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Do Solitons Exchange Conserved Quantities During Collisions?
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The redistribution of conserved quantities among colliding solitons of the nonlinear Schrédinger
equation is considered. An analogy with the theory of spatial solitons in nonlinear optics provides
one way to calculate this redistribution. In this context, exchanges of conserved quantities Zimong
colliding solitons can be completely described from a knowledge of the case fer2. It is shown
that solitons generally exchandé norm as they collide, with the fraction shared being small when the
solitons differ significantly in velocity or amplitude. Exchanges of other conserved densities are also
considered.

PACS numbers: 42.65.Tg

It is well known that after a collision Q¥ solitons mak- generally be additional bound modes. We take the point of
ing up a solutiony of the focusing nonlinear Schrédinger view that these linear modes describe the flow of particles
equation (NLS), the individual solitons emerge intact withthrough the waveguidegnd hence through the nonlinear
the same amplitude, wave shape, and velocity as beforfeeld that created it. In the specific case when the strong
the collision, the only evidence of the interaction being abeam that makes the waveguide can be described by an
phase shift [1]. Suppose we choose arbitrarily one of thev-soliton solution of NLS, there will be bound states of
conserved densities of NLS, like tiié norm densityl#|>  the waveguide that vanish in all but one arm of the guide
or momentum density I@*d,4). That the integral of before collision. These bound states are particular solu-
this density remains the same throughout the collision isions of the linear Schrddinger equation with the potential
indeed tautological, as is the fact that each soliton’s confunction given by the square modulus of tNesoliton so-
tribution to the integral is the same before and after thdution of NLS. Because for such a mode all particles will
interaction. However, if we permit ourselves to imaginebe unambiguously confined to just one soliton before the
that the conserved density represents a physical densitpllision, the mode structure beyond the collision will de-
of infinitesimal elements or particles that may be distin-scribe their redistribution.
guished one from another, we may ask a more philosophi- In this Letter, we use the optical analogy to give one
cal question. Are the particles carried by a given solitorpossible theoretical answer to the question posed in our
prior to the collision redistributed during the interaction title. We will arrive at the perhaps counterintuitive result
such that each soliton carries a fraction of them away afthat solitons do indeed exchange particles when they
terwards? If so, is it possible to quantify exactly how thecollide. The number exchanged will depend upon which
particles are shared? kind of particles (that is, which conserved density of NLS)

As stated, the question is not well posed, because to amve consider. We will find that a consistent description of
swer it one needs some way to distinguish among all théhe redistribution is possible in the case that the particles
particles in one of the solitons after collision those thatare infinitesimal elements of th€? norm, leading to the
came from a particular soliton before collision, and thereconclusion that colliding solitons always exchange some
may be several ways to do this, not all equivalent. Indeed.?> norm, with the fraction shared during the collision
on the basis of NLS alone there is no way to label thebeing small when the solitons differ greatly in velocity
particles, so one needs to make some additional assumpr amplitude. On the other hand, some problems appear
tions. To be concrete, we choose here to distinguish theshen one applies these same methods that work so
particles by a method borrowed from the theory of spatialvell for the L?> norm to other conserved quantities of
solitons in nonlinear optics. The theory of “light-guiding NLS. Let us now proceed to calculate the redistribution
light” [2—6] describes the use of strong self-focused beamsf conserved quantities of NLS by evaluating them on
to “write” waveguides in a medium with a nonlinear re- special solutions of the linear Schrédinger equation that
sponse—waveguides that may be subsequently used &we bound to the potential wells of a time-dependent
guide weaker beams. If the waveguide written by thepotential created by the collision &f solitons of NLS.
strong beam is somehow fixed in the material, say, chemi- Calculating the Redistribution of Particles:Let s be
cally or by photolithography, then the physical process ofan N-soliton solution of the focusing NLS equation
the linear propagation of light through the waveguide be- . 1.2 2, _
comes isolated from the physical process that created the i0p + 3034 + Iy = 0. (1)
waveguide. By self-consistency, one mode of this waveThe solutiony is specified by choosinyy complex num-
guide will be indistinguishable from the strong field thatbersA; = a; + ib; which contain the velocity and am-
created the waveguide [7]. On the other hand, there wilplitude of each soliton an¥ complex numbers; which

38 0031-900796/76(1)/38(4)$06.00 © 1995 The American Physical Society



VOLUME 76, NUMBER 1 PHYSICAL REVIEW LETTERS 1 ANuARY 1996

contain phase information. As— *oo, ¢y decouples into an N-soliton potential can be deduced from the behavior
a superposition oV solitons of the form of solutions in the cas&v = 2. The 2 X 2 complex
amplitude transfer matrix calculated in [8] is
¢jt(x, t) = ijsechi2bjx + 4ajbjt - (Sli)

X exp{—i[2a;x + 2(a] — b})t — 6] 1}, T(A1, Ap) =

2
@) where it is assumed thai < a,. Reference [8] contains
where the phases;” and6;" are determined frony;. a description of how to use this simple matrix to calculate
Now, consider the time-dependent potential functionthe complex amplitude transfer matrix for a potential
V(x,t) = |¢(x,1)|>. We want to try to deduce exchanges created by an arbitrary collision of solitons.

1 Al — A /\3—)\2}
——| % , 6
/\1—)\2[/\1—)\1 A — A ©)

of particles among theVv solitons making upi(x, ¢) With this tool, we can now calculate how infinitesimal
by studying the bound states of thieear Schrodinger elements or particles of some conserved quantity of NLS,
equation for a functiorb (x, 1), initially trapped in the potential well of one of the solitons
ast — —ox, are redistributed among all the potential wells
id;p + %a§¢ + Vix,t)¢p =0. (3) ast— +x. Let ¢q[¢](x,1) be one of the conserved
densities of NLS, so that

For |t| large, the potential breaks up int¥ distinct oo
wells, each of which can carry one bound state, locally 9,0[y](t) = a’f gly](x,t)dx =0, 7)
proportional to (x, r). Suppose that for large negative -

the solution (x, ) of (3) has the form

o

as long asy(x, t) solves (1) and vanishes along with its
N B derivatives sufficiently rapidly as — =oo to allow the

¢ (x,1) ~ Z a;p; (x,1), 4) integral to converge and boundary terms to vanish. Con-

=1 sider the bound state solutiah(x, r) of (3) that behaves

for given complex constantg;. For large positive the  as (4) witha; = 18 for somek and some complex num-

solution¢ (x, ¢) will also be confined to the potential wells ber 7, so that ast — —« the solution is approximated

of the individual solitons. In this limit, the solution has by ¢ (x,7) ~ I (x,t). We define the initial number of

the form particles in thekth potential well to beQ, = Q[Iyy .
N[ N Then, according to (5), the solutigh is approximated as

b (x,1) ~ Z|: Tjkakj|¢j+(x,t). (5) t— +=inthe potential well of solitory by ITjkgbf(x, 1).

j=1Lk=1 The number of particles that are captured by jtepo-

The complexN X N matrix T defined in this way is tential well after collision will then be; = Q[IT_jk‘ﬁ]-
called thecomplex amplitude transfer matrixthis matrix ~ 59, from the complex amplitude transfer matrix, and the
contains all the information (both amplitude and phaseform of (2), we can calculate the elements of transfer
about the asymptotic behavior of bound states of (3). ~ matrix for the conserved quantiy

In Ref. [8] an explicit algebraic algorithm is given for Sik = 07/0r . (8)
computing complex amplitude transfer matrices for time- !
dependent potential¥ = ||*> obtained from arbitrary The elements of this matrix describe the redistribution of
collisions ¢ of N solitons of the NLS equation (1). For the particles of the conserved quanti®{y] that were
our immediate purposes, the most important property ofinambiguously isolated in a particular potential well prior
the matrixT is that it is independent of the numbeysg  to the interaction of the wells. In general, the elements of
that determine the specific geometry of the interaction othe matrix will depend on the numbess andb;, as well
the N solitons. Only the soliton eigenvalueg, which  as the paramete.
determine the asymptotic amplitude and velocity of each Specific examples-Let us calculate the transfer ma-
soliton, are involved in the formulas at all. Thus, thetrices for the first few conserved quantities of NLS, and
amplitude transfer matri¥ for a time-dependent potential describe their properties. First, we consider ftfenorm
V(x, ) in which theN solitons interact more or less at the N, for which we have the density
same time is exactly the same as the amplitude transfer _ 2
matrix for a potentialV (x, r) in which the solitons only anl 1.0 = lgx OF. ©)
interact pairwise. This means that it is possible to buildThe elements of the corresponding transfer matrix are
the N X N amplitude transfer matrix out of the X 2 obtained asyjx = b,»b[llTjklz, giving thenorm transfer
matrix, and the asymptotic behavior of solutions of (3) fT)rmatrix

Sn(A1, Ap) =

! [A%I + (b2 = by)? 4b1bs } (10)

A3y + (by + by)? 4b1b> A3+ (by — by)?
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where we have introduced the notatidy for the relative (A3, — =) and also in the limit of extreme difference in
velocity a; — a;. This matrix has a number of desirable depth of the wells [Ifb,/b;) — «]. The norm transfer
properties. First, there is no dependence on the parameteratrix thus encodes the results indicated at the beginning
I, which controls the total number of particles present a®f this Letter.

t — —o, More important to our aim of describing the = Some of the nice properties of the norm transfer matrix
redistribution of particles is the fact that the norm of thedisappear when we consider the momentRnfor which
linear waves is conserved through the collision, so thathe density is

for eachj we haveSyi;, + Syar = 1. So, the total norm |

is the same before and after collision, and when all of _ Lok _ *

the particles are initially trapped in the potential well of arly] 1) = 2i[¢ (6, D0xp(x, 1) = (2, 09,97 (x, 1))
solitonk ast — —x, the fraction trapped in the potential (11)

well of soliton j ast — + is exactly Syj.. Observe

that some particles are always captured by the collidingn this case, the elements of the transfer matrix are given
potential well, but that the fraction captured vanishes irby Spjx = a;bja; by '|T;|?, which gives themomentum
the limit of extreme relative velocity of the two WeII? transfer matrix

1 A3+ (by — b)) 4b1bsa/a
S»(A L) = |: 21 2 1 102d1/ 42 ) 12
p(hi;42) A3+ (by + b))? 4b1braz/a, A3y + (by — b)) (12)

Again, there is no dependence on the initial total momtlenare independent of the total number of particles involved.
tum (proportional td/|?). However, we now see that the When the scattering of particles of other conserved quanti-
momentum for linear waves is not generally conservedies of NLS is considered, these two features are generally
during the interaction of the two potential wells. The no longer present. In general, the scattering properties of
deviation from conservation of momentum is measuregarticles of any conserved quantity of (1) whose density
by the relative velocityA,;. Conservation of momen- is of homogeneous degreejnwill be independent of the
tum fails because the colliding potential well applies someotal number of particles present as» —«. This was
force to a body initially trapped in a stationary well, thus the case, for example, with the scattering of momentum
changing its momentum. The total momentum is onlyparticles. However, in that case we found that the to-
conserved when the linear solutigr(x, ¢) is proportional tal number of particles is not preserved by the scattering,
to theN-soliton collision# (x, r) that created the potential. with the total momentum being altered by the motion of
The interpretation of the transfer matrix is even morethe time-dependent potential. A general conserved den-
difficult for the HamiltonianH, which has the conserved sity of (1) will not be homogeneous i#, and for parti-
density cles of such conserved quantities both of the properties of
) A norm transfer mentioned above will be absent.
qul](x,0) = lo (e, 01" — [y (e, 0. (13) When the total number of particles of a given con-
served quantity of (1) is not conserved, it is an indication
cthat delicate interference effects among particles simulta-
{neously trapped in the individual wells of the potential as
t — —oo are required in order to conserve the total num-
ber. In other words, the linear soluti@f(x, r) must be ev-
) ) 5 N 12 erywhere proportional to th&-soliton collision solution
Sujk = 1Tul? a” + b7 - 26701 + UPITK /3 (14)  ¥(x,1) of (1) to conserve the particles. Of course, this is
' a* + b2 —2b%(1 + |1]?)/3 precisely the solution we would like to study, but for such
Furthermore, as was the case with the momentum, tha bound state it is not possible to distinguish among the
Hamiltonian is not conserved by the linear waves duringparticles present at= +oo those that were trapped in a
the interaction of the potential wells. particular potential well at = —. For theL? norm, the
We believe that the approach presented above givesfact that the total number of particles is preserved even
concrete consistent answer to the question of how parfor bound states) (x, r) of (3) that differ essentially from
ticles of theL> norm, associated unambiguously with athe N-soliton collision(x, ¢) is what enables us to dis-
given isolated soliton potential well as— —o, are dis- tinguish among the particles presentras +oo.
tributed among the potential wells of all the solitons after As we mentioned above, there is no way on the basis of
their collision. This answer has two features that are dea given soliton equation alone to assign identity to infini-
sirable for a description of scattering of indestructible partesimal elements comprising a wave field that represents
ticles by a linear process: (i) The total number of particleghe collision of N solitons. It is necessary either to have
is preserved by the process. (ii) The scattering propertiesome a priori information not contained in the soliton

Because the density is not homogeneous ¢in the
elements of the transfer matrix will now depend on th
parameter/, and hence on the total Hamiltonian presen
ast — —o. The elements of thélamiltonian transfer
matrix are
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equation, or to make additional assumptions. Howeverparticles to be distinguished. This approach is in some
in any real problem a soliton equation arises as an apways more attractive than the one we have described
proximation to a complicated physical process, and it mayt the beginning of this Letter, since now the physical
happen that this underlying process contains informatioprocess used to analyze the redistribution of the particles
relating to the identity of particles—information that getsis the same as the physical process that leads to the
neglected in the derivation of the soliton equation as gropagation of the solitons; we can thus consider the
model. As an example, we might return to the theory ofredistribution of particles without fixing the refractive
planar optical waveguides and consider the propagatiomdex first. Moreover, in principle, experiments can be
of spatially modulated stationary monochromatic beamslone with a medium of the type described here to confirm
of two different specially chosen orthogonal polarizationsthat the exchanges of photons are indeed described by the
denoted by unit vectors- for which the electric field can norm transfer (interpreted in this case as photon transfer)
be written as matrix presented in this Letter. Itis interesting to consider
E(e,2,0) = [es (X, Z) + e_ip_(X,2)] the dggree to which the properties of exc_hange of partic;les
as dictated by some underlying physical process like
X exdi(Bz — wt)] + c.c., (15  (16) leading to a given soliton equation like (17) might
where X = ex, Z = ez, and € is the small ratio be- De universal and thus independent of the details of the
tween the optical wavelength and the characteristic scaldnderlying process. o o
of the spatial modulation. We imagine a medium hay- Certainly, other methods of distinguishing among infini-
ing an exotic nonlinearity that responds to the two chotesimal elements participating in a multisoliton collision
sen polarizations by producing a refractive index profilec@n also be suggested, including analogies with quantum
n(X,Z) = l+(X,Z) + _(X,Z)|> seen by both polar- Mechanics and self-consistent field theory. We invite de-
izations. We see no fundamental physical reason whyPate on this subject in the future. In particular, we would
such a medium cannot exist. In dimensionless form, thdke to see some discussion of other possible ways of distin-
equations for the complex envelopes in such a mediur§Uishing among particles involved in soliton collisions—

would then be ways that might be useful both in considering conserved
) 1 5 densities other than the* norm and also in treating soli-
i0zh= + 30x= + |¢ps + "= = 0. (16)  (oninteractions in physical systems modeled at some level
Together, these equations imply the NLS equation for th@f approximation by integrable equations other than NLS.
sum of the envelopes = ¢, + ¢ This work is supported by the Australian Photonics
. .o ) Cooperative Research Centre (APCRC).
0z + 30x¢ + l¢l7y =0, 17)
and, usinge to represent eithap . or ¢_, we obtain
i0z¢ + 3050 + lyPg =0. (18)
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