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Riemann-Hilbert Problems with Lots of Discrete Spectrum
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This paper is dedicated to Percy Deift, from whom we have all learned so much, in honor of his

60th birthday.

Abstract. We review some recent work on steepest-descent asymptotics for
Riemann-Hilbert problems involving a large number of isolated singularities
that accumulate in a reasonable fashion in the limit of interest.

1. Introduction

No doubt one of the great successes in the application of integrable systems
theory to wave propagation problems was the analysis of Lax and Levermore [10]
of the zero-dispersion limit of the initial-value problem for the Korteweg-de Vries
equation on the line:

(1.1) ut + uux + ε2uxxx = 0 , x ∈ R, t > 0 ,

subject to ε-independent initial data u(x, 0; ε) = u0(x). Here the phrase “zero-
dispersion limit” refers to the asymptotic analysis of the solution u(x, t; ε) of this
well-posed Cauchy problem in the limit ε→ 0.

To be more precise, Lax and Levermore considered positive initial data u0(x) >
0 decaying rapidly to zero as x → ±∞ with only one critical point (a local maxi-
mum). The first step in the solution of the Cauchy problem by inverse-scattering
is then to analyze the stationary Schrödinger equation

(1.2) −6ε2ψxx + V (x)ψ = Eψ

where E is the spectral (eigenvalue) parameter, and V (x) := −u0(x) is a potential
well. The (real) spectrum consists of a continuous part for E > 0 and a bounded
discrete part for E < 0. As ε is considered to be small, this is a semiclassical
spectral problem, and many facts (originating from various calculations based on
the WKB approximation) about the spectral asymptotics were available to Lax and
Levermore in their analysis. In particular:
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• The reflection coefficient for E > 0 fixed in the continuous spectrum is “as
small in ε as V is smooth”. In particular, if V is infinitely differentiable,
then the reflection coefficient is small beyond all orders: O(εp) for all
p > 0.

• The number N(ε) of discrete eigenvalues (all simple) is large, proportional
to ε−1. The eigenvalues are approximately located according to the Bohr-
Sommerfeld quantization rule: En = E0

n +O(ε2) where

(1.3) Φ(E0
n) = πε

(

n+
1

2

)

, n = 0, 1, 2, . . . , N(ε) − 1 ,

and the phase integral is

(1.4) Φ(E) :=
1√
6

∫ x+(E)

x−(E)

(E − V (s))1/2 ds .

Here x−(E) < x+(E) are the turning points (branches of the inverse
function V −1: V (x±(E)) = E). The asymptotic number of eigenvalues is

(1.5) N(ε) =

⌊

1

2
+

1

πε
√

6

∫ +∞

−∞

√

−V (x) dx

⌋

.

Lax and Levermore therefore neglected the reflection coefficient, assuming it to be
zero. The zero-dispersion limit solution of the Korteweg-de Vries equation in these
circumstances is well-approximated as a reflectionless potential, a pure ensemble of
(a large number of) solitons.

A multisoliton solution of the Korteweg-de Vries equation (or, for that mat-
ter, of practically any integrable equation) is specified from the point of view of
the inverse-scattering transform by a collection of discrete eigenvalues and for
each, a corresponding norming constant giving information about the eigenfunc-
tion. Whether it is formulated via Gel’fand-Levitan-Marcenko equations or via a
Riemann-Hilbert problem, the inverse-scattering algorithm for reflectionless (multi-
soliton) potentials reduces to a problem of N(ε)-dimensional linear algebra. Clever
symmetrization of the solution (by Cramer’s rule) of such a problem leads to the
Kay-Moses determinantal formula

(1.6) u(x, t; ε) = 12ε2
∂2

∂x2
log(τ) , where τ := det

(

δmn +
FmFn

κm + κn

)

.

Here κn :=
√−En and Fn := e(κnx−4κ3

nt+βn)/ε, and the real numbers {βn} amount
to the norming constants for the problem. A natural approach to the analysis of
u(x, t; ε) is then to consider the expansion of τ in principal minors:

(1.7) τ = 1 +
∑

subsets S of {0, . . . , N − 1}

det

(

FαFβ

κα + κβ

∣

∣

∣

∣

α,β∈S

)

.

Lax and Levermore made the crucial observation that each of the terms in this
sum is positive and hence argued that the sum would be asymptotically dominated
by its largest term. This argument leads to a discrete variational problem that is
further approximated by a variational problem for absolutely continuous measures
when ε is small. By carefully establishing the validity of these approximations and
analyzing the variational problem that results, Lax and Levermore showed that
u(x, t; ε) has a weak limit u(x, t). By extending this analysis along similar lines
but keeping track of the details to higher order in ε (in particular by keeping some
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discreteness in the measures considered in the variational problem), Venakides [15]
was able to extract strong asymptotic information about u(x, t; ε), including the
formation of fully nonlinear oscillations modeled by algebro-geometric multiphase
wave local solutions of the Korteweg-de Vries equation.

A prominent component of the work of Percy Deift celebrated in this confer-
ence has been the systematic development, together with Xin Zhou and others, of
a “steepest-descent” asymptotic technique applicable to matrix Riemann-Hilbert
problems involving a small or large parameter. Part of what makes this method
attractive is that it provides in a single step the level of accuracy analogous to
that which Venakides obtained in the zero-dispersion Korteweg-de Vries problem
by continuing the detailed analysis of Lax and Levermore to higher order. In
the simplest formulation, a Riemann-Hilbert problem consists of seeking a matrix-
valued function M of a complex variable z that is supposed to (i) be analytic in
z away from a system Σ of oriented contour arcs, (ii) satisfy a “jump condition”:
M+(z) = M−(z)V(z) for z ∈ Σ where M+(z) and M−(z) refer respectively to
the boundary values taken on Σ from its left and right and where V(z) is a “jump
matrix” prescribed on Σ, and (iii) have a prescribed value M0 at a prescribed point
z0 (usually M0 = I and z0 = ∞). The steepest-descent method then involves a se-
quence of changes of dependent variable whose composition is a linear substitution

of the form M(z) = E(z)M̂(z) where M̂(z) is an explicit global “parametrix” and
E(z) is a new unknown satisfying its own Riemann-Hilbert problem deduced from
the original one through the explicit substitution. The steepest-descent method
amounts to a systematic construction of the parametrix M̂(z) and the aim of the
construction is to ensure that the error E(z) satisfies a “small norm” Riemann-
Hilbert problem (i.e., one with a near-identity jump matrix and normalization)
that can be proved to have a unique solution asymptotically approaching the iden-
tity matrix I in a suitably uniform (with respect to z) sense.

In Riemann-Hilbert problems arising in inverse-scattering applications, the con-
tour Σ is associated with the continuous spectrum of the associated scattering prob-
lem, and the jump matrix V(z) differs from the identity matrix I only at points
z ∈ Σ where the reflection coefficient is nonzero. If there is any discrete spectrum,
the simple formulation of the Riemann-Hilbert problem must be augmented; the
matrix unknown M(z) is now permitted to have poles at the points z of the dis-
crete spectrum, and homogeneous conditions involving the norming constants are
imposed to relate the principal part of the Laurent expansion of M(z) at each pole
to the regular part. For a typical example of such a condition, consider the 2×2 case
and suppose that M(z) is allowed a simple pole at zp such that for some constant
c 6= 0:

(1.8) Res
z=zp

M(z) = lim
z→zp

M(z)

[

0 c
0 0

]

.

This imposes the condition that the pole of M(z) is in the second column only, and
the residue of the second column is c times the value at zp of the (regular) first
column. If the singularity at zp remains separated from the rest of the spectrum
in the asymptotic limit of interest, the pole may be removed at the expense of



4 PETER D. MILLER

augmenting the jump contour Σ by making the substitution:

(1.9) N(z) :=











M(z)

[

1 −c(z − zp)
−1

0 1

]

, |z − zp| < δ

M(z) , |z − zp| > δ .

It is easy to check that N(z) is then analytic for z ∈ C \ Σ ∪ Σp where Σp is a
small, counterclockwise-oriented circle about z = zp of radius δ. Clearly the jump
condition for N(z) then becomes N+(z) = N−(z)V(z) for z ∈ Σ and

(1.10) N+(z) = N−(z)

[

1 −c(z − zp)
−1

0 1

]

, z ∈ Σp .

(In this latter formula, + refers to the boundary value from the inside of the circle,
and − to the value from the outside.)

This procedure for removing poles becomes impractical in a spectral situation
like that arising in the Lax-Levermore theory due to the asymptotic accumula-
tion of discrete spectrum. Nonetheless, it is of some interest to be able to handle
such problems within the framework of the steepest-descent method. In part this
is because the steepest-descent method encodes in a unified framework both the
first-order (weak) and second-order (strong) asymptotics. This was shown by De-
ift, Venakides, and Zhou [5] by analyzing a zero-dispersion limit problem for the
Korteweg-de Vries equation in which assumptions on initial data u0(x) different
from those imposed by Lax and Levermore yield a problem with no discrete spec-
trum but for which the reflection coefficient is easily calculated in the semiclassical
limit. However, it is also of some interest to be able to analyze Riemann-Hilbert
problems with accumulating discrete spectrum because there are situations in which
such problems arise but where the Lax-Levermore method does not apply. This pa-
per is a review of some recent extensions of the Deift-Zhou steepest-descent method
to handle fully discrete Riemann-Hilbert problems like these having no reflection
coefficient but (asymptotically) lots of discrete spectrum.

2. Klaus-Shaw Initial Data for the Semiclassical Focusing Nonlinear

Schrödinger Equation

A problem that has been the subject of much research in recent years is the
semiclassical limit for the focusing nonlinear Schrödinger equation. One is inter-
ested in the asymptotic behavior of ψ = ψ(x, t; ε) in the limit ε→ 0, where for each
ε > 0, ψ is the solution of the equation

(2.1) iεψt +
ε2

2
ψxx + |ψ|2ψ = 0 , x ∈ R , t > 0 ,

subject to initial data ψ(x, 0; ε) = A(x)eiS(x)/ε whereA(·) and S(·) are ε-independent
real-valued functions. One reason that this problem is interesting is that the for-
mal limit ε→ 0 yields a model problem that is ill-posed. Indeed, if one introduces
“fluid-dynamical” variables

(2.2) ρ := |ψ|2 , u := ε [={log(ψ)}]x ,
then one may, in the spirit of Madelung’s approach to the Schrödinger equation
of quantum mechanics as a quantum-corrected fluid motion, write the initial-value
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problem without approximation as a coupled system for ρ (fluid density) and u
(fluid velocity):

ρt + uρx + ρux = 0

ut − ρx + uux = ε2F [ρ] .
(2.3)

Here F [ρ] is a certain expression in ρ and its x-derivatives that only depends on
ε through ρ. This system is to be solved subject to ε-independent initial data
ρ(x, 0; ε) = A(x)2 and u(x, 0; ε) = S′(x). It would appear that the limiting dynamics
would be governed by the approximate system obtained by simply neglecting the
“quantum correction” term ε2F [ρ], subject to the same initial data. However,
the classical fluid problem that results is an Euler system of gas dynamics with a
pressure that is a decreasing function of the density ρ. Physically, this leads one
to expect phenomena like spontaneous condensation of the gas. Mathematically,
the quasilinear system with ε2F [ρ] neglected is of elliptic type, and the Cauchy
problem is ill-posed1; it can only be solved at all if the initial data functions A(·)
and S(·) are analytic at each point x ∈ R. Such a requirement of analyticity must
be regarded as overly restrictive for any physically significant theory. The main
question (which remains almost completely unanswered despite much work on the
problem) is: if A(·) and S(·) are only required to have sufficient smoothness to
guarantee a unique global solution to the initial-value problem for all ε > 0 (it is
enough for A(·)eiS(·)/ε to lie in a weighted Sobolev space), what can be said about
the asymptotic behavior of the solution ψ(x, t; ε) as ε→ 0?

For each ε > 0, the initial-value problem can be solved by inverse-scattering.
The associated spectral problem is the eigenvalue problem for the nonselfadjoint
Zakharov-Shabat (or Dirac) operator. The continuous spectrum consists of the
real axis in the complex λ-plane, and the discrete spectrum consists of eigenvalues
that come in complex-conjugate pairs but generally have no further symmetries.
It is easy to see that if S(·) ≡ 0, the discrete spectrum is further invariant under
inversion through the origin λ = 0, which makes it symmetric with respect to
reflection through the imaginary axis. For many years the literature was filled with
faulty statements that certain additional requirements on A(·) made the discrete
spectrum purely imaginary, and the question was finally settled by Klaus and Shaw
[9], who proved that if A(·) is a positive, rapidly decreasing function of x that has
a single critical point (a local maximum) then the discrete spectrum lies exactly on
the imaginary axis. We refer to this type of initial data (A(·) positive and “single-
hump,” and S(·) ≡ 0) for the focusing nonlinear Schrödinger equation as being of
Klaus-Shaw type.

Formal WKB calculations can be carried out for the nonselfadjoint Zakharov-
Shabat eigenvalue problem with Klaus-Shaw potential, with results quite similar to
those used by Lax and Levermore in their analysis of the semiclassical Schrödinger
operator. The reflection coefficient is as small in ε as A(·) is smooth, uniformly
for λ ∈ R bounded away from λ = 0. The discrete spectrum consists of N(ε) =
O(ε−1) eigenvalues accumulating on the positive imaginary axis in the interval
[0, imaxA(x)] according to a Bohr-Sommerfeld rule giving approximate eigenvalues

1Here one should compare with the corresponding calculation in the theory of the zero-
dispersion limit of the Korteweg-de Vries equation. The formal ε → 0 limit of (1.1) is simply the
inviscid Burgers equation ut +uux = 0 which is hyperbolic, and the Cauchy problem with smooth
initial data u(x, 0) = u0(x) is locally (i.e., for t sufficiently small) well-posed.
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λn ≈ λ0
n satisfying

(2.4) Ψ(λ0
n) = πε

(

n+
1

2

)

, n = 0, 1, 2, . . . , N(ε) − 1 ,

where the phase integral is

(2.5) Ψ(λ) :=

∫ x+(λ)

x−(λ)

(

A(s) + λ2
)1/2

ds

and the radicand is positive exactly in the interval between the two turning points
x−(λ) < x+(λ). (Of course there are corresponding approximations for the con-
jugate eigenvalues on the negative imaginary axis.) The asymptotic number of
eigenvalues is

(2.6) N(ε) =

⌊

1

2
+

1

πε

∫ +∞

−∞

A(x) dx

⌋

.

These results suggest an approach completely parallel to that applied to the Korteweg-
de Vries equation by Lax and Levermore. Namely, one could neglect the reflection
coefficient and consider the asymptotic behavior of the “semiclassical soliton ensem-
ble” given by the reflectionless potential associated with the WKB approximations
to the Zakharov-Shabat discrete spectrum. One can derive from inverse scattering
a formula analogous to the Kay-Moses formula (see [16]):

(2.7) |ψ(x, t; ε)|2 = ε2
∂2

∂x2
log(τ) , where τ := det(I + B∗B) ,

where the asterisk denotes componentwise complex conjugation and

(2.8) Bmn :=
EmE

∗
n

i(λm − λn)
.

Here {λn} are the eigenvalues in the upper half-plane (on the positive imaginary

axis in the Klaus-Shaw case), and En := ei(λnx+λ2
nt+βn)/ε where {βn} are analogues

of the norming constants. Despite this strong analogy at the formal level with the
zero-dispersion Korteweg-de Vries problem, the Lax-Levermore method grinds to
a halt at this point because the principal-minors expansion of τ consists of both
positive and negative terms. The discrete Laplace-type argument used by Lax and
Levermore simply does not apply to such a sum; indeed the limiting behavior is
apparently achieved by a subtle kind of cancellation2, rather than domination by a
single term.

The asymptotics of semiclassical soliton ensembles of the type described above
were considered by Kamvissis, McLaughlin, and Miller [8] from the point of view of
the formulation of inverse-scattering as a Riemann-Hilbert problem. More precisely,
in [8], Klaus-Shaw type initial data is considered with three further assumptions:

• The parameter ε is restricted to a discrete sequence of values tending to
zero:

(2.9) ε = εN :=
1

πN

∫ +∞

−∞

A(x) dx , N = 1, 2, 3, . . . .

2In fact, it is an open problem to interpret what is now understood (by means of methods
other than analyzing τ) about the asymptotic behavior of this initial-value problem at the level
of the expansion of τ .
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This has the effect of making the reflection coefficient small uniformly for
all λ ∈ R (one does not have to delete a neighborhood of the origin).
Obviously, for such ε = εN we have N(ε) = N .

• The potential A(·) is assumed to be an even function of x. This allows
one to deduce from formal WKB arguments a simple formula for the
proportionality constants (related to norming constants): γ0

n := (−1)n+1,
n = 0, . . . , N − 1.

• The potential A(·) is assumed to be an analytic function of x. In such a
situation one can find a solution (by the Cauchy-Kovaleskaya method) of
the limiting elliptic model system. This fact is of no particular importance
in the method of analysis used in [8] however; of crucial importance is
rather the fact that the phase integral Ψ(λ) is an analytic function of λ
in the interior of the imaginary interval of existence of the eigenvalues.

Neglecting the reflection coefficient and taking the WKB eigenvalues {λn := λ0
n}

and proportionality constants {γn := γ0
n} as exact spectral data, the Riemann-

Hilbert problem of inverse scattering takes the following form. Let

(2.10) cn(x, t) :=
1

γn
Res

λ=λn

W (λ) , W (λ) := e2i(λx+λ2t)/ε
N−1
∏

n=0

λ− λ∗n
λ− λn

,

and seek a 2 × 2 matrix m(λ), λ ∈ C, with the following properties:

Rationality: m(λ) is a rational function of λ with simple poles confined to

{λn, λ
∗
n}N−1

n=0 such that for n = 0, . . . , N − 1:

(2.11) Res
λ=λn

m(λ) = lim
λ→λn

m(λ)

[

0 0
cn(x, t) 0

]

,

(2.12) Res
λ=λ∗

n

m(λ) = lim
λ→λ∗

n

m(λ)

[

0 −cn(x, t)∗

0 0

]

.

Normalization: The matrix m(λ) is normalized at infinity in the sense that

(2.13) lim
λ→∞

m(λ) = I .

From the solution of this Riemann-Hilbert problem the semiclassical soliton ensem-
ble supposed to model the solution of the initial-value problem is given by

(2.14) ψ(x, t; ε) = 2i lim
λ→∞

λm12(λ) .

This is not a Riemann-Hilbert problem in the traditional sense: there is no
jump discontinuity of the matrix unknown across any contour. Indeed, it seems
at first to be quite simple. One could solve for m(λ) by using a partial-fractions
ansatz:

(2.15) m(λ) = I +

N−1
∑

n=0

an

λ− λn
+

N−1
∑

n=0

bn

λ− λ∗n
,

where an and bn are 2×2 matrix-valued coefficients to be determined. This ansatz
clearly satisfies the required normalization condition (2.13), and it is a rational
function of λ with simple-pole singularities at all allowed points. Substitution of
the ansatz into the residue conditions (2.11) and (2.12) that m(λ) is required to
satisfy leads directly to a linear algebra problem governing the matrix elements of
the coefficients an and bn. It is, however, not advisable to proceed in this manner,
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since the determinant of this linear algebra problem is the function τ encountered
earlier, and a direct asymptotic evaluation of this determinant (at least via the
Lax-Levermore method) leads to a dead end.

On the other hand, the system of linear equations that results from the partial-
fractions approach can be solved numerically for fixed N by independent calcu-
lations carried out on a grid of (x, t)-values. While the condition numbers of the
matrices involved become large very rapidly with N , calculations like this have been
carried out (see [13] and [11]) for N sufficiently large to discern marvelous patterns
in the space-time structure of the solution ψ(x, t; ε), and these experiments have
proven to be useful both in inspiring curiosity and suggesting new phenomena to be
verified by subsequent rigorous asymptotic analysis. An image from such an experi-
ment is shown in Figure 1. From these numerical calculations, one learns to expect

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

-2.0 -1.5 -1.0 -0.5

x

t

Figure 1. A density plot of the semiclassical soliton ensemble
corresponding to A(x) = 2 sech(x) and ε = 2/N with N = 40.
Brighter areas correspond to larger values of |ψ|2 (black corre-
sponds to |ψ|2 = 0). The apparent phase transition that begins
near t = 0.25 is called the primary caustic, and that beginning
near t = 1.15 is called the secondary caustic.

asymptotically sharp caustic curves to separate regions of space-time containing
qualitatively different modulated oscillations having wavelengths and frequencies
proportional to ε. A successful analysis of the semiclassical limit must correctly
predict such salient features of the dynamics.

To begin such an analysis, we avoid dealing with the determinant τ by working
instead with the conditions of the Riemann-Hilbert problem for m(λ). The key
idea we need to begin to apply the Deift-Zhou steepest-descent method to such a
completely discrete problem is to remove the poles from the problem at the expense
of jump discontinuities across contours. As mentioned in the introduction it is not
feasible to remove the poles “one at a time.” Instead we remove them all at once
by finding an analytic function that interpolates the proportionality constants {γn}
at the corresponding eigenvalues {λn}. It is easy to see that such a function can be
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built from the WKB phase integral; indeed we may observe that as a consequence
of the eigenvalue condition (2.4),

(2.16) γn = −ie−iΨ(λn)/ε , n = 0, 1, 2, . . . , N − 1 .

Therefore, the poles may be removed from the problem by choosing a fixed Jordan
contour Σ lying in the upper half-plane that contains all of the positive-imaginary
eigenvalues in its interior (such a contour necessarily meets the origin because the
eigenvalues are accumulating there from above) and defining a new matrix unknown
M(λ) relative to Σ by setting

(2.17) M(λ) := m(λ)

[

1 0

iW (λ)eiΨ(λ)/ε 1

]

, inside Σ ,

and outside of Σ with =(λ) > 0, M(λ) := m(λ). To define M(λ) for =(λ) < 0, set

(2.18) M(λ) := σ2M(λ∗)∗σ2 , where σ2 :=

[

0 −i
i 0

]

.

This transformation preserves a natural complex-conjugation symmetry enjoyed by
the original matrix m(λ).

It is easy to check that the matrix M(λ) is analytic at each of the poles {λn} and
their complex conjugates. The only points of nonanalyticity of M(λ) are along the
contour Σ and its complex conjugate where M(λ) experiences jump discontinuities.
It follows that the matrix M(λ) satisfies a Riemann-Hilbert problem of the more
traditional type, and from here on one expects some version of the steepest-descent
method of Deift and Zhou to apply.

The jump condition satisfied by M(λ) across the contour Σ involves the func-
tion W (λ) evaluated on this contour. Noting that W (λ) may be expressed as an
exponential
(2.19)

W (λ) = exp

(

1

ε

[

2iλx+ 2iλ2t+

N−1
∑

n=0

ε log(λ− λ∗n) −
N−1
∑

n=0

ε log(λ− λn)

])

,

we may consider a continuum limit in which the (Riemann) sums are approximated
by integrals to writeW (λ) in the formW (λ) = S(λ)eF (λ)/ε where F (λ) is a function
independent of ε whose analytic continuation from Σ to its interior has a logarithmic
branch cut in the imaginary interval where there once were accumulating poles, and
where S(λ) = 1 + O(ε) for fixed nonzero λ ∈ Σ. (The size of the error is partially
a consequence of the choice of a discrete sequence of ε = εN , which makes the
Riemann sums “midpoint rule” approximants of the corresponding integrals.)

We should view the freedom of choice of the contour Σ as being analogous to
the choice of contour in evaluating exponential integrals with analytic integrands
by the (classical) method of steepest descent. We want to choose Σ to make the
jump matrix for the problem have convenient properties for analysis. We must keep
in mind, however, that whatever mechanism we work out to prescribe the “correct”
location for the contour Σ must be compatible with our original assumption: namely
that Σ should encircle all of the eigenvalues of the problem.

One continues with the Deift-Zhou method by attempting to stabilize the
Riemann-Hilbert problem for M(λ) with the help of a “g-function”, a complex
potential first introduced by Deift, Venakides, and Zhou [5] to encorporate the
measure solving the Lax-Levermore variational problem into the framework of the
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Riemann-Hilbert problem of inverse scattering for the Korteweg-de Vries equation.
To apply the method here, one assumes that g(λ) is a function analytic in C\Σ∪Σ∗

with g(λ) → 0 as λ→ ∞ and satisfying the symmetry condition g(λ)+ g(λ∗)∗ = 0.
With the help of any such function g(λ), one may define a new matrix unknown
N(λ) by setting

(2.20) N(λ) := M(λ)

[

e−g(λ)/ε 0

0 eg(λ)/ε

]

.

The jump condition to be satisfied by N(λ) on Σ is easily seen to be

(2.21) N+(λ) = N−(λ)

[

eiθ(λ)/ε 0
iS(λ)eφ(λ)/ε e−iθ(λ)/ε

]

, λ ∈ Σ ,

where θ(λ) := i(g+(λ) − g−(λ)) and φ(λ) := F (λ) − g+(λ) − g−(λ), and where the
subscript + (respectively −) refers to a boundary value taken from inside (respec-
tively outside) the contour Σ.

The jump condition for N(λ) involves the undetermined function g(λ) in an
explicit way. It also involves the geometry of the contour Σ in a more subtle way,
through the small ε behavior (rapidly oscillatory, exponentially large, or exponen-
tially small) of the analytic jump matrix elements when restricted to the contour.
The fundamental principle is to try to choose the scalar function g(λ) and the
contour Σ to make the jump matrix as simple as possible in the limit ε→ 0.

One might expect that the identity matrix would be the best possible target,
but this turns out to be unachievable. The best that one can settle for is a piecewise
constant asymptotic behavior for the jump matrix, which turns out to be just good
enough. Therefore, we try to choose g(λ) and the contour Σ so that Σ splits into
two kinds of intervals:

Bands: in which φ(λ) is an imaginary constant, and θ(λ) is real decreasing
in the positive (counterclockwise) direction3.

Gaps: in which θ(λ) is a real constant, and <{φ(λ)} < 0.

Then (skipping many steps) N(λ) can be approximately built (for small ε) from
Riemann Θ functions of the hyperelliptic surface over the complex λ-plane with
branch points at the band endpoints. There are two important implications:

• The semiclassical asymptotics of ψ(x, t; ε) in between the caustic curves
are precisely described by modulated multiphase waves written in terms
of Θ, where the number of phases is related to the genus of the surface.

• Caustic curves in the (x, t)-plane are genus transitions.

Analysis of caustics therefore boils down to finding g(λ) and the contour Σ,
and determining the way the number of bands and gaps varies with x and t. In
some problems (e.g. zero-dispersion Korteweg-de Vries, orthogonal polynomials)
the conditions that determine g(λ) are encoded in a convex variational principle.
Such a problem corresponds physically to determining the distribution of a unit
charge in electrostatic equilibrium in the presence of an external field. The genus
corresponds to the number of components of support of the equilibrium charge
distribution. The support of the equilibrium distribution is exactly the union of
the bands defined above. For the focusing nonlinear Schrödinger problem, there is

3The jump matrix for N in a band is rapidly oscillatory on the diagonal, and an addi-
tional factorization and deformration in a lens-shaped region about the band is required to obtain
piecewise-constant asymptotics of the jump matrix.
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a variational formulation for g(λ), but the problem is nonconvex, so for detailed
calculations it is more lucrative to construct g(λ) by ansatz. The ansatz-based
method for finding g(λ) consists of the following steps. First, one makes a guess
of an even (due to conjugation symmetry in the complex λ-plane) genus G. Then
it turns out that for each configuration of 2G+ 2 complex band/gap endpoints (in
conjugate pairs), g′(λ) is necessarily given by a well-defined Cauchy-type integral
formula. One then enforces on this formula the band/gap conditions on θ and φ.
This has two effects. Firstly, the endpoints are implicitly determined as functions
of x and t through a system of nonlinear algebraic equations. Secondly, certain
inequalities become evident that must be satisfied if the correct genus (for some
fixed x and t) is indeed G.

The problem of finding g(λ) may therefore be approached computationally.
By contrast with direct numerical simulation of the focusing nonlinear Schrödinger
equation for small ε (a notoriously stiff and unstable problem), or use of numerical
linear algebra to carry out inverse-scattering for large N (a problem hindered by
rapidly growing condition numbers), the conditions determining g are independent
of any large or small parameter. This makes the problem of finding g(λ) especially
attractive for numerical computation. Indeed, finding the endpoints from the non-
linear equations that implicitly define them as functions of x and t amounts to
root-finding, and once the endpoints are known, the band intervals of Σ are deter-
mined by solving simple ordinary differential equations to determine paths in the
complex plane connecting pairs of endpoints. The (x, t)-plane can then be explored
to search for genus transitions (caustics); the task is to seek topological changes in
the region of the complex λ-plane where the inequality <{φ} < 0 allows the gaps to
reside as x and t are varied. (Unlike the bands, whose locations are precisely spec-
ified by the procedure, the gaps are constrained only by the inequality <{φ} < 0
and the condition that with the bands they complete a loop contour Σ encircling
the eigenvalues in the upper half-plane.)

With this kind of analysis, it is shown in [8] that the G = 0 ansatz captures the
semiclassical dynamics as long as t 6= 0 and |t| is sufficiently small but independent
of ε. The mechanism for the formation of the primary caustic curve turns out to
be the “pinching off” of the region where <{φ} < 0, and it is shown in [8] that by
passing from genus G = 0 to G = 2 with the insertion of a new small band near
the pinch-off point, the genus G = 2 ansatz succeeds in describing the semiclassical
dynamics just beyond the primary caustic curve.

The analysis exactly at t = 0 requires a modification of the techniques briefly
described above because the ansatz-based theory of the g-function predicts that the
single band present for G = 0 should coincide with an interval of the imaginary axis;
in other words, the contour Σ no longer surrounds the eigenvalues. A technique
for solving the problem exactly at t = 0 was proposed in [12]. This technique is
based on generalizing the interpolation formula (2.16) and in fact making use of two

simultaneous interpolants of the proportionality constants {γn} at the eigenvalues
{λn}. Perhaps such a complicated construction seems at this point to be a technical
inconvenience, but it turns out to be a fundamentally important idea in several other
problems, including the prediction of the secondary caustic curve (as is evidently
present in the dynamics shown in Figure 1). But before discussing that application,
we digress briefly to consider another problem that is simpler in that the location
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of the contour Σ is never in question, but for which the dual interpolant idea is
necessary from the start.

3. Discrete Orthogonal Polynomials

Probably the most far-reaching application of the Deift-Zhou steepest-descent
method to date is the analysis by Deift, Kriecherbauer, McLaughlin, Venakides, and
Zhou [3] of the asymptotic behavior of orthogonal polynomials with exponentially
varying weights. Here one considers the large-N asymptotics of the polynomial of
degree N in the system of orthonormal polynomials on the real line with respect
to a weight function (also involving N , hence a “varying weight”) of the form
w(x) = e−NV (x) for some analytic function V increasing rapidly enough for large
|x|. This problem is of great relevance in both classical approximation theory and
the mathematical physics of random matrix theory, but it remained unsolved until
the publication of [3], at least in terms of the degree of generality of the potential
V (x) and of the remarkable precision of the asymptotics obtained. What made
this work possible was a combination of two things: the observation by Fokas, Its,
and Kitaev [7] that the orthogonal polynomial of degree N on R can be obtained
via the solution of a simple-looking Riemann-Hilbert problem with the real line as
the contour of discontinuity, and the availability of a recently developed tool (the
steepest-descent method) for the asymptotic analysis of such problems.

In some related applications, including the continuum limit of the Toda lattice
and the statistical combinatorics of certain planar tilings, one is interested also
in the large degree asymptotics of systems of orthogonal polynomials where the
measure of orthogonality consists of a finite but large number N of point masses of
different weights. There are exactlyN independent discrete orthogonal polynomials,
and in the applications mentioned above one is interested in the asymptotic behavior
as N → ∞ of the polynomial of degree k = cN , where c is a fixed number in (0, 1).
This problem was solved in [1] by relating the discrete orthogonal polynomials to a
fully discrete Riemann-Hilbert problem that is remarkably similar to that occurring
in the theory of the semiclassical focusing nonlinear Schrödinger equation.

To be more precise, in [1] one considers polynomials orthogonal with respect
to the discrete measure

(3.1) µ(x) =

N−1
∑

n=0

wN,nδ(x − xN,n)

where the nodes of orthogonality {xN,n} are prescribed for each N by giving a fixed
real analytic function ρ0(x) > 0 on an interval [a, b] with

(3.2)

∫ b

a

ρ0(x) dx = 1

and then imposing the relation

(3.3)

∫ xN,n

a

ρ0(x) dx =
2n+ 1

2N
, n = 0, 1, 2, . . . , N − 1
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which resembles a Bohr-Sommerfeld quantization rule. The positive weights {wN,n}
are assumed to be of the form

(3.4) wN,n = e−NV (xN,n)
N−1
∏

m=0
m 6=n

|xN,n − xN,m|−1

for some real analytic function V (x) that is allowed to vary with N only very little if
at all. Let ZN := {0, 1, 2, . . . , N − 1} and choose a subset ∆ ⊂ ZN with cardinality
0 ≤ #∆ ≤ N . Let ∇ denote the complementary subset in ZN : ∇ = ZN \ ∆.
The role of the subset ∆ is related to the properties of the appropriate equilibrium
measure corresponding to ρ0(·), V (·), and the ratio c = k/N , and goes beyond the
scope of this brief discussion. Finally, set

(3.5) W (z) := e−NV (z)

∏

n∈∆

(z − xN,n)

∏

n∈∇

(z − xN,n)
.

The discrete orthogonal polynomial of degree k may be obtained via the solution of
the following (fully discrete) Riemann-Hilbert problem. Seek a 2 × 2 matrix Q(z),
z ∈ C, with the following properties:

Rationality: Q(z) is a rational function of z with simple poles confined to

the nodes {xN,n}N−1
n=0 such that

(3.6) Res
z=xN,n

Q(z) = lim
z→xN,n

Q(z)

[

0 (−1)N−1−n Res
ζ=xN,n

W (ζ)

0 0

]

, n ∈ ∇ ,

and

(3.7) Res
z=xN,n

Q(z) = lim
z→xN,n

Q(z)

[

0 0

(−1)N−1−n Res
ζ=xN,n

W (ζ)−1 0

]

, n ∈ ∆ .

Normalization: The matrix Q(z) is normalized at infinity in the sense that

(3.8) lim
z→∞

Q(z)

[

z#∆−k 0
0 zk−#∆

]

= I .

From the solution of this Riemann-Hilbert problem, the monic discrete orthogonal
polynomial of degree k < N is given by

(3.9) πN,k(z) = zk + · · · = Q11(z)
∏

n∈∆

(z − xN,n) .

The first step in the analysis of such a fully discrete Riemann-Hilbert problem
is to remove the poles, and it should be clear based on the discussion of the inverse-
scattering problem for the focusing nonlinear Schrödinger equation in Section 2
that the key to the problem is to find an analytic function that interpolates the
signs {(−1)N−1−n} at the nodes {xN,n}. Setting

(3.10) θ0(z) := 2π

∫ b

z

ρ0(s) ds ,

(this is an analogue of the phase integral of WKB theory) it is not difficult to see
from the definition of the nodes {xN,n} that the identities

(3.11) ie−iNθ0(xN,n)/2 = (−1)N−1−n and − ieiNθ0(xN,n)/2 = (−1)N−1−n
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both hold for N = 1, 2, 3, . . . and n ∈ ZN . Therefore, there are clearly (at least) two
analytic interpolants, and the question that arises in connection with the approach
in Section 2 is: which one should be used to remove the poles?

The answer is that we need both of the interpolants. The discrete orthogonal
polynomial problem has an associated convex variational problem with a unique
equilibrium measure, and the support of this measure is a subset of the interval [a, b]
where the nodes of orthogonality are accumulating as N → ∞. So, if one were to
choose a single interpolant and remove the poles from within a single closed contour
as in the approach of Section 2, one should expect to be led to allow the contour to
coincide, at least in part, with some subsets of the interval [a, b]. Such a location for
the contour would not be consistent with the role of the contour in containing the
poles of the discrete Riemann-Hilbert problem. The discrete orthogonal polynomial
problem is therefore quite like the special case of the semiclassical focusing nonlinear
Schrödinger problem exactly at t = 0, and to solve that problem one may use two
distinct analytic interpolants [12].

Let us describe how this dual-interpolant procedure works. In practice, the sets
∆ and ∇ are both taken to consist of unions of contiguous sequences of indices of
lengths proportional to N , and more precisely the nodes xN,n with n ∈ ∆ lie in a
finite union Σ∆

0 of N -independent subintervals of [a, b] (and the nodes xN,n with

n ∈ ∇ lie in the complementary system Σ∇
0 of subintervals). Let Ω∆,∇

± be unions

of rectangular domains of the z-plane defined by the inequalities <(z) ∈ Σ∆,∇
0 ,

|=(z)| < h for some h > 0 independent of N , and ±=(z) > 0. Consider using both
analytic interpolants of (−1)N−1−n given in (3.11) to define a new matrix unknown
R(z) as follows:

(3.12) R(z) := Q(z)

[

1 ∓ie∓iNθ0(z)/2W (z)
0 1

]

, for z ∈ Ω∇
± ,

(3.13) R(z) := Q(z)

[

1 0

∓ie∓iNθ0(z)/2W (z)−1 1

]

, for z ∈ Ω∆
± ,

and for all other z ∈ C set R(z) := Q(z). The main observations to make at this
point are the following:

• The matrix R(z) takes continuous boundary values on the contour Σ illus-
trated in Figure 2 from both sides. In particular, there are no singularities
of the boundary values taken by R(z) on the interval [a, b] despite the fact
that Q(z) has (many) poles there.

• Let V(z) denote the jump matrix relating the boundary values of R(z)
from the upper and lower half-planes via R+(z) = R−(z)V(z), z ∈ (a, b).
Then V(z) is analytic in the interior of Σ∆

0 and of Σ∇
0 .

The point is that the matrix R(z) satisfies a Riemann-Hilbert problem of the more
traditional type, with a piecewise analytic unknown matrix satisfying jump con-
ditions across a given system Σ of contours. Moreover, part of the contour Σ is
the interval [a, b] itself, and this is exactly where the support of the associated
equilibrium measure lies.

In [1], the equilibrium measure is used to concoct an appropriate g-function for
the Riemann-Hilbert problem for R(z), after which the steepest-descent method of
Deift and Zhou is used to determine very precise asymptotic information about the
discrete orthogonal polynomials and associated quantities like three-term recurrence
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Figure 2. The oriented contour Σ for removing the poles from
the discrete orthogonal polynomial Riemann-Hilbert problem.

coefficients. The results of this analysis have been applied to a number of problems
including the refinement (from weak to strong asymptotics) of the analysis of Deift
and McLaughlin [4] on the continuum limit of the Toda lattice as well as the proof
of the Tracy-Widom law for fluctuations of the boundary of the “frozen” region in
random rhombus tilings of large hexagons. While the Lax-Levermore method can
also be applied to this fully discrete problem, the dual interpolant approach and
the steepest-descent method have proven to be indispensible for establishing all of
these results in a unified fashion.

4. Multiple Interpolants and Caustics

Now let us return to the consideration of the semiclassical limit for the focusing
nonlinear Schrödinger equation with initial data of Klaus-Shaw type. In Section 2
it was noted that after getting beyond the initial instant of t = 0 and at least until
a time beyond the formation of the primary caustic at t = T1(x) (a transition from
genus zero to genus two), a single analytic interpolant of the proportionality con-
stants {γn} at the eigenvalues {λn} suffices to convert the fully discrete Riemann-
Hilbert problem of inverse-scattering into one of the more traditional type that,
crucially, can be analyzed by the steepest-descent method. In other words, when-
ever 0 < t < T1(x) + δ, removal of the poles yields a problem for which g-function
can be found relative to a contour Σ that indeed encircles all of the eigenvalues in
the upper half-plane. (These statements actually hide some complicated details.
For example, while one interpolant suffices, different interpolants may be required
for different x and t. Also, to have a problem well-conditioned for semiclassical
asymptotics, for some x and t it is additionally necessary to formulate a different
but equivalent fully discrete Riemann-Hilbert problem of inverse-scattering by steps
analogous to making the choice of ∆ = ZN rather than ∆ = ∅ in the Riemann-
Hilbert problem for the discrete orthogonal polynomials considered in Section 3.)

In the recent paper [11], it is shown that as t increases further toward the
apparent secondary caustic t = T2(x) > T1(x) clearly visible in the plot in Figure 1,
it becomes necessary once again to use multiple interpolants to remove the poles
from the problem. More importantly, it is shown that the mechanism generating
the secondary caustic is the failure of a new variational inequality generalizing the
condition <{φ} < 0 and made necessary exactly by the presence in the analysis of
an additional interpolant.

Figure 3 shows the results of using the ansatz-based procedure described in
Section 2 with G = 2 at two different times with x fixed. The left-hand frame
corresponds to a time t just beyond the primary caustic at t = T1(x). The wavy
line is the locus of accumulation of the eigenvalues, which becomes a logarithmic
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branch cut as far as the conditions to determine g(λ) are concerned. The solid arcs
are the two bands of the contour Σ, which when completed with two gap arcs lying
in the shaded regions where <{φ} < 0 completely encircles the eigenvalues in the
upper half λ-plane as desired. The right-hand frame corresponds to a larger value
of t, and it is clear that something is about to go terribly wrong with the approach
because the conditions determining g(λ) have driven the band labeled I1 to collide
with the branch cut.
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Figure 3. Computed bands and the inequality <{φ} < 0 for the
genus two ansatz as described in Section 2. The band endpoints
labeled λ0, λ1 and λ2 should not be confused with the discrete
eigenvalues, all of which lie on the imaginary axis.

From one point of view, the branch cut is an artificial obstruction to analytic
continuation, and it could perhaps easily be deformed out of the way of the moving
band I1. The contour Σ created from the bands I0 and I1 and the intervening gaps
would, however, no longer encircle all of the eigenvalues {λn} and so some poles of
the original discrete Riemann-Hilbert problem of inverse-scattering would not have
been removed at the start!

The interpolation formula (2.16) generalizes to a family of interpolants indexed
by an integer j in the following way:

(4.1) γn = −i(−1)je−i(2j+1)Ψ(λn)/ε , n = 0, 1, 2, . . . , N − 1 .

(The interpolant considered in Section 2 corresponds to j = 0.) To repair the bad
situation about to occur on the right-hand frame of Figure 3, consider the sequence
of steps illustrated in Figure 4. It turns out that the introduction of a new contour
lobe and the use of a new interpolant does not significantly change the conditions
satisfied by g on the common boundary of the j = 0 and j = 1 regions. However,
the new contour lobe, which contains no bands, must lie within a region in which
an inequality different from <{φ} < 0 holds. The inequality to be satisfied on the
new contour lobe corresponds to adding to φ a certain multiple of the WKB phase
integral Ψ(λ).

In Figure 5, the numerically computed evolution of the g-function is continued
for larger t, using the additional interpolant formulation described briefly above.
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Figure 4. Left: the loop contour Σ in the upper half-plane join-
ing the origin to the negative real axis and (barely) encircling the
eigenvalues that are condensed (as far as the conditions on g are
concerned) into a branch cut illustrated with a wavy line. Within
Σ the interpolant corresponding to j = 0 is used, and (for techni-
cal reasons not relevant to the current discussion, see [11]) in the
smaller region in the right half-plane the interpolant corresponding
to j = −1 is used. Center: a new lobe is added to the contour in
the left half-plane, and within this new region the interpolant cor-
responding to j = 1 is used. Right: with this change, the common
boundary between the j = 0 and j = 1 regions may be allowed to
pass through the eigenvalue locus, which may be genuinely treated
as a movable branch cut.

Two regions are shaded with different intensities: that corresponding to the “orig-
inal” inequality <{φ} < 0 (lighter shading) and that corresponding to the “modi-
fied” inequality (darker shading). It is evident that something goes wrong with this
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Figure 5. The genus two ansatz modified with an additional interpolant.

newer formulation at a time just before that corresponding to the second frame.
The region corresponding to the modified inequality has “pinched off,” which should
be viewed as a topological condition that makes it impossible to locate the new con-
tour lobe so as to satisfy all of the band/gap conditions for genus two. It should
be said that this phenomenon occurs precisely at the time when one observes the
secondary caustic shown in Figure 1.
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In [11] it is shown that the situation in the right-hand frame of Figure 5 is
remedied without the introduction of further interpolants (at least at this time) by
the introduction of a small band on the new contour lobe. The genus just beyond
the secondary caustic turns out to be G = 4. It is a matter for speculation as to
whether interpolants corresponding to higher values of j will be required to capture
the dynamics for yet larger values of t.

5. Other Problems

To briefly touch on some ongoing work, there are (at least) two other appli-
cations of asymptotic analysis for Riemann-Hilbert problems with lots of discrete
spectrum (and no contribution from continuous spectrum):

• Strong asymptotic analysis for the continuum limit of the Ablowitz-Ladik
equations. Here one is interested in the coupled system of ordinary differ-
ential equations

(5.1) i
dqn
dt

+ (1 − |qn|2)(qn+1 + qn−1) = 0 , 1 ≤ n ≤ N − 1 , t > 0 ,

subject to initial data of the form qn(0) = A(xn)eiNS(xn), where xn :=
n/N , A(x) is a smoothN -independent real function with A(0) = A(1) = 1
and A(x) < 1 for |x| < 1, and S(x) is a real N -independent function with
S(0) = 0. The boundary conditions are q0(t) = 1 and qN (t) = eiθ for
some angle θ = NS(1). Weak asymptotics for this problem were obtained
by Shipman [14] by the Lax-Levermore method. Computation of strong
asymptotics by means of a fully discrete Riemann-Hilbert problem related
to (discrete) orthogonal polynomials on the unit circle is the subject of
current work [6].

• Semiclassical asymptotics for the sine-Gordon equation in laboratory co-
ordinates. Here one is interested in the equation

(5.2) ε2utt − ε2uxx + sin(u) = 0 , x ∈ R , t > 0 ,

subject to initial data of the form u(x, 0) = f(x), εut(x, 0) = g(x) where
f and g are given ε-independent real-valued functions, and the boundary
conditions u → 2πn± as x → ±∞ with n± ∈ Z are imposed. Recent
calculations [2] show that if the initial data are given in the form

(5.3) sin

(

1

2
f(x)

)

= sech(x) , cos

(

1

2
f(x)

)

= tanh(x) , g(x) = −2µ sech(x) ,

where µ is an arbitrary real parameter, then the corresponding spectral
problem may be solved exactly for all ε and for all values of the spectral
parameter. From this one finds that as long as ε lies in the discrete
sequence

(5.4) ε = εN :=

√

1 + µ2

2N + 1

the reflection coefficient vanishes identically, so the corresponding solution
of (5.2) is a pure semiclassical soliton ensemble. An interesting effect here
is that the ensemble consists of definite µ-dependent fractions of breathers
and kink/antikinks. With the exact fully discrete spectral data in hand,
one can apply the kind of methods described in this article to extract
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semiclassical asymptotics for the sine-Gordon equation (5.2) from a fully
discrete Riemann-Hilbert problem.

In both of these problems, as in the problems discussed previously, there are natural
interpolating functions arising from WKB phase calculations. It should also be
mentioned that the motivating example given in the introduction for asymptotic
analysis of fully discrete Riemann-Hilbert problems, namely the zero-dispersion
limit of the Korteweg-de Vries equation with positive initial data, has not yet been
revisited from this more recent perspective. Perhaps there is yet something to be
discovered in the context of this prototypical example in the asymptotic theory of
integrable nonlinear waves.
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