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The bound state solutions of the linear Schro¨dinger equation describing steady propagation of a signal in a
planar waveguide are explicitly obtained for the case of a refractive index profile created by the interaction of
N arbitrary dark solitons in a defocusing Kerr medium. Analysis of these solutions shows that linear signals
confined to the arms of the waveguide prior to the collision do not interfere with each other at all as they pass
through the interaction region of the dark solitons. Each signal emerges from the collision with exactly the
same power and angle as it had at the input, thus behaving as though all solitons other than the one in which
it was initially confined were altogether absent.

PACS number~s!: 42.79.Ta, 42.65.Tg

I. INTRODUCTION

It is well known that a steady intense light beam in a
nonlinear medium induces a change in the background re-
fractive index, and it has been suggested that this adjusted
index profile might be used as a waveguide for less intense
light beams. These beams would be guided by the nonlin-
early induced index profile without significantly altering the
waveguide. In the laboratory, weak beams have already been
successfully guided by strong beams forming both bright@1#
and dark@2,3# spatial solitons of Kerr-type nonlinear media.

The case of a Kerr-type medium in a planar geometry is
particularly interesting in the context of using a strong beam
to guide a weaker signal because the strong beam is modeled
by an integrable cubic nonlinear Schro¨dinger equation,
whose solutions are well understood and include radiation-
free collisions of bright solitons in the self-focusing case and
dark solitons in the self-defocusing case. In both of these
cases, the nonlinearly induced refractive index profile of an
N-soliton collision separates well before and after the inter-
action region of the solitons intoN isolated waveguides
~arms!. One also might expect that the powerful mathemati-
cal tools associated with the complete integrability of the
model for the strong beam could be brought to bear on the
associated problem of the copropagation of weak signal
beams. This is indeed the case.

There are several strategies for introducing the weak sig-
nal beam to be guided by multisoliton waveguides of the
type described above. In one scenario, the weak beam coex-
ists in the medium with the strong beam. This method is
attractive because it makes possible dynamically controlled
all-optical switching; the waveguide is changed as desired
simply by adjusting the strong beams in the uniform bulk
Kerr medium. For the signal beam to be distinguished from
the pump beam, the two beams must either differ in fre-
quency or have orthogonal polarizations. In another scenario,
the index profile induced by the strong beam is fixed in the
medium so that it remains in the absence of the strong beam.
This could be done either by using some material with
‘‘memory’’ such as a photorefractive crystal, or by directly
fabricating a permanent linear device by programming a
computer with the appropriate exact analytical solution of

the nonlinear Schro¨dinger equation in order to control the
intensity of an ion implantation process. With this method
there is no problem with using a signal beam of any fre-
quency or polarization, but the device is then permanent.

Prior investigations@4# have shown that there are signifi-
cant advantages to choosing the frequency of the signal beam
to match that of the pump. If the signal and pump share the
same frequency, then signal beams initially confined to the
arms of the soliton waveguide remain confined after the
junction, with no loss to radiation. Operating a nonlinearly
induced waveguide in this strictly monochromatic regime re-
quires that the signal and pump beams be orthogonally po-
larized if the two are to coexist in the medium and be distin-
guished from each other.

The mathematical model of the pump and signal beams is
the same whether one considers orthogonally polarized
beams coexisting at the same frequency in an appropriate
Kerr medium, or whether one takes the pump beam to be
altogether absent~although its induced index is present!. For
concreteness, we take both beams to be present, in which
case the electric field in the slab of Kerr medium is

E~x,z,t !5@epc~X,Z!1hesf~X,Z!#exp@ i ~bz2vt !#1c.c.,
~1!

whereX5«x, Z5«z, and« is the small ratio between the
wavelength of the carrier wave and the characteristic length
scale of the modulation. The orthogonal unit vectors indicat-
ing the linear polarizations of the pump and signal areep and
es , and the corresponding complex envelopes arec(X,Z)
andf(X,Z). The small parameterh is the amplitude ratio of
the signal to the pump. In dimensionless units, the equations
for the envelopes take the form

i ]Zc1 1
2 ]X

2c2sucu2c50, ~2!

i ]Zf1 1
2 ]X

2f2sucu2f50, ~3!

where s521 indicates a self-focusing medium, in which
nonlinearity counteracts diffraction, ands511 indicates a
self-defocusing medium, in which nonlinearity enhances dif-
fraction. The effect of the weak signal on the pump is as-
sumed to be negligible, and the frequencyv and material
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nonlinearity are assumed to be selected so that the four-wave
mixing contribution to ~3!, proportional toc2f̄, may be
omitted ~as would be the case if the Kerr effect is due to an
electrostrictive nonlinearity!. Thus, a solutionc(X,Z) of ~2!
induces a waveguide with an effective shift, proportional to
2suc(X,Z) u2, in the refractive index profile in the material
that is seen by the signal beam. Given a particular solutionc
of ~2!, the mathematical task is the analysis of the solutions
to the associated linear problem~3!.

As pointed out above, the simplest and potentially most
useful exact solutions of the nonlinear problem~2! corre-
spond to the interactions ofN bright ~s521! or dark ~s
511! solitons. In both cases the arms of the induced wave-
guide are individually single-moded away from the junction
for signals of the pump frequency. The solutions of the linear
equation~3! have been studied by numerical@5,6# and ap-
proximate@7# methods in both focusing and defocusing cases
for the solutions of~2! corresponding to collisions of two
solitons of equal amplitudes. These results have been re-
cently generalized somewhat in@8#, where the bound states
of ~3! for index profiles created by completely arbitrary col-
lisions of any number of bright solitons~s521! were ob-
tained analytically and analyzed to yield simple exact formu-
las for the transfer matrices that describe how a signal beam
confined to a single arm of the soliton waveguide before the
interaction is divided among the arms of the waveguide at
the output. This analysis revealed the remarkable fact that the
transfer characteristics of theN bright soliton waveguide are
independent of all details of the soliton collision, depending
only on the amplitudes of the solitons and their relative
angles in the medium.

If the index profile is created by a collision of two dark
solitons of equal amplitudes, the studies@5,7# of ~3! suggest
an even more remarkable phenomenon: a signal beam in-
put into one arm of the waveguide will pass through the
collision region without any scattering and with all power in
the unique output arm whose angle matches that of the input
arm. One may certainly ask whether this compelling result
does in fact hold for waveguides made from any number of
dark solitons of any amplitudes.

The remainder of this paper is dedicated to definitively
answering this question by analytically considering soliton
waveguides made in the defocusing case~s511!, where we
assume that the strong fieldc consists ofN arbitrary dark
solitons propagating on a plane wave background~see Fig. 1
for an example of a refractive index profile nonlinearly in-
duced by a collision of dark solitons!. Of course, there is one
obvious exact solution of the linear equation~3!, namely,
f5c. However, this exact solution is not as relevant as one
might like, since it is not a bound state~finite power beam!.
On the other hand, it is possible to exploit the integrability of
the nonlinear pump equation~2! to obtain a linear space of
bound state solutions of~3!, as was done in the bright~s
521! case@8#. Our job is to calculate these bound states and
analyze their asymptotic behavior in the waveguide arms in
order to prove the exact result thatall linear waveguides
made from dark soliton collisions in slab geometry Kerr me-
dia function as perfect zero-crosstalk junctions at the fre-
quency with which the waveguide was created.

We will begin in Sec. II by explaining how the complete
integrability of pump equation~2! can be used to produce

rich ~and perhaps complete! families of exact solutions of the
associated linear problem~3!. The essential idea is to set up
a correspondence between the Lax eigenfunctions associated
with c and solutions of~3!. We then focus attention on the
defocusing case of~2! and in Sec. III we present a construc-
tion of theN dark soliton solution of~2!, obtaining as part of
the same procedure the Lax eigenfunctions associated with
dark soliton collisions. By the methods of Sec. II, these Lax
eigenfunctions will generate solutions of the linear Schro¨-
dinger equation~3!, including the bound states of theN dark
soliton waveguide. Section IV is devoted to the asymptotic
analysis of these bound states; this analysis proves that dark
soliton waveguides are zero-crosstalk devices. Finally, in
Sec. V we will discuss some possible applications of our
results.

II. LAX EIGENFUNCTIONS AND SOLUTIONS OF THE
LINEAR SCHRÖ DINGER EQUATION

Our method of solving the linear problem~3!, which is
developed in greater detail in@9# and was practically applied
in @8#, is based upon the integrability of the nonlinear equa-
tion ~2!. This integrability simply means that~2! is the con-
sistency condition for a pair of linear problems@ordinary
differential equations with nonconstant coefficients depend-
ing on the fieldc(X,Z)# called aLax pair. The simultaneous
solution of the Lax pair is a two-component vector
u5(u1 ,u2)

T which we will refer to as theLax eigenfunction.
The two linear problems making up the Lax pair for~2! are

]Xu5Lu5F2 il c

sc̄ ilGu, ~4!

FIG. 1. The refractive index profile of a collision of three dark
solitons. This profile may be considered as a six-port linear device,
with three inputs at the bottom of the figure and three outputs at the
top.
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i ]Zu5Bu5F l21
s

2
ucu2 ilc2

1

2
]Xc

islc̄1
s

2
]Xc̄ 2l22

s

2
ucu2

G u, ~5!

wherel is an arbitrary complex parameter. The compatibility
condition for~4! and~5! is equivalent, regardless of the value
of l, to the cubic nonlinear Schro¨dinger equation~2!. For
each solutionc(X,Z) of ~2!, there is then a basis of two
linearly independent Lax eigenfunctions parametrized byl.
Lax eigenfunctions and solutionsf of ~3! are connected by

Proposition 1. Suppose thatc(X,Z) solves the nonlinear
Schrödinger equation (2). Letu(X,Z;l) be any correspond-
ing Lax eigenfunction, for any complexl. Then the function

f~X,Z!5u1~X,Z;l!exp@2 i ~lX1l2Z!# ~6!

is a solution of the linear Schro¨dinger equation (3).
This proposition is proved and discussed in@9#. It estab-

lishes a clear correspondence between solutions of the linear
problem~3! and solutions of the linear Lax pair~4! and ~5!.
From one point of view, both of these linear problems~the
linear Schro¨dinger equation and the Lax pair! are equally
difficult, as they involve nonconstant coefficients through the
given solutionc of ~2!. However, the utility of the corre-
spondence established in Proposition 1 is that many exact
methods for finding functionsc(X,Z) that solve the nonlin-
ear Schro¨dinger equation~2! also produce a basis of Lax
eigenfunctions as a by-product. For classes of solutionsc of
~2! constructed by such methods, and, in particular, for the
classes of bright and dark multisoliton solutions, the Propo-
sition automatically provides a family, parametrized by an
arbitrary complex numberl, of exact solutions to the linear
Schrödinger equation~3!.

III. DARK SOLITON COLLISIONS
AND THEIR LAX EIGENFUNCTIONS

Now, and for the rest of the paper, we restrict attention to
the defocusing case by settings511 in ~2! and ~3!. Let us
describe the construction of the solutions of~2! that corre-
spond to the interaction ofN dark solitons propagating on a
given background field by a method that also gives the cor-
responding basis of simultaneous solutions to~4! and ~5!.
The results of this section are not entirely new, with multiple
dark soliton solutions being algebraic reductions of the
Gelfand-Levitan-Marchenko inverse scattering equations
first written down for this problem by Zakharov and Shabat
@10#, and with specific cases having been worked out, for
example, by Blow and Doran@11#. The approach given here
is similar to that described in@12#. It elucidates the essential
role played by genus zero Riemann surfaces, as required by
the nontrivial boundary conditions, and introduces the soli-
tons in a completely algebraic manner. The Lax eigenfunc-
tion has a natural expression, which by the proposition will
provide a convenient parametrization of solutions to the cor-
responding linear Schro¨dinger equation~3!. We begin by
specifying the background field that supports the dark soli-
tons. Equation~2! has exact plane wave solutions of the form

c~X,Z!5a exp@ i ~kX2dZ!#, ~7!

where the complex amplitudea, wave numberk, and shift in
propagation constantd are linked by the dispersion relation

d5 1
2k

21uau2. ~8!

There is a corresponding simultaneous solution of the Lax
pair ~4! and ~5! of the form

u~X,Z,P!5
a exp$r@X1~l2k/2!Z#%

a1 i ~l1k/2!1r

3F exp@ i ~kX2dZ!/2#

@ i ~l1k/2!1r#exp@2 i ~kX2dZ!/2#G ,
~9!

wherer andl are connected by the algebraic relation

r21~l1k/2!25uau2. ~10!

The Lax eigenfunctionu and the complex quantitiesr andl
are functions of a pointP on the Riemann surfaceG defined
by ~10!. It is convenient to refer to pointsP onG by ordered
pairsP5~l,r!, with the two coordinates related by~10!. The
functionsl(P) and r(P) then operate on the ordered pairs
simply by projection. The Riemann surfaceG is a double
covering of the complexl plane. There are two points onG
that correspond tol5` which we refer to as̀ 6 with the
understanding that̀ 1 is the point near whichr5il1 ik/2
1O~1/l!. With this notation, the plane wave solution~7! is
recovered from its Lax eigenfunctionu(X,Z,P) as the limit

c~X,Z!52i lim
P→`1

l exp@2 i ~lX1l2Z!#u1~X,Z,P!.

~11!

The formula~9! for u represents a basis of solutions of the
Lax pair, since for alll different from the two real branch
pointsl52k/26uau ~where the two sheets ofG are identi-
fied! u amounts to two linearly independent vectors, one for
each sheet. Away from the points̀6 on G, the components
of u are meromorphic, both sharing a single pole that is fixed
for all X andZ at a pointP0 on one of the sheets ofG over
the pointl5g052Im(a)2k/2. This point lies on the reall
axis, between the two branch points.

The solitons have yet to be introduced into the back-
ground field given by~7!. To do this, we will transform the
Lax eigenfunction~9! for the plane wave~7! in order to
obtain the Lax eigenfunction for an interaction ofN dark
solitons propagating on the background field. The corre-
sponding solution of~2! will be obtained from this trans-
formed Lax eigenfunction by a formula similar to~11!. The
transformation method is closely related to the theory of
Bäcklund transformations and singular~infinite period! lim-
its of multiphase wave trains@12#. The idea is to introduce
the degrees of freedom associated with the dark solitons by
allowing the components of the vector functionu to have
more than just the one pole onG. Each pole in excess of the
one already present in the plane wave Lax eigenfunction~9!
will contribute one dark soliton to the field.

Let N be the desired number of solitons. ChooseN points
gi , i51,...,N in the spectral interval I5[2k/22uau,2k/2
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1uau] in which r is real valued. For each of thegi , select a
particular pointPi on G so thatl(Pi)5g i . Now define the
set of functionsgi(P) on G, each of which has only a single
pole at the pointPi . Up to scaling and addition of a constant,
these functions are unique. An example is

gi~P!5$ i @l~P!2l~Pi !#1@r~P!2r~Pi !#%
21, ~12!

although it will make no difference to the construction to
select a different function of the formagi(P)1b for com-
plex constantsa~Þ0! andb. Now, transform the Lax eigen-
function ~9! by defining the new functions

ũ1~X,Z,P!5H 11(
i51

N

f 1
~ i !~X,Z!@gi~P!

2gi~`2!#J u1~X,Z,P!,

ũ2~X,Z,P!5H 11(
i51

N

f 2
~ i !~X,Z!@gi~P!

2gi~`1!#J u2~X,Z,P!. ~13!

These new functions will now have fixed poles at the points
Pi , i51,...,N, as well as the pole atP0 inherited from the
functionsu1 andu2. The locations of the corresponding ze-
ros are controlled by the coefficient functionsf 1

( i )(X,Z) and
f 2
( i )(X,Z). These coefficients are determined by choosingN

pointslj in the spectral intervalI and insisting that

ũ„X,Z,P1~l j !…5ũ„X,Z,P2~l j !…, ~14!

whereP6(l j ) are the two points onG that lie abovel5lj .
This is a pair~one for each vector component! of systems of
N linear algebraic equations forN unknowns, the solution of
which results in expressions forf 1

( i )(X,Z) and f 2
( i )(X,Z) in

terms of exponential functions making upu.
Now, the transformed vector functionũ(X,Z,P) will also

be a simultaneous solution of the Lax pair as long as the
adjusted function

c̃~X,Z!52i lim
P→`1

l exp@2 i ~lX1l2Z!#ũ1~X,Z,P!

5H 11(
i51

N

f 1
~ i !~X,Z!@gi~`1!2gi~`2!#J c~X,Z!,

~15!

replacesc in the coefficients of the linear problems~4! and
~5!. By consistency, the functionc̃ so constructed will thus
solve~2!. To review, the data involved in the construction of
these solutions is the set$a,k,l1 ,...,lN ,P1 ,...,PN%.

These solutions generally have singularities; however
they represent~bounded! collisions of dark solitons if the
data are chosen according to the following scheme. One first
chooses an arbitrary plane wave background specified by the
parametersa andk. The next choice is the set of numberslj ,
and these can lie anywhere in the spectral intervalI . Thelj
subdivideI intoN11 subintervals, one of which will contain

the pointg0 associated with the optical phase of the back-
ground plane wave. Given these choices, the restriction re-
quired to avoid singularities is that the polesPi must be
chosen so that each of theN other subintervals contains ex-
actly one of the projectionsg i5l(Pi) ~see Fig. 2!. With
these restrictions, the solutionc̃ of ~2! constructed from the
data$a,k,l1 ,...,lN ,P1 ,...,PN% will correspond to the inter-
action ofN dark solitons of the form

c j~X,Z!5„l j1k/21 ir j tanh$r j@X1~l j2k/2!Z#%…

3exp@ i ~kX2dZ2u0!#, ~16!

where rj denotes one of the values ofr over l5l j . The

soliton slope isk/22l j and the contrast is (r j /uau)2. The
numberslj thus determine the angles and contrasts of the
individual solitons, while the pole locationsPi encode the
centers of mass of the solitons atZ50 and thus determine the
geometry of the interaction region of the solitons. Note that
for our purposes, we only need to construct the first compo-
nent ũ1 of the Lax eigenfunction for the dark soliton colli-
sion, so it will only be necessary to analyze a singleN-by-N
algebraic system of equations for the coefficientsf 1

( i )(X,Z).

IV. BOUND STATES AND ZERO-CROSSTALK
WAVEGUIDES

We have now obtained the Lax eigenfunction correspond-
ing to the interaction ofN dark solitons by transforming that
corresponding to the background field. The Proposition now
establishes a connection between this Lax eigenfunction and
solutions of the associated linear Schro¨dinger equation~3!.
In particular, the function

f~X,Z,P!5ũ1~X,Z,P!exp$2 i @l~P!X1l~P!2Z#%,
~17!

solves ~3! ~in which we of course substitute forc the N
soliton solutionc̃!. Whereas in the Lax pair,l appears as an
explicit parameter on which the Lax eigenfunction depends,
the linear problem~3! has no such parameter. This means
that ~17! actually represents a large family of exact solutions
of ~3!, with this family being parametrized by an arbitrary
point P on the Riemann surfaceG. The family defined by
~17! contains both bound and unbound solutions of~3!, and
of course by applying superposition to the solutions in this
family one may obtain other solutions—perhaps even the
general solution for initial~Z50! conditions in an appropri-
ate functional class.

In the theory of linear waveguides, a particularly impor-
tant role will be played by the solutions
fn(X,Z)5f„X,Z,(ln ,6rn)… of the linear problem ~3!
which explicitly take the form

FIG. 2. The spectral intervalI corresponding to a collision of
three dark solitons.
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fn~X,Z!5
a exp$ i @~k/22ln!X2~d/21ln

2!Z#%

a1 i ~ln1k/2!6rn

3H 11(
i51

N

f 1
~ i !~X,Z!g̃i~ln ,6rn!J

3exp$6rn@X1~ln2k/2!Z#%, ~18!

where we have introduced the abbreviated notation

g̃i~P!8gi~P!2gi~`2!. ~19!

Notice that as a result of the relations~14! and ~17!, this
definition is independent of any consistent choice of the sign

of 6rn . It turns out that the particular solutionsfn are natu-
ral bound states of~3!, and that these bound states describe
the transmission of signals through the junction waveguide
without any crosstalk.

To see this, analyze the asymptotic behavior of the solu-
tions fn along straight lines in the (X,Z) plane. Choose a
slopec and introduce the new variablesx5X2cZ andz5Z.
We will consider the limitsuzu→` for fixedx. Now, studying
the asymptotic behavior offn requires first studying that of
the coefficient functionsf 1

( i )(X,Z) defined by theN-by-N
system of linear equations~14!. In the variablesz and x,
these equations take the concrete form

$11( i51
N f 1

~ i !~x1cz,z!g̃i~l j ,2r j !%exp~2r jx!

a1 il j1 ik/22r j
exp$2r j@c2~k/22l j !#z%

5
$11( i51

N f 1
~ i !~x1cz,z!g̃i~l j ,r j !%exp~r jx!

a1 il j1 ik/21r j
exp$r j@c2~k/22l j !#z%, ~20!

for j51,...,N. As long ascÞk/22l j the asymptotic behavior foruzu large is easy to read off:

lim
uzu→`

H 11(
i51

N

f 1
~ i !~x1cz,z!g̃i~l j ,6r j !J expur j@c2~k/22l j !#zu50. ~21!

Now, along the line of slopec, the magnitude of the solutionfn is

ufn~x1cz,z!u5
uauexp~6rnx!

ua1 i ~ln1k/2!6rnu
U11(

i51

N

f 1
~ i !~x1cz,z!g̃i~ln ,6rn!Uexp$6rn@c2~k/22ln!#z%. ~22!

If cÞk/22ln , then it follows from~21! that forx fixed ufnu
vanishes asuzu→`. On the other hand, forc5k/22ln andx
fixed, ufnu approaches constant valuesM n

6~x! asz→6`.
The solutionfn(X,Z) of ~3! thus represents a beam that,

when Z→2`, is confined to the arm of the multisoliton
waveguide corresponding to the dark soliton with slope
k/22ln in the medium. In this limit, the beam profile is just
the single mode of the dark soliton waveguide in isolation.
The beam profile is altered somewhat as it enters the inter-
action region of the waveguide arms. However, when the
beam emerges from the junction, in the limitZ→1`, it is
again completely confined to the output arm having the same
slope as the input arm. The output beam profile is identical
to the input profile, all the power having been conducted
through the junction as if none of the other solitons had been
present at all.There is thus no crosstalk whatsoever among
the linear channels joined by an index profile corresponding
to a collision of N dark solitons in a planar Kerr medium.
This result holds for any number of dark solitons colliding at
any distinct angles. As is the case with waveguides made
from bright solitons@8#, there is also no dependence on the
precise geometry of the interaction encoded in the phase-
shift parametersPi ; the remarkable asymptotic transmission
properties of anN dark soliton waveguide are the same
whether the solitons all collide more or less at the same place
or collide only in pairs.

V. APPLICATIONS

The behavior of a waveguide made from a collision of
dark solitons suggests applications to both high-bandwidth
information processing and all-optical switching. In an infor-
mation processing system, a large numberN of independent
channels could be physically brought together in an ex-
tremely small region without any mixing or loss among the
channels, as long as the junction has an index profile made
from a collision of dark solitons. This stands in contrast with
the fact that, usually in integrated optics, the signal loses
energy due to diffraction as it traverses a junction@13#. A
zero-crosstalk junction made from dark solitons might find
use in an optical computer, in the design of which practical
constraints on physical dimensions play an important role.
Regarding all-optical switching, it should be pointed out here
that, in the special case of an index profile made from a
two-soliton collision, the resulting waveguide can be charac-
terized as a perfect half beat length device.

Of course, linear waveguides having complicated index
profiles like those induced by dark soliton collisions cannot
be fabricated by currently available techniques, although re-
search continues on the possibility of ‘‘direct writing’’ of
these devices with intense light in materials with memory
@14#. Until these technologies are further developed, the re-
sults in this work may be used to improve the efficiency of
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step-index junctions, which may be easily fabricated by ex-
isting techniques. The idea is to find a step-index profile
whose behavior closely approximates that of a multisoliton
waveguide@15#. The hope is that simple heuristic rules may
be discovered~for example, that waveguide arms should be
flared or tapered somewhat as they join to form a junction!
that may improve the performance of integrated optical de-
vices.

The results of this paper may also be applied to problems
in the time domain, where the coupled system~2! and~3! is
a model for the copropagation of linear signals with a pump
in an optical fiber with normal dispersion. In this context, the

zero-crosstalk property suggests a new scheme for high-
bandwidth communications in optical fibers, making use of
so-called ‘‘optical conveyor belts,’’ which are discussed in
detail elsewhere@16#.
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