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The ∂ Steepest Descent Method and the Asymptotic Behavior
of Polynomials Orthogonal on the Unit Circle with Fixed

and Exponentially Varying Nonanalytic Weights

K. T.-R. McLaughlin and P. D. Miller

1 Introduction

1.1 Asymptotic analysis of Riemann-Hilbert problems

The steepest descent method for asymptotic analysis of matrix Riemann-Hilbert prob-

lems was introduced by Deift and Zhou in 1993 [14]. A matrix Riemann-Hilbert problem

is specified by giving a triple (Σ, v,N) consisting of an oriented contour Σ in the complex

z-plane, a matrix function v : Σ → SL(N) which is usually taken to be continuous except

at self-intersection points of Σwhere a certain compatibility condition is required, and a

normalization condition N as z → ∞. If Σ is not bounded, certain asymptotic conditions

are required of v in order to have compatibility with the normalization condition. Con-

sider an analytic function M : C \ Σ → SL(N) taking continuous boundary values M+(z)

(resp., M−(z)) on Σ from the left (resp., right). The Riemann-Hilbert problem (Σ, v,N)

is then to find such a matrix M(z) satisfying the normalization condition N as z → ∞

and the jump condition M+(z) = M−(z)v(z) whenever z is a non-self-intersection point

of Σ (so the left and right boundary values are indeed well defined). The steepest de-

scent method of Deift and Zhou applies to certain Riemann-Hilbert problems where the

jump matrix v(z) depends on an auxiliary control parameter, and is a method for extract-

ing asymptotic properties of the solution M(z) (and indeed proving the existence and
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uniqueness of solutions along the way) when the control parameter tends to a singular

limit of interest.

The original method put forth in [14] bears a striking resemblance to the well-

known steepest descent method or saddle-point method for analyzing contour integrals

with exponential integrands. A distinguished point on Σ is identified (analogous to a

point of stationary phase) and an explicit change of variables of the form N(z) = M(z)t(z)

where t(z) is a piecewise analytic matrix is introduced in the vicinity of this point and

it is observed that (i) the matrix N(z) satisfies an equivalent Riemann-Hilbert problem

with a new contour ΣN and a new jump matrix vN, and (ii) the jump matrix vN converges

to the identity matrix in the singular limit of interest for all z bounded away from the

stationary-phase point. One therefore expects that a good approximation to N(z) can

be constructed by an explicit local analysis near the stationary-phase point. With the

explicit local approximant Ṅ(z) constructed, one uses it in a final change of variables

H(z) = N(z)Ṅ(z)−1 and observes (i) that H(z) satisfies a Riemann-Hilbert problem with

a possibly new contour ΣH and a new explicit jump matrix vH and (ii) that the new jump

matrix vH is now uniformly close to the identity matrix in the limit of interest. This al-

lows one to construct H(z) by iteration of certain singular integral equations that are

equivalent to any given Riemann-Hilbert problem, and to show that H(z) is uniformly

close to the identity matrix in any region bounded away from ΣH. With additional work,

it may in some circumstances be shown that H(z) is close to the identity uniformly right

up to the contour ΣH (this usually requires more detailed information about the jump

matrix). In this way, one obtains a formula M(z) = H(z)Ṅ(z)t(z)−1 for the solution that

can be used to compute directly an asymptotic expansion of M(z) valid in the singular

limit of interest.

Since the introduction of the steepest descent method for Riemann-Hilbert prob-

lems, there have been several key developments. In [12, 15], a technique was established

in which one makes a change of variables involving a matrix constructed from a single

unknown scalar function g(z) analytic in C\Σ. The transformation modifies the jump ma-

trix in a way involving the boundary values g±(z) taken on Σ. One then chooses relations

between the boundary values of g(z) such that the transformed Riemann-Hilbert prob-

lem becomes asymptotically simple. The desired conditions amount to a scalar Riemann-

Hilbert problem for g(z), which is easily solved in many circumstances. A crucial feature

of this method is that the dominant contribution to the solution typically comes from

subintervals of the contour Σ of finite length rather than from isolated points. Here,

we therefore see an important difference between singular limits of matrix Riemann-

Hilbert problems and evaluation of saddle-point integrals. In the contributing intervals,

the transformed jump matrix has a factorization (see (1.1), (3.43), and (4.15)) whose
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factors admit analytic continuation to the left and right of each such interval. A further

change of variables based on this analytic factorization is carried out in lens-shaped

regions surrounding each contributing interval. Ultimately, a model problem is solved

(typically in terms of Riemann theta functions of genus related to the number of con-

tributing intervals) and along with local analysis near the endpoints of the intervals a

model for M(z) is built and compared with M(z) to obtain a Riemann-Hilbert problem

for the error H(z). When the method is successful, the jump matrix for H(z) is uniformly

close to the identity, and thus H(z) may be constructed via iteration of integral equa-

tions. Significantly, the conditions imposed on the boundary values of g(z) can often be

viewed as the Euler-Lagrange conditions for a certain variational problem (see [13] as

well as [11, 10] and Appendix A of this paper).

A further development emerged from problems in which it was recognized that

no appropriate function g(z) can be found relative to the given contour Σ. In [19] and later

in [3], it was shown how analyticity of the jump matrix could be exploited to effectively

deform arcs of the contour Σ to alternative locations in the complex plane such that the

jump matrix maintains the same functional form; specific locations of the arcs are deter-

mined such that there exists an appropriate function g(z) as above. These selected arcs

are the closest relatives in the noncommutative theory to the paths of steepest descent

from saddle points in the asymptotic theory of contour integrals. The contour selection

principle was also encoded into a variational problem in [19].

More recently [4, 19, 21], new techniques have been added to the framework of

the steepest descent method that are adapted for determining the asymptotic contribu-

tion to the solution of a coalescence of a large number of poles in the unknown matrix

(this is strictly speaking not a Riemann-Hilbert problem in the sense described above

due to the polar singularities, however the problem is first converted into a standard

Riemann-Hilbert problem by explicit transformations). The key idea here is to exploit

certain analytic interpolants of given residues at the poles.

For the fundamentally nonlinear cases in which the dominant contribution

comes from subintervals of a contour, a central feature is that the analytical methods

rely on piecewise analyticity of the given jump matrix and of the boundary values of

the scalar function g(z). For some of the cases of long-time asymptotics of integrable

nonlinear partial differential equations [9, 14], as well as the recent long-time asymp-

totic analysis for perturbations of the defocusing nonlinear Schrödinger equation [16],

the dominant contribution comes from isolated points of the contour Σ, and while ana-

lyticity is not fundamental, the asymptotic calculations proceed by an approximation ar-

gument, in which an analytic part is deformed away, and a (small) residual contribution

is handled by technical and analytical prowess. The approximation argument is delicate
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and requires detailed analysis that depends sensitively on the geometry of the particular

contour Σ.

Far from being a mere pursuit of abstraction, a simple asymptotic technique that

applies to Riemann-Hilbert problems regardless of whether the jump matrix is analytic

or not would have immediate application in a number of important areas. For example,

a unified treatment of the asymptotic theory of orthogonal polynomials on the real line

with general nonanalytic weights would allow the resolution of universality conjectures

from random matrix theory in the most natural and general context (see [11, 10] for the

analytic case, and [20] for an application of the ∂ steepest descent method described in

this paper to the nonanalytic but convex case). As another example, if it were possible

to treat systematically problems with a large number of poles that accumulate in a very

regular but nonanalytic fashion, then the important problem of semiclassical asymp-

totics for the focusing nonlinear Schrödinger equation with general nonanalytic initial

data could begin to be addressed.

In this paper, we present a new generalization of the steepest descent method

for Riemann-Hilbert problems that applies in absence of analyticity of the jump matrix,

and yet does not depend on an approximation argument for the jump matrix. While we

believe that the ideas we will develop in this paper are useful in very general contexts,

we have chosen to focus on a particular application of the steepest descent method in

order to demonstrate the technique.

1.2 The essence of the ∂ steepest descent method

As mentioned above, after changing variables using an appropriate scalar function g(z),

the jump matrix is converted into a form that is well suited for further asymptotic anal-

ysis. A common “target” form for the jump matrix in certain arcs of Σ is the following

form:

v(x) =

(
eiκ(x)/ε 1

0 e−iκ(x)/ε

)
=

(
1 0

e−iκ(x)/ε 1

)(
0 1

−1 0

)(
1 0

eiκ(x)/ε 1

)
, (1.1)

where x is a real parameter along the arc of Σ which for simplicity here we assume that

it lies on the real axis (for a representation, see Figure 1.2), ε > 0 is the control parame-

ter tending to zero in the singular limit of interest, and κ(x) is a strictly increasing real

function of x that is related to the boundary values of g(z) on Σ. Suppose N(z) is the un-

known satisfying N+(x) = N−(x)v(x). With the assumption of analyticity of κ(x), one

may transform the Riemann-Hilbert problem by introducing as a new unknown a matrix
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A+

A−

+
−

Figure 1.1 The complex plane in the

vicinity of a contour Σ (here coinci-

dent with the real axis) supporting a

factorized jump matrix.

O(z) defined in terms of N(z) by the following scheme: in some region lying on the minus

side of the arc (the region labeled A− in Figure 1.2), set

O(x + iy) := N(x + iy)

(
1 0

e−iκ(x+iy)/ε 1

)
(1.2)

and in some region lying on the plus side of the arc (the region labeled A+ in Figure 1.2),

set

O(x + iy) := N(x + iy)

(
1 0

−eiκ(x+iy)/ε 1

)
. (1.3)

Elsewhere, set O(z) = N(z). One has thus introduced two new jump contours, one on

either side of the arc (these are the two dashed lines in Figure 1.2). However, the mono-

tonicity of the real analytic function κ(x) implies via the Cauchy-Riemann equations that

the induced jump matrix relating the boundary values of O(z) on these two contours is

exponentially close to the identity matrix in the limit ε ↓ 0. On the original arc, the matrix

O(z) satisfies the constant jump relation

O+(x) = O−(x)

(
0 1

−1 0

)
, (1.4)

which can be subsequently dealt with in terms of special functions. In this paper, we

show how this procedure can be carried out effectively when one does not have the option

of extending κ(x) from the contour Σ because it is not assumed to be an analytic function.

We choose to extend κ(x) in a way that does not assume any analyticity (see (1.5)). The

price that must be paid is that the analogue of the matrix O(z) above is no longer analytic

in the regions to the left and right of the arc; therefore this matrix cannot be the solution

of any Riemann-Hilbert problem. It can, however, be the solution of a matrix ∂ problem
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(or more generally, a mixed Riemann-Hilbert-∂ problem). It is into this framework that

we extend the steepest descent method. This explains the terminology of the “∂ steepest

descent method.”

As the fundamental contour Σ in this paper is the unit circle S1, we can now be

very specific about what we mean by an extension of a nonanalytic function in this con-

text. Suppose that f(θ) is a Cm−1(S1) function, m = 1, 2, 3, . . . . Then, we define an exten-

sion operator Em : Cm−1(S1) → C(R2 \ {0}) as follows:

Emf(r, θ) :=

m−1
∑

p=0

f(p)(θ)
p!

(
− i log(r)

)p
, (1.5)

where (r, θ) are the standard polar coordinates for R
2. Note that this indeed defines a

continuous extension to any annulus r+ ≤ r ≤ r−, where 0 < r+ < 1 < r− < ∞ since

Emf(1, θ) = f(θ). Also, since z = reiθ and z = re−iθ, the fundamental differential operators

of complex variable theory are represented in polar coordinates as

∂ :=
∂

∂z
=
eiθ

2

(
∂

∂r
+
i

r

∂

∂θ

)
, ∂ :=

∂

∂z
=
e−iθ

2

(
∂

∂r
−
i

r

∂

∂θ

)
, (1.6)

and therefore we see that if f(m−1)(θ) is Lipschitz, then in particular it has a derivative

almost everywhere that is uniformly bounded, and we have

∂Emf(r, θ) =
ieiθ

2r

f(m)(θ)
(m − 1)!

(
− i log(r)

)m−1
, (1.7)

∂Emf(r, θ) = −
ie−iθ

2r

(
f(m)(θ)
(m − 1)!

(
− i log(r)

)m−1
+ 2

m−2
∑

p=0

f(p+1)(θ)
p!

(
− i log(r)

)p)

(1.8)

both holding for all r ≥ 0 and almost all θ ∈ S1 (these formulae hold at every point of

the plane if f is of class Cm(S1)). It follows that ∂Emf(r, θ) vanishes to order m − 1 as

r → 1 uniformly in θ. In fact, if f(θ) is analytic for all θ, then the infinite series E∞ f(r, θ)

converges uniformly in some annulus containing the unit circle r = 1 and represents the

unique analytic extension of f(θ).

Generally speaking, Riemann-Hilbert problems with rapidly oscillatory jump

matrices are equivalent to systems of singular integral equations with Cauchy kernel

and rapidly oscillatory densities. Such equations can in principle be analyzed asymp-

totically [27]. This approach requires delicate arguments of harmonic analysis. On the

other hand, the ∂ steepest descent method we will develop in this paper avoids such

complicated reasoning. Indeed, by extending contour integration into integration over



The ∂ Steepest Descent Method 7

two-dimensional regions, the Cauchy kernel becomes less singular, and the analysis be-

comes correspondingly more straightforward.

In the analytic case described briefly above, the asymptotic analysis is in gen-

eral complicated by the fact that the procedure is valid in the neighborhood of certain

intervals of Σ, and it turns out that a different analysis must be carried out in the vicin-

ity of the endpoints of the intervals. The same would be expected to be true in the general

nonanalytic case. In order to have the clearest possible presentation, we have chosen to

describe in this paper the ∂ steepest descent method in the context of a problem where

there are nontrivial cases without endpoint issues, namely the asymptotic behavior of

polynomials orthogonal with respect to weights on the unit circle. While the presence of

endpoints complicates the analysis, they do not present an insurmountable obstruction,

and the reader is referred to [20] for a description of the more general theory.

1.3 Polynomials orthogonal on the unit circle

Let φ(θ) be an integrable 2π-periodic function satisfying φ(θ) > 0 for almost all θ. For

two complex-valued functions f(θ) and g(θ), there is an associated inner product

〈f, g〉φ :=
1

2π

∫π

−π

f(θ)g(θ)φ(θ)dθ =
1

2πi

∮

Σ

f
(

arg(z)
)
g
(

arg(z)
)
φ
(

arg(z)
)dz
z
. (1.9)

This inner product leads to a system {pn(z)}∞n=0 of orthogonal polynomials in the complex

variable z:

pn(z) = γnz
n +

n−1
∑

j=0

cn,jz
j, γn > 0, (1.10)

and the defining relation is the orthonormality condition

〈
pm, pn

〉
φ

= δmn, 0 ≤ m < ∞, 0 ≤ n < ∞. (1.11)

Here the polynomials pn(z) are considered as complex-valued functions of θ by restric-

tion to the unit circle: z = eiθ. The constants γn have the interpretation of normalization

constants, and the corresponding system {πn(z)}∞n=0 of monic orthogonal polynomials is

defined by rescaling:

πn(z) =
1

γn
pn(z), 0 ≤ n < ∞. (1.12)
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The orthogonal polynomials satisfy recurrence relations of the form

πn+1(z) = zπn(z) + αn+1z
nπn

(
1

z

)
,

zn+1πn+1

(
1

z

)
= αn+1zπn(z) + znπn

(
1

z

)
,

(1.13)

for n = 0, 1, 2, 3, . . . . Here, the complex constants {αn}∞n=1 are the recurrence coefficients

associated with the weight φ (also known as the Schur parameters or Verblunsky coeffi-

cients). By setting z = 0 in the first equation of (1.13), it is easy to see that

αn = πn(0). (1.14)

For a general discussion of properties of polynomials orthogonal on the unit cir-

cle, see Chapter XII of Szegő’s monograph [26], in which (among other things) the asymp-

totic behavior of πn(z) for n → ∞ is discussed. The extraction of asymptotic formulae

for quantities related to the orthogonal polynomials of large degree with a fixed weight

φ on the unit circle is the type of asymptotic problem in the theory of general orthogo-

nal polynomials (i.e., beyond particular cases involving classical special functions) for

which results have been known for the longest time. This can be traced to the fact that

if φ(θ)−1 happens to be a positive trigonometric polynomial, then there is a closed-form

expression for the orthonormal polynomial pn(z) that is convenient for analysis, as long

as n is sufficiently large compared to the degree of φ(θ)−1, see [26, Section 11.2]. In other

words, for certain special fixed weights φ(θ), the asymptotic formulae one obtains be-

come exact as long as n is large enough. This leads to a general strategy for asymptotic

analysis of orthogonal polynomials on the unit circle based on approximating an arbi-

trary given positive function φ(θ)−1 by positive trigonometric polynomials.

The asymptotics described in the monograph of Szegő are of a rather general

character and hold whenever log(φ(θ)) is an integrable real-valued function. In the years

since the origin of Szegő’s methods, there have been many further developments in the

asymptotic theory. These developments move both in the direction of generalizing the

class of weights for which the Szegő asymptotics are valid (perhaps in a weaker form)

and also in the direction of trading generality of the weight for detail of the asymptotics.

It seems that certain problems remain difficult to treat by these methods; in particular,

it is difficult to verify convergence in a uniform sense, and it is difficult to characterize

the detailed asymptotic behavior of zeros. There is a vast literature on this subject; we

refer the interested reader to the memoir of Nevai [23] and the two-volume monograph of

Simon [24, 25].
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Beyond being a source of classical information about orthogonal polynomials on

the unit circle, Simon’s monograph describes a different viewpoint of the theory of these

polynomials. Namely, Simon and his school have made great progress by exploiting the

connection between orthogonal polynomials and spectral theory for operators that en-

code the recurrence relations that all orthogonal polynomials satisfy (see also [18]). This

theory is capable of establishing a number of very general results relevant to asymp-

totics in the limit of large degree. An important point is that the hypotheses required to

establish results of this kind involve assumptions about the asymptotic behavior of the

sequence {αn}∞n=1 of recurrence coefficients. Indeed, the fundamental problem of spec-

tral theory in this context is the construction of the spectral measure φ(θ)dθ from the

finite difference operator involving the recurrence coefficients {αn}∞n=1.

On the other hand, the recovery of the polynomials {pn(z)}∞n=0 and of the recur-

rence coefficients {αn}∞n=1 from the spectral measure φ(θ)dθ is the fundamental problem

of inverse spectral theory. A general approach to asymptotic problems in the theory of or-

thogonal polynomials in which the measure of orthogonality is the given data therefore

involves the translation of the orthogonality conditions into the conditions making up

a Riemann-Hilbert problem for sectionally analytic matrices. A Riemann-Hilbert for-

mulation for polynomials orthogonal with respect to a measure on the unit circle was

described in [1] and follows closely the well-known Riemann-Hilbert formulation for

polynomials orthogonal with respect to a measure on R discovered in [17]. In [1], and

in a number of papers which followed (see, e.g., [2, 5, 6]), the polynomial of degree n or-

thogonal with respect to a specific family of weights of the form φ(θ) = e−nV(θ), where

V(θ) = γ cos(θ), was studied in the limit n → ∞. Note that this is a joint limit as the de-

gree n of the polynomial in question appears in the measure of orthogonality as well; see

Section 4 for a general discussion of such exponentially varying weights. For the large

n asymptotics carried out in [1], and in subsequent works with this measure, as well as

closely related measures (see, e.g., [3]), analyticity of the weight φ(θ) played a central

role in the analysis.

In [8], Deift used polynomials orthogonal with respect to a measure on the unit

circle to give an example of his theory of integrable operators. Specifically, he intro-

duced a one-parameter family of positive, analytic functions φ(θ; t) and related solu-

tions of Riemann-Hilbert Problem 2.1 in Section 2 below (with φ(θ) replaced by φ(θ; t))

to Toeplitz determinants. The n → ∞ asymptotic behavior of the corresponding solu-

tion Mn(z; t) to Riemann-Hilbert Problem 2.1 then yields asymptotics for the associated

Toeplitz determinants. Exploiting the analyticity of φ(θ; t), Deift outlined how one ob-

tains an asymptotic description for Mn(z; t). The calculations which we will present in

Section 3 may be viewed as complementary to this asymptotic calculation of [8], in that
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we will establish asymptotics for orthogonal polynomials under the much weaker as-

sumption that φ(θ) is a continuous function satisfying a Lipschitz condition. Further-

more, we show how the error estimates depend on smoothness properties of φ(θ).

1.4 Outline and summary of results

The polynomials orthogonal with respect to a weight given on the unit circle in the com-

plex plane can be characterized in terms of the solution of a matrix Riemann-Hilbert

problem in which the contour Σ is the unit circle. In Section 2, we describe this Riemann-

Hilbert problem, and then in Sections 3 and 4 we study the singular limit in which the

degree of the polynomials tends to infinity. In Section 3, we consider the weight func-

tion to be held fixed as the degree tends to infinity, while in Section 4 we study the joint

limit when the degree becomes large while the weight function is exponentially varied. A

summary of the relevant logarithmic potential theory referred to in Section 4 is given in

Appendices A and B.

The key results we obtain in the fixed-weights case are described in Section 3.1.

To the best of our knowledge, the uniform nature of the asymptotics we obtain is new to

the field, as is our detailed characterization of the zeros. While there exist several classi-

cal methods available for the asymptotic analysis of orthogonal polynomials on the unit

circle with fixed-weight function φ(θ), with the degree n of the polynomial in question

tending to infinity, this problem is the ideal context in which to introduce the ∂ steepest

descent method.

On the other hand, the asymptotic behavior of polynomials orthogonal with re-

spect to a varying-weight on the unit circle, considered in Section 4, is more challenging

to obtain by more classical techniques. The results we obtain with the use of the ∂ steep-

est descent method are stated in Section 4.1. A point we wish to emphasize is that with

the use of the ∂ steepest descent method, the analysis in the varying-weights case is no

more difficult than in the fixed-weights case. This fact distinguishes the ∂ steepest de-

scent method from more classical techniques.

1.5 Notation

Throughout, we assume a fixed norm ‖ · ‖ on 2× 2matrices. For p = 0, 1, 2, . . . ,we use the

following induced norm on sufficiently smooth matrix functions F : R
2

→ C2×2:

|||F|||p :=
∑

α+β≤p

sup
R2

∥∥∥∥ ∂α+βF

∂xα∂yβ

∥∥∥∥. (1.15)
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Here x and y are Cartesian coordinates in R
2. For p = 0, we may apply this norm on all

functions F in the space L∞ (R2), whereas for p > 0we may apply this norm to a subset of

functions F in the space Cp−1,1(R2) of functions with Lipschitz continuous mixed partial

derivatives of all orders up to and including p − 1. The finiteness of the norm indicates

the uniformity of the Lipschitz condition. Since for functions F in the classCp−1,1(R2) the

mixed partial derivatives of order p exist almost everywhere, the condition |||F|||p < ∞ can

be equivalently expressed as saying that F have all derivatives of total order at most p in

the space L∞ (R2). We also use the notations Cp−1,1
0 (R2 \ {0}) and L∞

0 (R2 \ {0}) for spaces of

functions, respectively, inCp−1,1(R2) and L∞ (R2) that vanish identically for | log(x2 +y2)|

large enough (i.e., outside some annulus).

For functions V(θ) defined on the circle S1 (i.e., V is defined for −π ≤ θ < π), we

also say that V is of class Ck−1,1(S1) if the periodic extension of V to θ ∈ R has k − 1

Lipschitz continuous derivatives, or equivalently, has k derivatives in L∞ (R). A suitable

norm for such functions is given by

|||V |||◦,k := sup
−π<θ<π

∣∣V(θ)
∣∣ + sup

−π<θ<π

∣∣V (k)(θ)
∣∣, (1.16)

since it is easy to establish that for allm satisfying 1 ≤ m ≤ k − 1,

sup
−π<θ<π

∣∣V (m)(θ)
∣∣ ≤ (2π)k−m sup

−π<θ<π

∣∣V (k)(θ)
∣∣. (1.17)

If V(θ) satisfies a Hölder continuity condition, there exists a unique function

N(z), analytic for |z| > 1, decaying as z → ∞, and taking Hölder continuous boundary

values on |z| = 1, such that

V(θ) = N
(
eiθ
)

+ V0 +N
(
eiθ
)
, (1.18)

and V0 is the average value of V. Thus,N(eiθ) is the negative frequency component of the

Fourier series for V(θ):

V(θ) =

∞
∑

j=−∞

Vje
ijθ, with coefficients Vj =

1

2π

∫π

−π

V(θ)e−ijθdθ, (1.19)

and we have

N(z) :=

∞
∑

j=1

V−j

zj
, for |z| ≥ 1. (1.20)
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Figure 2.1 The contour Σ of the

Riemann-Hilbert problem for poly-

nomials orthogonal on the unit cir-

cle is the unit circle itself |z| =

1 oriented in the counterclockwise

direction.

We also introduce the functionΩ : S1
→ R by the formula

Ω(θ) := 2�
(
N
(
eiθ
))
. (1.21)

Note thatΩ and V are functions that are related by the Cauchy transform.

Throughout the paper, we will use a “bump” function B : R → [0, 1] with the

properties that B is infinitely differentiable, B(l) ≡ 1 for |l| < log(2)/2, and B(l) ≡ 0 for

|l| > log(2).

2 The Riemann-Hilbert problem for polynomials orthogonal on the unit circle

Consider the contour Σ illustrated in Figure 2. Let n be a positive integer. Relative to the

contour Σ we pose, for each n = 0, 1, 2, 3, . . . , the following Riemann-Hilbert problem for

a 2× 2matrix Mn(z).

Riemann-Hilbert Problem 2.1. Find a 2× 2matrix Mn(z) with the following properties.

Analyticity. Mn(z) is analytic for |z| 	= 1, and takes continuous boundary values Mn
+(z),

Mn
−(z) asw tends to zwith |z| = 1 and |w| < 1, |w| > 1.

Jump condition. The boundary values are connected by the relation

Mn
+

(
eiθ
)

= Mn
−

(
eiθ
)(1 φ(θ)e−inθ

0 1

)
. (2.1)
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Normalization. The matrix Mn(z) is normalized at z = ∞ as follows:

lim
z→∞

Mn(z)

(
z−n 0

0 zn

)
= I. (2.2)

Proposition 2.2. Suppose that the positive weight function φ(θ) satisfies a uniform

Hölder condition |φ(θ2) − φ(θ1)| ≤ K|θ2 − θ1|ν for some ν ∈ (0, 1] and with some K inde-

pendent of θ1 and θ2. Then Riemann-Hilbert Problem 2.1 has a unique solution for each

integer n ≥ 0, namely if n > 0,

Mn(z) =

⎛
⎜⎜⎜⎜⎝

πn(z)
1

2πi

∮

Σ

πn(s)s−n

s − z
φ
(

arg(s)
)
ds

−γ2
n−1z

n−1πn−1

(
1

z

)
−
γ2

n−1

2πi

∮

Σ

πn−1(s)s−1

s − z
φ
(

arg(s)
)
ds

⎞
⎟⎟⎟⎟⎠ , (2.3)

and if n = 0,

M0(z) =

⎛
⎝1 1

2πi

∮

Σ

1

s − z
φ
(

arg(s)
)
ds

0 1

⎞
⎠ . (2.4)

In particular,Mn
11(0) = αn and Mn

21(0) = −γ2
n−1 for n ≥ 1. Here, {πn}∞n=0 is the sequence

of monic orthogonal polynomials with respect to the weight φ and the inner product

(1.9), and {αn}∞n=1 is the sequence of associated recurrence coefficients (see (1.13)) while

{γn}∞n=0 is the sequence of associated normalization constants. �

Proof. If n = 0, then the Riemann-Hilbert problem is triangular with identity asymp-

totics and is trivially solved in closed form by a Cauchy integral, yielding (2.4). Thus

from now on, we consider n ≥ 1.
The uniqueness of the solution for n ≥ 1 can be seen from the following argu-

ment. Continuity of the boundary values taken on Σ implies that the ratio of any two so-

lutions of Riemann-Hilbert Problem 2.1 is an entire function of z that tends to the iden-

tity matrix as z → ∞. Uniqueness thus follows by Liouville’s theorem.

To derive (2.3), first note that if Mn(z) solves Riemann-Hilbert Problem 2.1, then

the first column of Mn(z) must be analytic throughout the z-plane. From the normaliza-

tion condition (2.2), it is then clear that Mn
11(z) is a monic polynomial of degree n while

Mn
21(z) is a polynomial of degree at most n − 1 (the leading coefficient of Mn

21(z) is not

determined from the normalization condition alone). The jump condition for the second
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column reads

Mn
12+

(
eiθ
)

−Mn
12−

(
eiθ
)

= Mn
11

(
eiθ
)
e−inθφ(θ),

Mn
22+

(
eiθ
)

−Mn
22−

(
eiθ
)

= Mn
21

(
eiθ
)
e−inθφ(θ).

(2.5)

In particular, sinceφ(θ) satisfies a Hölder condition,we may expressMn
12(z) as a Cauchy-

type integral using (2.5). Thus,

Mn
12(z) =

1

2πi

∮

Σ

Mn
11(s)s−n

s − z
φ
(

arg(s)
)
ds, (2.6)

and the normalization condition (2.2) then requires that this Cauchy integral be of order

z−n−1 as z → ∞ for each fixed n ∈ Z+. Expanding the Cauchy kernel in a geometric series,

we see that the following conditions must be satisfied:

∮

Σ

Mn
11(z)zk−nφ

(
arg(z)

)
dz = 0 (2.7)

for k = 0, 1, 2, . . . , n − 1. Since dθ = dz/(iz) for an angular coordinate θ on the contour

Σ, this proves that Mn
11(z) is orthogonal to the monomials 1, z, z2, . . . , zn−1 with respect

to the inner product (1.9). The existence of such a monic polynomial of degree n follows

from the Gram-Schmidt algorithm. Thus,Mn
11(z) = πn(z), the nth monic orthogonal poly-

nomial with respect to the weight φ(θ) on the unit circle.

A similar argument applies to the second row of Mn(z). Indeed, Mn
21(z) is a

polynomial of degree at most n− 1. Using (2.5), we may expressMn
22(z) as a Cauchy inte-

gral:

Mn
22(z) =

1

2πi

∮

Σ

Mn
21(s)s−n

s − z
φ
(

arg(s)
)
ds, (2.8)

and then the normalization condition (2.2) requires thatMn
22(z) = z−n +O(z−n−1) as z →

∞. Expanding the Cauchy kernel in a geometric series, one sees that Mn
21(z) is required

to satisfy the following conditions:

〈
Mn

21

(
eiθ
)
, 1
〉

φ
= −1,

〈
Mn

21

(
eiθ
)
, eikθ

〉
φ

= 0, k = 1, . . . , n − 1. (2.9)

Equivalently, these relations may be written in the form

〈
ei(n−1)θ, ei(n−1)θMn

21

(
eiθ
)〉

φ
= −1,〈

eikθ, ei(n−1)θMn
21

(
eiθ
)〉

φ
= 0, k = 0, . . . , n − 2.

(2.10)

Clearly, the degree n−1 polynomial zn−1Mn
21(1/z) is orthogonal to the monomials 1, z, . . . ,

zn−2 with respect to the inner product 〈·, ·〉φ, and the normalization condition then fixes
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the leading coefficient: zn−1Mn
21(1/z) = −γ2

n−1z
n−1 + . . . . In other words, we have found

that zn−1Mn
21(1/z) = −γ2

n−1πn−1(z), or equivalently,Mn
21(z) = −γ2

n−1z
n−1πn−1(1/z). �

Thus, the conditions of Riemann-Hilbert Problem 2.1 serve to define the orthog-

onal polynomials as an alternative to other representations that may be available, possi-

bly including explicit contour integral formulae (for special families of weights).

Riemann-Hilbert problems like this one frequently arise as a consequence of the

application of the Fourier transform or z-transform to certain types of linear integral

equations (i.e., the Wiener-Hopf technique, see [7]). Reversing this sort of reasoning, the

representation of the orthogonal polynomials in terms of Riemann-Hilbert Problem 2.1

immediately yields integral equations for certain auxiliary unknowns. Of particular in-

terest are the Marchenko equations obtained in [18], in which the unknowns are Fourier

coefficients of functions explicitly related to the orthogonal polynomial πn(z), and the

relevant operator is of the form I − K, where K is an integral operator acting in �2(n +

1, n + 2, . . . ,∞) with a kernel that depends explicitly on the weight φ but not otherwise

on the degree n of the polynomial in question. Furthermore, the kernel does not depend

in any crucial way on the smoothness of the weight. Therefore, in principle, this formu-

lation makes possible the calculation of asymptotics for the polynomials (indeed, this

is one of the applications of the Marchenko equations discussed in [18]) in a way that is

relatively insensitive to the analyticity properties of the weight function φ. However, the

correction terms that appear in such a scheme are necessarily in terms of infinite Fourier

series (see, e.g., [18, equation (VI.7)]) that while having known coefficients are not con-

venient for detailed analysis of zeros of the polynomials in regions of the complex plane

where these zeros necessarily arise from a competition between different terms in an ex-

pansion. To provide details of the asymptotics, it is more advantageous to work with the

Riemann-Hilbert problem directly.

The uniqueness of Mn(z) coupled with symmetry of the Riemann-Hilbert prob-

lem under reflection through the unit circle leads to the following result.

Proposition 2.3. The matrix Mn(z) satisfying Riemann-Hilbert Problem 2.1 satisfies the

symmetry relation

Mn(z) = iσ3Mn(0)−1Mn

(
1

z

)
(−iz)σ3 . (2.11)

In particular, the identity(
γn−1

γn

)2

= 1 −
∣∣αn

∣∣2. (2.12)

follows by taking z = 0 in (2.11). �



16 K. T.-R. McLaughlin and P. D. Miller

3 Fixed weights

3.1 Asymptotic behavior of orthogonal polynomials and related quantities as n → ∞

In this section, we describe several asymptotic results in the theory of orthogonal poly-

nomials with fixed weights on the unit circle that we will obtain as a fundamental il-

lustration of our method. It will be convenient to introduce the real-valued function V :

S1
→ R such that

φ(θ) = e−V(θ), ∀θ ∈ S1. (3.1)

The fundamental object of the asymptotic theory for the fixed weight φ is the so-

called Szegő function:

Sφ(z) := exp

(
−

1

2πi

∮

Σ

V
(

arg(s)
)
ds

s − z

)
, z 	∈ Σ. (3.2)

This is a function analytic for |z| 	= 1 that decays to zero as z → ∞. Its value at z = 0 has

the interpretation of the geometric mean of the weight φ(θ):

Sφ(0) = exp

(
−
1

2π

∫π

−π

V(θ)dθ
)

= e−V0 . (3.3)

If φ(θ) satisfies a Hölder continuity condition, then by strict positivity so does V(θ). In

this case, by the Plemelj formula [22], we have

lim
r↑1

Sφ

(
reiθ

)
= φ(θ) lim

r↓1
Sφ

(
reiθ

)
. (3.4)

Furthermore, recalling the negative frequency componentN(z) of V defined by (1.20), we

can obtain the following equivalent characterization of Sφ(z). Since the function N(1/z)

is analytic for |z| < 1, it follows that

Sφ(z) =

⎧

⎨

⎩

eN(z), |z| > 1,

e−V0−N(1/z), |z| < 1.
(3.5)

Recalling the functionΩ : S1
→ R defined by (1.21), we have

lim
r↑1

Sφ

(
reiθ

) · lim
r↓1

Sφ

(
reiθ

)
= e−V0eiΩ(θ). (3.6)
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3.1.1 General theorems. The following results hold for weights where V is of class

Ck−1,1(S1) with k ≥ 1.

Theorem 3.1. Suppose that φ(θ) = e−V(θ), where V : S1
→ R is of class Ck−1,1(S1) with

k ≥ 1. Then, for each fixed integer p and for each ρ > 1, there is a constant Kp,ρ > 0 such

that the estimate

sup
|z|≥ρ

∣∣∣∣ dp

dzp

[
πn(z)z−ne−N(z) − 1

]∣∣∣∣ ≤ Kp,ρ
log(n)
n2k

(3.7)

holds for all n sufficiently large. �

The constant Kp,ρ typically blows up as ρ → 1, and only a finite number of deriva-

tives can be controlled. More generally, we have the following result.

Theorem 3.2. Let p ≥ 0 be a fixed integer. Suppose that φ(θ) = e−V(θ), where V : S1
→ R

is of class Ck−1,1(S1) with k ≥ 2p + 1. Then there exists a constant Kp > 0 such that the

estimate

sup
|z|≥1

∣∣∣∣ dp

dzp

[
πn(z)z−ne−N(z) − 1

]∣∣∣∣ ≤ Kp
log(n)
nk−2p

(3.8)

holds for all n sufficiently large. �

Remark 3.3. Note that as a special case of the estimate (3.8), we obtain the following

estimate (under the same conditions) characterizing the polynomials on the unit circle:

sup
−π<θ<π

∣∣∣∣∣
(

− ie−iθ d

dθ

)p[
πn

(
eiθ
)
e−inθe−N(eiθ) − 1

]∣∣∣∣∣ ≤ Kp
log(n)
nk−2p

. (3.9)

In fact, the proof of Theorem 3.2 is to first establish (3.9), from which the estimate (3.8)

follows (with the same constant Kp) via the maximum modulus principle.

The weakest conditions under which the above theorem provides large-degree

asymptotics are thatφ is a strictly positive weight that is Lipschitz continuous. Theorem

3.2 may be compared with results reported in the classic monograph of Szegő [26, Section

12.1]. While asymptotics of πn(z) have been established by other methods under weaker

conditions than Lipschitz continuity and strict positivity of the weight φ, Theorem 3.2

exhibits clearly the dependence of the rate of decay of the error on the smoothness of φ,

and the number of derivatives desired.

To our knowledge, the results of Theorem 3.2 are stronger than those previously

known in that they establish the convergence in a uniform sense. This leads to the fol-

lowing corollary.
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Corollary 3.4. Let p ≥ 0 be a fixed integer. Suppose that φ(θ) = e−V(θ), where V : S1
→ R

is of class Ck−1,1(S1) with k ≥ 2p + 1. Then

lim
n→∞

1

np
·
∥∥π(p)

n

∥∥
φ∥∥πn

∥∥
φ

= 1. (3.10)
�

Proof. This follows directly from Theorem 3.2. Indeed, upon carrying out the differenti-

ation in (3.9), and combining this estimate with its analogues for all smaller values of p,

we learn that |π
(p)
n (eiθ)|/np converges uniformly to |πn(eiθ)| for −π < θ < π. The proof is

then complete since on S1 uniform convergence implies convergence in L2. �

Remark 3.5. Notice that Theorem 3.2 immediately implies the following formula valid

for all zwith |z| < 1:

πn(z) =
1

2πi

∮

|s|=1

sneN(s) + hn(s)
s − z

ds, (3.11)

where

sup
|s|=1

∣∣hn(s)
∣∣ ≤ Kp

log(n)
nk

. (3.12)

While in principle this could be used to compute asymptotics for πn(z) in this region,

more detailed analysis gives the following improved results.

Theorem 3.6. Suppose that φ(θ) = e−V(θ), where V : S1
→ R is of class Ck−1,1(S1) with

k ≥ 1. Then for each ρ satisfying 0 < ρ < 1, there are constants K±
ρ > 0 such that the

estimates

sup
ρ<|z|<1

∣∣∣πn(z) − zne−V0−N(1/z)eEkV(r,θ)
∣∣∣ ≤ K−

ρ

log(n)
nk

, (3.13)

sup
|z|<ρ

∣∣πn(z)
∣∣ ≤ K+

ρ

nk
(3.14)

hold for all n sufficiently large. �

An immediate corollary is that there exists an annulus inside the unit circle that

asymptotically contains no zeros. That the result we are about to state in this direction

is in a sense sharp will be made clear when we consider more specific weights below in

Section 3.1.2 (in particular, see Corollary 3.12).

Corollary 3.7 (zero-free regions). Suppose that φ(θ) = e−V(θ), where V : S1
→ R is of

class Ck−1,1(S1) with k ≥ 1. Let δ > 0 be an arbitrarily small number. Then there are no
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zeros of πn(z) in the region

{

z | log
(
|z|
)
> −(k − δ)

log(n)
n

}

(3.15)

as long as n is sufficiently large. �

Proof. This follows immediately from the estimate (3.13). Indeed, since N(1/z) and

EkV(r, θ) are bounded for ρ < r < 1, zeros of πn(z) in the region ρ < |z| < 1 neces-

sarily arise from a balance between zn and a term of uniform size log(n)/nk. However,

zn is large compared with log(n)/nk in the region where the inequality log(|z|) > −(k −

δ) log(n)/n holds. �

A second corollary is an immediate consequence of (3.14).

Corollary 3.8 (recurrence coefficients). Suppose that φ(θ) = e−V(θ), where V : S1
→ R is

of class Ck−1,1(S1) with k ≥ 1. Then there is a constant K > 0 such that the bound

∣∣αn

∣∣ ≤ K

nk
(3.16)

holds for sufficiently large n. �

Proof. This follows directly from (3.14) with the use of the identity αn = πn(0). �

Finally, we have the following result concerning the asymptotic behavior of the

normalization constants.

Theorem 3.9. Suppose that φ(θ) = e−V(θ), where V : S1
→ R is of class Ck−1,1(S1) with

k ≥ 1. Then there is a constant K > 0 such that the bound

∣∣γ2
ne

−V0 − 1
∣∣ ≤ K log(n)

n2k
(3.17)

holds for sufficiently large n. �

We give a direct proof of this theorem based on the identity γ2
n−1 = −Mn

21(0) in

Section 3.3.3. However, another proof with a less sharp error estimate may be based upon

Theorem 3.2 because on S1 uniform convergence implies convergence in L2. Thus, since

‖pn(z)‖φ = 1 and pn(z) = γnπn(z),

γ2
n =

(
1

2π

∫π

−π

∣∣πn

(
eiθ
)∣∣2φ(θ)dθ

)−1

. (3.18)
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Using Theorem 3.2, one finds that

γ2
n =

(
1

2π

∫π

−π

∣∣eN(eiθ)
∣∣2φ(θ)dθ

)−1

+O

(
log(n)
nk

)
. (3.19)

Next, using (3.5), we have

∣∣eN(eiθ)
∣∣2 = eN(eiθ)eN(eiθ) = eV(θ)−V0 =

e−V0

φ(θ)
. (3.20)

Substitution into (3.19) completes the alternate proof.

Remark 3.10. At this point, it is important to comment that the ∂method we develop be-

low in Section 3.2 yields new formulae for the polynomial πn(z) (see, e.g., (3.95)). The

formulae are semi-explicit, in that they are written in terms of the solution of a ∂ prob-

lem (or, equivalently, in terms of the solution of an integral equation). This ∂ problem is

arrived at after a sequence of explicit transformations, and we prove that this problem

has a unique solution, which possesses an asymptotic expansion for n → ∞. In general,

the terms in this expansion can be estimated (from above). Such estimations give rise

to the general results described in this subsection. However, in the situation that some

further information about the weight function e−V is known, it is frequently possible to

obtain much more precise information about the terms in the asymptotic expansion. To

illustrate what can be obtained from an analysis of the terms of the expansion, we con-

sider in the following subsection a slightly more specific family of weights, and present

a rather complete description of the pointwise asymptotic behavior of the polynomials.

3.1.2 More specific weights. While the estimate (3.14) allows one to bound the recur-

rence coefficients, it does not provide an asymptotic description of the polynomial πn(z)

for z bounded within the unit circle. In particular, (3.14) is insufficient for deducing the

location of the zeros. With further assumptions on the regularity of V(θ), we can extract

a leading term that paves the way for further analysis of πn(z) outside the zero-free re-

gion, but within the unit disk.

Theorem 3.11. Suppose that φ(θ) = e−V(θ), where V : S1
→ R is of class Ck−1,1(S1) with

k ≥ 2. Suppose further that V (k)(θ) is piecewise continuous with � < ∞ jump discontinu-

ities at points −π ≤ θ1 < θ2 < · · · < θ� < π, of magnitudes

Δ
(k)
j := lim

θ↓θj

V (k)(θ) − lim
θ↑θj

V (k)(θ). (3.21)
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Let V (k)(θ) have one Lipschitz continuous derivative between consecutive jump disconti-

nuities. Then, for each ε > 0, σ > 0, and δ > 0, the estimate

sup
log(|z|)<−(k−σ) log(n)/n

∣∣∣∣nk+1e−N(1/z)πn(z)

− nk+1zne−V0−2N(1/z)eEkV(r,θ)B

(
log

(
|z|
)

ε

)
− fn(z)

∣∣∣∣ ≤ δ
(3.22)

holds with

fn(z) :=
ik+1

2π

�
∑

j=1

Δ
(k)
j eiΩ(θj) e

i(n+1)θj

eiθj − z
, (3.23)

for all n sufficiently large. �

Note that fn(z) is a rational function of z with poles at the � points of disconti-

nuity of V (k)(θ) on the unit circle, and with � − 1 zeros which may lie anywhere in the

complex plane, and fluctuate about as n is varied.

With this result, we can completely characterize the zeros of πn(z) under the

same assumptions on V(θ). The simplest example of orthogonal polynomials on the unit

circle is of course the case φ(θ) ≡ 1, in which case πn(z) = zn for all n ≥ 0. Here we see

that all zeros of πn(z) lie exactly at z = 0. In particular, the zeros avoid the unit circle

|z| = 1. This situation is typical for strictly positive analytic weights, in which case it is

known that the zeros of πn(z) asymptotically lie within a smaller disk |z| ≤ ρ < 1. Here,

the nearest singularity z0 to the unit circle of the analytic continuation through |z| = 1 of

the function Sφ(z) from the domain |z| > 1 determines the radius ρ by ρ = |z0|. However,

such confinement of the zeros within the circle is no longer typical once one leaves the

analytic class. For example, discontinuities in any derivatives of φ(θ) make it possible

for at most a finite number of zeros to be bounded away from the unit circle while all

remaining zeros converge to the unit circle, as the following corollaries of Theorem 3.11

show. For eachM > 0, let

F+
n(M) :=

{

z ∈ C such that log
(∣∣fn(z)

∣∣) > M}

,

F−
n(M) :=

{

z ∈ C such that log
(∣∣fn(z)

∣∣) < −M
}

,

F0
n(M) :=

{

z ∈ C such that
∣∣ log

(∣∣fn(z)
∣∣)∣∣ ≤M}

.

(3.24)
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Corollary 3.12 (zeros near the unit circle). Assume the same hypotheses as in Theorem

3.11. Let An(σ) denote the annulus

An(σ) :=

{

z | −(k + 1)
log(n)
n

−
σ

n
< log

(
|z|
)
< −(k − σ)

log(n)
n

}

. (3.25)

Then, for each σ > 0, there is someM > 0 such that the regionAn(σ)∩ F−
n(M) contains no

zeros of πn(z) for sufficiently large n.

For eachM > 0, the zeros of πn(z) in the region An(σ) ∩ (F0
n(M) ∪ F+

n(M)) satisfy

|z| = 1 − (k + 1)
log(n)
n

+
1

n
log

(∣∣fn(z)
∣∣) + o

(
1

n

)
, (3.26)

θ = −
1

n
Ω(θ) +

1

n
arg

(
fn(z)

)
+
π

n
+ o

(
1

n

)
(3.27)

modulo 2π/n, where θ = arg(z), and in both cases the error term is uniformly small in the

specified region. It follows that the angular spacing between neighboring zeros of πn(z)

in the specified region is Δθ = 2π/n + o(1/n).

For any fixedM > 0, (3.26) can be rewritten uniformly in the regionAn(σ)∩F0
n(M)

as

|z| = 1 − (k + 1)
log(n)
n

+O

(
1

n

)
, (3.28)

and consequently there exists some α ∈ (0, σ) such that the zeros of πn(z) in the region

An(σ) ∩ F0
n(M) asymptotically lie between the two circles |z| = 1− (k+ 1) log(n)/n± α/n.

If M > 0 is sufficiently large, then the region F+
n(M) is contained in a disjoint

union of small disks centered at the poles eiθj of the rational function fn(z). In this situ-

ation, let F+
n,j(M) denote the component of F+

n(M) near the pole eiθj . Then from (3.26), it

is seen that the zeros of πn(z) in the region An(σ) ∩ F+
n,j(M) satisfy

|z| = 1 − (k + 1)
log(n)
n

−
1

n
log

∣∣z − eiθj
∣∣ +O( 1

n

)
, (3.29)

where the error term is uniform in the specified region, which indicates that zeros are

attracted to a curve that “bulges” outward from the circle |z| = 1 − (k + 1) log(n)/n in a

region of angular width proportional to log(n)/n centered at the point eiθj to a maximum

radius defined by the equation

1 − |z| = k
log(n)
n

+
log

(
log(n)

)
n

+O

(
1

n

)
. (3.30)

Note that this radius is just within the inner boundary of the zero-free annulus described

by Corollary 3.7. �
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Proof. The annulus An(σ) converges toward the unit circle as n → ∞, and therefore if z

is a zero of πn(z) and n is large enough, Theorem 3.11 gives

nk+1zne−V0−2N(1/z)eEkV(r,θ) + fn(z) = o(1), (3.31)

as n → ∞ because for such z, B(log(|z|)/ε) = 1 and πn(z) = 0. The o(1) error term is

uniformly small for all zeros in An(σ). Now, let

c := inf
|z|≤1

∣∣∣e−V0−2N(1/z)eEkV(r,θ)
∣∣∣ (3.32)

and note that c > 0 due to the assumptions in force on V. Since

inf
z∈An(σ)

nk+1|z|n = e−σ, (3.33)

we see that (3.31) is inconsistent for large enough n if |fn(z)| < ce−σ. Therefore, given

σ > 0, An(σ) ∩ F−
n(M) contains no zeros as n → ∞ as long asM > σ − log(c).

For any M > 0, we now consider those zeros z of πn(z) in the region An(σ) ∩
(F0

n(M) ∪ F+
n(M)), in which case we may divide through in (3.31) by fn(z) to obtain

nk+1zn

fn(z)
e−V0−N(1/z)eEkV(r,θ) + 1 = o(1). (3.34)

Consistency requires that nk+1zn/fn(z) = O(1), and then since the n-independent expo-

nential factors are continuous up to the unit circle and An(σ) is converging to the unit

circle, we may replace these factors by their limiting values on the unit circle without

changing the error estimate. Therefore, (3.34) becomes

nk+1zn

fn(z)
eiΩ(θ) + 1 = o(1), (3.35)

as n → ∞ uniformly for those zeros z of πn(z) that lie in the annulus An(σ). This proves

both (3.26) and (3.27). �

Remark 3.13. Note that the presence of the outward “bulges” in the zero curve near the

points of discontinuity of V (k)(θ) indicates the sharpness of the zero-free region estab-

lished for more general weights in Corollary 3.7.

While most zeros of πn(z) move toward the unit circle as n → ∞ under the hy-

potheses of Theorem 3.11, there may be at most � − 1 zeros further inside the unit circle,

which correspond to zeros of fn(z). We refer to these as “spurious zeros.”
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Corollary 3.14 (spurious zeros). Assume the same hypotheses as in Theorem 3.11. For

each M > 0, there exists a σ > 0, such that the zeros of πn(z) lying in the disk log(|z|) ≤
−(k + 1) log(n)/n − σ/n also lie in the set F−

n(M) for sufficiently large n. Moreover, when-

ever εn is a sequence of positive numbers such that εn → 0 as n → ∞, the zeros of πn(z)

in the disk |z| ≤ 1 − (k + 1) log(n)/n − 1/(nεn) satisfy

fn(z) = o(1) (3.36)

as n → ∞. In particular, πn(z) has exactly one zero for each zero of fn(z) in this region,

making at most � − 1 spurious zeros. �

Proof. Define a constant C > 0 by

C := sup
|z|≤1

∣∣∣∣e−V0−2N(1/z)eEkV(r,θ)B

(
log

(
|z|
)

ε

)∣∣∣∣. (3.37)

Therefore,

sup
log(|z|)≤−(k+1) log(n)/n−σ/n

∣∣∣∣nk+1zne−V0−2N(1/z)eEkV(r,θ)B

(
log

(
|z|
)

ε

)∣∣∣∣ ≤ Ce−σ.

(3.38)

It then follows easily from (3.31) that all zeros of πn(z) lying in the disk where the in-
equality log(|z|) ≤ −(k + 1) log(n)/n − σ/n holds will also lie in the set F−

n(M) for large

enough nwhenever σ > M + log(C).

The term in (3.31) proportional to nk+1zn is o(1) as n → ∞ uniformly for z in the

disk delineated by the inequality |z| ≤ 1−(k+1) log(n)/n−1/(nεn) with εn → 0 as n → ∞.

Therefore, fn(z) = o(1) for zeros in this disk, and the one-to-one correspondence of zeros

of fn(z) with spurious zeros of πn(z) in this region follows from the implicit function

theorem. �

Remark 3.15. Note that the zeros of fn(z) play an apparently contradictory role in the

asymptotics. Indeed, zeros of fn(z) that occur near the unit circle repel zeros of πn(z),

while each zero of fn(z) that occurs far enough within the unit circle attracts precisely

one zero of πn(z).

Remark 3.16. A careful reading of the proof of Theorem 3.11 (see Section 3.3.3) shows

that the o(1) estimate that is stated in (3.22) can be improved to give a rate of decay, and

that even better estimates can be obtained if one does not insist on uniformity. These

simple improvements can provide, for example, decay rate information for the error

terms in the description of the spurious zeros. We have opted not to give these slightly

improved estimates in the interest of simplicity of presentation.
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3.1.3 Numerical computation of zeros of πn(z) when derivatives of V have jump dis-

continuities. To illustrate the detailed asymptotic behavior of the zeros of πn(z) ex-

plained above, we have carried out some numerical experiments. Let us fix � angles of

discontinuity {θ1, . . . , θ�} ⊂ (−π, π) by the formula

θj :=
2π

�

(
j −

1

2
−
�

2

)
, for j = 1, . . . , �. (3.39)

Consider the family of weights φ(θ) given by the formula

φ(θ) :=

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

1 + ewj

∣∣∣∣ sin

(
�

2

(
θ − θj

))∣∣∣∣
k

, for θj−1 < θ < θj with j = 2, 3, . . . , �,

1 + ew1

∣∣∣∣ sin

(
�

2

(
θ − θ1

))∣∣∣∣
k

, for |θ| >
(� − 1)π

�
.

(3.40)

The positive integer k and the real numbers w1, . . . , w� are free parameters. This weight

is of the form φ = e−V , where V (k)(θ) has jump discontinuities at the points θj of mag-

nitudes that can be adjusted by choice of the wj. One advantage of this family from the

point of view of numerical computation is that the Fourier coefficients of φ(θ) can be

evaluated symbolically. In a package such as Mathematica capable of arbitrary precision

arithmetic, this leads to the possibility of computing the elements of the Toeplitz matri-

ces (whose minors are assembled to yield the coefficients of the polynomial πn(z)) with

sufficient accuracy for subsequent numerical computation of the zeros when n is large.

In practice, we computed the coefficients up to an overall factor by scaling the Fourier

coefficients making up the Toeplitz matrix by eV0 . This is necessary to avoid numerical

overflow or underflow since according to the strong Szegő limit theorem, the Toeplitz de-

terminant of φ = e−V of size n + 1 scales as e−nV0 . While the Fourier coefficients can be

computed symbolically, we obtained the coefficients Δ(k)
j eiΩ(θj) appearing in the rational

function fn(z) defined by (3.23) with the help of numerical integration.

The Mathematica code we wrote to carry out these computations is available

from the companion website to this paper, which can be found by visiting http://www.

hindawi.com and looking up this paper using the DOI reference 10.1155/IMRP/2006/

48673. The code takes as input the number of jump discontinuities �, the order k of the

derivative experiencing the discontinuites, a vector w of length � containing the parame-

terswj, and the degree n of the polynomial πn(z). The output is a figure showing the unit

circle (black) with exterior tick marks at the angles θj, j = 1, . . . , �, the zero-attracting

circle |z| = 1− (k+ 1) log(n)/n (green), the inner boundary circle |z| = 1−k log(n)/n of the

zero-free annulus (red), and the zeros of fn(z) that occur in a neighborhood of the unit

http://www.hindawi.com
http://www.hindawi.com
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Figure 3.1 The output of the

Mathematica code for n = 104,

k = 3, � = 7, and wT = (−1,−1/2,

−1/4,−1,−1/4,−1,−1/2).

Figure 3.2 A sequence of plots showing convergence of the zeros of πn(z) toward

the curve |z| = 1 − (k + 1) log(n)/n as n → ∞. The parameters are � = 3, wT =

(−4,−2,−3), and k = 2. From left to right, n = 10,20,40,80, and 160.

disk (large lavender dots). Superimposed on the figure are the zeros of πn(z) (small black

dots). Sample output from the program is shown in Figure 3.1.3.

The first effect we would like to illustrate is the rate of convergence of the zeros of

πn(z) to the unit circle with increasing n, see Figure 3.2. The annulus associated with the

inequalities 1−k log(n)/n < |z| < 1 is asymptotically zero-free, and the curve |z| = 1−(k+

1) log(n)/n asymptotically attracts the zeros near the unit circle. The convergence to the

zero-attracting circle is clear. More difficult to discern from the images is the outward

“bulging” of the zeros near the angles θj of discontinuity toward the inner boundary of

the zero-free region. The imaginative reader can see this effect beginning in the figure

corresponding to n = 160, but larger values of n (and a rescaling of the figures near the

unit circle) will be necessary to resolve the “bulging” completely.

Zeros of fn(z) play little role for the polynomials whose zeros are illustrated in

Figure 3.2. Next, we would like to illustrate the effect zeros of fn(z) can have on πn(z);

this is the phenomenon of spurious zeros. Note that in the present case of equally spaced
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Figure 3.3 Periodic fluctuation of the spurious zeros with respect to n. Top:

k = 2. Bottom: k = 3. In both cases, n varies from n = 60 to n = 66 from

left to right, there are � = 7 equally spaced points of discontinuity, and wT =

(−1,−1/2,−1/4,1/2,−1/4,1/4,−1/2). Note that while for k = 3 the majority of ze-

ros appear to lie in the zero-free annulus 1 − klog(n)/n < |z| < 1, this is a finite n

effect.

angles θ1, . . . , θ�, the function fn(z) is periodic innwith period �. In Figure 3.3,we present

images corresponding to one period of the function fn(z) in the case of discontinuities

of the second and third derivatives of V(θ). Here it is clear that the � − 1 zeros of fn(z)

fluctuate about rapidly with n, and can be either inside the unit circle or outside. Each

zero of fn(z) inside the unit circle is an asymptote for exactly one zero of πn(z), while

those outside the unit circle have little effect on the zeros of πn(z). The zeros near the

unit circle, either inside or outside, have a repulsive effect on the zeros of πn(z).

From the images in Figure 3.3, it is not obvious that the zeros of fn(z) inside the

unit disk attract corresponding spurious zeros of πn(z) in the limit n → ∞. The images

shown in Figure 3.4 show that this convergence indeed occurs. Here, we have used the

periodicity of fn(z) to examine the asymptotic behavior of the zeros of πn(z) along a pe-

riodic subsequence of n-values along which the zeros of fn(z) remain fixed.

The effect of a zero of fn(z) upon those of πn(z) is the most subtle when it occurs

near the unit circle. It should be stressed that the parameters wj of the weight under

consideration can be deformed in a continuous manner such that it may always be ar-

ranged that fn(z) has zeros near the unit circle. We fixed n and chose a one-parameter

deformation of the wj = wj(t) in order to continuously tune a zero of fn(z) through the

unit circle from outside to inside. A movie of this deformation is available at the compan-

ion website to this paper (see http://www.hindawi.com, looking up this paper using the

DOI reference 10.1155/IMRP/2006/48673) and several consecutive frames of this movie

are shown below in Figure 3.5. Here it can be clearly seen that as a zero of fn(z) enters the

http://www.hindawi.com
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Figure 3.4 Convergence of spurious zeros with increasing n. Top: k = 2 and

n = 61,68,75,82,89,96, and 103 from left to right. Bottom: k = 3 and n =

62,69,76,83,90,97, and 104 from left to right. In both cases there are � = 7 equally

spaced points of discontinuity and wT = (−1,−1/2,−1/4,1/2,−1/4,1/4,−1/2).

unit disk, it initially repels the zeros near the attracting circle of |z| = 1− (k+ 1) log(n)/n

by pushing them inwards. The zeros along the attracting curve then move apart to make

way for the incoming zero of fn(z). Exactly one zero of πn(z) fails to get out of the way,

however, and instead enters the orbit of the moving zero of fn(z). As the zero of fn(z)

moves inside the attracting circle, it thus draws with it a spurious zero of πn(z).

3.2 The ∂ steepest descent method for fixed weights

Here, we begin the task of proving the theorems stated in Section 3.1 by analyzing the

behavior of the matrix Mn(z) solving Riemann-Hilbert Problem 2.1 for a fixed weight φ,

in the limit n → ∞. We recall the representation (3.1) of φ(θ) in terms of V : S1
→ R. In

force, in order that Riemann-Hilbert Problem 2.1 indeed describes the orthogonal poly-

nomials with respect to φ(θ), we have the following assumption.

Assumption 3.17. V is a real continuous function on the circle that, for some exponent

ν ∈ (0, 1] and for some constant K > 0, satisfies a uniform Hölder continuity condition

|V(θ2) − V(θ1)| ≤ K|θ2 − θ1|ν.

This guarantees that φ(θ) is a strictly positive function that also satisfies a

Hölder continuity condition with the same exponent, but with a possibly different con-

stant K.

3.2.1 Conversion to an equivalent ∂ problem. Solution of the ∂ problem in terms of inte-

gral equations. We proceed in several steps. First, let Nn(z) be a new unknown related
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Figure 3.5 A continuous one-parameter deformation of a weight of the form (3.40)

with � = 7 and k = 2. The vector of parameters is w(t)T = (0,0,0,1/2,0,1/4,0) −

(1,1/2,1/4,0,1/4,0,1/2)t and t varies from t = 1/40 to t = 13/80 in steps of Δt =

1/80. The frames are ordered left to right and top to bottom.

to Mn(z) as follows:

Nn(z) :=

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

Mn(z)

⎛
⎝z−n 0

0 zn

⎞
⎠ , for |z| > 1,

Mn(z), for |z| < 1.

(3.41)

It follows from Riemann-Hilbert Problem 2.1 that the new unknown Nn(z) tends to the

identity matrix as z → ∞, and that Nn(z) is analytic for |z| 	= 1, with boundary values on

the unit circle related by

Nn
+

(
eiθ
)

= Nn
−

(
eiθ
)(einθ φ(θ)

0 e−inθ

)
, (3.42)
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. ΣΣ+ Σ−

A+

A−

Figure 3.6 The annular domains A± of the equiv-

alent ∂ problem for polynomials orthogonal on the

unit circle. For a given ε > 0, the contour Σ+ corre-

sponds to |z| = 2−ε and the contour Σ− corresponds

to |z| = 2ε .

where Nn
+(z) (resp., Nn

−(z)) indicates the boundary value taken at the point z on the circle

from the inside (resp., outside).

Next, observe the following factorization of the jump condition (3.42):

Nn
+

(
eiθ
)

= Nn
−

(
eiθ
)( 1 0

e−inθφ(θ)−1 1

)(
0 φ(θ)

−φ(θ)−1 0

)(
1 0

einθφ(θ)−1 1

)
.

(3.43)

To take advantage of this factorization, we introduce two new contours Σ± which to-

gether with Σ bound two concentric annular domains A± as shown in Figure 3.2.1.

We will now need some extension of the function φ(θ)−1 defined for z on the unit

circle with arg(z) = θ to the annular domainA+ ∪A−. To make use of the family of exten-

sions defined in (1.5), we now make the following assumption about the weight φ(θ).

Assumption 3.18. The function V is of class Ck−1(S1) for some k = 1, 2, 3, . . . .

Note that when k = 1, this assumption is contained in Assumption 3.17, but when

k > 1 it provides new information. Recall the “bump” function B with the properties

listed in Section 1.5. Then, for any integer m in the range 1 ≤ m ≤ k, and for any ε > 0,

we may apply the extension operator Em to the function V and therefore define a matrix
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Pn
m,ε(r, θ) as follows:

Pn
m,ε(r, θ) :=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Nn(z)

⎛
⎜⎝ 1 0

z−nB

(
log(r)
ε

)
eEmV(r,θ) 1

⎞
⎟⎠ , for z = reiθ ∈ A−,

Nn(z)

⎛
⎜⎝ 1 0

−znB

(
log(r)
ε

)
eEmV(r,θ) 1

⎞
⎟⎠ , for z = reiθ ∈ A+,

Nn(z), for z = reiθ 	∈ A+ ∪A−.

(3.44)

Thus, the factor eEmV(r,θ) appearing above is our selected extension of the function

φ(θ)−1 from the unit circle to the regions A+ and A−.

Unlike Mn(z) and hence Nn(z), the matrix Pn
m,ε(r, θ) is not piecewise analytic be-

cause the factors relating Pn
m,ε(r, θ) to Nn(z) in the domainsA± are not analytic. Indeed,

in view of (1.7), the exponent EmV(r, θ) is not an analytic function. Note however that it

follows from Assumption 3.18 and the analyticity of Mn(z) and hence of Nn(z) for |z| 	= 1
that the matrix Pn

m,ε(r, θ) is continuous for r 	= 1 as long as 1 ≤ m ≤ k. In particular, the

“bump” function factor B(log(r)/ε) ensures that Pn
m,ε(r, θ) is continuous across the cir-

cles Σ±. At the circle of discontinuity Σ, the boundary values taken by Pn
m,ε(r, θ) satisfy

the jump condition

lim
r↑1

Pn
m,ε(r, θ) = lim

r↓1
Pn

m,ε(r, θ)

(
0 φ(θ)

−φ(θ)−1 0

)
. (3.45)

Remark 3.19. Note that the approach to this problem taken in [8], where analyticity of

φ is assumed, amounts to replacing EmV(r, θ) with the analytic extension E∞V(r, θ) and

omitting the “bump” function factor B(log(r)/ε), with the latter being at the cost of an

exponentially near-identity jump discontinuity across the inner and outer circles Σ±.

Next, we may remove the jump discontinuity along the unit circle by introducing

a model matrix Ṗ(z) that is analytic for |z| 	= 1, tends to the identity matrix I as z → ∞,

and that takes on the unit circle continuous boundary values Ṗ+(z) (resp., Ṗ−(z)) from

the inside (resp., outside) that are related by

Ṗ+

(
eiθ
)

= Ṗ−

(
eiθ
)( 0 φ(θ)

−φ(θ)−1 0

)
. (3.46)
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Such a matrix can be found in closed form. Setting

Q̇(z) = Ṗ(z)

(
0 −1

1 0

)
(3.47)

for |z| < 1 and Q̇(z) = Ṗ(z) for |z| > 1, one may equivalently seek a matrix Q̇(z) that is

analytic for |z| 	= 1, tends to the identity matrix as z → ∞, and that takes on the unit

circle continuous boundary values Q̇+(z) (resp., Q̇−(z)) from the inside (resp., outside)

that are related by the diagonal jump condition

Q̇+

(
eiθ
)

= Q̇−

(
eiθ
)
φ(θ)σ3 , (3.48)

where σ3 denotes the Pauli matrix

σ3 :=

(
1 0

0 −1

)
. (3.49)

Clearly, we may seek Q̇(z) as a diagonal matrix. Assumption 3.17 guarantees that

log(φ(θ)) = −V(θ) is well defined on the circle that satisfies a uniform Hölder continu-

ity condition with exponent ν ∈ (0, 1], and therefore we may obtain a matrix Q̇(z) with

the aforementioned properties in the explicit form Q̇(z) = Sφ(z)σ3 , where Sφ(z) is the

Szegő function associated with the weight φ(θ) as defined in (3.2). Going back to Ṗ(z),

the model matrix we will use to remove the jump discontinuity in Pn
m,ε(r, θ) for r = 1 is

defined by the explicit formula:

Ṗ(z) :=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎛
⎝Sφ(z) 0

0 Sφ(z)−1

⎞
⎠ , |z| > 1,

⎛
⎝ 0 Sφ(z)

−Sφ(z)−1 0

⎞
⎠ , |z| < 1.

(3.50)

To actually remove the discontinuity, we introduce a new matrix function Hn
m,ε(r,

θ) defined for r 	= 1 by the formula

Hn
m,ε(r, θ) := Pn

m,ε(r, θ)Ṗ(z)−1. (3.51)

By Assumptions 3.17 and 3.18, the matrix Hn
m,ε(r, θ) is continuous throughout the two

regions r < 1 and r > 1. Moreover, a continuous extension to r = 1 is possible because
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Pn
m,ε(r, θ) and Ṗ(z) satisfy the same jump condition at r = |z| = 1. Thus, we see that for

1 ≤ m ≤ k, and for any ε > 0, the matrix function Hn
m,ε(r, θ) defined by (3.51) may be

viewed as a continuous function on the whole plane with polar coordinates −π ≤ θ < π

and 0 ≤ r < ∞.

At this point, we can summarize the explicit transformations we have introduced

and relate Hn
m,ε(r, θ) directly back to Mn(z). Combining (3.41), (3.44), (3.50), and (3.51),

we have by definition

Hn
m,ε(r, θ) :=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Mn(z)

⎛
⎜⎜⎝

0 −Sφ(z)

Sφ(z)−1 znSφ(z)B
(

log(r)
ε

)
eEmV(r,θ)

⎞
⎟⎟⎠ , 0 ≤ r < 1,

Mn(z)

⎛
⎜⎜⎝

z−nSφ(z)−1 0

Sφ(z)−1B

(
log(r)
ε

)
eEmV(r,θ) znSφ(z)

⎞
⎟⎟⎠ , r > 1,

(3.52)

where z = reiθ.

For r < 2−ε and r > 2ε, we have B(log(r)/ε) ≡ 0, and in these regions the ma-

trix Hn
m,ε(r, θ) clearly inherits analyticity from Mn(z); in other words, in these regions

Hn
m,ε(r, θ) is a smooth function of the combination z = reiθ. However, for z ∈ Ω±, the

matrix Hn
m,ε(r, θ) is certainly not analytic. In order to measure the deviation from ana-

lyticity in the case whenm = k, we introduce a further assumption on φ(θ).

Assumption 3.20. The function V is of class Ck−1,1(S1), that is, the function V (k−1)(θ) is

Lipschitz continuous.

Note that since k ≥ 1, this condition implies in particular that V(θ) is Lipschitz,

and thus the Hölder continuity part of Assumption 3.17 is subsumed. With Assumption

3.20 in force, we may compute the ∂-derivative of Hn
m,ε(r, θ) for r 	= 1 and for all integer

m in the range 1 ≤ m ≤ k. Differentiation of (3.52) yields

∂Hn
m,ε(r, θ) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Mn(z)

⎛
⎜⎝0 0

0 znSφ(z)∂
[
B

(
log(r)
ε

)
eEmV(r,θ)

]
⎞
⎟⎠ , 0 ≤ r < 1,

Mn(z)

⎛
⎜⎝ 0 0

Sφ(z)−1∂

[
B

(
log(r)
ε

)
eEmV(r,θ)

]
0

⎞
⎟⎠ , r > 1,

(3.53)
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for almost all θ, and then elimination of Mn(z) in terms of Hn
m,ε(r, θ) using (3.52) again

gives

∂Hn
m,ε(r, θ) = Hn

m,ε(r, θ)Wn
m,ε(r, θ), for r 	= 1 and almost all θ ∈ S1, (3.54)

where the matrix Wn
m,ε(r, θ) is given for r 	= 1 and almost all θ by the explicit formula

Wn
m,ε(r, θ) :=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎛
⎜⎝0 znSφ(z)2∂

[
B

(
log(r)
ε

)
eEmV(r,θ)

]
0 0

⎞
⎟⎠ , 0 ≤ r < 1,

⎛
⎜⎝ 0 0

z−nSφ(z)−2∂

[
B

(
log(r)
ε

)
eEmV(r,θ)

]
0

⎞
⎟⎠ , r > 1.

(3.55)

In particular, we see that the matrix Hn
m,ε(r, θ) is a solution of the following ∂-problem.

∂ Problem 3.21. Find a 2× 2matrix U(r, θ) with the following properties.

Smoothness. U(r, θ) is a Lipschitz continuous function throughout R
2.

Deviation from analyticity. The relation

∂U(r, θ) = U(r, θ)Wn
m,ε(r, θ) (3.56)

holds for all points in R
2 with the exception of a set of measure zero. The matrix Wn

m,ε(r,

θ) is defined almost everywhere by (3.55) and is essentially compactly supported.

Normalization. The matrix U(r, θ) is normalized at r = ∞ as follows:

lim
r→∞

U(r, θ) = I. (3.57)

In writing down this ∂-problem, we have focused on just a few specific properties

of the matrix Hn
m,ε(r, θ). However, it is important that in doing so, we have not introduced

any spurious solutions.

Proposition 3.22. Suppose thatφ = e−V , where V : S1
→ R is of class Ck−1,1(S1) for some

k = 1, 2, 3, . . . . Then for all n = 0, 1, 2, 3, . . . , form = 1, 2, . . . , k, and for all ε > 0, the matrix

Wn
m,ε(r, θ) is well defined almost everywhere by (3.55) and ∂ Problem 3.21 has a unique

solution, namely U(r, θ) = Hn
m,ε(r, θ). �

Proof. The existence of a solution follows from (3.52) and the existence of Mn(z) for n =

0, 1, 2, . . . . To establish the uniqueness, we first consider the determinant of any solution
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of ∂ Problem 3.21. Clearly, det(U(r, θ)) is a Lipschitz continuous function that tends to 1

as z → ∞. Moreover, the relation ∂det(U(r, θ)) = tr(Wn
m,ε(r, θ)) det(U(r, θ)) holds almost

everywhere, and thus by (3.55) we see that ∂det(U(r, θ)) = 0 holds almost everywhere in

the plane. It follows that det(U(r, θ)) is not only Lipschitz continuous, but is in fact an

entire function of z = reiθ that tends to 1 as z → ∞. Therefore from Liouville’s theorem,

we see that det(U(r, θ)) ≡ 1. Next, consider the matrix ratio of any two solutions U(r, θ)

and Ũ(r, θ) of ∂ Problem 3.21; this is the matrix R(r, θ) defined by

R(r, θ) := U(r, θ)Ũ(r, θ)−1. (3.58)

Since det(Ũ(r, θ)) ≡ 1, it follows that R(r, θ) is Lipschitz continuous throughout the plane.

By direct calculation, we have

∂R(r, θ) = ∂U(r, θ) · Ũ(r, θ)−1 − U(r, θ)Ũ(r, θ)−1∂Ũ(r, θ) · Ũ(r, θ)−1

= U(r, θ)Wn
m,ε(r, θ)Ũ(r, θ)−1 − U(r, θ)Wn

m,ε(r, θ)Ũ(r, θ)−1

= 0

(3.59)

holding almost everywhere in the plane. It follows that R(r, θ) is an entire function of

z = reiθ that tends to the identity matrix as z → ∞, so again by Liouville’s theorem we

get R(r, θ) ≡ I, or equivalently Ũ(r, θ) ≡ U(r, θ). �

The unique solution of ∂ Problem 3.21 can also be expressed as a solution of an

integral equation with Cauchy kernel.

Proposition 3.23. Suppose thatφ = e−V , where V : S1
→ R is of class Ck−1,1(S1) for some

k = 1, 2, 3, . . . . Then for all n = 0, 1, 2, 3, . . . , form = 1, 2, . . . , k, and for all ε > 0, the matrix

Wn
m,ε(r, θ) is well defined almost everywhere by (3.55) and the corresponding solution

U(r, θ) = Hn
m,ε(r, θ) of ∂ Problem 3.21 satisfies the integral equation

U(r, θ) = I −
1

π

∫∫

U(r ′, θ ′)Wn
m,ε(r ′, θ ′)

z ′ − z
dA ′, (3.60)

where z = reiθ, z ′ = r ′eiθ ′
, and dA ′ is a positive area element dA ′ = r ′dr ′dθ ′. The integral

is taken over the entire plane. �

Proof. Recall that the Cauchy kernel is a fundamental solution for the ∂ operator. In the

relation (3.54), we may replace ∂Hn
m,ε(r, θ) by ∂[Hn

m,ε(r, θ)− I]; multiplying by the Cauchy

kernel and integrating over the whole plane gives the identity

−
1

π

∫∫
∂
[
Hn

m,ε(r ′, θ ′) − I
]

z ′ − z
dA ′ = −

1

π

∫∫

Hn
m,ε(r ′, θ ′)Wn

m,ε(r ′, θ ′)
z ′ − z

dA ′. (3.61)
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On the left-hand, side the ∂ operator differentiates with respect to the primed variables.

Since the Cauchy kernel is absolutely integrable, we may evaluate the integral on the

left-hand side by replacing the domain of integration by the region |z ′ − z| ≥ δ > 0 and

subsequently taking the limit δ → 0. For each positive δ, we may apply Stokes’ theorem

and use the facts that ∂[(z ′ − z)−1] = 0 for |z ′ − z| ≥ δ and that Hn
m,ε(r, θ) − I tends to zero

as r → ∞ to evaluate the integral over the region |z ′ − z| ≥ δ in terms of a line integral

over the boundary. Thus we have

lim
δ↓0

1

2πδ

∫

|z ′−z|=δ

(
Hn

m,ε(r ′, θ ′) − I
)
d� ′ = −

1

π

∫∫

Hn
m,ε(r ′, θ ′)Wn

m,ε(r ′, θ ′)
z ′ − z

dA ′,

(3.62)

where d� ′ is an arc-length element. From the continuity of Hn
m,ε(r, θ), the integral equa-

tion (3.60) with U(r, θ) = Hn
m,ε(r, θ) follows. �

3.2.2 Asymptotic solution of the integral equation. Estimates of Hn
m,ε(r, θ) and its de-

rivatives for large n. As the knowledge of the matrix Hn
m,ε(r, θ) is equivalent to knowl-

edge of Mn(z) and hence of the polynomial of degree n in the system of polynomials

orthogonal on the circle with respect to φ, we would like to use the integral equation

(3.60) to characterize Hn
m,ε(r, θ). There is a difficulty in that while existence of solutions

for (3.60) is not an issue, one does not automatically have uniqueness. However, it turns

out that if the parameter n is sufficiently large, then the integral equation (3.60) defines

a contraction mapping and thus may be solved by iteration yielding a unique solution

in the form of a Neumann series. In this connection, we can also obtain from (3.60) as-

ymptotic information about the matrix Hn
m,ε(r, θ), and consequently of the orthogonal

polynomial πn(z), in the limit n → ∞.

In order to study (3.60), it is useful to characterize the family of matrix functions

Wn
m,ε(r, θ) more concretely.

Proposition 3.24. Suppose that V : S1
→ R is a real function of class Ck−1,1(S1) for some

k ≥ 1, that m is an integer satisfying 1 ≤ m ≤ k, and that ε > 0 is fixed. Let the inte-

ger D be defined as D := min(k − m,m − 1). Then, the matrix function Wn
m,ε is of class

CD−1,1
0 (R2 \ {0}) if D > 0, and of class L∞

0 (R2 \ {0}) if D = 0. Moreover, if α and β are

nonnegative integers such that α + β ≤ D, then there is a constant C(α,β)
m,ε > 0 such that

for all n, the estimate

∥∥∥∥ ∂α+β

∂rα∂θβ
Wn

m,ε(r, θ)
∥∥∥∥ ≤ C(α,β)

m,ε n
βe−n| log(r)|

∣∣ log(r)
∣∣m−1−α

α
∑

p=0

np
∣∣ log(r)

∣∣p (3.63)
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holds throughout the region | log(r)| ≤ ε log(2) containing the essential support of

Wn
m,ε(r, θ). �

Proof. Wn
m,ε(r, θ) vanishes identically outside of the annulus | log(r)| ≤ ε log(2). In the

disjoint regions r < 1 and r > 1, the matrix function Wn
m,ε(r, θ) is infinitely differen-

tiable with respect to r, and the issue is the continuity of these derivatives at r = 1.

The relation (1.7) implies that for each fixed θ, Wn
m,ε(r, θ) is proportional to (log(r))m−1

near r = 1 (where B(log(r)/ε) ≡ 1 holds), and thus all derivatives of Wn
m,ε(r, θ) with

respect to r through order m − 2 are Lipschitz continuous at r = 1, and the derivative

∂m−1Wn
m,ε(r, θ)/∂rm−1 remains bounded as r → 1, but experiences a jump discontinuity

at r = 1.

On the other hand, if r 	= 1 is fixed, then from (1.5) and (1.7), the matrix Wn
m,ε(r, θ)

depends analytically on derivatives V (j)(θ) for 0 ≤ j ≤ m. Since V is of classCk−1,1(S1), all

derivatives of Wn
m,ε with respect to θ through order k−1−mwill be Lipschitz continuous,

while the derivative ∂k−mWn
m,ε(r, θ)/∂θk−m will be defined for almost all θ and will be

uniformly bounded.

To have all mixed partial derivatives of total order at most D − 1 to be Lipschitz

continuous, it is sufficient to have both D ≤ m − 1 and D ≤ k − m. If for 1 ≤ m ≤ k

these inequalities force D = 0, then no derivatives of Wn
m,ε(r, θ) may be taken at all,

but Wn
m,ε(r, θ) is uniformly bounded and compactly supported in the annulus | log(r)| ≤

ε log(2), that is, Wn
m,ε ∈ L∞

0 (R2 \ {0}). If D = min(k − m,m − 1) > 0, then we learn that

Wn
m,ε ∈ CD−1,1

0 (R2 \ {0}).

Now there are absolute constants C± > 0 such that

∥∥∥∥ ∂α+β

∂rα∂θβ
Wn

m,ε(r, θ)
∥∥∥∥

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

C+

∣∣∣∣∣∣∣∣
∑

α ′+α ′′=α
β ′+β ′′=β

Wm,ε,α ′′,β ′′(r, θ)
∂α ′+β ′

∂rα
′
∂θβ ′ z

nSφ(z)2

∣∣∣∣∣∣∣∣
, r < 1,

C−

∣∣∣∣∣∣∣∣
∑

α ′+α ′′=α
β ′+β ′′=β

Wm,ε,α ′′,β ′′(r, θ)
∂α ′+β ′

∂rα
′
∂θβ ′ z

−nSφ(z)−2

∣∣∣∣∣∣∣∣
, r > 1,

(3.64)

where

Wm,ε,α ′′,β ′′(r, θ) :=
∂α ′′+β ′′

∂rα
′′
∂θβ ′′ ∂

[
B
(

log(r)/ε
)
eEmV(r,θ)]. (3.65)
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Generally, the derivatives indexed byα ′ andβ ′ are uniformly bounded throughout the re-

gions 2−ε < r < 1 and 1 < r < 2ε by a constant multiple of nα ′+β ′
e−n| log(r)|. Furthermore,

using (1.7), the derivative Wm,ε,α ′′,β ′′(r, θ) is uniformly bounded by a constant multiple

of | log(r)|m−1−α ′′
throughout the region | log(r)| ≤ ε log(2). Therefore setting α ′′ = α− α ′,

an inequality of the form

∥∥∥∥ ∂α+β

∂rα∂θβ
Wn

m,ε(r, θ)
∥∥∥∥ ≤ C̃(α,β)

m,ε e
−n| log(r)|

α
∑

α ′=0

β
∑

β ′=0

nβ ′ ∣∣ log(r)
∣∣m−1−α

nα ′∣∣ log(r)
∣∣α ′

(3.66)

holds in the region | log(r)| ≤ ε log(2), where C̃(α,β)
m,ε > 0 is a constant.

Finally, since nβ ′ ≤ nβ, the inequality (3.63) follows, whereC(α,β)
m,ε = (β+1)C̃(α,β)

m,ε .

�

An important part of our analysis will be the estimation of certain two-dimen-

sional Laplace-type integrals with Cauchy kernels. The main workhorse in this connec-

tion is the following lemma.

Lemma 3.25. Let ε > 0 and ν ≥ 1 be fixed constants. Then there exists a corresponding

constant Kε,ν > 0 such that the estimate (note that z ′ = r ′eiθ ′
)

sup
z∈C

∫2ε

2−ε

r ′dr ′e−n| log(r ′)|
∣∣ log(r ′)

∣∣ν−1
∫π

−π

dθ ′

|z ′ − z|
≤ Kε,ν

log(n)
nν

(3.67)

holds for sufficiently large n. Moreover, for each ρ > 2ε, there exists a constant Kε,ν,ρ > 0

such that the estimate

sup
| log(|z|)|≥log(ρ)

∫2ε

2−ε

r ′dr ′e−n| log(r ′)|
∣∣ log(r ′)

∣∣ν−1
∫π

−π

dθ ′

|z ′ − z|
≤ Kε,ν,ρ

nν
(3.68)

holds for sufficiently large n. �

Proof. As θ ′ varies over S1, the minimum value of |z ′−z| is achieved at θ ′ = θ, and we thus

have |z ′ − z| ≥ |r ′ − r|, which implies the inequality

∫π

−π

dθ ′

|z ′ − z|
≤ 2π

|r ′ − r|
. (3.69)

Let μ be a positive constant. Clearly, there is another positive constant C1 depending on

μ but not on r or r ′ such that

∣∣ log(r ′) − log(r)
∣∣ > μ =⇒

∫π

−π

dθ ′

|z ′ − z|
≤ C1 (3.70)
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θ′

r′
r′| sin(θ′)| |z′ − z|

z′ = r′eiθ ′

Figure 3.7 The estimate |z′ − z| ≥ r′| sin(θ′)|.

The right-hand side can be replaced by r′|θ′|/2

for |θ′| < π/2.

because the condition | log(r ′) − log(r)| > μ also bounds |r ′ − r| away from zero. Further-

more, if μ is sufficiently small, there is a positive constant C2 depending on μ but not on

r or r ′ such that

∣∣ log(r ′) − log(r)
∣∣ ≤ μ, ∣∣ log(r ′)

∣∣ ≤ ε log(2)

=⇒

∫π

−π

dθ ′

|z ′ − z|
≤ C2 log

(
n +

1∣∣ log(r ′) − log(r)
∣∣
)
.

(3.71)

To establish (3.71), note that for μ sufficiently small, the condition | log(r ′) − log(r)| ≤ μ

implies that |r ′ − r| < π/2. Assuming without loss of generality that θ = 0, we use the

following estimates of the integrand. For |θ ′| ≤ |r ′ − r|, we use the estimate |z ′ − z| ≥ |r ′ − r|

which follows from the triangle inequality applied to the identity z + (z ′ − z) = z ′. For

|r ′ − r| < |θ ′| ≤ π/2, we use the estimate |z ′ − z| ≥ r ′| sin(θ ′)| ≥ r|θ ′|/2 which follows

from the diagram shown in Figure 10. Finally, for π/2 < |θ ′| ≤ π, we use the estimate

|z ′ − z| ≥ r which follows from the law of cosines because cos(θ ′) < 0⇒|z ′ − z|2 = r2 +

(r ′)2 − 2rr ′ cos(θ ′) ≥ r2 + (r ′)2 ≥ r2 (again, see Figure 10). Combining these estimates, we

have

∫π

−π

dθ ′

|z ′ − z|
≤ 2 +

4

r ′

∫π/2

|r ′−r|

dθ ′

θ ′ +
π

r
≤ 2 + 22+ε

∫π/2

|r ′−r|

dθ ′

θ ′ + 2επeμ. (3.72)

This is clearly bounded above by a constant multiple of log(|r ′ − r|−1) for μ sufficiently

small, and from this (3.71) follows as well (adding a constant inside the logarithm keeps

the bound positive away from the singularity as long as n ≥ 1, and for later purposes, it

is convenient to take the additive constant to be n).
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Now we estimate the integral over r ′. Using r ′ ≤ 2ε, along with (3.70) and (3.71),

and changing the integration variable from r ′ to s = n log(r ′), we get

∫2ε

2−ε

r ′dr ′e−n| log(r ′)|
∣∣ log(r ′)

∣∣ν−1
∫π

−π

dθ ′

|z ′ − z|

≤ 22εC1

nν

∫

A

ds e−|s||s|ν−1 +
22εC2

nν

∫

B

ds e−|s||s|ν−1 log

(
n +

n∣∣s − n log(r)
∣∣
)
,

(3.73)

where

A :=
{

s such that |s| ≤ nε log(2) and
∣∣s − n log(r)

∣∣ > nμ}

,

B :=
{

s such that |s| ≤ nε log(2) and
∣∣s − n log(r)

∣∣ ≤ nμ}

.

(3.74)

Finally, we have

∫

A

ds e−|s||s|ν−1 ≤
∫

∞

−∞

ds e−|s||s|ν−1, (3.75)

which is finite and independent of n and r because ν ≥ 1, while

∫

B

ds e−|s||s|ν−1

(
n +

n∣∣s − n log(r)
∣∣
)

≤
∫

∞

−∞

ds e−|s||s|ν−1 log

(
n +

n∣∣s − n log(r)
∣∣
)

= log(n)
∫

∞

−∞

ds e−|s||s|ν−1 +

∫
∞

−∞

ds e−|s||s|ν−1 log

(
1 +

1∣∣s − n log(r)
∣∣
)
,

(3.76)

and the last integral is bounded independently of n and r, since by Cauchy and Schwarz,

∫
∞

−∞

ds e−|s||s|ν−1 log

(
1 +

1∣∣s − n log(r)
∣∣
)

≤
[ ∫

∞

−∞

ds e−2|s||s|2ν−2

]1/2
[

∫
∞

−∞

ds

(
log

(
1 +

1

|s|

))2
]1/2

(3.77)

with both factors being finite. Thus, an upper bound for the integral of interest is pro-

portional to log(n)/nν in general, which proves (3.67). If ρ > 2ε and | log(|z|)| ≥ log(ρ),

then it is not necessary to divide the integration into sets A and B, and the bound (3.70)

can be used over the whole range of integration in which case the upper bound is then

proportional to 1/nν, which proves (3.68). �
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With these results in hand, we can formulate and prove the following proposi-

tion.

Proposition 3.26. Suppose thatφ = e−V , where V : S1
→ R is of class Ck−1,1(S1) for some

k = 1, 2, 3, . . . . Let the integer m lie in the range 1 ≤ m ≤ k and fix ε > 0. Define the

integer D := min(k − m,m − 1) ≥ 0. Then, for all n ≥ 0, the matrix Wn
m,ε(r, θ) is well

defined almost everywhere by (3.55), and for all n sufficiently large, Hn
m,ε(r, θ) is given

by a Neumann series

Hn
m,ε(r, θ) = I +

(
Wn

m,εI
)
(r, θ) +

(
Wn

m,ε ◦ Wn
m,εI

)
(r, θ) + · · · (3.78)

which converges in the norm ||| · |||D, where the double-integral operator Wn
m,ε is defined

by

(
Wn

m,εF
)
(r, θ) := −

1

π

∫∫

F(r ′, θ ′)Wn
m,ε(r ′, θ ′)

z ′ − z
dA ′. (3.79)

In particular, ifD = 0, then Hn
m,ε lies in the space L∞ (R2), and ifD > 0 then Hn

m,ε lies in

the space CD−1,1(R2) and |||Hn
m,ε|||D is finite. For all integer p in the range 0 ≤ p ≤ D, the

following estimates hold for sufficiently large n:

∣∣∣∣∣∣Hn
m,ε − I

∣∣∣∣∣∣
p
≤ C(p)

m,ε

log(n)
nm−p

, (3.80)

∣∣∣∣∣∣Hn
m,ε − I − Wn

m,εI
∣∣∣∣∣∣

p
≤
(
C(p)

m,ε

log(n)
nm−p

)2

, (3.81)

where C(p)
m,ε > 0 is a constant. Furthermore, for each ρ > 2ε and for all integer p in the

range 0 ≤ p ≤ D, the following estimates hold for sufficiently large n:

∑

α+β≤p

sup
−π<θ<π

| log(r)|≥log(ρ)

∥∥∥∥ ∂α+β

∂xα∂yβ

[
Hn

m,ε(r, θ) − I
]∥∥∥∥ ≤ C̃(p)

m,ρ

1

nm−p
, (3.82)

∑

α+β≤p

sup
−π<θ<π

| log(r)|≥log(ρ)

∥∥∥∥ ∂α+β

∂xα∂yβ

[
Hn

m,ε(r, θ) − I −
(
Wn

m,εI
)
(r, θ)

]∥∥∥∥ ≤ C̃(p)2
m,ρ

log(n)
n2m−2p

,

(3.83)

where C̃(p)
m,ρ > 0 is a constant. �

Proof. Fix k ≥ 1 andm in the range 1 ≤ m ≤ k, and setD = min(k −m,m − 1). Let p be a

nonnegative integer satisfying p ≤ D. If p > 0, suppose that F(r, θ) is matrix function of



42 K. T.-R. McLaughlin and P. D. Miller

class Cp−1,1(R2) with all derivatives of total order no greater than p uniformly bounded

in the whole plane, and if p = 0, suppose that F(r, θ) is of class L∞ (R2). For such F(r, θ),

we recall the norm (1.15), where the Cartesian coordinates x and y are connected to the

polar coordinates r and θ in the usual way: x = r cos(θ) and y = r sin(θ). Because for

z ′ 	= z,

∂α+β

∂xα∂yβ

1

z ′ − z
= (−1)α+β ∂α+β

∂x ′α∂y ′β
1

z ′ − z
, (3.84)

for α ≥ 0 and β ≥ 0with α + β ≤ p, we have

∂α+β

∂xα∂yβ

(
Wn

m,εF
)
(r, θ) = −

(−1)α+β

π

∫∫

F(r ′, θ ′)Wn
m,ε(r ′, θ ′)

∂α+β

∂x ′α∂y ′β

[
1

z ′ − z

]
dA ′

= −
1

π

∫∫

∂α+β

∂x ′α∂y ′β
[
F(r ′, θ ′)Wn

m,ε(r ′, θ ′)
] dA ′

z ′ − z
.

(3.85)

Note that in order to integrate by parts in (3.85) for all α and β of interest, we must have

p ≤ k−m. Now, since Wn
m,ε(r, θ) is compactly supported in the annulus | log(r)| ≤ ε log(2),

∥∥∥∥ ∂α+β

∂xα∂yβ

[
F(r, θ)Wn

m,ε(r, θ)
]∥∥∥∥

≤
∑

α ′+α ′′=α
β ′+β ′′=β

[
sup
R2

∥∥∥∥ ∂α ′+β ′

∂xα ′
∂yβ ′ F(r, θ)

∥∥∥∥
]
·
∥∥∥∥ ∂α ′′+β ′′

∂xα ′′
∂yα ′′ W

n
m,ε(r, θ)

∥∥∥∥

≤ |||F|||p ·
α

∑

α ′′=0

β
∑

β ′′=0

∥∥∥∥ ∂α ′′+β ′′

∂xα ′′
∂yβ ′′ W

n
m,ε(r, θ)

∥∥∥∥
≤ |||F|||p

∑

α ′+β ′≤α+β

K(α ′,β ′)
m,ε

∥∥∥∥ ∂α ′+β ′

∂rα
′
∂θβ ′ W

n
m,ε(r, θ)

∥∥∥∥,

(3.86)

where K(α ′,β ′)
m,ε are some positive constants. Using Proposition 3.24, we then find that

∥∥∥∥ ∂α+β

∂xα∂yβ

[
F(r, θ)Wn

m,ε(r, θ)
]∥∥∥∥

≤ K(α+β)
m,ε · |||F|||pe

−n| log(r)|
∣∣ log(r)

∣∣m−1−(α+β)
α+β
∑

j=0

nj
∣∣ log(r)

∣∣j, (3.87)
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where K(l)
m,ε > 0 is some constant. Finally, we arrive at the estimate

∣∣∣∣∣∣Wn
m,εF

∣∣∣∣∣∣
p
≤ K̃

(p)
m,ε

π
· |||F|||p ·

p
∑

j=0

nj

∫2ε

2−ε

r ′dr ′e−n| log(r ′)|
∣∣ log(r ′)

∣∣m+j−1−p
∫π

−π

dθ ′

|z ′ − z|
,

(3.88)

where K̃(p)
m,ε > 0 is another constant.

Set ν := m + j − p, and note that ν ≥ 1 since as j ranges from 0 to p, ν ranges from

m− p tom, and we have p ≤ D ≤ m− 1. Lemma 3.25 may thus be applied to each integral

on the right-hand side of (3.88), with the result that

∣∣∣∣∣∣Wn
m,εF

∣∣∣∣∣∣
p
≤ C

(p)
m,ε log(n)
nm−p

|||F|||p, (3.89)

for some constant C(p)
m,ε > 0 and n sufficiently large. We note in passing that in order for

(3.89) to provide control of the operator Wn
m,ε, we need to have p < m. The two restric-

tions in force on p, namely p < m and p ≤ k −m, have been expressed in the statement

of the proposition as the inequality p ≤ D. If one restricts attention to those z = reiθ for

which | log(r)| ≥ log(ρ) > ε log(2), then Lemma 3.25 implies the inequality

∑

α+β≤p

sup
−π<θ<π

| log(r)|≥log(ρ)

∥∥∥∥ ∂α+β

∂xα∂yβ

(
Wn

m,εF
)
(r, θ)

∥∥∥∥ ≤ C̃
(p)
m,ρ

nm−p
|||F|||p, (3.90)

where C̃(p)
m,ρ > 0 is a constant and n is sufficiently large.

From (3.89), it is clear that if n is sufficiently large, the double-integral operator

Wn
m,ε defined by the formula (3.79) and acting in the integral equation (3.60) thus defines

a contraction mapping in the space Cp−1,1(R2) equipped with the norm ||| · |||p, or in the

space L∞ (R2) if p = 0. This implies that there is a unique solution of (3.60) in this space

that may be found by iteration resulting in the ||| · |||p-convergent Neumann series

U(r, θ) := I +
(
Wn

m,εI
)
(r, θ) +

(
Wn

m,ε ◦ Wn
m,εI

)
(r, θ) + · · · . (3.91)

In particular, choosing p = 0, one sees that the Neumann series (3.91) furnishes a unique

solution of the integral equation (3.60) in the space L∞ (R2). Since Proposition 3.23 guar-

antees that the matrix Hn
m,ε(r, θ) is a known solution of the integral equation (3.60) that

is (in particular) uniformly bounded in the plane, we may identify it with the Neumann

series (3.91) forn sufficiently large. From this point forward in our proof, we assume that

n is indeed large enough for this to be the case. Since the same Neumann series (3.91)
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also converges in the norm ||| · |||p where pmay be taken to be as large asD, we also learn

that ifD > 0, then Hn
m,ε(r, θ) lies in the space CD−1,1(R2) and that |||Hn

m,ε|||D is finite.

From (3.91), taking ||| · |||p norms and using (3.89), we see that

∣∣∣∣∣∣Hn
m,ε − I

∣∣∣∣∣∣
p
≤ ‖I‖

∞
∑

j=1

(
C

(p)
m,ε log(n)
nm−p

)j

≤ 2‖I‖C
(p)
m,ε log(n)
nm−p

(3.92)

if n is large enough that nm−p exceeds 2C(p)
m,ε log(n). Since according to the integral equa-

tion (3.60) satisfied by Hn
m,ε(r, θ) we have

Hn
m,ε(r, θ) − I −

(
Wn

m,εI
)
(r, θ) =

(
Wn

m,ε

(
Hn

m,ε − I
))

(r, θ), (3.93)

we may take norms and use (3.89) and (3.92) to learn that

∣∣∣∣∣∣Hn
m,ε − I − Wn

m,εI
∣∣∣∣∣∣

p
≤ 2‖I‖C

(p)2
m,ε log(n)2

n2m−2p
(3.94)

holds for sufficiently large n. The proof of the estimates (3.80) and (3.81) is complete

upon appropriate redefinition of the constant C(p)
m,ε.

Note that (3.90) implies that the upper bounds in (3.92) and (3.94) can be reduced

by a factor of log(n) if in each case the supremum on the left-hand side is taken over only

those values of r satisfying | log(r)| ≥ log(ρ) for a fixed ρ > 2ε. This completes the proof

of the estimates (3.82) and (3.83) upon appropriate redefinition of the constant C̃(p)
m,ρ.

�

Remark 3.27. To uniformly control p derivatives of Hn
m,ε(r, θ), Proposition 3.26 requires

thatm should lie in the range 1+ p ≤ m ≤ k− p, and therefore to guarantee the existence

of suitable values of m, V : S1
→ R should be of class Ck−1,1(S1) for some k ≥ 2p + 1.

Also, note that the utility of the estimates (3.81) and (3.83) is that the matrix Wn
m,ε(r, θ)

is off-diagonal, so the diagonal matrix elements of Hn
m,ε(r, θ) − I experience more rapid

decay than do the off-diagonal elements.

3.3 Proofs of theorems stated in Section 3.1

If we solve (3.52) for Mn(z) in terms of Hn
m,ε(r, θ), then since Mn

11(z) = πn(z), the monic

polynomial of degree n in the system of polynomials orthogonal with respect to the inner

product 〈·, ·〉φ defined by (1.9), we can easily obtain from Proposition 3.26 asymptotic

formulae for πn(z) and its derivatives, valid for large n, with uniform error estimates.
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3.3.1 Asymptotic behavior of πn(z) for |z| > 1

Proof of Theorem 3.1. In the region r > 1, we have for each ε > 0 and for eachm = 1, . . . , k

the exact representation

πn(z) = Hn
m,ε,11(r, θ)zneN(z) −Hn

m,ε,12(r, θ)B
(

log(r)
ε

)
eEmV(r,θ)−N(z). (3.95)

Here we have used (3.5) to write Sφ(z) = eN(z) for |z| ≥ 1. Equivalently,

πn(z)z−ne−N(z) − 1

=
[
Hn

m,ε,11(r, θ) − 1
]

− z−nHn
m,ε,12(r, θ)B

(
log(r)
ε

)
eEmV(r,θ)−2N(z), r ≥ 1.

(3.96)

If ρ > 1 is fixed, then we may choose ε > 0 small enough that B(log(r)/ε) ≡ 0 whenever

|z| ≥ ρ. In this case, we have simply

πn(z)z−ne−N(z) − 1 = Hn
m,ε,11(r, θ) − 1, |z| ≥ ρ > 1. (3.97)

The best decay estimate comes from taking m = k. In this case, using Proposition 3.26

(specifically recalling the estimate (3.83) and the fact that Wn
m,ε(r, θ) is an off-diagonal

matrix), we see that for some constant Kρ > 0,

sup
−π<θ<π
r≥ρ>1

∣∣Hn
m,ε,11(r, θ) − 1

∣∣ ≤ Kρ
log(n)
n2k

. (3.98)

Now as the combination πn(z)z−ne−N(z) −1 is a function of z that is analytic in the region

|z| > 1 and decaying to zero as z → ∞, we may express arbitrary derivatives of it as

Cauchy integrals:

dp

dzp

[
πn(z)z−ne−N(z) − 1

]
= −

p!

2πi

∮

|s|=ρ

πn(s)s−ne−N(s) − 1

(s − z)p
ds, (3.99)

where the contour of integration is oriented in the counterclockwise direction, and |z| >

ρ. Using (3.98) to bound the integrand then gives a uniform bound of the same order of

magnitude for derivatives over regions bounded away from the circle |z| = ρ, which can

be taken arbitrarily close to the unit circle. This proves (3.7), and completes the proof of

Theorem 3.1.
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3.3.2 Asymptotic behavior of πn(z) for |z| = 1

Proof of Theorem 3.2. Theorem 3.2 follows from the estimate (3.9) by noting that the er-

ror is an analytic function of z in the exterior domain |z| > 1 that decays as z → ∞, and

therefore (3.9) implies the more general result stated in Theorem 3.2 via the maximum

modulus principle. To prove (3.9), we fix any positive value of ε and consider 1 ≤ r ≤ 2ε/2

in which case B(log(r)/ε) ≡ 1, and therefore (3.96) implies the following formula:

dp

dzp

[
πn(z)z−ne−N(z) − 1

]
= ∂p

[
Hn

m,ε,11(r, θ) − 1
]

− ∂p
[
z−nHn

m,ε,12(r, θ)eEmV(r,θ)−2N(z)], 1 ≤ r ≤ 2ε/2.

(3.100)

We remind the reader that estimates on derivatives like (3.100) are valid for 1 + p ≤
m ≤ k − p (see the remark at the end of Section 3.2). Using the estimate (3.81) from

Proposition 3.26 and noting that Wn
m,ε(r, θ) is an off-diagonal matrix, we see that for

some constant Kp > 0,

sup
R2

∣∣∂p
[
Hn

m,ε,11(r, θ) − 1
]∣∣ ≤ Kp

log(n)2

n2m−2p
, (3.101)

if m ≤ k − p. On the other hand, the dominant contributions actually come from those

terms in the second member of the right-hand side of (3.100) in which none of the p

derivatives fall on the exponential factor eEmV(r,θ)−2N(z) (which has k −m + 1 uniformly

bounded derivatives). Since |z| ≥ 1, it suffices to estimate nj∂p−jHn
m,ε,12(r, θ) with the use

of the inequality (3.80) in Proposition 3.26. Takingm = k − p for the best possible decay

estimate then gives

sup
−π<θ<π

1≤r≤2ε/2

∣∣∣∣ dp

dzp

[
πn(z)z−ne−N(z) − 1

]∣∣∣∣ ≤ Kp
log(n)
nk−2p

, (3.102)

where Kp > 0 is a constant. This proves (3.9), upon taking the limit r ↓ 1 and writing the

z derivatives in terms of θ (differentiation commutes with the limit process).

3.3.3 Asymptotic behavior of πn(z) for |z| < 1 and of γn.

Proof of Theorems 3.6, 3.9, and 3.11. Using (3.52) and the fact (see (3.5)) that Sφ(0) =

e−V0 , we have the exact representation:

γ2
n−1 = −Mn

21(0) = Hn
m,ε,22(0, θ)eV0 , (3.103)
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and, whenever |z| < 1,

πn(z) = Mn
11(z) = zne−V0−N(1/z)B

(
log(r)
ε

)
eEmV(r,θ)Hn

m,ε,11(r, θ)

− eV0+N(1/z)Hn
m,ε,12(r, θ),

(3.104)

where (3.5) has been used, and z = reiθ.

To prove Theorem 3.9, we simply apply (3.83) from Proposition 3.26 in the case

p = 0 andm = k to the identity (3.103). This immediately yields (3.17) and completes the

proof.

The proof of Theorem 3.6 is based on a similar analysis of (3.104). Recalling that

ρ ∈ (0, 1), one can choose ε > −2 log(ρ)/ log(2) and then B(log(r)/ε) ≡ 1 in (3.104) for

ρ < |z| < 1. The estimate (3.13) then follows by taking m = k, and using (3.81) from

Proposition 3.26 in the case p = 0. Similarly, choosing ε < − log(ρ)/ log(2), we have

B(log(r)/ε) ≡ 0 in (3.104) for |z| < ρ. Again taking m = k, one obtains (3.14) by using

(3.83) from Proposition 3.26 with p = 0. This completes the proof of Theorem 3.6.

The rest of this section will be devoted to the proof of Theorem 3.11. We begin

with (3.104) for m = k, a formula that is valid for all z with |z| < 1. Using (3.81) from

Proposition 3.26, and keeping the term corresponding to Wn
k,εI, we arrive at the formula

πn(z) = zne−V0−N(1/z)eEkV(r,θ)B

(
log(r)
ε

)

+
eV0+N(1/z)

π

∫∫

2−ε<r ′<1

Wn
k,ε,12(r ′, θ ′)
z ′ − z

dA ′ +O

(
log(n)2

n2k

)
,

(3.105)

as n → ∞, where the error term is uniform for |z| < 1. Here, dA ′ = r ′dr ′dθ ′ is an area

element, and in the integral θ ′ varies over S1 (the support of Wn
k,ε,12(r, θ) is the annulus

given by the inequalities 2−ε ≤ r ≤ 1).
In the annulus of support ofWn

k,ε,12(r, θ), we have from (3.55) that

Wn
k,ε,12(r, θ) = ∂

[
zne−2V0−2N(1/z)B

(
log(r)
ε

)
eEkV(r,θ)

]
. (3.106)

Remark 3.28. The fact that Wn
k,ε,12(r, θ) is in the range of ∂ means that the double inte-

gral in (3.105) can be reduced without approximation to the sum of an explicit contribu-

tion and a contour integral. Indeed, by the inversion of the ∂ operator,

−
1

π

∫∫

2−ε<r ′<1

Wn
k,ε,12(r ′, θ ′)
z ′ − z

dA ′

= F(z) + zne−2V0−2N(1/z)B

(
log(r)
ε

)
eEkV(r,θ)χ(2−ε,1)(r),

(3.107)
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where χI denotes the characteristic function of an interval I, and where F(z) is function

analytic except on the circles |z| = 2−ε and |z| = 1 bounding the support of Wn
k,ε,12(r, θ)

that is chosen to make the right-hand side continuous and decaying as z → ∞. These

latter properties uniquely identify F(z) with the Cauchy integral

F(z) = −
1

2πi

∮

|s|=1

sne−V0+iΩ(arg(s))

s − z
ds, (3.108)

where the contour of integration is oriented counterclockwise. Note that it is the pres-

ence of the bump function B(log(r)/ε) that makes F(z) continuous at |z| = 2−ε. Unfortu-

nately, this interesting formula, while apparently simpler than a double integral, is not

as useful for asymptotic analysis as the alternative approach we now follow.

Continuing our analysis, we carry out the differentiation in (3.106) in the region

|z| < 1with the use of (1.7):

Wn
k,ε,12(r, θ)

=zne−2V0−2N(1/z)eEkV(r,θ)
[
∂B

(
log(r)
ε

)
+ B

(
log(r)
ε

)
∂EkV(r, θ)

]

=zne−2V0−2N(1/z)eEkV(r,θ)
[
∂B

(
log(r)
ε

)
+
ieiθ

2r

V (k)(θ)
(k−1)!

(
−i log(r)

)k−1
B

(
log(r)
ε

)]
,

(3.109)

and in the special case that r = |z| > 2−ε/2, we have B(log(r)/ε) ≡ 1 and ∂B(log(r)/ε) ≡ 0,

so

Wn
k,ε,12(r, θ) = zne−2V0−2N(1/z)eEkV(r,θ) · ie

iθ

2r

V (k)(θ)
(k − 1)!

(
− i log(r)

)k−1
,

for 2−ε/2 < r < 1.

(3.110)

The presence of the zn factor together with the absolute integrability of the Cauchy ker-

nel in two dimensions means that

−
1

π

∫∫

2−ε<r ′<1

Wn
k,ε,12(r ′, θ ′)
z ′ − z

dA ′=−
1

π

∫∫

2−ε/2<r ′<1

Wn
k,ε,12(r ′, θ ′)
z ′ − z

dA ′+O
(
2−εn/2

)
(3.111)

holds as n → ∞ uniformly for all z with |z| < 1. Therefore using the simpler formula

(3.110) in the integrand and integrating over the smaller annulus 2−ε/2 < r ′ < 1 intro-

duces an error that is uniformly exponentially small for |z| < 1.
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Using the simple identity

∂
(

− log(r)
)k

= −
kz

2r2

(
− log(r)

)k−1
, (3.112)

we may rewrite (3.110) in the form

Wn
k,ε,12(r, θ) = −

ik

k!
zne−2V0−2N(1/z)eEkV(r,θ)V (k)(θ)∂

(
−log(r)

)k
, for 2−ε/2<r<1.

(3.113)

Our subsequent analysis will be specialized to the case where V (k)(θ) is piecewise con-

tinuous, with jump discontinuities at � < ∞ angles −π < θ1 < · · · < θ� < π, and is

(at first) only Lipschitz between the points of discontinuity. Then, between the points of

discontinuity, V (k+1)(θ) exists almost everywhere and may be identified with a bounded

function. Under these circumstances, we may “integrate by parts” (i.e., apply Stokes’ the-

orem) with the following formula:

−
1

π

∫∫

f(r ′, θ ′)∂g(r ′, θ ′)
z ′ − z

dA ′

= −
1

π

∫∫
∂
[
f(r ′, θ ′)g(r ′, θ ′)

]
z ′ − z

dA ′ +
1

π

∫∫

g(r ′, θ ′)∂f(r ′, θ ′)
z ′ − z

dA ′,

(3.114)

and the first integral on the right-hand side may be exchanged for a sum of explicit terms

and a contour integral as described in the above remark. In (3.114) and in the rest of the

proof, whenever the operator ∂ appears in the integrand, it acts on the primed variables.

To prepare to use this technique, we begin with

−
1

π

∫∫

2−ε/2<r ′<1

Wn
k,ε,12(r ′, θ ′)
z ′ − z

dA ′

= −
ik

k!

�
∑

j=1

[
−
1

π

∫∫

2−ε/2<r ′<1, θ ′∈Ij

(z ′)nh(r ′, θ ′)V (k)(θ ′)∂
(

− log(r ′)
)k

z ′ − z
dA ′

]
,

(3.115)

where h(r, θ) is shorthand for the following terms:

h(r, θ) := e−2V0−2N(1/z)eEkV(r,θ), (3.116)

and Ij refers to the interval in S1 of initial angle θj and final angle equal to the point

of next jump discontinuity as the circle is traversed in the counterclockwise direction.
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Using (3.114), we therefore find

−
1

π

∫∫

2−ε/2<r ′<1

Wn
k,ε,12(r ′, θ ′)
z ′ − z

dA ′ = −Jk(r, θ) + Kk(r, θ), (3.117)

where

Jk(r, θ) :=
ik

k!

�
∑

j=1

[
−
1

π

∫∫

2−ε/2<r ′<1, θ ′∈Ij

(z ′)n∂
[
h(r ′, θ ′)V (k)(θ ′)

](
− log(r ′)

)k
z ′ − z

dA ′
]
,

Kk(r, θ) :=
ik

k!

�
∑

j=1

[
−
1

π

∫∫

2−ε/2<r ′<1, θ ′∈Ij

∂
[
(z ′)nh(r ′, θ ′)V (k)(θ ′)

(
− log(r ′)

)k]
z ′ − z

dA ′
]
.

(3.118)

The double-integral expression Kk(r, θ) may be reduced to contour integrals as follows:

Kk(r, θ) =
ik

k!
znh(r, θ)V (k)(θ)

(
− log(r)

)k
χ(2−ε/2,1)(r) +Gk(z), (3.119)

where

Gk(z) := −
ik

k!
· 1

2πi

∮

|s|=2−ε/2

snh
(
|s|,arg(s)

)
V (k)

(
arg(s)

)(
− log

(
|s|
))k

s − z
ds

+
ik

k!

�
∑

j=1

Δ
(k)
j

2πi

∫eiθj

2−ε/2eiθj

snh
(
|s|, θj

)(
− log

(
|s|
))k

s − z
ds,

(3.120)

and Δ(k)
j := V (k)(θj+) − V (k)(θj−). Since the ||| · |||◦,1 norm (see (1.16)) of the numerator in

the first Cauchy integral is proportional to 2−εn/2, we may also write Gk(z) in the form

Gk(z) =
ik

k!

�
∑

j=1

Δ
(k)
j

2πi

∫eiθj

2−ε/2eiθj

snh
(
|s|, θj

)(
− log

(
|s|
))k

s − z
ds +O

(
2−εn/2

)
(3.121)

as n → ∞, where the exponentially small error term is uniform for |z| < 1 (right up to the

contour of integration; this is a consequence of the Plemelj-Privalov theorem [22]).

Let us now consider Jk(r, θ). Note that

∂
[
h(r, θ)V (k)(θ)

]
=

[
V (k)(θ)∂EkV(r, θ) +

iz

2r2
V (k+1)(θ)

]
h(r, θ)

=
iz

2r2

[
V (k)(θ)2

(k − 1)!
(

− i log(r)
)k−1

+ V (k+1)(θ)
]
h(r, θ).

(3.122)
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Therefore, inserting this into the integrand for Jk(r, θ) and applying Lemma 3.25 with

ν = 2k to the integrals resulting from the first term above, we find

Jk(r, θ) = −
ik+1

(k + 1)!

�
∑

j=1

[
−
1

π

∫∫

2−ε/2<r ′<1, θ ′∈Ij

[
−

(k + 1)z ′

2(r ′)2

(
− log(r ′)

)k]

× (z ′)nh(r ′, θ ′)V (k+1)(θ ′)
z ′ − z

dA ′
]

+O

(
log(n)
n2k

)
,

(3.123)

where the error is uniformly small as n → ∞ for all |z| < 1. With V (k+1)(θ) bounded

in each Ij, we could in principle apply Lemma 3.25 to the remaining integrals. However,

this would only give a bound of order log(n)/nk+1, and as Gk(z) will turn out to be (for

most z) of size 1/nk+1, and we will want to consider Gk(z) to provide the dominant term,

we need to impose additional conditions on V (k+1) in each Ij to see that Jk(r, θ) is indeed

subdominant. Therefore, we first use (3.112) to write Jk(r, θ) in the form

Jk(r, θ) = −
ik+1

(k + 1)!

×
�

∑

j=1

[
−
1

π

∫∫

2−ε/2<r ′<1, θ ′∈Ij

(z ′)nh(r ′, θ ′)V (k+1)(θ ′)∂
(

log(r ′)
)k+1

z ′ − z
dA ′

]

+O

(
log(n)
n2k

)
.

(3.124)

The double integral above is of the same form as the original double integral we are try-

ing to compute (see (3.115)), but with k replaced by k+1 (everywhere it appears explicitly;

in the function h(r, θ), k remains k).

To continue the analysis of Jk(r, θ), we therefore use the further assumption that

in each of the intervals Ij, V (k+1)(θ ′) is a Lipschitz continuous function so that V (k+2)(θ ′)

exists almost everywhere in Ij and can be identified there with a bounded function. Re-

peating the above steps, we find that

Jk(r, θ) = −Jk+1(r, θ) + Kk+1(r, θ), (3.125)

and with the help of the identity

∂
[
h(r, θ)V (k+1)(θ)

]
=
iz

2r2

[
V (k)(θ)V (k+1)

(k − 1)!
(

− i log(r)
)k−1

+ V (k+2)(θ)
]
h(r, θ),

(3.126)
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we may apply Lemma 3.25 to the integrals that result from substituting the above into

Jk+1(r, θ) with ν = 2k + 1 (from the first term above) and with ν = k + 2 (from the second

term above). Consequently,

Jk+1(r, θ) = O

(
log(n)
nk+2

)
, (3.127)

where the error is uniformly small as n → ∞ for all r < 1. As before, Kk+1(r, θ) is given

by (3.119) with Gk+1(z) given by (3.121) (note that in substituting k + 1 for k in these

formulae, one leaves h(r, θ) alone).

Combining these results, we have shown that

−
1

π

∫∫

2−ε/2<r ′<1

Wn
k,ε,12(r ′, θ ′)
z ′ − z

dA ′

=
ik

k!

�
∑

j=1

Δ
(k)
j

2πi

∫eiθj

2−ε/2eiθj

snh
(
|s|, θj

)(
− log

(
|s|
))k

s − z
ds

−
ik+1

(k + 1)!

l
∑

j=1

Δ
(k+1)
j

2πi

∫eiθj

2−ε/2eiθj

snh
(
|s|, θj

)(
− log

(
|s|
))k+1

s − z
ds

+O

(
log(n)
nk+2

)
+O

(
rn
∣∣ log(r)

∣∣kχ(2−ε/2,1)(r)
)

(3.128)

holds uniformly for r = |z| < 1 under the assumptions in force on V(θ).

Now in addition to |z| < 1, we choose arbitrarily a constant σ > 0 and consider

those z for which log(|z|) ≤ −(k−σ) log(n)/n (this is the interesting case, since according

to Corollary 3.7 we are excluding a zero-free annulus near the unit circle whenever σ > δ,

where δ is the arbitrary positive parameter in the statement of Corollary 3.7; note that

both δ and σmay be taken to be arbitrarily small). Since the function rn| log(r)|k achieves

its maximum value when | log(r)| is proportional to 1/n, we have

max
log(r)≤−(k−σ) log(n)/n

rn
∣∣ log(r)

∣∣k = rn
∣∣ log(r)

∣∣k∣∣∣
log(r)=−(k−σ) log(n)/n

= (k − σ)knσ−2k
(

log(n)
)k
.

(3.129)

Since we are assuming here that k ≥ 2, σ > 0 may be chosen small enough that both

error terms in (3.128) may be replaced by o(n−(k+1)) as n → ∞ uniformly for log(|z|) ≤
−(k − σ) log(n)/n.
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It remains to evaluate the explicit integrals in (3.128) by Laplace’s method. Let-

ting a = k or a = k + 1, we consider

Ya,j(z) :=

∫eiθj

2−ε/2eiθj

snh
(
|s|, θj

)(
− log

(
|s|
))a

s − z
ds

= einθj

∫1

2−ε/2

xnh
(
x, θj

)(
− log(x)

)a
x − ze−iθj

dx.

(3.130)

Expecting the dominant contribution to come from the neighborhood of x = 1, we write

Ya,j(z) =
einθjh

(
1, θj

)
1 − ze−iθj

∫1

2−ε/2

xn
(

− log(x)
)a
dx

+ einθj

∫1

2−ε/2

[
h
(
x, θj

)
x − ze−iθj

−
h
(
1, θj

)
1 − ze−iθj

]
xn
(

− log(x)
)a
dx.

(3.131)

Finding a common denominator and extracting from Ya,j(z) a factor of einθj(1−ze−iθj)−1,

we see that

Ya,j(z) =
einθj

1 − ze−iθj

[
h
(
1, θj

) ∫1

2−ε/2

xn
(

− log(x)
)a
dx

+

∫1

2−ε/2

ze−iθj
(
h
(
1, θj

)
− h
(
x, θj

))
+ h
(
x, θj

)
− xh

(
1, θj

)
x − ze−iθj

×xn
(

− log(x)
)a
dx

]
.

(3.132)

If z does not approach the point eiθj , then the fraction in the integrand of the second

integral is easily seen to be bounded by a multiple of − log(x) that is independent of n.

More generally, if z is allowed to approach the point eiθj as n → ∞, then we note that the

integrand is analytic in x, and the path of integration may be deformed in such a way that

throughout the path of integration, |x − ze−iθj | is bounded away from zero by a quantity

that is proportional to log(n)/n because log(|z|) ≤ −(k − σ) log(n)/n, and therefore the

fraction in the integrand of the second integral is bounded by a multiple of − log(x) that

is proportional to n/ log(n). Therefore,

Ya,j(z) =
einθjh

(
1, θj

)
1 − ze−iθj

a!

na+1

(
1 +O

(
1

log(n)

))
, (3.133)
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where the error is uniformly small for log(|z|) ≤ −(k−σ) log(n)/n. Since EkV(1, θ) = V(θ),

we have h(1, θ) = e−V0+iΩ(θ). It follows that

−
1

π

∫∫

2−ε/2<r ′<1

Wn
k,ε,12(r ′, θ ′)
z ′ − z

dA ′

=
ik−1e−V0

2πnk+1

�
∑

j=1

Δ
(k)
j eiΩ(θj) e

i(n+1)θj

eiθj − z
+ o
(
n−(k+1)) (3.134)

holds uniformly in the region log(|z|) < −(k−σ) log(n)/n, and therefore by (3.105) so does

πn(z) = zne−V0−N(1/z)eEkV(r,θ)B

(
log(r)
ε

)

+
ik+1eN(1/z)

2πnk+1

�
∑

j=1

Δ
(k)
j eiΩ(θj) e

i(n+1)θj

eiθj − z
+ o
(
n−(k+1)).

(3.135)

This concludes the proof of Theorem 3.11.

4 Exponentially varying weights

4.1 Asymptotic formulae for πn(z) and γn in the varying-weights case

In this section, we consider weights of the form

φ(θ) = e−nV(θ), ∀θ ∈ S1, (4.1)

where V : S1
→ R is a given real-valued function of period 2π. The weight (4.1) varies

exponentially according to a parameter n, and for each n, we may associate with φ the

corresponding sequence of monic orthogonal polynomials π0(z), π1(z), π2(z), . . . and nor-

malization constants γ0, γ1, γ2, . . . . Properly speaking, these quantities depend on the

parameter n, and we should invent notation to express this dependence, such as π(n)
j (z).

We will not introduce this cumbersome notation. However, the reader should take note

of this dependence. The limit of interest here is to study the behavior of the particular

monic polynomial πn(z) of degree n in this system along with its normalization constant

γn, in the limit n → ∞. Thus the large parameter n enters simultaneously into the degree

of the polynomial and also into the weight, and we are studying the asymptotic behavior

along the diagonal of a doubly indexed sequence.

The asymptotic behavior in this limit is governed by the function V, along with

some associated functions. First, recall the analytic function N(z) defined by (1.20) for
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|z| ≥ 1, which is associated with the negative frequency component of the Fourier series

of V(θ). Now define

κ(θ) := θ − i
[
N
(
eiθ
)

−N
(
eiθ
)]

= θ +Ω(θ), (4.2)

where Ω(θ) is the periodic function defined in (1.21). Both functions κ and Ω are as

smooth as V is.

Our asymptotic results in this case are contained in the following theorem.

Theorem 4.1. Let p ≥ 0 be a fixed integer. Suppose that φ(θ) = e−nV(θ), where V : S1
→ R

is of class Ck−1,1(S1) for some k ≥ 2p + 2. If κ ′(θ) is strictly positive, then for each ρ > 1,

there is a constant Kp,ρ > 0 such that

sup
|z|≥ρ

∣∣∣∣ dp

dzp

[
πn(z)z−ne−nN(z) − 1

]∣∣∣∣ ≤ Kp,ρ
log(n)
n2(k−1) (4.3)

holds for all sufficiently large n. �

Theorem 4.2. Let p ≥ 0 be a fixed integer. Suppose that φ(θ) = e−nV(θ), where V : S1
→ R

is of class Ck−1,1(S1) for some k ≥ 2p + 2. If κ ′(θ) is strictly positive, then there is a

constant Kp > 0 such that

sup
|z|≥1

∣∣∣∣ dp

dzp

[
πn(z)z−ne−nN(z) − 1

]∣∣∣∣ ≤ Kp
log(n)
nk−2p−1

(4.4)

holds for all sufficiently large n. �

Remark 4.3. As in the fixed-weights case (see (3.9)), a special case of the estimate (4.4)

is the following estimate (holding under the same conditions):

sup
−π<θ<π

∣∣∣∣∣
(

− ie−iθ d

dθ

)p[
πn

(
eiθ
)
e−inθe−nN(eiθ) − 1

]∣∣∣∣∣ ≤ Kp
log(n)
nk−2p−1

, (4.5)

asymptotically characterizing πn(z) on the unit circle.

Once again, the uniform nature of the convergence on the circle allows us to prove

the following mean result (the proof is the same as for the analogous result in the fixed-

weight case).
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Corollary 4.4. Let p ≥ 0 be a fixed integer. Suppose that φ(θ) = e−nV(θ), where V : S1
→ R

is of class Ck−1,1(S1) with k ≥ 2p + 2. If κ ′(θ) is strictly positive, then

lim
n→∞

1

np
·
∥∥π(p)

n

∥∥
φ∥∥πn

∥∥
φ

= 1. (4.6)

�

The next result concerns the asymptotic behavior of the polynomial πn(z) for z

inside a closed annular region whose outer boundary is the unit circle.

Theorem 4.5. Suppose that φ(θ) = e−nV(θ), where V : S1
→ R is of class Ck−1,1(S1) for

some k ≥ 2. If κ ′(θ) is strictly positive, then for each ρ satisfying 0 < ρ < 1, there are

constants K±
ρ > 0 such that the estimates

sup
ρ<|z|<1

∣∣∣πn(z)e−nN(1/z) − zneinEkΩ(r,θ)
∣∣∣ ≤ K−

ρ

log(n)
nk−1

, (4.7)

sup
|z|<ρ

∣∣∣πn(z)e−nN(1/z)
∣∣∣ ≤ K+

ρ

nk−1
(4.8)

hold for all n sufficiently large. �

An immediate corollary is that there exists an annulus inside the unit circle that

asymptotically contains no zeros.

Corollary 4.6 (zero-free regions). Suppose that φ(θ) = e−nV(θ), where V : S1
→ R is of

class Ck−1,1(S1) for some k ≥ 2, and suppose that κ ′(θ) is strictly positive. Let δ > 0 be an

arbitrarily small number. Then there are no zeros of πn(z) in the region

{

z = reiθ | log(r) > −

(
k − 1 − δ

1 +Ω ′(θ)

)
log(n)
n

}

(4.9)

as long as n is sufficiently large. �

Remark 4.7. In the case of a fixed weight, Corollary 3.7 established the existence of a

zero-free annulus with outer radius 1, and whose inner radius depended explicitly on

k, the degree of smoothness. We subsequently considered a family of weights for which

we could compute explicitly the behavior of the zeros, and showed that Corollary 3.7 is

sharp. Indeed, for explicit families of weights with k degrees of smoothness, some ze-

ros achieve a distance of k log(n)/n + log(log(n))/n from the unit circle. In addition,

for these examples, a majority of the zeros approach a circle whose radius is 1 − (k +

1) log(n)/n. For the case of varying weights, it is our belief that Corollary 4.6 is simi-

larly sharp. Moreover, it is to be expected that for some canonical family of examples
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constructed such that Ω(k) has jump discontinuities, it should be similarly possible to

obtain a very detailed asymptotic description of the zeros.

Remark 4.8. The zero-free region is determined by observing that for z to be a zero of

πn(z), zneinEkΩ(r,θ) must be roughly the same size as log(n)/nk−1. This is clearly not true

for z on the unit circle, and investigating the size of zneinEkΩ(r,θ) relative to log(n)/nk−1

yields the result. For |z| < 1, zneinEkΩ(r,θ) is small not only because zn is small, but also

because (as will be clear in Section 4.2) we constructed einEkΩ(r,θ) so that for r < 1 but

1 − r sufficiently small,

einEkΩ(r,θ) = O
(
rnΩ ′(θ)). (4.10)

Thus our extension of the functionΩ plays a role in determining the zero-free region near

the unit circle.

Remark 4.9. The quantity 1+Ω ′(θ) appearing in Corollary 4.6 is strictly positive because

1+Ω ′(θ) = κ ′(θ), and κ ′(θ) is strictly positive. It is interesting to note that this condition

also guarantees that there are no gaps in the support of the equilibrium measure (see

Appendix A). The occurrence of a gap in the support of the equilibrium measure is her-

alded by the development of a zero of the function κ ′(θ). Although Corollary 4.6 would

not apply if κ ′(θ) vanished at some θ0, an intuitive consideration of the set defined in

(4.9) indicates that near θ0, the zeros are pushed away, further from the unit circle. As

a gap develops then, one might expect the zeros to accumulate on a contour approach-

ing the unit circle, but with a gap aligned with the gap in the support of the equilibrium

measure. We will not carry out such an analysis here, but clearly the methods outlined

here can be adapted in this direction.

Just as Theorem 3.6 leads to Corollary 3.8, (4.8) from Theorem 4.5 yields the fol-

lowing result. (Recall from the definition (1.20) thatN(z) → 0 as z → ∞, and soN(1/z) →

0 as z → 0.)

Corollary 4.10 (varying recurrence coefficients). Suppose that φ(θ) = e−nV(θ), where V :

S1
→ R is of class Ck−1,1(S1) with k ≥ 2. If κ ′(θ) is strictly positive, then there is a con-

stant K > 0 such that the estimate

∣∣αn

∣∣ ≤ K

nk−1
(4.11)

�

holds for sufficiently large n.
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Finally, we have the following result concerning the asymptotic behavior of the

normalization constant γn > 0, defined such that ‖γnπn(z)‖φ = 1, with φ(θ) given in the

varying-weights case by (4.1).

Theorem 4.11. Suppose that V is a real function of class Ck−1,1(S1) for some k ≥ 2. If

κ ′(θ) is strictly positive, then there is a constant K > 0 such that

∣∣γ2
n−1e

−nV0 − 1
∣∣ ≤ K log(n)

n2(k−1) (4.12)

holds for all n sufficiently large. �

Remark 4.12. At first glance, the asymptotic formulae (4.12) and (4.11) may appear to

be inconsistent with the identity (2.12). However, in (4.12), γn−1 is the norming coef-

ficient of the (n − 1)st degree polynomial orthogonal with respect to the n-dependent

weight e−nV . To verify (2.12) in the varying-weights case, one would have to compute the

asymptotics for γn as well, rather than merely replacing n by n + 1 in (4.12).

4.2 The ∂ steepest descent method for exponentially varying weights

One of the main points of this paper is that while the limit appropriate for exponentially

varying weights of the form (4.1) lies for the most part beyond the reach of classical tech-

niques applicable for fixed weights (meaning primarily the approximation of φ(θ)−1 by

positive trigonometric polynomials), analysis of this limit by means of the ∂ steepest de-

scent method presents almost no further difficulty beyond the analysis carried out for

fixed weights in Section 3. To illustrate the ease with which many of the techniques carry

over from the fixed-weights case, we now outline the analogous calculations for the vary-

ing weight (4.1).

As in the case of fixed weights, we begin with the matrix Mn(z) solving Riemann-

Hilbert Problem 2.1 and introduce a sequence of explicit transformations. In order that

Riemann-Hilbert Problem 2.1 indeed characterizes the polynomial of degree n orthogo-

nal to all lower-degree polynomials with respect to the weight (4.1), we make the follow-

ing assumption.

Assumption 4.13. V is a real continuous function on the circle that, for some exponent

ν ∈ (0, 1] and for some constant K > 0, satisfies a uniform Hölder continuity condition

|V(θ2) − V(θ1)| ≤ K|θ2 − θ1|ν.
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4.2.1 Conversion to an equivalent ∂ problem. Solution of the ∂ problem in terms of in-

tegral equations. Now, define Sn(z) in terms of Mn(z) as follows:

Sn(z) :=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

enV0σ3/2Mn(z)e−nV0σ3/2

⎛
⎜⎝z

−ne−nN(z) 0

0 znenN(z)

⎞
⎟⎠ , for |z| > 1,

enV0σ3/2Mn(z)e−nV0σ3/2

⎛
⎜⎝e

−nN(1/z) 0

0 enN(1/z)

⎞
⎟⎠ , for |z| < 1.

(4.13)

Since N(z) → 0 as z → ∞, it is easy to see that as z → ∞, Sn(z) → I. Moreover, Sn(z)

is analytic for |z| 	= 1, and its boundary values Sn
+(z) (resp., Sn

−(z)) taken on the circle S1

from the inside (resp., outside) satisfy

Sn
+

(
eiθ
)

= Sn
−

(
eiθ
)(einκ(θ) 1

0 e−inκ(θ)

)
. (4.14)

Note that according to Assumption 4.13, κ(θ) also satisfies a uniform Hölder continuity

condition with exponent ν.

As in Section 3.2.1, we have available an algebraic factorization of this jump con-

dition:

Sn
+

(
eiθ
)

= Sn
−

(
eiθ
)( 1 0

e−inκ(θ) 1

)(
0 1

−1 0

)(
1 0

einκ(θ) 1

)
. (4.15)

To take advantage of this factorization, we need to extend the functions e±inκ(θ) from S1

to an annulus containing S1. To have continuity of these extensions, we make the follow-

ing assumption.

Assumption 4.14. The function V is of class Ck−1(S1) for some k = 1, 2, 3, . . . .

With this assumption, which provides new information only if k > 1, we can ex-

tend e±inκ(θ) as follows. Writing e±inκ(θ) = e±inθe±inΩ(θ), we extend the factor e±inθ an-

alytically as z±n. On the other hand, Ω : S1
→ R is a well-defined function on the circle,
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and therefore we may apply the extension operator Em defined in (1.5) toΩ, resulting in

an extension of e±inΩ(θ) to the domain R
2 \ {0} as a continuous function e±inEmΩ(r,θ) for

anym in the range 1 ≤ m ≤ k.

Let ε > 0 be the radius parameter of the annular domains A± (see Figure 3.2.1).

Recall the “bump” function B defined in Section 1.5. We define a new unknown matrix

Tn
m,ε(r, θ) by setting

Tn
m,ε(r, θ)

:=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Sn(z)

⎛
⎜⎜⎝

1 0

B

(
log(r)
ε

)
r−ne−inθe−inEmΩ(r,θ) 1

⎞
⎟⎟⎠ , for z = reiθ ∈ A−,

Sn(z)

⎛
⎜⎜⎝

1 0

−B

(
log(r)
ε

)
rneinθeinEmΩ(r,θ) 1

⎞
⎟⎟⎠ , for z = reiθ ∈ A+,

Sn(z), for z=reiθ 	∈A+∪A−.

(4.16)

Note that the presence of the factor B(log(r)/ε) ensures that Tn
m,ε(r, θ) may be contin-

uously extended to the outer boundary of A− and the inner boundary of A+, that is,

Tn
m,ε(r, θ) is a continuous function for r 	= 1.

Remark 4.15. Here our analysis rests upon extending Ω(θ) from the circle into domains

A±. By contrast in our treatment of the fixed-weights case in Section 3.2 it was more con-

venient to extend the function V(θ), which is related toΩ(θ) by a Cauchy transform.

If m = 1, then it is easy to see that EmΩ(r, θ) = E1Ω(r, θ) = Ω(θ) for all r > 0,

so the off-diagonal matrix elements in Sn(reiθ)−1Tn
1,ε(r, θ) are bounded in magnitude by

e−n| log(r)|. Therefore, in this case (4.16) represents an exponentially near-identity trans-

formation when n is large and | log(r)| is not too small. We want to ensure that a similar

situation prevails when m ≥ 2 as well. Since 1 ≤ m ≤ k, the consideration of m ≥ 2

requires that k ≥ 2. In this case, Assumption 4.14 implies that κ(θ) is continuously dif-

ferentiable, and hence so is Ω(θ). The crucial conditions for (4.16) to be a near-identity

transformation when n is large are thatΩ ′(θ) + 1 is strictly positive and that the param-

eter ε is chosen small enough, as the following lemma shows.

Lemma 4.16. Suppose thatΩ(θ) is a real function of classCm−1(S1) for somem ≥ 2, such

that Ω ′(θ) + 1 is strictly positive. Then there exist constants ε0 > 0 and μ > 0 such that
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whenever 0 < ε < ε0,

∣∣e−iEmΩ(r,θ)
∣∣ ≤ r1−μ, ∀ θ and for 1 ≤ r ≤ 2ε,

∣∣eiEmΩ(r,θ)
∣∣ ≤ rμ−1, ∀ θ and for 2−ε ≤ r ≤ 1.

(4.17)

�

Proof. By hypothesis, we have

inf
−π<θ<π

Ω ′(θ) = τ − 1, τ > 0. (4.18)

Note that log |e∓iEmΩ(r,θ)| = ±�(EmΩ(r, θ)). From (1.5), we have

�
(
EmΩ(r, θ)

)
=

P(m)
∑

p=0

(−1)p+1Ω
(2p+1)(θ)

(2p + 1)!
log(r)2p+1

= − log(r)

[
Ω ′(θ) +

P(m)
∑

p=1

(−1)pΩ
(2p+1)(θ)

(2p + 1)!
log(r)2p

]
,

(4.19)

where P(m) = (m − 2)/2 ifm is even and P(m) = (m − 3)/2 ifm is odd. SinceΩ hasm − 1

continuous derivatives, we have

∣∣∣∣∣
P(m)
∑

p=1

(−1)pΩ
(2p+1)(θ)

(2p + 1)!
log(r)2p

∣∣∣∣∣ ≤
P(m)
∑

p=1

sup
−π<θ<π

∣∣Ω(2p+1)(θ)
∣∣

(2p + 1)!
(
ε log(2)

)2p
(4.20)

for all r satisfying | log(r)| ≤ ε log(2), where ε > 0. Therefore, ε0 > 0 may be chosen

sufficiently small that the inequality 0 < ε < ε0 implies that

Ω ′(θ) +

P(m)
∑

p=1

(−1)pΩ
(2p+1)(θ)

(2p + 1)!
log(r)2p ≥ τ

2
− 1 (4.21)

holds whenever | log(r)| ≤ ε log(2). Then, we have

log
∣∣e−iEmΩ(r,θ)

∣∣ ≤ − log(r)
[
τ

2
− 1

]
, holding for 1 ≤ r ≤ 2ε,
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log
∣∣eiEmΩ(r,θ)

∣∣ ≤ log(r)
[
τ

2
− 1

]
, holding for 2−ε ≤ r ≤ 1.

(4.22)

The estimates (4.17) thus both hold with the choice μ := τ/2 > 0. �

Thus, we are led to propose the following assumption.

Assumption 4.17. If V is of class C1(S1), then κ ′(θ) defined by (4.2) is strictly positive.

This assumption is not an explicit assumption on V(θ), however it is possible to

give conditions on V(θ) that are sufficient to make Assumption 4.17 hold. For example,

since for V ∈ C1(S1), we have

κ ′(θ) = 1 − 2

∞
∑

j=1

j
∣∣Vj

∣∣ cos
(
jθ + arg

(
Vj

))
, (4.23)

where we recall the Fourier coefficients of V defined by (1.19), the condition

∞
∑

j=−∞

|j|
∣∣Vj

∣∣ < 1 (4.24)

is sufficient to guarantee that Assumption 4.17 holds. If in fact V ∈ C2(S1), then the con-

vexity condition

d2V

dθ2
(θ) > −

1

2
(4.25)

also guarantees that κ ′(θ) is strictly positive. Our proof that the condition (4.25) implies

that κ ′(θ) is strictly positive makes use of certain aspects of logarithmic potential theory

and is given in Appendix A. In Appendix B, we show that neither are the sufficient condi-

tions (4.24) and (4.25) equivalent, nor does either condition imply the other. Rather, the

two conditions are independent and thus complement each other.

Remark 4.18. In the approach taken in [3], where a particular case of a varying weight in

which the function V(θ), and hence κ(θ), is an analytic function, the analytic extension

E∞Ω(r, θ) is used, and the “bump” function factor B(log(r)/ε) is omitted. The latter omis-

sion has the effect of introducing exponentially small jump discontinuities in Tn
m,ε(r, θ)

across the circles Σ±.
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Since for m = 1, . . . , k we have EmΩ(1, θ) = Ω(θ), the matrix Tn
m(r, θ) satisfies the

jump condition

lim
r↑1

Tn
m,ε(r, θ) = lim

r↓1
Tn

m,ε(r, θ)

(
0 1

−1 0

)
. (4.26)

To remove this jump discontinuity, introduce one further change of variables:

Jn
m,ε(r, θ) :=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

Tn
m,ε(r, θ), for r > 1,

Tn
m,ε(r, θ)

⎛
⎝0 −1

1 0

⎞
⎠ , for r < 1.

(4.27)

At this point, we can relate Jn
m,ε(r, θ) directly to Mn(z). Combining (4.13), (4.16),

and (4.27), we have by definition

Jn
m,ε(r, θ)

:=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

enV0σ3/2Mn(z)e−nV0σ3/2

⎛
⎜⎜⎝

0 −e−nN(1/z)

enN(1/z) enN(1/z)B

(
log(r)
ε

)
rneinθeinEmΩ(r,θ)

⎞
⎟⎟⎠ ,

for 0 ≤ r < 1,

enV0σ3/2Mn(z)e−nV0σ3/2

⎛
⎜⎜⎝

e−nN(z)r−ne−inθ 0

enN(z)B

(
log(r)
ε

)
e−inEmΩ(r,θ) enN(z)rneinθ

⎞
⎟⎟⎠ ,

for r > 1.

(4.28)

Given the assumptions in force, this matrix function is clearly continuous throughout

the plane. To determine its deviation from being an analytic function in the regions r <

1 and r > 1, we need to control a derivative, and consequently we make the following

assumption.

Assumption 4.19. The function V is of class Ck−1,1(S1) for some k ≥ 1. That is, V (k−1)(θ)

is Lipschitz continuous.
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Then, for 1 ≤ m ≤ k, we see by direct calculation that

∂Jn
m,ε(r, θ)

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

enV0σ3/2Mn(z)e−nV0σ3/2

⎛
⎜⎜⎝
0 0

0 enN(1/z)rneinθ∂

[
B

(
log(r)
ε

)
einEmΩ(r,θ)

]
⎞
⎟⎟⎠ ,

for 0 ≤ r < 1,

enV0σ3/2Mn(z)e−nV0σ3/2

⎛
⎜⎜⎝

0 0

enN(z)∂

[
B

(
log(r)
ε

)
e−inEmΩ(r,θ)

]
0

⎞
⎟⎟⎠ ,

for r > 1.

(4.29)

Eliminating Mn(z) in favor of Jn
m,ε(r, θ) using (4.28) again yields

∂Jn
m,ε(r, θ) = Jn

m,ε(r, θ)Xn
m,ε(r, θ), for r 	= 1 and almost all θ ∈ S1, (4.30)

where

Xn
m,ε(r, θ) :=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎛
⎜⎝0 rneinθ∂

[
B

(
log(r)
ε

)
einEmΩ(r,θ)

]
0 0

⎞
⎟⎠ , for 0 ≤ r < 1,

⎛
⎜⎝ 0 0

r−ne−inθ∂

[
B

(
log(r)
ε

)
e−inEmΩ(r,θ)

]
0

⎞
⎟⎠ , for r > 1.

(4.31)

Then it is easy to see that Jn
m,ε(r, θ) satisfies the following ∂ problem.

∂ Problem 4.20. Find a 2× 2matrix U(r, θ) with the following properties.

Smoothness. U(r, θ) is a Lipschitz continuous function throughout R
2.

Deviation from analyticity. The relation

∂U(r, θ) = U(r, θ)Xn
m,ε(r, θ) (4.32)

holds for all points in R
2 with the exception of a set of measure zero. The matrix Xn

m,ε(r, θ)

is defined almost everywhere by (4.31) and is essentially compactly supported.
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Normalization. The matrix U(r, θ) is normalized at r = ∞ as follows:

lim
r→∞

U(r, θ) = I. (4.33)

In exactly the same way that Proposition 3.22 was proved, we have the following

proposition.

Proposition 4.21. Suppose that φ = e−nV , where V : S1
→ R is of class Ck−1,1(S1) for

some k = 1, 2, 3, . . . . Then for all n = 0, 1, 2, 3, . . . , for m = 1, 2, . . . , k, and for all ε > 0, the

matrix Xn
m,ε(r, θ) is well defined almost everywhere by (4.31) and ∂ Problem 4.20 has a

unique solution, namely U(r, θ) = Jn
m,ε(r, θ). �

Also, the proof of Proposition 3.23 carries over to the context of the varying

weight (4.1) in the following form.

Proposition 4.22. Suppose that φ = e−nV , where V : S1
→ R is of class Ck−1,1(S1) for

some k = 1, 2, 3, . . . . Then for all n = 0, 1, 2, 3, . . . , for m = 1, 2, . . . , k, and for all ε > 0,

the matrix Xn
m,ε(r, θ) is well defined almost everywhere by (4.31) and the corresponding

solution U(r, θ) = Jn
m,ε(r, θ) of ∂ Problem 4.20 satisfies the integral equation

U(r, θ) = I −
1

π

∫∫

U(r ′, θ ′)Xn
m,ε(r ′, θ ′)

z ′ − z
dA ′, (4.34)

where z = reiθ, z ′ = r ′eiθ ′
, and dA ′ is a positive area element dA ′ = r ′dr ′dθ ′. The integral

is taken over the entire plane. �

4.2.2 Asymptotic solution of the integral equation. Estimates of Jn
m,ε(r, θ) and its

derivatives for large n. As in Section 3.2.2, it is possible to characterize Jn
m,ε(r, θ) by an-

alyzing the integral equation (4.34) as long as n is large enough. However, in the con-

text of the varying weight (4.1), we will require the monotonicity condition expressed

in Assumption 4.17, and that the radius parameter ε be taken sufficiently small for each

admissible given V that the conclusion of Lemma 4.16 holds. Moreover, the exponential

character of the varying weight (4.1) suggests that by comparison with the analysis pre-

sented in Section 3.2.2, this approach is only fruitful in giving the same degree of control

on Jn
m,ε(r, θ) as was achieved for Hn

m,ε(r, θ) if V(θ) has more smoothness than was re-

quired in Proposition 3.26. In particular, we will require that the following assumption

holds.

Assumption 4.23. The function V is of class Ck−1,1(S1) for some k ≥ 2.
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In other words, to achieve the same convergence rates as in the fixed-weight case,

one more derivative of V will be required in the exponentially varying-weight case.

As in Section 3.2.2, we need some bounds for Xn
m,ε(r, θ) and its derivatives.

Proposition 4.24. Suppose that V : S1
→ R is a real function of class Ck−1,1(S1) for some

k ≥ 1 for which Ω ′(θ) + 1 is strictly positive, that m is an integer satisfying 1 ≤ m ≤ k,

and that ε > 0 is sufficiently small. Let the integerD be defined asD := min(k−m,m−1).

Then, the matrix function Xn
m,ε is of classCD−1,1

0 (R2\{0}) ifD > 0, and of class L∞

0 (R2\{0})

if D = 0. Moreover, if α and β are nonnegative integers such that α + β ≤ D, then there

are constants μ > 0 and C(α,β)
m,ε > 0 such that for all n, the estimate

∥∥∥∥ ∂α+β

∂rα∂θβ
Xn

m,ε(r, θ)
∥∥∥∥ ≤ C(α,β)

m,ε n
1+βe−nμ| log(r)|

∣∣ log(r)
∣∣m−1−α

α
∑

p=0

np
∣∣ log(r)

∣∣p
(4.35)

holds throughout the region | log(r)| ≤ ε log(2) containing the essential support of Xn
m,ε(r,

θ). �

Proof. This proposition is proved in almost the same way as Proposition 3.24. In this

case, it is essential to recall Lemma 4.16 which provides the constant μ > 0 and thus

the exponential decay of the term e−nμ| log(r)| for ε > 0 sufficiently small. Also, the initial

application of the ∂ operator in the definition (4.31) yields a factor of n that does not

appear in the proof of Proposition 3.24. �

Remark 4.25. This result should be compared with Proposition 3.24. The only important

difference between the estimates (4.35) and (3.63) is the presence of an additional factor

of n.

The proof of Proposition 3.26, with references to Proposition 3.24 replaced by

references to Proposition 4.24, applies to the asymptotic estimation of Jn
m,ε(r, θ), with

the only important difference being an additional factor of n. This results in the follow-

ing proposition.

Proposition 4.26. Suppose that φ = e−nV , where V : S1
→ R is of class Ck−1,1(S1) for

some k = 2, 3, 4, . . . . Let the integerm lie in the range 2 ≤ m ≤ k and fix ε > 0 sufficiently

small. Define the integer D̃ := min(k − m,m − 2) ≥ 0. Then, for all n ≥ 0, the matrix

Xn
m,ε(r, θ) is well defined almost everywhere by (4.31), and for all n sufficiently large,

Jn
m,ε(r, θ) is given by a Neumann series

Jn
m,ε(r, θ) = I +

(
Xn

m,εI
)
(r, θ) +

(
Xn

m,ε ◦ Xn
m,εI

)
(r, θ) + · · · , (4.36)
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which converges in the norm ||| · |||D̃, where the double-integral operator Xn
m,ε is defined

by

(
Xn

m,εF
)
(r, θ) := −

1

π

∫∫

F(r ′, θ ′)Xn
m,ε(r ′, θ ′)

z ′ − z
dA ′. (4.37)

In particular, if D̃ = 0, then Jn
m,ε lies in the space L∞ (R2), and if D̃ > 0 then Jn

m,ε lies in

the space CD̃−1,1(R2) and |||Jn
m,ε|||D̃ is finite. For all integer p in the range 0 ≤ p ≤ D̃, the

following estimates hold for sufficiently large n:

∣∣∣∣∣∣Jn
m,ε − I

∣∣∣∣∣∣
p
≤ C(p)

m,ε

log(n)
nm−p−1

, (4.38)

∣∣∣∣∣∣Jn
m,ε − I − Xn

m,εI
∣∣∣∣∣∣

p
≤ C(p)2

m,ε

log(n)2

n2m−2p−2
, (4.39)

where C(p)
m,ε is a positive constant. Furthermore, for each ρ > 2ε and for all integer p in

the range 0 ≤ p ≤ D, the following estimates hold for sufficiently large n:

∑

α+β≤p

sup
−π<θ<π

| log(r)|≥log(ρ)

∥∥∥∥ ∂α+β

∂xα∂yβ

[
Jn
m,ε(r, θ) − I

]∥∥∥∥ ≤ C̃(p)
m,ρ

1

nm−p−1
, (4.40)

∑

α+β≤p

sup
−π<θ<π

| log(r)|≥log(ρ)

∥∥∥∥ ∂α+β

∂xα∂yβ

[
Jn
m,ε(r, θ) − I −

(
Xn

m,εI
)
(r, θ)

]∥∥∥∥ ≤ C̃(p)2
m,ρ

log(n)
n2m−2p−2

,

(4.41)

where C̃(p)
m,ρ is a positive constant. �

Remark 4.27. Note that in (4.38), due to the extra factor of n introduced into the esti-

mates by Proposition 4.24, convergence of the Neumann series in the ||| · |||p norm follows

provided that m − p − 1 > 0, and so we may only consider m ≥ 2. In order to uniformly

control p derivatives of Jn
m,ε(r, θ), Proposition 4.26 requires thatm should lie in the range

2 + p ≤ m ≤ k − p, and therefore to guarantee the existence of suitable values of m,

V : S1
→ R should be of class Ck−1,1(S1) for some k ≥ 2p + 2.

Remark 4.28. Assumption 4.17, that V(θ) is such that κ(θ) is a strictly increasing func-

tion of the angle θ, ties together two crucial aspects of our analysis. First of all, as can be

seen from the matrix factors involved in the change of variables (4.16) between Sn(z) and

Tn
m,ε(r, θ), the inequality κ ′(θ) > 0 is precisely what makes this a near-identity change of

variables in the regions Ω±. On the other hand, it would not suffice to replace κ ′(θ) by

another unrelated positive quantity, because in order to control the ∂ problem (i.e., to

sufficiently bound the operator Xn
m,ε), it is necessary that the extension of κ(θ) should
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provide some degree of vanishing of the ∂ derivative at |z| = 1. This vanishing is built

into the extension operators we have defined in (1.5) by the key property (1.7). Moreover,

any smooth extension of κ(θ) that has a vanishing ∂ derivative on the unit circle will be-

have similarly near the unit circle. So we conclude that while the analyticity of κ(θ) is not

important, the monotonicity of this function is crucial. To make an analogy with the as-

ymptotic analysis of oscillatory exponential integrals, the ∂ steepest descent method is

a closer relative of Kelvin’s method of stationary phase than of the saddle-point method.

On the other hand, it is important to note that the ∂ steepest descent method remains

fundamentally a method of deformation into the complex plane, and is not based on inte-

gration by parts,1 the Riemann-Lebesgue lemma, or related arguments of harmonic anal-

ysis. For an approach based on the latter, see Varzugin [27].

4.3 Proofs of theorems stated in Section 4.1

The proofs are generally based on expressing πn(z) = Mn
11(z) in terms of explicit func-

tions and Jn
m,ε(r, θ) by means of (4.28). Then, one applies Proposition 4.26 to control

Jn
m,ε(r, θ) − I and its derivatives.

4.3.1 Asymptotic behavior of πn(z) for |z| ≥ 1.

Proof of Theorems 4.1 and 4.2. From (4.28), we have the following exact representation

for πn(z) valid for |z| > 1:

πn(z) = enN(z)
[
znJnm,ε,11(r, θ) − B

(
log(r)
ε

)
e−inEmΩ(r,θ)Jnm,ε,12(r, θ)

]
, |z| > 1.

(4.42)

Here ε should be taken to be sufficiently small. It follows that

πn(z)z−ne−nN(z) − 1 =
[
Jnm,ε,11(r, θ) − 1

]
− B

(
log(r)
ε

)
z−ne−inEmΩ(r,θ)Jnm,ε,12(r, θ), |z| > 1.

(4.43)

If ρ > 1 is fixed, then perhaps by making ε > 0 smaller yet, it can be arranged that

B(log(r)/ε) ≡ 0whenever |z| ≥ ρ. In this case, we have

dp

dzp

[
πn(z)z−ne−nN(z)] = ∂p

[
Jnm,ε,11(r, θ) − 1

]
, |z| ≥ ρ > 1. (4.44)

1Properly speaking, we do not rely on integration by parts (or more generally, Stokes’ theorem for the ∂operator
in the plane—in as much as this can be considered a generalization of the standard ∂ inversion formula) to
establish the existence of an asymptotic expansion. However, such methods are useful in the detailed analysis
of individual terms in the expansion. This technique was used, for example, in the proof of Theorem 3.11.
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Using the estimate (4.41) from Proposition 4.26 in the case m = k − p, and the fact that

Xn
m,ε(r, θ) is off-diagonal, we see that for some constant C > 0,

sup
−π<θ<π
r≥ρ>1

∣∣∂p
[
Jnk−p,ε,11(r, θ) − 1

]∣∣ ≤ C log(n)
n2(k−2p−1) . (4.45)

Now since Jnk−p,ε,11(z) − 1 is analytic for |z| > ρ, and tends to zero like z−1 as z → ∞,

Cauchy’s theorem for an exterior domain, together with (4.45) for p = 0, proves (4.3).

To prove (4.5), we fix ε sufficiently small and consider 1 ≤ r ≤ 2ε/2 in which case

B(log(r)/ε) ≡ 1 so that

dp

dzp

[
πn(z)z−ne−nN(z) − 1

]
= ∂p

[
Jnm,ε,11(r, θ) − 1

]
− ∂p

[
z−ne−inEmΩ(r,θ)Jnm,ε,12(r, θ)

]
, 1 ≤ r ≤ 2ε/2.

(4.46)

Again, since Xn
m,ε(r, θ) is an off-diagonal matrix, we see from (4.39) that there is a con-

stant C > 0 such that

sup
R2

∣∣∂p
[
Jnk−p,ε,11(r, θ) − 1

]∣∣ ≤ C log(n)2

n2(k−2p−1) . (4.47)

As in the fixed-weights case, the dominant contribution comes from the remaining terms

on the right-hand side of (4.46). Using (4.38) from Proposition 4.26 to see that

nj∂p−jJnm,ε,12(r, θ) is of order log(n)/nm−p−1 and taking the best case of m = k − p, we

then find that

sup
−π<θ<π

1≤r≤2ε/2

∣∣∣∣ dp

dzp

[
πn(z)z−ne−nN(z) − 1

]∣∣∣∣ ≤ K log(n)
nk−2p−1

. (4.48)

This proves (4.5). Now the maximum modulus principle applied to πn(z)z−ne−nN(z) im-

plies (4.4).

4.3.2 Asymptotic behavior of πn(z) for |z| < 1 and of γn−1

Proof of Theorems 4.5 and 4.11. The proof of Theorem 4.11 is based on the identity

γ2
n−1 = −Mn

21(0). Using (4.28), we see that

γ2
n−1e

−nV0 = Jnm,ε,22(0, θ), (4.49)
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and thus Theorem 4.11 is proved by applying the estimate (4.41) from Proposition 4.26

in the case of p = 0 andm = k.

Proving Theorem 4.5 begins with the exact formula

πn(z) = −enN(1/z)Jnm,ε,12(r, θ), 0 ≤ r ≤ 2−ε, (4.50)

which follows from (4.28) using πn(z) = Mn
11(z) and the fact that B(log(r)/ε) ≡ 0 for

r < 2−ε. Using (4.40) from Proposition 4.26 with p = 0 and m = k then completes the

proof of (4.8).

For the proof of (4.7), one begins with the following formula for πn:

πn(z) = −enN(1/z)Jnm,ε,12(r, θ) + enN(1/z)e−inEkΩ(r,θ)Jnm,ε,11(r, θ), (4.51)

which again follows from (4.28), and the fact that B(log(r)/ε) ≡ 1 for r > 2−ε/2. Using

(4.38) from Proposition 4.26 with p = 0 andm = k then completes the proof of (4.7), and

this completes the proof of Theorem 4.5.

Appendices

A Logarithmic potential theory of orthogonal polynomials on the unit circle

A more general and systematic strategy for extracting asymptotics of Mn(z) in the expo-

nentially varying-weight case when φ(θ) is of the form (4.1) is the following. First intro-

duce a function g(z) (to be determined) satisfying g(z) ∼ log(z) as z → ∞ and that eg(z)

is analytic for |z| 	= 1, taking continuous boundary values on the unit circle Σ. Then one

converts Riemann-Hilbert Problem 2.1 for Mn(z) into one with identity asymptotics as

z → ∞ by the change of variables

Mn(z) = Yn(z)eng(z)σ3 , (A.1)

resulting in a new unknown matrix Yn(z). In addition to the normalization condition

limz→∞ Yn(z) = I, Yn(z) satisfies the jump condition

Yn
+

(
eiθ
)
=Yn

−

(
eiθ
)(e−n(g+(eiθ)−g−(eiθ)) en(−V(θ)−iθ+g+(eiθ)+g−(eiθ))

0 en(g+(eiθ)−g−(eiθ))

)
, for θ ∈ S1,

(A.2)

where the subscript “+” indicates the boundary value taken from within the circle, and

“−” indicates the boundary value taken from outside. Without any loss of generality, we
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may represent g(z) in the form of a complex logarithmic potential

g(z) =

∫π

−π

Lθ ′(z)ψ(θ ′)dθ ′, (A.3)

where for each θ ∈ S1, we consider the function Lθ(z) := log(z − eiθ) to be real for z − eiθ

sufficiently large and positive real, with the branch cut from the point z = eiθ in the

clockwise direction along the unit circle to the negative real axis, and then along the neg-

ative real axis to z = −∞. We also require that

∫π

−π

ψ(θ ′)dθ ′ = 1 (A.4)

in order to satisfy the required normalization condition g(z) ∼ log(z) as z → ∞.

Additional conditions may now be placed on g, or equivalently on ψ, in order to

make the jump condition (A.2) for Yn(z) asymptotically tractable. One key condition is

that the function ψ should be real-valued. From this condition, it follows that g+(z) +

g−(z) − log(z) has a constant imaginary part for |z| = 1, as the following argument shows.

When |z| = eiθ, the identity d/dθ = izd/dz yields

d

dθ
�
(
g+(z) + g−(z) − log(z)

)
= �

(
zg ′

+(z) + zg ′
−(z) − 1

)
. (A.5)

Using (A.4) and differentiating (A.3) under the integral with respect to z for |z| 	= 1, we

obtain

d

dθ
�
(
g+(z) + g−(z) − log(z)

)
= − lim

ε↓0
�

[
∫π

−π

e2iθ ′
−
(
1 + ε2

)
e2iθ(

eiθ ′
− eiθ

)2
− ε2e2iθ

ψ(θ ′)dθ ′
]
.

(A.6)

Assuming reality of ψ, we can pass the real part under the integral and thus arrive at

d

dθ
�
(
g+(z) + g−(z) − log(z)

)

= − lim
ε↓0

∫π

−π

ε4 + 2ε2 + 2ε2 cos(ζ) − 4ε2 cos2(ζ)
4 + ε4 +

(
4ε2 − 8

)
cos(ζ) +

(
4 − 4ε2

)
cos2(ζ)

ψ(θ ′)dθ ′,
(A.7)

where ζ = θ ′ − θ. The numerator of the fraction in the integrand is clearly uniformly

bounded by a quantity of order ε2, and the minimum value of the denominator is achieved

when cos(ζ) = (2 − ε2)/(2 − 2ε2) ∈ (−1, 1) yielding a minimum value that has the asymp-

totic expansion ε2 − ε4 +O(ε6) as ε ↓ 0. Consequently, the fraction is uniformly bounded

independent of ε. Moreover, the fraction is easily seen to tend to zero pointwise in the
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limit ε ↓ 0 for ζ 	= 0. A dominated convergence argument therefore shows that the limit

on the right-hand side of (A.7) is zero; see also [1], where it is also shown that the con-

stant value is exactly �(g+(z)+g−(z)−log(z)) = π. Another consequence of assuming that

ψ is real comes from noting that

g+

(
eiθ
)

− g−

(
eiθ
)

= 2πi

∫π

θ

ψ(θ ′)dθ ′. (A.8)

It therefore follows that g+(z) − g−(z) is purely imaginary for |z| = 1.

Since

�
(
g+

(
eiθ
)

+ g−

(
eiθ
))

= 2

∫π

−π

log
∣∣eiθ − eiθ ′∣∣ψ(θ ′)dθ ′, (A.9)

one is led to seek ψ so that the circle is split into intervals of two different types.

Bands. For θ in a band I, ψ(θ) is real and positive, and

2

∫π

−π

log
∣∣eiθ − eiθ ′∣∣ψ(θ ′)dθ ′ − V(θ) = �, for θ in a band, (A.10)

where � is a real constant (the same constant for all bands—in fact if there is only one

band, it turns out that � = −V0). Thus, in a band, the jump condition (A.2) for Yn(z) takes

the form

Yn
+ (z) = Yn

− (z)

(
ein(κI(θ)−π) en(�+iπ)

0 e−in(κI(θ)−π)

)
, for θ in a band I, (A.11)

where κI(θ) is a strictly increasing real function.

Gaps. For θ in a gap Γ , ψ(θ) ≡ 0 and we have the strict inequality

2

∫π

−π

log
∣∣eiθ − eiθ ′∣∣ψ(θ ′)dθ ′ − V(θ) < �, for θ in a gap. (A.12)

Thus, in a gap, the jump condition (A.2) for Yn(z) takes the form

Yn
+ (z) = Yn

− (z)

(
ein(κΓ −π) exponentially small en(�+iπ)

0 e−in(κΓ −π)

)
, for θ in a gap Γ ,

(A.13)

where κΓ is a real constant.
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The alternative conditions (A.10) and (A.12) are exactly the Euler-Lagrange con-

ditions for the minimization of the weighted logarithmic energy

E[ψ] :=

∫π

−π

∫π

−π

log

(
1∣∣eiθ − eiθ ′∣∣

)
ψ(θ ′)ψ(θ)dθ ′dθ +

∫π

−π

V(θ ′)ψ(θ ′)dθ ′ (A.14)

over all probability measures ψ(θ)dθ > 0 supported on the unit circle. The constant �

is the Lagrange multiplier introduced to enforce the constraint (A.4). The minimizing

measure with density ψ(θ) is called the equilibrium measure. The connection of this ex-

tremal problem with the jump condition (A.2) through the Euler-Lagrange variational

conditions suggests that logarithmic potential theory plays an important role in the as-

ymptotic theory of orthogonal polynomials for general exponentially varying weights

of the form (4.1). The use of equilibrium measures for the asymptotic analysis of the

Riemann-Hilbert problem associated to orthogonal polynomials on R with analytic ex-

ponentially varying weights was carried out in [11, 10]. For orthogonal polynomials on

the unit circle with analytic exponentially varying weights of a specific form, this was

done in [1].

The transformation

Zn(z) =

⎧

⎨

⎩

−e−n�σ3/2Yn(z)en�σ3/2, |z| < 1,

e−n�σ3/2Yn(z)en�σ3/2, |z| > 1,
(A.15)

leads to jump conditions of the form

Zn
+(z) = Zn

−(z)

(
einκI(θ) 1

0 e−inκI(θ)

)
, for z = eiθ in a band I, (A.16)

which is of exactly the same form as (4.14), and

Zn
+(z) = Zn

−(z)

(
einκΓ exponentially small

0 e−inκΓ

)
, for z = eiθ in a gap Γ . (A.17)

Clearly, we also have the normalization condition Zn(z) → I as z → ∞.

Now, if the function V(θ) is such that the whole unit circle consists of a single

band, or equivalently there are no gaps in the support of the equilibrium measure, then

in fact Zn(z) = Sn(z) as defined in Section 4.2.1 and the analysis proceeds as in the main

body of this paper. However, in the more general context—when it is only true that the

support of the equilibrium measure consists of a finite number of disjoint intervals on

the unit circle—a modification of the ∂ steepest descent method described in Section 4 is
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required. A more general method may still be based on the algebraic factorization (4.15)

of the jump matrix in each band; however the annuli A± must be replaced with a sys-

tem of lens-shaped regionsAI
± adjacent to each band I. Since the variational inequalities

become less effective near the band edges, a local analysis must be supplied to control

the error. When such a method is developed, the condition (4.24) or (4.25) on the func-

tion V(θ) can be dropped as long as it is known that there are only a finite number of

gaps in the support of the equilibrium measure. In [20], it is shown how to carry out such

a program in the context of nonanalytic exponentially varying weights on the real line,

where a convexity condition is known to guarantee the existence of a single isolated band

[α,β] ⊂ R.

Let us show how the logarithmic potential theory described briefly above leads

to the condition (4.25) guaranteeing that the support of the equilibrium measure is the

entire unit circle. If V is of class C2(S1), then for θ in any gap in the support of the equi-

librium measure, the real function

Φ(θ) := 2

∫π

−π

log
∣∣eiθ − eiθ ′∣∣ψ(θ ′)dθ ′ − V(θ) (A.18)

is also twice differentiable. In fact, a calculation shows that

Φ ′′(θ) = −2

∫π

−π

ψ(θ ′)dθ ′∣∣eiθ − eiθ ′∣∣2 − V ′′(θ). (A.19)

Note that this is not a singular integral since eiθ is assumed to lie outside the support of

the equilibrium measure. Let us assume both the condition (4.25), and also the existence

of a gap in the support of the equilibrium measure; we will then derive a contradiction.

Now, Φ(θ) is continuous for −π < θ ≤ π. Therefore, since Φ(θ) = � at both endpoints of

the gap (according to (A.10)), andΦ(θ) < � strictly in the interior of the gap (according to

(A.12)), there must be a point θ in the gap at whichΦ ′′(θ) > 0. However, since |eiθ −eiθ ′
| ≤

2 for all angles θ ′, we see that

Φ ′′(θ) ≤ −
1

2
− V ′′(θ) (A.20)

which is negative in view of the assumption (4.25), thus establishing the desired contra-

diction.



The ∂ Steepest Descent Method 75

B Comparison of the conditions (4.24) and (4.25)

In this appendix, we illustrate by concrete examples how the two conditions (4.24) and

(4.25), while both sufficient for the prevention of gaps in the support of the equilibrium

measure, are completely independent. Thus neither condition implies the other.

First, consider the example V(θ) = A cos(kθ), where k = 1, 2, 3, . . . and A ∈ R are

parameters. A direct calculation shows that

condition (4.24) ⇐⇒ |A| <
1

k
,

condition (4.25) ⇐⇒ |A| <
1

2k2
.

(B.1)

Since 2k2 > k for all k = 1, 2, 3, . . . ,we see that if

1

2k2
< |A| <

1

k
, (B.2)

then condition (4.24) is satisfied but (4.25) is not.

Next, consider forM > 0 and ε > 0 the example

V(θ) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

−
M

6
|θ|3 +

(
Mε

2
−
Mε2

4π

)
θ2 +

Mε4

4π
−
Mε3

3
, |θ| ≤ ε,

−
Mε2

4π
θ2 +

Mε2

2
|θ| +

Mε4

4π
−
Mε3

2
, ε < |θ| < π.

(B.3)

On one hand, we have

V ′′(θ) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

M
(
ε − |θ|

)
−
Mε2

2π
, |θ| ≤ ε,

−
Mε2

2π
, ε < |θ| < π,

(B.4)

and so

condition (4.25) ⇐⇒ M <
π

ε2
. (B.5)

On the other hand, direct calculation of the Fourier coefficients gives

Vk =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

−
2M

πk4
sin2

(
kε

2

)
, k 	= 0,

7Mε4

48π
−
Mε3

4
+
Mπε2

12
, k = 0.

(B.6)
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Thus, we may estimate the sum in the condition (4.24) as follows:

∞
∑

k=−∞

∣∣kVk

∣∣ =

∞
∑

k=1

4M

πk3
sin2

(
kε

2

)
≥

�π/ε	
∑

k=1

4M

πk3
sin2

(
kε

2

)
≥

�π/ε	
∑

k=1

Mε2

4k
(B.7)

since | sin(x)| ≥ |x|/2 for |x| ≤ π/2. If the productMε2 is held fixed, this lower bound can be

made arbitrarily large (and in particular larger than one) simply by taking ε sufficiently

small due to the divergence of the harmonic series. We therefore see that if 0 < c ≤Mε2 <

π and if ε is sufficiently small, then condition (4.25) is satisfied but condition (4.24) is

not.
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