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Do Solitons Exchange Conserved Quantities During Collisions?
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(Received 28 July 1995)

The redistribution of conserved quantities among colliding solitons of the nonlinear Schröd
equation is considered. An analogy with the theory of spatial solitons in nonlinear optics pro
one way to calculate this redistribution. In this context, exchanges of conserved quantities amoN
colliding solitons can be completely described from a knowledge of the case forN  2. It is shown
that solitons generally exchangeL2 norm as they collide, with the fraction shared being small when
solitons differ significantly in velocity or amplitude. Exchanges of other conserved densities are
considered.

PACS numbers: 42.65.Tg
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It is well known that after a collision ofN solitons mak-
ing up a solutionc of the focusing nonlinear Schrödinge
equation (NLS), the individual solitons emerge intact wi
the same amplitude, wave shape, and velocity as bef
the collision, the only evidence of the interaction being
phase shift [1]. Suppose we choose arbitrarily one of t
conserved densities of NLS, like theL2 norm densityjcj2

or momentum density Imscp≠xcd. That the integral of
this density remains the same throughout the collision
indeed tautological, as is the fact that each soliton’s co
tribution to the integral is the same before and after t
interaction. However, if we permit ourselves to imagin
that the conserved density represents a physical den
of infinitesimal elements or particles that may be disti
guished one from another, we may ask a more philosop
cal question. Are the particles carried by a given solito
prior to the collision redistributed during the interactio
such that each soliton carries a fraction of them away
terwards? If so, is it possible to quantify exactly how th
particles are shared?

As stated, the question is not well posed, because to
swer it one needs some way to distinguish among all
particles in one of the solitons after collision those th
came from a particular soliton before collision, and the
may be several ways to do this, not all equivalent. Indee
on the basis of NLS alone there is no way to label t
particles, so one needs to make some additional assu
tions. To be concrete, we choose here to distinguish
particles by a method borrowed from the theory of spat
solitons in nonlinear optics. The theory of “light-guiding
light” [2–6] describes the use of strong self-focused bea
to “write” waveguides in a medium with a nonlinear re
sponse—waveguides that may be subsequently use
guide weaker beams. If the waveguide written by th
strong beam is somehow fixed in the material, say, che
cally or by photolithography, then the physical process
the linear propagation of light through the waveguide b
comes isolated from the physical process that created
waveguide. By self-consistency, one mode of this wav
guide will be indistinguishable from the strong field tha
created the waveguide [7]. On the other hand, there w
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generally be additional bound modes. We take the poin
view that these linear modes describe the flow of partic
through the waveguide,and hence through the nonlinea
field that created it. In the specific case when the stron
beam that makes the waveguide can be described by
N-soliton solution of NLS, there will be bound states o
the waveguide that vanish in all but one arm of the gui
before collision. These bound states are particular so
tions of the linear Schrödinger equation with the potent
function given by the square modulus of theN-soliton so-
lution of NLS. Because for such a mode all particles w
be unambiguously confined to just one soliton before
collision, the mode structure beyond the collision will d
scribe their redistribution.

In this Letter, we use the optical analogy to give on
possible theoretical answer to the question posed in
title. We will arrive at the perhaps counterintuitive resu
that solitons do indeed exchange particles when th
collide. The number exchanged will depend upon whi
kind of particles (that is, which conserved density of NLS
we consider. We will find that a consistent description
the redistribution is possible in the case that the partic
are infinitesimal elements of theL2 norm, leading to the
conclusion that colliding solitons always exchange so
L2 norm, with the fraction shared during the collisio
being small when the solitons differ greatly in velocit
or amplitude. On the other hand, some problems app
when one applies these same methods that work
well for the L2 norm to other conserved quantities o
NLS. Let us now proceed to calculate the redistributi
of conserved quantities of NLS by evaluating them o
special solutions of the linear Schrödinger equation t
are bound to the potential wells of a time-depende
potential created by the collision ofN solitons of NLS.

Calculating the Redistribution of Particles.—Let c be
anN-soliton solution of the focusing NLS equation

i≠tc 1
1
2 ≠2

xc 1 jcj2c  0 . (1)

The solutionc is specified by choosingN complex num-
berslj  aj 1 ibj which contain the velocity and am
plitude of each soliton andN complex numbersgj which
© 1995 The American Physical Society
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contain phase information. Ast ! 6`, c decouples into
a superposition ofN solitons of the form

c6
j sx, td  2bjsechs2bjx 1 4ajbjt 2 d6

j d
3 exph2if2ajx 1 2sa2

j 2 b2
j dt 2 u6

j gj ,
(2)

where the phasesd6
j andu

6
j are determined fromgj .

Now, consider the time-dependent potential functio
V sx, td  jcsx, tdj2. We want to try to deduce exchange
of particles among theN solitons making upcsx, td
by studying the bound states of thelinear Schrödinger
equation for a functionfsx, td,

i≠tf 1
1
2 ≠2

xf 1 V sx, tdf  0 . (3)

For jtj large, the potential breaks up intoN distinct
wells, each of which can carry one bound state, loca
proportional tocsx, td. Suppose that for large negativet
the solutionfsx, td of (3) has the form

fsx, td ,
NX

j1

ajc2
j sx, td , (4)

for given complex constantsaj . For large positivet the
solutionfsx, td will also be confined to the potential wells
of the individual solitons. In this limit, the solution ha
the form

fsx, td ,
NX

j1

"
NX

k1

Tjkak

#
c1

j sx, td . (5)

The complexN 3 N matrix T defined in this way is
called thecomplex amplitude transfer matrix.This matrix
contains all the information (both amplitude and phas
about the asymptotic behavior of bound states of (3).

In Ref. [8] an explicit algebraic algorithm is given fo
computing complex amplitude transfer matrices for tim
dependent potentialsV  jcj2 obtained from arbitrary
collisions c of N solitons of the NLS equation (1). For
our immediate purposes, the most important property
the matrixT is that it is independent of the numbersgj

that determine the specific geometry of the interaction
the N solitons. Only the soliton eigenvalueslj, which
determine the asymptotic amplitude and velocity of ea
soliton, are involved in the formulas at all. Thus, th
amplitude transfer matrixT for a time-dependent potentia
V sx, td in which theN solitons interact more or less at th
same time is exactly the same as the amplitude trans
matrix for a potentialV sx, td in which the solitons only
interact pairwise. This means that it is possible to bu
the N 3 N amplitude transfer matrix out of the2 3 2
matrix, and the asymptotic behavior of solutions of (3) fo
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an N-soliton potential can be deduced from the behav
of solutions in the caseN  2. The 2 3 2 complex
amplitude transfer matrix calculated in [8] is

Tsl1, l2d 
1

l
p
1 2 l2

∑
l

p
1 2 l

p
2 l

p
2 2 l2

l
p
1 2 l1 l1 2 l2

∏
, (6)

where it is assumed thata1 , a2. Reference [8] contains
a description of how to use this simple matrix to calcula
the complex amplitude transfer matrix for a potenti
created by an arbitrary collision ofN solitons.

With this tool, we can now calculate how infinitesima
elements or particles of some conserved quantity of NL
initially trapped in the potential well of one of the soliton
ast ! 2`, are redistributed among all the potential wel
as t ! 1`. Let qfcg sx, td be one of the conserved
densities of NLS, so that

≠tQfcg std 8 ≠t

Z 1`

2`

qfcg sx, td dx  0 , (7)

as long ascsx, td solves (1) and vanishes along with it
derivatives sufficiently rapidly asx ! 6` to allow the
integral to converge and boundary terms to vanish. C
sider the bound state solutionfsx, td of (3) that behaves
as (4) withaj  Idjk for somek and some complex num-
ber I , so that ast ! 2` the solution is approximated
by fsx, td , Ic

2
k sx, td. We define the initial number of

particles in thekth potential well to beQ2
k  QfIc

2
k g.

Then, according to (5), the solutionf is approximated as
t ! 1` in the potential well of solitonj by ITjkc

1
j sx, td.

The number of particles that are captured by thejth po-
tential well after collision will then beQ1

j  QfITjkc
1
j g.

So, from the complex amplitude transfer matrix, and t
form of (2), we can calculate the elements of thetransfer
matrix for the conserved quantityQ

Sjk  Q1
j yQ2

k . (8)

The elements of this matrix describe the redistribution
the particles of the conserved quantityQfcg that were
unambiguously isolated in a particular potential well pri
to the interaction of the wells. In general, the elements
the matrix will depend on the numbersaj andbj , as well
as the parameterI.

Specific examples.—Let us calculate the transfer ma
trices for the first few conserved quantities of NLS, an
describe their properties. First, we consider theL2 norm
N , for which we have the density

qN fcg sx, td  jcsx, tdj2. (9)

The elements of the corresponding transfer matrix
obtained asSNjk  bjb21

k jTjkj2, giving thenorm transfer
matrix
SN sl1, l2d 
1

D
2
21 1 sb2 1 b1d2

∑
D

2
21 1 sb2 2 b1d2 4b1b2

4b1b2 D
2
21 1 sb2 2 b1d2

∏
, (10)
39
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where we have introduced the notationDij for the relative
velocity ai 2 aj. This matrix has a number of desirabl
properties. First, there is no dependence on the param
I , which controls the total number of particles present
t ! 2`. More important to our aim of describing the
redistribution of particles is the fact that the norm of th
linear waves is conserved through the collision, so th
for eachj we haveSN1k 1 SN2k  1. So, the total norm
is the same before and after collision, and when all
the particles are initially trapped in the potential well o
soliton k ast ! 2`, the fraction trapped in the potentia
well of soliton j as t ! 1` is exactly SNjk. Observe
that some particles are always captured by the collidi
potential well, but that the fraction captured vanishes
the limit of extreme relative velocity of the two wells
e
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(D2
21 ! `) and also in the limit of extreme difference i

depth of the wells [lnsb2yb1d ! `]. The norm transfer
matrix thus encodes the results indicated at the beginn
of this Letter.

Some of the nice properties of the norm transfer mat
disappear when we consider the momentumP, for which
the density is

qPfcg sx, td 
1
2i

fcpsx, td≠xcsx, td 2 csx, td≠xcpsx, tdg.

(11)

In this case, the elements of the transfer matrix are gi
by SPjk  ajbja21

k b21
k jTjkj2, which gives themomentum

transfer matrix
SPsl1, l2d 
1

D
2
21 1 sb2 1 b1d2

∑
D

2
21 1 sb2 2 b1d2 4b1b2a1ya2

4b1b2a2ya1 D
2
21 1 sb2 2 b1d2

∏
. (12)
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Again, there is no dependence on the initial total mom
tum (proportional tojIj2). However, we now see that th
momentum for linear waves is not generally conserv
during the interaction of the two potential wells. Th
deviation from conservation of momentum is measur
by the relative velocityD21. Conservation of momen
tum fails because the colliding potential well applies som
force to a body initially trapped in a stationary well, thu
changing its momentum. The total momentum is on
conserved when the linear solutionfsx, td is proportional
to theN-soliton collisioncsx, td that created the potentia

The interpretation of the transfer matrix is even mo
difficult for the HamiltonianH, which has the conserve
density

qHfcg sx, td  j≠xcsx, tdj2 2 jcsx, tdj4. (13)

Because the density is not homogeneous inc , the
elements of the transfer matrix will now depend on t
parameterI , and hence on the total Hamiltonian prese
as t ! 2`. The elements of theHamiltonian transfer
matrix are

SHjk  jTjkj2
a2 1 b2 2 2b2s1 1 jIj2jTjkj2dy3

a2 1 b2 2 2b2s1 1 jIj2dy3
. (14)

Furthermore, as was the case with the momentum,
Hamiltonian is not conserved by the linear waves duri
the interaction of the potential wells.

We believe that the approach presented above give
concrete consistent answer to the question of how p
ticles of theL2 norm, associated unambiguously with
given isolated soliton potential well ast ! 2`, are dis-
tributed among the potential wells of all the solitons aft
their collision. This answer has two features that are
sirable for a description of scattering of indestructible p
ticles by a linear process: (i) The total number of partic
is preserved by the process. (ii) The scattering proper
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are independent of the total number of particles involve
When the scattering of particles of other conserved qua
ties of NLS is considered, these two features are gener
no longer present. In general, the scattering properties
particles of any conserved quantity of (1) whose dens
is of homogeneous degree inc will be independent of the
total number of particles present ast ! 2`. This was
the case, for example, with the scattering of momentu
particles. However, in that case we found that the
tal number of particles is not preserved by the scatteri
with the total momentum being altered by the motion
the time-dependent potential. A general conserved d
sity of (1) will not be homogeneous inc , and for parti-
cles of such conserved quantities both of the properties
norm transfer mentioned above will be absent.

When the total number of particles of a given co
served quantity of (1) is not conserved, it is an indicati
that delicate interference effects among particles simu
neously trapped in the individual wells of the potential
t ! 2` are required in order to conserve the total num
ber. In other words, the linear solutionfsx, td must be ev-
erywhere proportional to theN-soliton collision solution
csx, td of (1) to conserve the particles. Of course, this
precisely the solution we would like to study, but for suc
a bound state it is not possible to distinguish among
particles present att  1` those that were trapped in
particular potential well att  2`. For theL2 norm, the
fact that the total number of particles is preserved ev
for bound statesfsx, td of (3) that differ essentially from
the N-soliton collisioncsx, td is what enables us to dis
tinguish among the particles present ast ! 1`.

As we mentioned above, there is no way on the basis
a given soliton equation alone to assign identity to infin
tesimal elements comprising a wave field that represe
the collision ofN solitons. It is necessary either to hav
some a priori information not contained in the soliton
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equation, or to make additional assumptions. Howev
in any real problem a soliton equation arises as an
proximation to a complicated physical process, and it m
happen that this underlying process contains informat
relating to the identity of particles—information that ge
neglected in the derivation of the soliton equation as
model. As an example, we might return to the theory
planar optical waveguides and consider the propagat
of spatially modulated stationary monochromatic beam
of two different specially chosen orthogonal polarization
denoted by unit vectorse6 for which the electric field can
be written as

Esx, z, td  fe1c1sX, Zd 1 e2c2sX, Zdg
3 expfisbz 2 vtdg 1 c.c., (15)

where X  ex, Z  ez, and e is the small ratio be-
tween the optical wavelength and the characteristic sc
of the spatial modulation. We imagine a medium ha
ing an exotic nonlinearity that responds to the two ch
sen polarizations by producing a refractive index profi
nsX, Zd  jc1sX, Zd 1 c2sX, Zdj2 seen by both polar-
izations. We see no fundamental physical reason w
such a medium cannot exist. In dimensionless form, t
equations for the complex envelopes in such a medi
would then be

i≠Zc6 1
1
2 ≠2

Xc6 1 jc1 1 c2j2c6  0 . (16)

Together, these equations imply the NLS equation for t
sum of the envelopesc  c1 1 c2

i≠Zc 1
1
2 ≠2

Xc 1 jcj2c  0 , (17)

and, usingf to represent eitherc1 or c2, we obtain

i≠Zf 1
1
2 ≠2

Xf 1 jcj2f  0 . (18)

These are the same equations we have analyzed ab
One can consider a two soliton collision of the nonline
equation (17) for the sum of the envelopes, but for whi
prior to the collision one of the solitons contains on
photons polarized in thee1 direction, and the other
contains only photons polarized in thee2 direction.
After the collision, each soliton of the envelope su
will carry the same number of photons as before t
collision. However, the output beams will each no
contain some mixture of photons of each polarizatio
In a case like this, the physical sharing of particle
can be obtained by enlarging the scope and worki
with the model (16), which incorporates the neglecte
physical mechanism (here, polarization) that allows t
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particles to be distinguished. This approach is in som
ways more attractive than the one we have describ
at the beginning of this Letter, since now the physic
process used to analyze the redistribution of the partic
is the same as the physical process that leads to
propagation of the solitons; we can thus consider t
redistribution of particles without fixing the refractive
index first. Moreover, in principle, experiments can b
done with a medium of the type described here to confi
that the exchanges of photons are indeed described by
norm transfer (interpreted in this case as photon trans
matrix presented in this Letter. It is interesting to consid
the degree to which the properties of exchange of partic
as dictated by some underlying physical process li
(16) leading to a given soliton equation like (17) migh
be universal and thus independent of the details of
underlying process.

Certainly, other methods of distinguishing among infin
tesimal elements participating in a multisoliton collisio
can also be suggested, including analogies with quant
mechanics and self-consistent field theory. We invite d
bate on this subject in the future. In particular, we wou
like to see some discussion of other possible ways of dis
guishing among particles involved in soliton collisions—
ways that might be useful both in considering conserv
densities other than theL2 norm and also in treating soli-
ton interactions in physical systems modeled at some le
of approximation by integrable equations other than NL
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