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Abstract 

Fully nonlinear modulation equations are presented that govern the slow evolution of single-phase harmonic wavetrains 
under a large family of spatially discrete nonintegrable flows, among which is the discrete nonlinear Schrtdinger equation 
(DNLS). These modulation equations are a pair of partial differential equations in conservation form that are hyperbolic 
for some data and elliptic for other data. In some cases these equations are capable of dynamically changing type from 
hyperbolic to elliptic, a phenomenon that has been associated with the modulational instability of the underlying wavetrain. 
By putting the modulation equations in Riemann invariant form, one can select initial data that avoid this dynamic change 
of type. Numerical experiments demonstrating the theoretical results are presented. 

1. Introduct ion 

In this paper, we begin an investigation of the be- 
havior and interactions of modulated wavetrains in dis- 
crete lattices described by an infinite number of cou- 
pled ordinary differential equations. Specifically, we 
study the evolution of a slowly modulated single-phase 
wavetrain under a large family of (generally noninte- 
grable) flows, by formally deriving the corresponding 

modulation equations. 
In a more general setting, the goal is to identify re- 

gions of the lattice phase space in which the dynamics 
can be described by a macroscopic model that is sim- 
pler (in the sense of being more intuitive or amenable 
to analysis) than the full microscopic lattice system. 
The macroscopic model is obtained by representing 
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the behavior locally in space and time by one of the 
known exact solutions. 

Our primary interest in constructing modulation 
equations for discrete systems is to extend families 
of known exact solutions using analytical methods. 
Although the discrete systems considered here have 
many physical applications, typically all that is known 
analytically about the system is the existence of such 
a solution family. As a concrete representative ex- 
ample of such a discrete lattice, we use the discrete 
nonlinear Schrtdinger equation (DNLS), 

iAj+e(Aj_l -2Aj + Aj+I )  +ylAjI2Aj =0, (1) 

where j is an integer index, and Aj(t) is a complex 
function of time. This lattice model has been used 
as a numerical scheme for integrating the continu- 
ous nonlinear Schr6dinger equation [ 8 ], as a model 
for phonon-exciton interactions in alpha-helix proteins 
[5,5], and as an envelope equation for harmonic os- 
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cillations in the linear frequency band of weakly non- 

linear, strongly dispersive lattice equations [ 10]. It 

is well known that the DNLS equation has a two- 
parameter family of harmonic plane wave solutions of 

the form 

A j ( t )  = A e  i (k j -° ' ' )  , (2) 

where the complex amplitude A, unit cell twist angle 

(or wavenumber) k, and frequency w are linked by 

the dispersion relation 

~o = 2e(l - cos k) - T ] A ]  2 . (3) 

This solution is spatially periodic only in the case 
when k is a rational multiple of 2¢r. We are inter- 

ested in an explicit analytical characterization of any 

solutions of the underlying DNLS lattice that may be 

considered to be wavetrains in which the parameters 

are taken to be slowly varying in space and time. For 

example, it is known that the continuous nonlinear 

Schr6dinger equation (NLS) has an analogous family 

of plane wave solutions, and in the defocusing case 

( e y  < 0) there exist stable, slowly modulated plane 

waves. One of our interests here is the degree to which 
the same story holds for the harmonic plane wave so- 

lutions to the DNLS lattice. 

However, our interests run deeper as well. We be- 

lieve that in several ways the modulation theory for 
lattices plays a no less fundamental role in applied 

mathematics than the corresponding theory for PDE's. 

On the one hand, this is because the lattice modula- 

tion theory presented in this paper is capable of re- 

producing certain formal results from standard PDE 
modulation theory. For example, it will be shown later 
that, in the case where the lattice has a partial differ- 
ential evolution equation as its continuum limit, the 

lattice modulation equations contain the correspond- 
ing continuum modulation equations in an appropriate 

limit; in this sense, the modulation theory for the lat- 
tice is richer than that of the corresponding PDE. On 
the other hand, numerical analysis favors the study of 
the appearance of macroscopic behavior in lattices to 
that in PDEs. This is because the full microscopic dy- 
namics can be integrated numerically without spatial 
discretization errors. Such ease of computation should 
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be contrasted with the case of macroscopic behav- 

ior in PDEs, where accurate numerical integration of 
the microscopic system involves keeping track of high 

wavenumber modes present in the microstructure as 
well as the low wavenumber modes associated with 

the modulations; the problem is inherently spatially 

stiff. 
Let us illustrate the phenomenology. Denote by p 

the quantity ]A[ 2. Take p and k to be the two inde- 

pendent real parameters of the DNLS harmonic plane 

wave family, and consider preparing a lattice of 400 

sites arranged in a periodic ring in a state described by 

a wave train with spatially constant k and an envelope 

given by an expression of the form 

]A.jt 2 = a + b sech(cj) , (4) 

with the constant c chosen so that the envelope has sta- 

bilized sufficiently in the wings to approximately sat- 

isfy the periodic boundary conditions. We integrated 

the DNLS equation with this data using a variable or- 

der Adams-Bashforth ODE solver, and, at several sub- 
sequent times, the macroscopic quantities p and k were 

extracted from the data. Snapshots of these fields are 

reproduced in Fig. l, with the initial condition fields 
emphasized using thicker curves. It is clear that the 

ansatz of a modulated harmonic wavetrain is in fact 

valid for a time long compared to the local period of 

the wavetrain determined by (3). In fact, the ratio of 

the length of time between snapshots in the figure to 

the microscopic period is about 5. However, the reg- 
ularity is destroyed locally by the eventual formation 

of a cusp-like singularity, as well as a steepening sug- 

gestive of shock formation. 
This numerical evidence suggests that the macro- 

scopic fields p and k should have a dynamical descrip- 

tion that is independent of the details of the micro- 
scopic evolution. In Section 2 it will be shown that 
this is indeed the case, and we will develop equations 
for the macroscopic fields. Our procedure is based on 
the averaging of discrete versions of local conserva- 
tion laws, followed by a passage to the continuum 
limit in the macroscopic field variables. This method 
is very much in the spirit of the work of Whitham in 
the mid 1960's [ 16], and an extension of the method 
to nonintegrable discrete problems is utilized in the re- 
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Fig. 1. Above: The macroscopic quantity p. Below: The macro- 
scopic quantity k. 

cent work of Levermore and Liu [ 11,12]. In deriving 
modulation equations, we proceed in some generality 
by embedding the DNLS equation in a large family 
of lattice models that also includes the integrable dis- 
cretization of NLS due to Ablowitz and Ladik [2]. 

Section 3 contains an analysis of the modulation 
equations, with particular emphasis on the special case 
of the DNLS equation. The characteristic velocities 
and the corresponding domains of hyperbolicity will 
be written down. It will then be clear that the for- 
mation of the cusp in Fig. 1 is preceded locally by 
a change of type of the equations from hyperbolic to 
elliptic, which echos Whitham's condition for modu- 

lational instability and local breakdown of the plane 
wave ansatz. Section 3 also includes a discussion of the 
corresponding linear stability analysis, which, while 
less useful prior to change of type, provides the ex- 
plicit local stable and unstable manifolds after change 
of type. 

Section 4 introduces the Riemann-invariant form of 
the modulation equations, which permits the identifi- 
cation of a class of macroscopic data that never expe- 
riences dynamic change of type. For data in this class, 

the only type of singularity that can form in the modu- 
lational system is an infinite derivative in finite time. If  
the modulation equations were not representing a cer- 
tain microscopic system in a macroscopic limit, one 
might interpret such a steepening as the onset of a hy- 
perbolic shock; in the present case however, the loss 
of regularity corresponds to the local reemergence of 
the microscopic dynamics. In some cases, this class 
of permanently hyperbolic macroscopic data can be 
described explicitly in terms of the "physical" macro- 

scopic variables p and k, although it is much more 
naturally described in terms of the Riemann invari- 
ants. The utility of our classification scheme will be 
demonstrated with a numerical experiment in which 

initial data is chosen to avoid change of type, and it 
is shown that our prediction is borne out and that the 
evolution is regular until a shock forms. 

Finally, Section 5 explores some questions left 
unanswered by our description of modulated har- 
monic plane waves. Also the possible extension of 
our methodology to discrete analogs of multiphase 

wavetrains will be discussed, along with comments 
on the universality of and interactions among such 
wavetrains. 

2. Modulation equations for plane waves 

Below we will develop a fully nonlinear modulation 
theory for harmonic plane wave solutions of a general 
lattice model that contains the DNLS ( 1 ) and several 
other important models as special cases and takes the 
form 

iA: + f(IAjI2)(Aj+~ -4- Aj - I )  + F(IAjI2)Aj = O. 
(5) 

Our numerical simulations employ periodic boundary 
conditions on the integer index j;  however, the analy- 
sis will be purely local, so that the results will hold for 
arbitrary boundary conditions. The functions f and F 
will be assumed to be polynomial functions of their 
arguments with real coefficients. In addition, it is use- 
ful to take f ( p )  > 0 for all p > 0 (or alternatively to 
consider modulations of wavetrains with amplitude p 
such that f ( p ) > 0). 
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There are several choices one can make for the func- 

tions f and F such that the system (5) has the NLS 

equation as its continuum limit: 

- f ( p )  = E and F(p) = -2E + yp. This corresponds 

to the DNLS equation. 

- f ( p )  = e+yp/3  and F(p) = -2e+yp/3 .  This isa  
new discretization of  the NLS which was proposed 

recently by Salerno [ 14]. 

- f ( p )  = E + yp/2 and F(p) = - 2 e .  This is the 

Ablowitz-Ladik equation [2].  It is the only non- 

trivial case of  (5) (here, nontrivial means F and f 

nonconstant) that is known to be completely inte- 

grable. 
In order to obtain the continuum limit, note that it is 

necessary to scale E as 1/h 2, where h is the vanishing 

lattice spacing. 
The system (5) is Hamiltonian and possesses a non- 

standard sympletic structure; the reader is referred to 

Appendix A for details on this formulation. Generally, 

there are two known constants of  motion: 

= ~ (2IAjl  2 - Aj+I - Aj-I 12 H 
t. 

J 

IZjl  2 fF(y) dy} 
+ f ( y )  ' 

o 

IzJl  z 

f dy N = ~ (6) 
f (Y )  

J o 

Here, H is the Hamiltonian for (5) and N is called 

the norm or number. 

We seek a modulational description of  harmonic 

plane waves of  (5).  It is easy to see that a solution of  

the form 

A j = V/-fie i( k j - °J t  ) (7) 

satisfies (5) if w obeys the dispersion relation 

o) + 2 f ( p )  cos k + F(p) = 0. (8) 

Taking p and k as the independent parameters of  this 

solution family results in a 2-manifold of  microscopic 
states for the lattice system (5).  

In order to obtain modulation equations it is neces- 
sary in our scheme to have a set of  conservation laws 

in local form. Given the form of  the global conserved 
quantities H and N, it is reasonable to seek local con- 
servation laws of  the form 

d 
~ N j  + (Qj - Q j - I )  = 0 ,  

d 
-~Ej + (Rj - R.i_j) = 0 ,  (9) 

where the densities are given by the summands in (6) 

Ia j l  2 

/ dy 
Nj = f (Y)  , 

o 

IAjl 2 

F(y) 
Ej =21Zs l  2 - IA;+~ - Zi 2 + ~ dy. (10) 

0 

It turns out that such a local representation does indeed 

exist and that thefluxes are given by 

Qj = 2 Im(Aj  A j+l ) , 

Rj = 2Im(ZTZi+2 + Z]+2Zj+l + A~Aj+, ) 

× f (  IA;+I 12) + 2Im(A~Aj+l)  F( ]Aj+I 12 ) .  
(11) 

We will obtain modulation equations for the plane 

waves by inserting the plane wave solution ansatz into 

the density and flux terms and passing to the contin- 

uum limit in the parameters of" the ansatz. 
To introduce the macroscopic scale, allow p and 

k to depend on the continuous variable x = jh and 
let h .[ O. Our ansatz becomes (suppressing the time 

dependence) 

A j = ~ e  iO(x)/h , (12) 

where k is defined as Ox. Evaluating the densities Ni, 
El, and the fluxes Qi and Ri o n  this ansatz and pass- 
ing to the continuum limit h I 0 yields the limiting 

expressions 

p 
N = J  dy 

f ( y )  ' 
o 

Q = 2p sin k, 
p 

J F(y) 
E = 2 p c o s k  + ~ dy,  

o 
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R = 2 p ( f ( p )  cos k + F(p)  ) sin k. (13) 

Finally, in order to make the flux difference con- 
verge to a derivative in x, we must divide (9) by the 
vanishing lattice spacing, h. This means that, formally, 
we must pass to the limit h + 0 on a stretched time 

scale of T = ht. 
This procedure yields a system of PDEs in conser- 

vation form: 

ON OQ 
+-L-x =0, 

cgE OR 
- ~ + ~ x  = 0 .  (14) 

From these, one easily obtains equations for the pa- 
rameters p and k: 

Op O 
O-T - f ( P )  Ox [2p sin k] = 0,  

Ok 0 
0-T + ~xx [ 2 f ( p )  cos k + F ( p ) ]  = 0. (15) 

It is evident from these equations that the "total 

twist" f k ( x )dx  is a conserved quantity. Note that, 
while this discrete analog of "conservation of waves" 
follows naturally from the conservation law limiting 
procedure, it is built-in a priori by the alternative ap- 
proach outlined in Appendix A based on averaging of 
a variational principle. 

In the special case of the DNLS equation, the above 
modulation equations (15) take the form 

0p 
~ + (2~psink)  = 0,  

Ok 0 
~ + ~ x x ( - y p -  2ecosk)  = 0. (16) 

So, for the DNLS equation, the "total norm" f p(x)  dx 
is also a conserved quantity. 

3.  S t r u c t u r e  o f  t h e  m o d u l a t i o n  e q u a t i o n s  

The behavior of a system of equations like (15) 
is determined by the existence or nonexistence of a 
sufficiently large family of real characteristic curves 
along which information propagates. In this section, 
the nature of the characteristic directions for (15) will 

be interpreted in the context of the stability of the 

underlying plane wave ansatz, and connections will 
be drawn to the numerical experiment discussed in 
Section 1. 

The characteristic velocities for the modulation 
equations (15) are given by 

A+ = - 2 f ( p )  sin k 

± V / - 2 p f ( p )  [ 2 / ' ( p )  cosk + F ' ( p ) ]  cos k. 
(17) 

In the specific case of the DNLS this expression re- 

duces to 

A+ = 2e sin k -4- X/ -2ayp cos k. (18) 

Strict hyperbolicity of the equations, which leads to 
stable modulations, requires real and distinct veloci- 
ties. For the DNLS modulation equations there are two 

cases: 
- In the focusing case, Ey > 0, the equations are 

hyperbolic when cos k < 0, which corresponds to 

short waves. 
- In the defocusing case, ey < 0, the equations are 

hyperbolic when cos k > 0, which corresponds to 

long waves. 
At this point, we once again draw the reader's at- 

tention to Fig. 1. The initial data lies entirely in the 
hyperbolic region. Note that the location of the cusp 
singularity corresponds to a region where cos k has 
changed sign (the boundaries of the region of hyper- 
bolicity are shown as dashed lines in the lower plot), 
and hence the modulation equations have locally be- 
come elliptic. Our numerical experiments suggest that 
the length of time (as measured on the T scale) be- 
tween the change of sign of cos k and the onset of 
less regular behavior vanishes as the lattice is refined. 
This dynamic change of type has not been observed in 
the modulation equations corresponding to integrable 
models, where the only singularities that are observed 

are hyperbolic shocks. 
Let us compare these stability results to those ob- 

tained from straightforward linear analysis (carried 
out in detail in Appendix B). The result of this stan- 
dard analysis is that a uniform wavetrain is unstable 
to a perturbation of relative wavenumber Ak if 



- y p / e  > (1 - cosAk)  cosk when cosk > 0 (long 
waves), 

- ) ,p /e  < (1 - cosAk)  cosk when cosk < 0 (short 
waves). 

Thus when there is a Ak satisfying these conditions, 

the wavenumber k experiences instability. Existence 
of  such a Ak corresponds exactly to the conditions de- 

rived above for ellipticity of  the corresponding modu- 

lation equations. Hence, the modulation equation ap- 

proach to modulational instability and the linear sta- 

bility analysis approach agree on this crucial point. 

However, we also want to point out the complementar- 

ity of  these two approaches. The modulation equation 

approach gives useful dynamical information (a hy- 

perbolic system) prior to instability, but results in ill- 

posed elliptic equations at the onset of  instability. The 

linear stability analysis, on the other hand, while say- 

ing virtually nothing about well-behaved global mod- 

ulations, provides an explicit description of  the local 

unstable manifolds following the onset of  the insta- 

bility. In the particular case of  the DNLS, for exam- 

ple, the instability begins with an infinite-dimensional 

manifold composed of  perturbative wavenumbers in a 

narrow sideband of  the local wavenumber k. 

The stability criterion for the modulation equations 
associated with the Ablowitz-Ladik equation is very 

different from that given above in the DNLS case. In 

the Ablowitz-Ladik case, the velocities are never real 

in the focusing version ey  > 0. Thus all plane waves 

are unstable in this case. The defocusing version of  the 

system is somewhat more delicate; there is a threshold 

value of  p below which the velocities are always real 

and above which the velocities are always complex. 

Moreover the threshold value is a barrier which cannot 
be dynamically crossed. The consequence is that there 

can be no dynamical change of  type in the modulation 

equations for the Ablowitz-Ladik system. 
Furthermore, the behavior of  modulated harmonic 

waves in the DNLS equation should be strongly con- 
trasted with the corresponding behavior in the contin- 
uous NLS equation 4. In the focusing NLS equation, 

all such modulated waves are unstable (the modula- 

4 Considered in the whole-line case to allow for a continuum of 
perturbative wavenumbers. 
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tion equations are elliptic), while for the defocusing 

case, all such modulated waves are stable. There is no 

dynamic change of  type, and moreover, the stability 

does not even depend on the data. In the DNLS equa- 

tion, however, hyperbolic and elliptic data coexist in 

both focusing and defocusing cases. Also, as in the 
example in Section 1, it is possible for an initial con- 

dition that is globally hyperbolic to evolve under the 

modulational system into a state that is locally elliptic. 

In spite of  the differences, the modulation equations 

for the continuous NLS equation can be recovered 

from (16) through the following formal limit process. 
Replacing e by e / h  2 and k by hk in (16),  and pass- 

ing to the limit h I 0 yields the familiar plane wave 

modulation system for the NLS equation 

3p 3 
+ ~ = ( 2 e p k )  = O, 

~ x  
Ok 3 
3---T + ~x ( -  yp  + eke) = 0 ,  (19) 

where the modulation equations then contain the spa- 

tial scale 2 = hx = h2j, and the time scale T = ht. In 
this way the modulation theory for the DNLS is more 

general than that of  the continuous NLS. 

4. Singularities and Riemann invariants 

In general, only two types of  singularities may 

evolve from initially smooth hyperbolic data. One is a 

hyperbolic singularity associated with a folding-over 

of  the manifold of  real characteristics. The other is a 

dynamic change of  type in which the characteristic 
speeds become complex. In this section we present 

tools which allow us to identify hyperbolic data that 
will not undergo such a change of  type. 

In order to proceed, the system of  modulation equa- 
tions (15) is written in Riemann invariant form 

Or± . ar+ 
+ , ~ ± ( r + , r _ ) T ; -  x = 0 ,  (20) 

0--T- 

where A± are the characteristic velocities of  the orig- 
inal modulation equations expressed in terms of  the 
Riemann invariants, r±. Expressing hyperbolic ini- 
tial data parametrically as functions of  x in terms of  
r±,  one obtains a curve in the (r+, r_ ) plane, which 
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we call the Riemann signature of the data. Note that 
the map taking the data to its signature has no in- 
verse, since all the dependence on x has been removed; 
that is, r± (x) and r± ( h (x) )  have the same signature 
whenever h ( x )  is a homeomorphism of the line. The 
extreme values of r± in a particular signature define 
a rectangle in the (r+, r_ )  plane which we call the 
Riemann signature box. Under the hyperbolic evolu- 
tion of (20) the signature will generally change, but 
the signature box remains invariant. 

In general the Riemann invariants for hyperbolic 
data, r + ( p , k ) ,  only take values in a subset of the 
(r+, r_ ) plane, called the admissible region. Although 
the initial signature of such data must lie in this re- 
gion, part of the box may lie outside of the admis- 
sible region. Thus, if the box lies entirely within the 
admissible region, one may conclude that the modu- 
lation equations will not change type, as the data will 
be confined to the admissible region, where the mod- 
ulation equations are hyperbolic. On the other hand, 
if some portion of the box lies outside the admissi- 
ble region, the hyperbolic evolution of (20) may lead 
the signature to the edge of the admissible region, at 
which time a change of type occurs. 

Note that any system of two conservation laws can, 
in principle, be put into the form (20), while larger 
systems cannot generally be written this way. In prac- 
tice, however, it is necessary even for the two-equation 
case to integrate simultaneous differentials for which 
there is no obvious integrating factor. We therefore 
focus on cases where we can identify an integrating 

factor. 
Finding the Riemann invariants for our system in- 

volves diagonal±zing the Jacob±an of the spatial deriva- 
tive terms in the modulation equations. The Jacob±an 
is 

[ - 2 f ( p )  sink - 2 p f ( p )  cosk]  
J = [ 2 f ' ( p )  cosk + F ' ( p )  - 2 f ( p )  sink ] " (21) 

In each of the specific examples we have mentioned, 
the functions f '  (p)  and U (p) have been proportional 
to the same positive function, say ~p(p). In such cases, 
there is an obvious integrating factor; hence, the Rie- 
mann invariants can be expressed as 

k 
1 / ~/ cos u 

r± = - ~  - 2 ( 2 a  cos u + fl) 
/co 

1 j / ~O(rl) • 
q-20 V~-'f~ at/ ,  

du 

(22) 

where f l ( p )  = crop(p) and F ' ( p )  = fl~o(p). The base 
point k0 in the first integral is chosen to be in the 
region of hyperbolicity (which corresponds to reality 
of the integrand). These Riemann invariants are of the 
general form 

r+ = A ( k )  + B ( p )  ; (23) 

we will say more about the consequences of this below. 
The admissible region for these Riemann invariants is 
a tilted rectangle defined by 

r + + r _  
Amin < - -  < Amax , 

2 
r+ - r_ 

Brain < - -  < Bmax, (24) 
2 

where A ~ x ,  Am±n, nmax, and Brain are the extreme val- 
ues taken on by the functions A and B for hyperbolic 
data, some of which may not be finite. 

In the case of the DNLS equation, the result is 
particularly simple. Let A ( k )  be the primitive of 
( 1/y) x / - 2 e y  cos k that has mean value zero over the 
bounded interval of hyperbolicity in k. Note that the 
domain of A (k) depends upon the sign of cy, whereas 
the range does not. Then the Riemann invariants are 

r ± ( p ,  k) = A ( k )  :t: 2x/- ft. (25) 

The admissible region is a half strip given by 

~ - - 7 -  <1 .69  I ~ l ,  

r+ < r _ .  (26) 

The factor 1.69 is the maximum of ]A(k) l ~ .  
Fig. 2 is a graph of the signatures of the data snap- 

shots shown in Fig. 1, along with the admissible region 
and signature box. Once again the initial signature is 
emphasized using larger points. Note that whereas the 
initial data lies within the admissible region, the up- 
per right-hand corner of the box does not. The hyper- 
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Fig. 2. The evolution of the Riemann invariant signature for Fig. 1. 

bolic evolution leads the signature to the edge of the 
admissible region, at which point a change of type oc- 
curs corresponding to the formation of the cusp-like 
singularity seen in Fig. 1. 

Next we select initial data whose signature box lies 
entirely within the admissible region. The evolution 
of this data is displayed in Fig. 3. Note that the entire 
evolution of  the k field lies between the dashed lines, 
and hence the data is hyperbolic forever. 

The corresponding Riemann invariant signature is 
shown in Fig. 4. Note that in this case a change of 
type is prevented since the signature box is completely 
contained within the admissible region, and the only 
singularity to appear is a hyperbolic shock. Hence, 
the Riemann invariant signature is a useful tool for 
identifying data which will n o t  experience a change 
of type. 

The most convenient representation of a modulated 
plane wave is through the quantities p and k, which 
have the interpretations of amplitude and wavenum- 
ber (or unit cell twist) respectively. Ideally then, one 
would like to be able to prepare a lattice in a hyper- 
bolic macroscopic state described in terms of these 
"convenient" variables such that the evolution will not 
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Fig. 3. Above: The macroscopic quantity p. Below: The macro- 
scopic quantity k. 
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Fig. 4. The evolution of the Riemann invariant signature for Fig. 3. 
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change type. This requires a direct translation of the 

condition that the signature box be contained in the 

admissible region in terms of the given data p ( x )  and 

k ( x ) .  There are two interesting types of data for which 

such a translation is possible given Riemann invari- 
ants of the separated form r+ = A ( k )  -4- B ( p ) .  We 

use the following names for these two types of data: 

- Amplitude modulated (AM) data. In this case, the 

twist k is constant in x. 

- Frequency modulated (FM) data. In this case, the 

amplitude p is constant in x. 

These names are meant to be suggestive of the wave- 

forms; they are accurate if the data in x is visualized as 

a time series. In each of these two cases, the Riemann 

invariant signature of the data is a straight diagonal 

line segment, the endpoints of which define the sig- 

nature box. In order that this signature box lies within 

the tilted rectangle that is the admissible region, we 

must only check that the two remaining corners of the 

square-shaped box are inside the admissible region. 

The length of the signature segment is the variation 

of the data measured using the A function in the FM 

case and using the B function in the AM case. The 

conditions for the permanence of hyperbolicity are: 

- in the AM case, 

A ( k )  + ½ [ s u p B ( p ( x )  ) - i n f B ( p ( x ) ) ]  < Amax, 
x x 

A ( k )  - ½ [sup B ( p ( x )  ) - i n f B ( p ( x )  ) ] > Ami n ; 
x x 

(27) 

- and in the FM case, 

B ( p )  + ½ [sup A ( k ( x )  ) - i n f A ( k ( x )  ) ] < Bmax , 
x x 

B ( p )  - ½ [sup A ( k ( x )  ) - i n f A ( k ( x )  ) ] > Bmi n . 
x x 

(28) 

As an illustration of this result, consider once again 
the DNLS case with FM data depicted in Fig. 5. We 

see that the admissible region is a semi-infinite strip, 

so that Bmax is not finite. It appears that it is very easy 
to find FM data that is permanently hyperbolic, since 
there is only one effective constraint which takes the 
form 

B ( p )  > ½ [ s u p A ( k ( x ) )  - i n f A ( k ( x ) ) ] ,  (29) 
x 

F+ 

~ J 

iiii!ili!ii!i!ilil 
F_ 

Fig. 5. The Riemann signature for the DNLS with FM data. The 
admissable region is shaded. 

since Brain = O. Furthermore, it is possible to use the 
bounds on the function A to obtain a sufficient con- 

dition for permanence of hyperbolicity for FM data 

which takes the form 

B ( p )  > l (Ama x - A m i n ) ,  (30) 

and is independent of the twist data k ( x ) .  Thus, suf- 

ficiently large amplitude FM data will always be per- 
manently hyperbolic in the DNLS equation. 

We want to point out that the results for AM and FM 

hyperbolic data can be extended to cover the case of 

data which is only nearly of AM or FM type. This fol- 

lows from the observation that the signature box is de- 

fined by the endpoints of a line segment, so that small 
changes in the middle of the signature segment will 

not change the box or the conditions for permanence 

of hyperbolicity, which depend only on the endpoints. 
So, for example, in the quasi AM case, if the previ- 

ously spatially constant k field is perturbed slightly in 
the neighborhood of x values where B ( p ( x ) )  does 

not take on extreme values corresponding to the end- 
points of the signature segment, permanence of hy- 

perbolicity will be guaranteed by the same conditions 

on the endpoints of the segment as given above. A 
similar argument holds for quasi FM data. In fact, the 
reader will observe that the quasi AM and quasi FM 
classes are invariant under the modulational system 
(15) while the pure AM and FM classes are not. 
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5. Conclusions and future work 

In this paper we have presented a nonlinear modula- 

tion theory for plane wave solutions of a large class of 

discrete dynamical systems. This theory allows one to 

predict the hyperbolic evolution of such modulated so- 
lutions and to identify the types of singularities which 

may form. By passing to the Riemann invariant form 

of the modulation equations, one can identify condi- 

tions under which the initial data are immune to dy- 

namic change of type. In certain instances it is easy to 

translate these conditions into constraints on the orig- 

inal field variables. 

The development of modulation theory for single 

phase wavetrains in linear dispersive PDEs was mo- 

tivated in part by the result of stationary phase anal- 

ysis that all initial disturbances can be described by 

a modulated single phase wavetrain in an appropri- 

ate long time limit. Similar harmonic waves are ob- 
served in the asymptotic aftermath of an initial shock 

in the Toda lattice, as observed and studied by Ho- 

lian, Flaschka, and McLaughlin [9], Venakides, De- 

ift, and Oba [15], and most recently by Bloch and 

Kodama [4]. However, the spontaneous appearance 
of modulated wavetrains is not restricted to integrable 

systems; for example, the numerical results of Lever- 

more and Liu [ 1 1,12] have suggested that the binary 
oscillations whose behavior they have studied in a dis- 

crete Hopf equation can arise naturally from the local 

breakdown of an initially smooth profile. In contrast to 
these well known examples of modulated wavetrains, 

the single phase wavetrains discussed in this paper 

have not been observed to appear spontaneously. We 

want to emphasize that we make no such claim of this 
kind of universality of our plane wave solutions. 

We have said nothing about the resulting local be- 

havior of the lattice when the modulated harmonic 
plane wave picture breaks down. It is possible that 
when this happens, a more complicated multiperiodic 

microstructure appears, which may yield to analysis 
similar to that we have presented above. The com- 
plete macroscopic picture of the lattice then corre- 
sponds to the interactions of several spatially sepa- 
rated phases (in the sense of thermodynamics). Each 
such phase has a nonequilibrium thermodynamical de- 

scription given by the appropriate set of modulation 

equations, and as the modulation equations become 
locally singular, new microscopic behavior takes over. 

It is believed that such a picture of a cascade of inter- 

acting phases is valid in microscopic systems that are 

integrable, but in nonintegrable problems, it is pos- 
sible for local dynamics to appear that are not suffi- 

ciently constrained by constants of motion to be called 

quasiperiodic, and thus are best referred to as a chaotic 

phase. We point out that Levermore and Liu [ 1 1,12] 

observed the appearance of such a chaotic phase in 

their numerical experiments with a nonintegrable dis- 

crete Hopf equation. Our preliminary numerical ex- 
periments indicate that, in the DNLS equation, there 

may be at least one genuine multiperiodic phase be- 

tween the breakdown of the harmonic plane waves and 

the onset of a local chaotic phase. We plan to cata- 
log the phases we observe and obtain a modulational 

description for them. 
How would the procedure presented in Section 2 be 

adapted to the analysis of a more complicated local 
ansatz? Let us review in some generality the proce- 

dure used to obtain modulation equations for the plane 

waves. The algorithm followed above was a special 
case of the averaging of local conservation laws. The 

idea is to identify a family of quasiperiodic solutions 

to the lattice model of the form Aj (t) = ~b(01,02 . . . .  ) 

where Oi = k i j  oJit and ~b is a periodic function 

of each of its arguments independently. In the plane 

wave case above, the family depended on only a sin- 
gle phase variable 0. The solution family is inserted 

into the local conservation laws and the family's pa- 

rameters (which are an independent subset of the ki, 

wi, and possibly other parameters describing, say, am- 
plitudes) are allowed to vary slowly across the lattice 

on the scale x = jh .  In general, the density and flux 
terms will still contain rapidly oscillating degrees of 
freedom that must be eliminated on the macroscopic 
scale. Averaging over any such remaining dependence 

on the fast phase variables Oi results in PDE's which 
govern the evolution of the slowly varying parame- 
ters s. Finally, comparing the magnitudes of the den- 

s Note that in the plane wave case, the l imit ing density and 
flux expressions no longer involved any fast oscillations; this is 
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sities and fluxes in the limit h J. 0 gives the time scale 
that corresponds in the macroscopic limit to the spa- 
tial scale of x = jh .  

In principle, the procedure outlined above could be 
carried out for general multiphase solutions of a gen- 
eral member of the flow family (5),  although the prac- 
ticality of this is governed by two constraints: the kind 
of information one is able to obtain about families of 
exact multiperiodic solutions, and the availability of a 
sufficient number of local conservation laws to control 

the motion [ 1 ]. It is not necessary to obtain an analyt- 
ical expression for the solution family; since the mod- 
ulation equations in general only involve certain av- 

erages of functionals of the solution family evaluated 

in terms of the family's parameters, one only needs to 
be convinced that a solution family exists and be able 
to construct the appropriate averages. Even this proce- 

dure appears to be quite difficult in the general (nonin- 
tegrable) context. This is because understanding prop- 

erties of multiphase waves of the form ~b(01 . . . . .  On) 

in discrete nonintegrable problems amounts to classi- 
fying and analyzing the solutions of a nonlinear com- 
plex (partial) differential equation with delay and ad- 
vance terms. We believe that this analysis is a problem 
best attacked perturbatively (e.g. in the case of weak 
nonlinearity or extreme wavenumbers). 

On the other hand, in the integrable case of the 
Ablowitz-Ladik equation, much more is possible on 
a purely formal level without resorting to the kind 
of analysis mentioned above. The integrable struc- 
ture provides an inexhaustible number of conserva- 
tion laws, as well as a hierarchy of exact quasiperi- 
odic solution families constructed from Riemann theta 
functions. A further benefit of working with the mod- 
ulational behavior of integrable systems such as the 
Ablowitz-Ladik equation is that it is easy to place 
the modulation equations in Riemann invariant form 
regardless of the number of modulational degrees of 
freedom; thus, the characteristic velocities are easily 
recovered, and hyperbolic structure of the equations 
can then be discerned. The recent work of Miller, 

Ercolani, Krichever, and Levermore [ 13] describes 
the class of microscopic oscillations in the Ablowitz- 
Ladik system as well as the formalism of averaging 

the Ablowitz-Ladik conservation laws about multi- 
phase wavetrain solutions, following a procedure first 
used by Flaschka, Forest, and McLaughlin [ 7 ] on the 
Korteweg-deVries equation, and recently applied to 
the Toda lattice [ 15,4]. The analysis of the hyperbolic 
structure of the corresponding modulation equations 
will be developed in a future work along with the 
asymptotic modulation theory of lattice models that 
can be considered to be close to the Ablowitz-Ladik 

model. 
Finally, we plan to investigate the possibility of 

studying the regularization of hyperbolic shocks and 

perhaps even change of type singularities through a 
small dissipation limit. We would replace the under- 
lying Hamiltonian lattice system with a nearby sys- 

tem of discrete complex Ginzburg-Landau type, and 
derive small dissipative corrections to the modulation 
equations, leading us to an analysis of the shock struc- 
ture, including the shock speed. In this way, we can 
understand the motion of hyperbolic shock boundaries 
between stable periodic states of the underlying mi- 
croscopic lattice. 
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because the oscillatory motion in the plane wave ansatz is a local 
gauge transformation related to the global gauge symmetry of 
the equation described by Aj(t )  ---* eiaAj(t).  Hence, the explicit 
averaging over fast phases was unnecessary for this ansatz. 
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Appendix A. Legendre transform and averaging of Lagrangians 

In this appendix we will set up the Hamiltonian formulation of (5) and proceed to derive modulation equations 

for a uniform harmonic wavetrain using Whitham's averaged Lagrangian principle. The reader will recall that we 

are considering the system 

iA; + f (  ]Aj[ 2) (Aj+l + Aj-1 ) + F( [Ajl2)Aj = 0. (A. 1) 

This system admits a Hamiltonian structure, as well as a second independent conserved quantity. Indeed, define 

the functions g(p) and G(p) by 

P P 

f fF(y) dy (A.2) g ( P ) =  f(dy) and G ( p ) =  f ( y )  
0 0 

It is easily verified that (A.I)  may be expressed as 

A 2 3H iAj = f ( [  .i[ )3--~;' (A.3) 

with the Hamiltonian function 

H = Z A ; ( A j + I  + Aj-1) + ~ a ( l z j l 2 )  • (A.4) 

) J 

This is the same function as the Hamiltonian presented in the main text, written here with a different summand to 

clarify the dependence on Aj and A; as independent dynamical variables. The gradient is derived from a Poisson 

bracket, and the nonzero fundamental brackets are given by 

{a  j, a.~} = - i f (  [a.i[2), (A.5) 

or, in general, 

• ON7 3ATOAj f ( [Aj l2 ) '  (A.6) 

for any functions B and C of the field variables. Given the gauge symmetry Aj  --+ eiaAj of (A. 1 ), we may obtain 

a second conserved quantity via Noether's theorem as 

U = Z g ( I a i [ 2 ) .  (A.7) 

J 

There is a family of plane wave solutions for (A. 1 ), and we would like to apply Whitham's averaged variational 

principle [ 16] to this family of solutions and obtain the PDE's which govern the evolution of the plane wave 
parameters. In order to apply this method, we must pass from a Hamiltonian formulation of (A. 1 ) to a Lagrangian 
formulation. Since our Hamiltonian is expressed in terms of noncanonical variables, we must find canonical 
variables before carrying out the Legendre transform from which we obtain the Lagrangian formulation [3]. In 

what follows we obtain such a Lagrangian from a specific choice of canonical variables. 
The simplest set of canonical variables to work with are those that preserve the form of our plane wave ansatz 

(2). Accordingly, we propose 

~i = AiP(IAj] 2) and ~7 =A.~P(IAj[ 2) ' (A.S) 
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where 

P ( x )  = g/-g ~ )  . (A.9) 

P(x) exists and is nonsingular due to the definition of g(x)  and the restrictions placed on f ( x ) .  Let ~,(x) be the 
compositional inverse of g(x). Again, this exists due the definition of g(x) and the restrictions placed on f(x). 
The inverse transformation to (A.8) is given by 

A.j=~jM(IOj[ 2) and A T=OyM(I~pjl2), (A.10) 

where 

M(x)=~g(--Xx ) . (A.l 1) 

In the 0 variables, the plane wave solution becomes 

~j = AP([AI2)e i(kj-°'t) . (A.12) 

We also have 

{0j,~pj* } = - i ,  (A.13) 

with all other Poisson brackets vanishing - thus we have constructed canonical variables for (A. 1 ). The Legendre 
transform of H is then 

i 
L =  Z £J = -2 Z (OJ~; - ~ J ~ ; )  - H,  (A.14) 

J J 

with H written in terms of the ¢ variables. Recalling the definition p = IAI 2 and evaluating the Lagrangian density 
£j  on the ansatz (A.12) gives 

~.~j -~ wg(p)  - 2pcos k - G(p)  . (A.15) 

We are now in a position to apply Whitham's averaging method. Introduce the usual phase variable 0 by the 
expressions 

k = Ox, ~o = -Or. (A.16) 

In addition, we allow the parameters 0 and p to vary slowly in such a way that the sum (A. 14) may be approximated 
by the integral 

L = - / [g(p)Ot + 2pcosOx + G(p)]  dx.  (A.17) 

Whitham proposes the following variational principle: the evolution of the modulated plane wave solution 
extremizes the action functional 

tl 

L d t ,  (A.18) 

to 

with respect to independent variations in 0 and p. 
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The variation with respect to p results in an algebraic equation which we supplement with the consistency 
relation 

kt + wx = 0 

to obtain a PDE. This relation imposes "conservation of waves." We obtain the second equation by varying with 
respect to 0. The resulting system is given by 

c~ 0 [2psink] = 0, 
~ g ( P )  - ~x 

c9 a 
- - k  ~x [2 f (p )  cosk + F(p)]  = 0 .  (A.19) 

We can also rewrite the first of these equations in the equivalent form 

0 ,3 
- f ( P )  ~x [2psink] = 0. (A.20) 

These expressions are the same as those derived by averaging local conservation laws. 

Appendix B. Linear stability analysis 

Here, we compute the conditions for linear stability of the uniform harmonic wavetrain solutions to the DNLS 

equation. We begin with the system in the form of ( 1 ). Under the transformations 

~ i ( t )  = A j ( t / ~ ) e  2it and F = y / e ,  (B.I) 

the system takes the form 

iqbj -'[- qb.j+l -}- qbj_ I + I']~jlzqb.j = 0 .  (B.2) 

This system possesses uniform wavetrain solutions given by 

q~i( t ) = ae i(k.i-°~{ k'a)t) , (B.3) 

where ~ is given by the amplitude dependent dispersion relation 

~o(k,a) = - 2 c o s  k -  Flal e , (B.4) 

and k E ~ while a ¢ C. Consider choosing particular values for k and a and adding a "rotating" complex-valued 

perturbation pj (t) to the wavetrain solution: 

@i( t) = ( a + p i ( t )  ) e  i(&j-~°(k'a)') . (B.5) 

The reduced DNLS equation (B.2) then becomes 

i/~j + (2r la l  2 + w(k ,  a) + Fa*p i + 2Fap 7 + I'lpjl2)pj 

+ F a 2 p 7  + eil~pj+ I + e- ikp . j_  1 = 0 ,  ( B . 6 )  

which, in the case of infinitesimal perturbations pj (t) becomes 

ipj + (21"la[ 2 + w(k, a) )l~j + Fa2P7 + eikpj+l + e-ikPj-~ = 0. (B.7) 

If we let 
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a = v/-fie ia , 

p j ( t )  = [ U ( t ) e  iAk + c . c . ]  + i [ V ( t ) e  iak + c .c .]  , 

Eq. (B.7) takes the form 

15 

(B.8)  

~-~ = B  , (B .9)  

where the matrix B is given by 

[ - F p s i n 2 a -  2 is inAks ink  (cos2a - 1 ) F p +  2 ( 1 -  cosAk) cosk]  (B.10) 
B = (cos2a  + 1)Fp - 2(1 - cosAk) cosk Fpsin2tr  - 2is inAks ink  " 

Because we have selected a rotating frame, Ak represents a relative wavenumber. The perturbation pj (t) will be 

linearly unstable if there are any eigenvalues of B in the right half-plane. The matrix B either has both eigenvalues 
pure imaginary or one eigenvalue on either side of the imaginary axis. The second case occurs if 

Fp > (I - cosAk) cosk,  (B.11) 

for cos k > 0 or 

Fp < (1 - cosAk) cosk,  (B.12) 

for cos k < 0 which is a sufficient condition for the growth of the perturbation of relative wavenumber Ak. 
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Erratum to “Macroscopic lattice dynamics” 
[Physica D 79 (1994) l-151 * 

M.H. Hays u, CD. Levermore bp2, P.D. Miller a,3 
’ Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA 

’ Department oj’ Mathematics and Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA 

Some physically inconsequential sign errors appeared in this paper. The first of these occurs in Eq. (15), 

which should read 

g+f(p)iQsink] =0, 

ak d --- 
aT ax 

[2f(p) cos k + F(p)] = 0. 

This error (in the sign of the time variable, really) also occurs in Appendix A - first in Eq. (A.3) which 

should read 

iii,+f(lAj12)~=0, 
J 

and then propagating into Eqs. (A.14), (A.15), (A.17), (A.19), and (A.20). The corresponding sign of the 

characteristic velocity A* appearing in Eq. ( 17) should also be changed (although Eq. ( 18) is correct), as 

well as the sign of the matrix J in Eq. (21) . 

The reader should also be advised that there was a typographical error in Eq. ( 13), the final line of which 

should read 

R=2p(2f(p)coskfE(p))sink, 

and that the two symbols E and E that appear throughout the text should be interpreted identically. 
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