ∆
0 converge as N → ∞ to the points yk indicated on the

x-axis.

saturated regions, the effect will be to turn exponentially growing factors into exponen-

tially decaying factors. Let us be more specific about how we choose ∆. In each band Ik

lying between a void and a saturated region, we choose a point yk, and “quantize” these

to the lattice XN by associating with each point a sequence {yk,N}∞N=0 converging to yk as

N → ∞ with elements given by

N

∫yk,N

a

ρ0(x)dx =

⌈
N

∫yk

a

ρ0(x)dx
⌉
, (4.9)

where �u� denotes the least integer greater than or equal to u. Thus yk,N lies asymptoti-

cally halfway between two consecutive nodes. For each N, these points are the common

endpoints of two complementary systems of subintervals of (a, b). We denote the union

of open subintervals delineated by these points and containing no saturated regions by

Σ∇
0 . The complementary system of subintervals contains no voids and is denoted by Σ∆

0 .

See Figure 4.1.

Based on this partitioning of (a, b), the specific choice we make is that∆ is the set

of indices j ∈ ZN such that xN,j ∈ Σ∆
0 .
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Remark 4.2. After the completion of this work, we learned that an analogous transfor-

mation was used in [5] for a somewhat different asymptotic analysis of a special choice

of discrete orthogonal polynomials (Askey-Lesky weights, or general Hahn weights). In

[5], the choice of the region ∆ to reverse the triangularity was made using intuition from

representation theory. (We thank A. Borodin for bringing this to our attention.) For the

limit of interest in this paper, we determine the region ∆ in order to reverse the triangu-

larity in saturated regions of the equilibrium measure while preserving triangularity in

all voids.

4.2.1 Dual families of discrete orthogonal polynomials. The relation between Riemann-

Hilbert Problem 1 and Riemann-Hilbert Problem 2 gives rise in a special case to a

remarkable duality between pairs of weights {wN,j} defined on the same set of nodes and

their corresponding families of discrete orthogonal polynomials that comes up in appli-

cations. Given nodes XN and weights {wN,j}, take ∆ = ZN and let

P
(
z;N,k

)
:= σ1Q(z;N,k)σ1, k := N− k. (4.10)

Thus, we are reversing the triangularity at all of the nodes, and swapping rows and

columns of the resulting matrix. It is easy to check that P(z;N,k) satisfies

P
(
z;N,k

)(z−k 0

0 zk

)
= I +O

(
1

z

)
, as z −→ ∞, (4.11)

and is a matrix with simple poles in the second column at all nodes, such that

Res
z=xN,j

P
(
z;N,k

)
= lim

z→xN,j

P
(
z;N,k

)(0 wN,j

0 0

)
(4.12)

holds for j ∈ ZN, where the “dual weights” {wN,j} are defined by the identity

wN,jwN,j

N−1∏
n=0
n�=j

(
xN,j − xN,n

)2
= 1. (4.13)

Comparing with Riemann-Hilbert Problem 1, we see that P11(z;N,k) is the monic orthog-

onal polynomial πN,k(z) of degree k associated with the dual weights {wN,j}. In this sense,
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families of discrete orthogonal polynomials always come in dual pairs. An explicit rela-

tion between the dual polynomials comes from the representation of P(z;N,k) given by

Proposition 4.1:

πN,k(z) = P11

(
z;N,k

)

= P22(z;N,k)
N−1∏
n=0

(
z− xN,n

)

=

N−1∑
j=0

wN,j

[
c

(k−1)
N,k−1

]2
πN,k−1

(
xN,j

)N−1∏
n=0
n�=j

(
z− xN,n

)
.

(4.14)

Since the left-hand side is a monic polynomial of degree k = N−k and the right-hand side

is apparently a polynomial of degree N − 1, equation (4.14) furnishes k relations among

the weights and the normalization constants c(k)
N,k.

In particular, if we evaluate (4.14) for z = xN,l for some l ∈ ZN, then only one

term from the sum on the right-hand side survives and we find

πN,k

(
xN,l

)
=
[
c

(k−1)
N,k−1

]2
wN,l

N−1∏
n=0
n�=l

(
xN,l − xN,n

) · πN,k−1

(
xN,l

)
, (4.15)

an identity relating values of each discrete orthogonal polynomial and a corresponding

dual polynomial at any given node. The identity (4.15) has also been derived by Borodin

[2].

Remark 4.3. We want to point out that the notion of duality described here is different

from that explained in [25]. The latter generally involves relationships between families

of discrete orthogonal polynomials with two different sets of nodes of orthogonalization.

For example, the Hahn polynomials are orthogonal on a lattice of equally spaced points,

and the polynomials dual to the Hahn polynomials by the scheme of [25] are orthogonal

on a quadratic lattice for which xN,n − xN,n−1 is proportional to n. However, the polyno-

mials dual to the Hahn polynomials under the scheme described above are the associated

Hahn polynomials, which are orthogonal on the same equally-spaced nodes as are the

Hahn polynomials themselves. The notion of duality we use in this paper coincides with

that described in [2] and is also equivalent to the “hole/particle transformation” consid-

ered by Johansson [18].
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Figure 4.2 The contour Σ consists of the subintervals Σ∇
0 and Σ∆

0 as in Figure 4.1

and associated contour segments Σ∇
+ and Σ∆

+ in the upper half-plane, and Σ∇
− and

Σ∆
− in the lower half-plane. The enclosed regions Ω∇

± and Ω∆
± are also indicated. The

contour Σ lies entirely in the region of analyticity of V(x) and ρ0(x). All components

of Σare taken to be oriented from left to right.

4.3 Removal of poles in favor of jumps on contours

The deformations in this section are based on similar ones first introduced by one of the

authors in [24]. Let the analytic functions β±(z) be given by

β±(z) := ±i exp

(
∓ iπN

∫b

z

ρ0(s)ds
)
. (4.16)

Note that by definition, β+(xN,j) = β−(xN,j) = (−1)N−1−j for all N ∈ N and j ∈ ZN.

Consider the contour Σ illustrated in Figure 4.2. From the solution of Riemann-Hilbert

Problem 2 we define a new matrix R(z) as follows. Set

R(z) := Q(z;N,k)



1 −β±(z)e−NVN(z)

∏
j∈∆

(
z− xN,j

)
∏
j∈∇

(
z− xN,j

)
0 1


 , for z ∈ Ω∇

± , (4.17)

R(z) := Q(z;N,k)




1 0

−β±(z)eNVN(z)

∏
j∈∇

(
z− xN,j

)
∏
j∈∆

(
z− xN,j

) 1


 , for z ∈ Ω∆

±, (4.18)

and for all other z set R(z) := Q(z;N,k).
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The matrix R(z) is, for arbitrary N ∈ N and k ∈ ZN, the unique solution of the

following Riemann-Hilbert problem.

Riemann-Hilbert Problem 3. Find a 2× 2matrix R(z) with the following properties:

(1) Analyticity. R(z) is an analytic function of z for z ∈ C \ Σ.

(2) Normalization. As z → ∞,

R(z)

(
z#∆−k 0

0 zk−#∆

)
= I +O

(
1

z

)
. (4.19)

(3) Jump Conditions. R(z) takes continuous boundary values on Σ from each con-

nected component of C\Σ. Denoting the boundary values taken on the left (right) by R+(z)

(R−(z)), we have

R+(z) = R−(z)



1 ±β±(z)e−NVN(z)

∏
j∈∆

(
z− xN,j

)
∏
j∈∇

(
z− xN,j

)
0 1


 , for z ∈ Σ∇

± , (4.20)

R+(z) = R−(z)




1 0

±β±(z)eNVN(z)

∏
j∈∇

(
z− xN,j

)
∏
j∈∆

(
z− xN,j

) 1


 , for z ∈ Σ∆

±, (4.21)

R+(z) = R−(z)



1
(
β−(z) − β+(z)

)
e−NVN(z)

∏
j∈∆

(
z− xN,j

)
∏
j∈∇

(
z− xN,j

)
0 1


 , for z ∈ Σ∇

0 , (4.22)

R+(z) = R−(z)




1 0

(
β−(z) − β+(z)

)
eNVN(z)

∏
j∈∇

(
z− xN,j

)
∏
j∈∆

(
z− xN,j

) 1


 , for z ∈ Σ∆

0 . (4.23)
�

Note that all off-diagonal entries of the jump matrices are analytic nonvanishing func-

tions on their respective contours.
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The significance of passing from Riemann-Hilbert Problem 2 to Riemann-Hilbert

Problem 3 is that all poles have completely disappeared from the problem. All boundary

values of R(z) and the corresponding jump matrices relating them are analytic functions.

This means that Riemann-Hilbert Problem 3 is sufficiently similar to that introduced in

[14] for the continuous weight case that it may, in principle, be analyzed by methods like

those used in [10, 11]. The main obstruction at this point is that the off-diagonal ele-

ments of the jump matrices for R(z) are not exactly of the form eNW(z) for some W(z).

This is a consequence of the fact that the sequence of transformations P 	→ Q 	→ R is

exact, and one may observe at this point that the desired form eNW(z) can be achieved

by carefully taking a natural continuum limit based on the assumptions on the nodes

and weights set out at the beginning of this announcement. In other words, while the

jump matrix for R does not have the desired form, one may introduce an approximate

Riemann-Hilbert problem for a matrix Ṙ(z) for which the jump matrix indeed has the de-

sired form; part of the analysis then becomes the task of showing that R(z) and Ṙ(z) are

“close.”

Remark 4.4. The difficulty that prevents us from obtaining asymptotic results near the

band edges can be traced back precisely to the fact that the off-diagonal elements of the

jump matrices for R(z) are not exactly of the form eNW(z), but only approximately so.

In the local analysis, the (small) discrepancy between the approximate and the exact

form prevents us from obtaining the necessary asymptotics up to the boundary of the

contours. We hope to be able to overcome this problem in a future work.

The final aspect of our analysis that we would like to briefly describe is our choice

of a g-function with which we stabilize the (approximate) Riemann-Hilbert problem for

Ṙ(z). We introduce a new matrix unknown by the transformation Ṡ(z) := Ṙ(z)e(#∆−k)g(z)σ3

where the g-function is given by

g(z) =

∫b

a

log(z− x)ρ(x)dx (4.24)

with density determined differently in the two types of intervals Σ∇
0 and Σ∆

0 :

ρ(x) :=




c

c− d

dµc
min

dx
(x), x ∈ Σ∇

0 ,

c

c− d

(
dµc

min

dx
(x) −

1

c
ρ0(x)

)
, x ∈ Σ∆

0 .

(4.25)
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Here of course µc
min is the equilibrium measure, c = k/N, and

d :=

∫
Σ∆

0

ρ0(x)dx =
#∆
N
. (4.26)

With this choice of g(z), in conjunction with the choice of the set ∆ described above, the

jump matrices for Ṡ(z) are precisely of the type for which the steepest-descent factor-

ization technique can be applied. Also, Ṡ(z) is now normalized to the identity matrix for

large z; the power asymptotics have been removed. The complete details of the subse-

quent analysis, including rigorous error estimates, will appear in the full version of the

paper corresponding to this announcement.
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