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Abstract 

The phenomenon of spatio-temporal phase modulation made possible by resonance is investigated in detail through 
the analysis of an example problem. A simple family of exact solutions to the Ablowitz-Ladik equations is found to be 
modulationally stable in some regimes. This family of solutions is determined by fixing antiperiod 2 boundary conditions, 
which determines two wavenumbers. Within the family of solutions, the frequencies do not depend on amplitude; this feature 
ensures that the antiperiod 2 boundary conditions will be enforced under modulation. The family of solutions is described 
by four parameters, two being actions that foliate the phase space, and two being macroscopically observable functions 
of the phase constants. The modulation of the actions is described by a closed hyperbolic system of first order equations, 
which is consistent with the full set of four genus 1 modulation equations. The modulation of the phase information, easily 
observed due to the presence of two resonances, is described by two more equations that are driven by the actions. The 
results are confirmed by numerical experiments. 

1. In t roduc t ion  

In the study of  linear dispersive waves, one often asks about the behavior of  waves in a slowly varying 

medium. For example, in optical problems with a slowly varying index of  refraction, one uses the ideas 

of  geometrical optics to describe the slow variations in the wavefront geometry and amplitude of  a rapidly 

oscillating electromagnetic field. In extending these ideas to nonlinear problems, two new effects appear. First, 

the nonlinearity may introduce slow variation in the waves even in a homogeneous medium (as in the Kerr media 

of  nonlinear optics, where the refractive index depends on the local field intensity). Second, the fundamental 

wave modes may depend periodically on more than one independent phase variable of  the form k x  - cot. In 

in tegrable  nonlinear dispersive wave systems, the multiphase solutions constructed in terms of  the algebraic 
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geometry of Riemann surfaces 4 are the fundamental oscillatory modes that are the analogs of the Fourier modes 
of linear dispersive wave theory. Like their counterparts in the linear theory, these modes may be spatially and 
temporally modulated. Describing the modulations requires a nonlinear generalization of the averaging methods 
of geometrical optics. 

The extension of these averaging methods to multiphase solutions of integrable nonlinear wave problems was 
accomplished by Flaschka, Forest, and McLaughlin [9] using the machinery of the inverse spectral transform 
for the Korteweg-deVries equation. Their formulation has turned out to be quite general for nonlinear wave 
problems with inverse spectral transforms (see [ 10] for the cubic nonlinear Schr6dinger equation [ 3], for the 
Toda lattice, and [ 21 ] for the Ablowitz-Ladik equations) and makes accurate predictions about the modulational 
stability of multiphase solutions. 

The modulation theory obtained from the prescription of multiphase averaging requires that certain conditions 
on the modulating variables are satisfied in order to avoid resonances. Being nondegeneracy conditions, they 
are satisfied for "most" values of the modulating variables, so that the regions of phase space corresponding to 
resonances are not of maximal dimension. If the modulating wavetrain manages to avoid these resonance regions, 
the modulation equations derived from multiphase averaging give the correct description of the macroscopic 
dynamics. On the other hand, it is not clear what differences to expect in the theory when the modulating 
wavetrain comes close to a resonance. 

One expects some analogy with the idea of resonance as it occurs in the theory of averaging of perturbations of 
completely integrable finite-dimensional systems of ordinary differential equations. In that context, the hallmark 
of resonance is the rational dependence of frequencies. In the context of spatio-temporal modulations in infinite- 
dimensional systems however, it is not even clear how to generalize the simple idea of rational dependence 
- now there are wavenumbers associated with the oscillations as well as frequencies. Also associated with 

resonance in the finite-dimensional case is the slow evolution of phase information. This phase modulation 
surely also occurs in the infinite-dimensional case, and it is of some interest to understand the structure of the 

equations that should describe the phase modulation near a resonance. 
Our aim in this paper is to begin to address the problems of modeling self-consistent spatio-temporal 

modulations in the presence of resonance by closely examining a simple example that occurs in an integrable 
system whose modulational description away from resonance is understood. We will be considering certain 

modulated wavetrains in the Ablowitz-Ladik equations 

- iOtQn - Qn+l + 2Qn - Qn-1 + QnRn [Qn+l + Qn-1] = O, 
(1) 

-icgtRn d- Rn+l - 2Rn + Rn-1 - RnQn [Rn+l + Rn-1] = O, 

where n is an integer index and t is a continuous time variable. These equations are known to be completely 
integrable by an inverse spectral transform [ 1 ]. Under the constraint 

R . ( t )  = K Q . ( t ) ,  K = + l .  (2) 

for real t, one obtains from ( 1 ) an integrable discretization of the cubic nonlinear Schr6dinger equation: 

- iOtQn - (Qn+, - 2Q. + Q.-a)  + KIQn[2(Q.+, + Q . - , )  = 0,  (3) 

where ~¢ = 1 ( - 1 )  corresponds to the defocusing (focusing) case. 

4 see Krichever [ 15] and Dubrovin [6] for reviews of the general methods; the methods are applied to the Ablowitz-Ladik equations in 
[21]. but we will give a self-contained version of the details we need below. 
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We will begin in Section 2 by introducing a class of exact wavetrain solutions that are indexed by four 

complex parameters. In some regimes of parameter space, the waves will be linearly stable, and in these 
regimes we will find four well-posed modulation equations for the self-consistent evolution of these parameters 
by a straightforward multiple scaling procedure applied directly to (1).  In Section 3 we will compare these 
modulation equations to the four modulation equations obtained by an algebro-geometric version of averaging 
in local conservation laws, a procedure that is formally applicable to integrable systems. We will find that the 

two different approaches yield different modulation equations. In particular, the modulation equations described 

in Section 3 will need to be constrained in order to be consistent with those derived in Section 2, and then this 
constrained system of equations is incomplete, there being two additional equations among those derived in 
Section 2 that model the modulation of phase information made visible by resonances that are preserved as the 
waves modulate. The modulation equations derived in Section 2 will thus be seen to model the slow evolution 
of phase information as well as expected wave-action variables. Specifically, we will show that 
- the solution class we are considering is parametrized by the class of genus 1 elliptic curves satisfying two 

constraints among the four branch points, 
- these constraints are preserved under the modulation equations given in Section 3, which after reducing out 

the constraints become two of the four modulation equations derived in Section 2, and 
- these constraints imply two resonances, with two corresponding slow phase variables the evolution of which 

is modeled by the remaining two modulation equations derived in Section 2. 
Section 4 generalizes these ideas, extending them to more complicated resonances in 1 ÷ 1 dimensional wave 
systems. Finally, we conclude with a discussion in which we will try to connect our work to work done by 
others on the topics of resonances and constraints preserved by modulation equations. 

2. Ant iper iod  2 solut ions  o f  the Ablowi tz -Lad ik  equations 

The system of ordinary differential equations ( 1 ) has a class of exact solutions satisfying spatially antiperiod 
2 boundary conditions, 

Q n + 2 ( t ) = - Q n ( t ) ,  R n + 2 ( t ) = - R n ( t ) .  (4) 

These exact solutions are very simple by virtue of the structure of the nonlinear terms. In fact, for such boundary 
conditions, the nonlinearity and dispersion disappear altogether, and the equations reduce to 

- i o t a n  + 2an = O, -iO, Rn - 2Rn = 0,  (5) 

which are trivially integrated, giving the solution 

Qn( t) = i n exp ( -2 i t )  [ Qo, n odd, (6) 
L ae , n even, 

and 

Rn(t )  = ( - i ) n e x p ( 2 i t )  f Ro, n odd, 
L Re,  n even. 

(7) 

The class of all such solutions of ( 1 ) is parametrized by the independent complex parameters Qo, Qe, Ro, and 

Re. In the focusing (K = --1) and defocusing (K = 1) cases, we should choose Re.o = KQe,o. In these cases, 
the solutions will be parametrized by the amplitudes and phases of Qe and Qo. 
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Of course in practical applications, a family of exact solutions to some system of equations is only useful if the 
solutions are stable to small perturbations. In particular, stability to small perturbations will imply modulational 
stability, which we aim to study in this paper. It is easy to assess the stability of the antiperiod 2 solutions 
given above in the focusing and defocusing cases using linear stability analysis. Let 

Qn(t) = i n exp(-2i t )  ( Qe + en( t ) ,  for n even, 
Qo + ~n(t) ,  for n odd, (8) 

and suppose that the small perturbation has spatial structure described by a wavenumber k, so that 

= er( t )  exp(ink) + er( t )  exp( - ink) ,  (9) 

= et ( t )  exp(inlc) + et( t )  exp( - ink ) ,  (10) 

= 6r( t )  exp(ink) + 8r( t )  exp( - ink ) ,  ( 11 ) 

= 6l( t )  exp(ink) + 6t(t)  exp( - ink) .  (12) 

Re( en(t) ) 

Im( en( t ) ) 

Re( 6n( t ) ) 

Im(6,( t )  ) 

Then, defining 

x = (:er(t), ~l( t) ,  8r ( t ) ,  61( t ) ) r ,  

the small perturbation x solves the equation 

atx = Ax  , 

with the matrix A given by 

[o  o 
0 0 

A =  .2isin~:  1 - ,¢lQol 2 0 

0 1 - ,<lQol 2 

1 - KIQel 2 0 
1 - KIQel 2 

0 
0 

( 1 3 )  

(14) 

0 
0 (15) 

0 

To assess the stability, we only need to determine conditions sufficient to guarantee that the eigenvalues of A 
lie on the imaginary axis for all k, and that there are four linearly independent eigenvectors. The eigenvalues 
are 

A = 4-2i sin kx/(1 - Klael2)(1 - Klaol2), (16) 

and both eigenvalues are double (all four coincide only if A = 0). When the eigenvalues are imaginary for 
all perturbative wavenumbers k, and when there are four linearly independent eigenvectors, the antiperiod 2 
oscillations will be neutrally stable. The only time the eigenvectors degenerate is in the defocusing case, if 
[ae,ol 2 = 1, and the dependence of the phase of the eigenvalues on the parameters is clear from (16). Thus, 
linear stability analysis mfikes the following predictions: 
- In the focusing case, where Rn(t) = -Qn( t )  for real t, the oscillations are always (neutrally) stable. 
- In the defocusing case, where Rn (t) = Qn (t)  for real t, the oscillations are (neutrally) stable whenever [ Qol 

and IQel are both less than or both greater than 1. 
At face value, linear (neutral) stability means that a slightly perturbed initial condition will evolve in time 

so as to remain close to the exact solution parametrized by the constant values of Qe, Qo, Re, and Ro for a long 
time. However, as first observed by Whitham [25] and verified again and again in applications, the conditions 
sufficient for linear stability agree with the conditions sufficient for modulational stability, as determined from 
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the hyperbolicity of  a set of modulation equations 5. That is, taking the initial data to correspond to an antiperiod 

2 wavetrain with slowly varying values of Qe, Qo, Re, and Ro along the lattice (say described by functions of a 
slow continuous spatial variable X = hn for a small spacing h), one expects that the field Qn(t) will evolve in 
such a way that on the time scale T = ht, the four parameters will continue to be functions of X. The evolution 

may not be trivial, but the scaling will be preserved. 

The modulational stability of antiperiod 2 solutions to the Ablowitz-Ladik equations can be corroborated 

by numerical experiments. We want to integrate the ordinary differential equations (1) subject to an initial 

condition that has the spatial structure of an antiperiod 2 wavetrain, but with slowly varying values of the 

parameters Qe, Qo, Re, and Ro. As the solution evolves in time under (1), we would like to extract the values 

of the four parameters, using the assumption that the local microstructure is indeed antiperiod 2. Ideally, the 

parameter values should be calculated from local measurements only, that is, measurements that are carried out 

over a few lattice points and over a short interval of time t. In the jargon of statistical mechanics [23], such 

measurements correspond to the values of intensive variables which are independent of the size of the system, 
as opposed to extensive variables whose values depend on nonlocal information such as the total number of 

lattice points. 

A practical algorithm for calculating the parameters Qe, Qo, Re, and Ro in the vicinity of a given lattice 

point no and a given time to might be simply to use the field values Qno(t0), Qn0+l(t0), Rno(t0), Rn0+l (to) 
in the formulas (6) and (7),  in which n is replaced by n - no and t is replaced by t - to. The trouble with 
this algorithm is that it is very sensitive to the choice of the point (no, to) due to the highly oscillatory nature 

of the solution. In particular, the overall factor of e x p ( - 2 i t )  (respectively exp(2i t ) )  that multiplies Qn(t) 
(respectively Rn ( t ) )  makes a precise measurement of the phase of the four parameters impossible (although 

slow variations in the phase can be observed), and without a way to tie the observation point no to a fixed 

origin, the pair (Qe, Re) cannot be distinguished from the pair (Qo, Ro). 
In order to avoid these problems in directly measuring Qe, Qo, Re, and Ro and yet still characterize the 

macroscopic properties of  a slowly varying antiperiod 2 wavetrain, we define the four symmetrical quantities: 

un(t) = log(1 - Qn(t)R~(t)) + log(1 - Q~+I (t)Rn+l ( t ) ) ,  (17) 

Vn(t) =2iil (Rn+l(t)Qn(t) - Qn+l(t)Rn(t)) , (18) 

Wn(t) = Qn(t)Rn(t) + Qn+l(t)Rn+l (t) , (19) 

1 [ 1 l fQn+E(t)Qn+l(t)EQn(t) yn(t) = ~ [ ~  o g ~ , ~ ) -  1 ,  ['Qn+l(t)Qn(t)2Qn_l(t)'~ ], (20) 
where h is the small lattice spacing. In the focusing and defocusing cases, Vn(t), wn(t), and y,(t)  are real 

valued, and un(t) is real valued modulo 7ri (so that the essential information is contained in the real part). 

These quantities represent local measurements, and hence intensive variables, since they can be calculated from 
any four consecutive lattice points at any fixed time. Note that in the case of an exact antiperiod 2 solution, 

these quantities have no variation in n or t. In terms of our four parameters, un(t), Vn(t), and wn(t) become 

u =log(1 - QeRe) + log(1 - QoRo), (21) 

v = - l (QeRo + ReQo), (22) 

5 Direct linear stability analysis is difficult, except for the analysis of the simplest solutions, where the coefficients of the linearization 
are constant (or of fixed discrete period on a lattice). In these simple cases, the equivalence between linear stability and hyperbolicity of 
modulation equations can be verified, as we will show below, and as done in [ 19] and [ 12], for example. Similar correspondences may 
be established in a diffusive, rather than dispersive setting [22]. 
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Fig. 1. A numerical simulation of the focusing Ablowitz-Ladik equations. The initial conditions locally satisfy antiperiod 2 boundary 
conditions, with parameters u, v, w, and y given as functions of X, a slow spatial variable. The initial fields u(X,O), v(X,O), w(X,O), 
and y (X, 0 ) are shown with dashed curves, and several snapshots of u (X, Tk ), v (X, Tk), w ( X, Tk), and y (X, Tk) with Ttc+l -- Tk = O ( 1 ) 
(separated by a distance O(h -1) on the t scale) are superimposed. 

w = QeRe + QoRo. (23) 

In the focusing and defocusing cases, there may be sharp inequalities satisfied by these quantities, in addition 

to the reality conditions. For example, the sharp inequalities u > 0 and v 2 < e x p ( u ) -  1 hold in the focusing 

case 6. As a result o f  the spatial differencing for nonzero h, the quantity y . ( t )  vanishes identically for an exact 

antiperiod 2 solution. It is necessary to use the difference quotient because the spatial antiderivative of  y, 

1 l o ~ ( a , + l  (t)Qn(t)2Qn-1 (t) "~ (24) 

grows linearly in time, with a rate that does not depend on n; thus Yn (t) itself cannot be accurately measured, 

although it is slowly varying in space. The spatial differencing eliminates the dependence on t, and when scaled 

by 1/h the difference converges as h J. 0 to a smooth function of  X and T, namely 

= lo J Qe(X, T)Qo(X, T) ~ (25) l imyn(t)  y ( X , T ) = O X  1 r , ~ . ~ ~ ' ~ ) "  
h$O 

An example evolution, corresponding to the focusing case, is shown in Fig. 1. Data corresponding to 1600 

lattice points worth o f  spatially modulated antiperiod 2 microstructure were used to initialize the focusing 

Ablowitz-Ladik equations. The microscopic system was integrated for a period of  time long compared to the 

fixed microscopic frequency. At several times during the evolution, the three macroscopic quantities Re(u) ,  v, 
w, and y were extracted, and plotted as functions of  X. Here and in other figures, in order to calculate y, we 
take h = 1 IN, where N is the number of  points in the simulation. The initial conditions are indicated by dashed 

curves. 

6 These inequalities will force the branch point configuration (see Section 3) to be of the form {zl, z2, z3, z4} = {ia, i/a, il3, i/fl}, with 
a and/3 real and or,8 < O. 



P.D. Miller et al. / Physica D 92 (1996) 1-27 7 

The small oscillations that can be seen upon close inspection of some of the curves in this and subsequent 

figures arise from the slight deviation of the local fields from an exact antiperiod 2 solution and are clearly not 
amplified on the macroscopic time scale T = hr. Moreover, they become smaller and even less consequential 
as the lattice is refined and hence, will not be part of the theory developed below. In order to support this 
supposition, we present in Fig. 2 the results of an additional numerical experiment using 400 rather than 1600 
lattice points and using the same macroscopic initial conditions as those shown in Fig. 1. Taking snapshots at 

the same macroscopic times T, we obtain curves that are essentially the same as those shown in Fig. 1, except 

with binary oscillations that are approximately four times the size of the ones visible in Fig. 1. Thus, if these 

small oscillations affect the macroscopic dynamics at all, it will be on a macroscopic time scale T of at least 

order O(1 /h ) ,  which is beyond the time scales we shall consider here. 

Similar experiments can be conducted in the defocusing case, where we expect to find two parameter regimes 

of modulational stability and one parameter regime of modulational instability. We present one numerical 

experiment for each of the two stable regimes. Fig. 3 demonstrates a case in which ]Qn(t)] 2 > 1 for all n, 

whereas in Fig. 4 we give the results of a numerical experiment conducted in the other stable component of the 
defocusing antiperiod 2 phase space corresponding to ]Qn(t)12 < 1 for all n. In the unstable defocusing cases 

when some magnitudes are greater than 1 and some magnitudes are less than 1, the behavior is so bad that it is 
not useful to present a picture. We suspect that the corresponding solutions to the underlying Ablowitz-Ladik 

equations achieve infinite amplitude in finite time [ 13,11]. 
Thus, we have numerically observed modulational stability of the microscopic antiperiod 2 ansatz in the 

parameter regimes where the fixed-parameter ansatz is linearly stable. Related phenomena have been observed 

by Bloch and Kodama [3], who found a class of solutions of the semi-infinite Toda lattice satisfying zero 

boundary conditions at the fixed end and enjoying modulational stability in fixed neighborhoods of the origin. 

The relationship between their observations and ours will be discussed further later. 

We may attempt to describe the evolution of the fields u(X, T),  v(X, T), w(X, T),  and y(X,  T) by deriving 
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Fig. 2. A numerical simulation of the focusing Ablowitz-Ladik equations, with the same macroscopic initial data as in the experment of 
Fig. I, but done with only one fourth as many lattice points. Note that the snapshot curves here differ essentially from those in Fig. 1 only 
in the size of the superimposed binary oscillations. 
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Fig. 3. A numerical simulation of the defocusing Ablowitz-Ladik equations, with initial data corresponding to a spatial modulation of an 
antiperiod 2 field, in which the amplitudes of Qe and Qo are both greater than 1. 
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Fig. 4. A numerical simulation of the defocusing Ablowitz-Ladik equations, with initial data corresponding to a spatial modulation of an 
antipefiod 2 field, in which the amplitudes of Qe and Qo are both less than 1. 

modulation equations from the Ablowitz-Ladik equations (1). The procedure is a standard multiple scale 
analysis of (1). Introduce a small parameter h and assume the perturbation expansions 

Qn (t; X, T) = ~nO(°)(t;X'T) + hQ~ O(t;X,T) + O(h2) 

Rn(t;  X , T )  = R ~ ° ) ( t ; X , T )  + hR(nO( t ;X ,T)  + O ( h 2 )  , 

(26) 
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where X = hn and T = ht, and the leading terms are given by 

Q(no)(t;X,T) = inexp(_2it  ) { Qo(X,T) ,  n odd, 
Qe(X,T) , n even, 

and 

R~nO)(t;X,T) = (_i )nexp(2i t )  { Ro(X,T) , n odd, 
Re(X,T) , n even. 

In the Ablowitz-Ladik equations (1), make the multiple scale replacements: 

(27) 

(28) 

at ~ at + hOT, Qn4-1 ---r Qn+l --I- haxQn+l , Rn+l --+ Rn+l -4- haxRn+! . (29) 

Now take all four variables n, t, X, and T, to be independent, and consider the limit h J, 0. At leading order, 
the equations are solved identically because the pair ,~O (°)~n , R(°))n is an exact antiperiod 2 solution in n and t. 
At order O(h) ,  one obtains the following system of equations for the pair (Q~1), R~I)): 

iatQ~ l) - 2Qn (l) + (1 - O ( ° ) R  (0)~ f t 3 ( l )  ~(1).) = _iarQ~O) _ (1 ~gn Jxn )oX~n+l ~, -1)  ' ~-n n J ' , ~ n + l  + ~ ' : ! n - l -  __,-~(0) r , ( 0 ) ~  /,,-~(0) _ _ O ( 0 )  

iatR~ l) + 2R(n I) (1 - -  /')(0)g(0)~/D(l) ~(1) -iarR~ °) (1 ,q¢O)R(O)x~ ,D(o) (o) 
- -  ~.,n n J " . ' " n + l  + / ( n - - I  ) = + --~,n n )vXl,~n+l - g n - l ) "  

(30) 

These linear equations have homogeneous solutions of exactly the same form as the pair (Qn~°),Rn~°)). The 
driving terms on the right side are also antiperiod 2, with frequency 2. In order to keep the asymptotic expansion 
well ordered for times T = O( 1 ), we must thus insist that the right side vanishes identically in n. Evaluating 
at odd and even sites gives two conditions on Q~0) and two conditions on R~ °), namely, 

arQo + 2(1 - QoRo)axQe = O, 

afRo 4 2 ( 1  -QoRo)axRe = 0 ,  

arQe + 2(1 - QeRe)axQo = O, 

arRe + 2(1 - QeRe)axRo = O. 

(31) 

To check our work, we have integrated the modulation equations (31 ) numerically. There is such good agreement 
with the dynamics shown in the preceding figures that it is not instructive to show plots of the results. From 
the equations (31), and the limiting expressions (21) and (22), it is easy to see that 

aru+Ox(4v)  = 0, (32) 

arv + ax(expu) = 0. (33) 

The field v(X ,T)  may be dimin~ed to show th~ u(X,T)  s~isfies the scalar wave equation 

a]u = a ~ ( 4 e x p u ) .  (34) 

If this equation is hyperbolic, then the Cauchy problem at T = 0 will be well-posed, and this is interpreted 
as the modulational stability of the underlying (almost) antiperiod 2 solution. On the other hand, if (34) is 
elliptic, then the Cauchy problem at T = 0 will be ill-posed, indicating the modulational instability of the 
underlying solution. In fact, the nonlinear wave equation (34) is hyperbolic if 4 exp u, the square of the local 
characteristic speeds, is positive. Unraveling this condition in terms of Qe.o and Re,o shows that hyperbolicity 
of (34) is equivalent to the linear stability condition derived above. 
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The nonlinear wave equation (34) can be placed in Riemann invariant form. Define the quantities 

r:E(u,v) = exp(u/2)  + v. (35) 

Then, (34) takes the form of the diagonalized system 

arr+(X,T) + (r+(X,T) + r_(X,T))Oxr+(X,T)  = 0 .  (36) 

It is also possible to derive modulation equations for w(X,T) and y(X,T)  from the equations (31). First, 

define the quantity 

1 , t 'QeQo 
Y= ~ , o g l  R----~) , (37) 

so that y = axY. For reasons we have mentioned above, our description of the macroscopic dynamics must not 
depend on Y, which cannot be accurately measured, but it is convenient to use Y as an intermediate variable. We 

will need the Jacobian of the system of equations (21), (22), (23), and (37), which expresses the quantities 
u, v, w, and Y in terms of the quantities Qe, Qo, Re, and Ro, whose dynamics are described by (31). The 
Jacobian is 

O ( u , v , w , Y )  

a(Qe,Qo, Re, Ro) 

-Re -Ro -Qe -Qo 
1 -QeRe  1-QoRo 1-QeRe 1-QoRo 

Ro Re Qo Qe 
2 2 2 2 

Re Ro Qe Oo 

(38) 

1 1 1 1 

4iQe 4iQo 4iRe 4iRo 

Inverting this matrix gives derivatives with respect to u, o, w, and Y. In particular, we will need the derivatives 
with respect to Y: 

cgxQe = iQe , OrQo = iQo, 

OFRe = - iRe ,  aFRo = -iRo.  

(39) 

Differentiation of (23) and (37) with respect to T, substitution from (31), and elimination of the spatial 
derivatives of Qe, at,  Re, and Ro using the inverse of the Jacobian (38) then yields equations for w(X,T)  and 
Y(X,T)  in the form: 

Orw = a(U)Oxu + a(V)Oxv + a(W)OxW + a(V)y , 

OrY = b(U)Oxu + b(V)Oxv + b(W)Oxw + b(V)y , 

(40) 

where we have used the definition axY = y. The coefficients in the equation for w(X, T) are: 
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QeR° (41) a(U) ( 1 - Q e R e ) ( 1 - Q o R o )  [QoR 2 Q2R__..~e 2 Qe__R2.] 

= 2(~oRe=Oe~o)  ['-~o " F O e  Oo Re J '  

a (v) = 4 - 2QeRe - 2QoRo, (42) 

Qe Ro 202R 2 1 a(W) - 1 [ QoR 2 Q2Re aeR 2 2 
- -  - -  2 2R2 

2(QoRe - QeRo) + Qe Re Qo ~- ~-.e o - -  Qo e j  , (43) 

a (r) = 2i(QeRe - QoRo) (QoRe - QeRo). (44) 

The coefficients in the equation for Y(X,T)  are: 

b(U)  i ( 1 - Q e g e ) ( 1 - Q o R o )  [ (QeRo QoRe 6) 
- 8(Q~-Ro Z Q-~e)-(-Qol~-QeRe) (2 - QoRo - QeRe) kQoR e + QeR----~o - 

+(QeRo +QoRe)2 ( 1 - Q o R o  1 - Q e R e ~  ] 
aoRo-~-~ + -~2-~e e / , (45) 

b(V) i [Qe Re Qo Ro] 
- 2(aoRe-  aeRo) Oo + Ro ae -~e ' (46) 

b(W) = i [ (QeRo QoRe 6) 
8(QoRo - QeRe)(aoRe - aeRo) (2 - aoRo - acRe) \aoRe '1- QeR'---~o - 

+~QeRe ~QoRo (Qe~ 2 (Qo~ 2 (Re~ 2 (Ro~ 2 
z - -  + + 2QeRe + 2QoRo + + + + 

QoRo Z ~ R ~  \ Q o /  kQe ] \Ro] \Re/ 

2~ R - 3  QeR2° + 4(QoRe - QeRo) 2] (47) - 3Q2R°Qo - 3Q°R2Ro - 3 - - e  e Re 

b(r) 1 - QoRo Qe Re 1 - QeRe Qo Ro 
2 [Qoo + Ro] 2 [Qe + Re]"  (48) 

These eight coefficients, given above in terms of Qe, Qo, Re, and Ro, are in fact well-defined functions of u, 
v, and w (we will see below that they do not depend on Y). For fixed values of u, v, w, and Y, the possible 
values of Qe, Qo, Re, and Ro are permuted by the elements of the symmetry group of (21), (22), (23), and 
(37), which is generated by the following transformations: 

(Qe,Qo, Re, Ro) ~ (Qo, Qe,Ro, Re) , (49) 

(Qe, ao, Re, go) ~ ( iQe, iQo, - iRe,  - iRo) . (50) 

All eight coefficients are invariant under these transformations, and hence do not depend on any particular 
choice of branch in the inversion of (21), (22), (23), and (37). This means that we have derived closed 
modulation equations for u, v, w, and Y. 

The quantity Y, however, is impossible to measure accurately. In order to obtain a description of the dynamics 
that only depends on quantities that can be unambiguously observed, all reference to Y must be eliminated 
from the modulation equations in favor of the spatial derivative y. This can be done since none of the eight 
coefficients in the expressions (40) depend on Y, which can be easily seen by directly differentiating them with 
respect to Y, and substituting from (39). The resulting derivatives vanish identically. So, differentiation of the 
equation for Y with respect to X eliminates all reference to the unmeasurable antideriviative Y, and we obtain 
the equations for w and y: 

OTW = a (u) (u, v, w)Oxu + a (v) (u, v, w)Oxv + a (w) (u, v, w)Oxw + a 0") (u, v, w)y , (51 ) 

Ory = Ox [b (u) ( u, v, w) Oxu + b (v) ( u, v, w)Oxv + b (w) ( u, v, w)Oxw + b (v) ( u, v, w) y] . (52) 
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Fig. 5. A numerical simulation of the focusing Ablowitz-Ladik equations. Compare this simulation to that given in Fig. 1. 

The four equations (32), (33), (51 ), and (52) make up a closed description of all the macroscopic observables 
associated with a modulated antiperiod 2 wavetrain. 

We have already presented numerical experiments corroborating the modulational stability criteria that have 
been reproduced by these modulation equations. However, we now have another feature predicted by the theory 
that we may attempt to verify numerically, namely the closure of the equations for u and v. In Figs. 5, 6, and 7, 
we present the results of numerical experiments similar to the three already given, the only differences being 
the initial conditions on the slow fields w(X) and y(X). Observe that the evolutions of the fields u and v 
in Figs. 5, 6, and 7 are identical to the evolutions of u and v in Figs. 1, 3, and 4 respectively, while the 
evolutions of the fields w and y differ. These experiments support the conclusion that the fields u and v evolve 

independently of w and y. 
We have derived four modulation equations for the four independent observable parameters of the antiperiod 

2 local ansatz. We will see below that the antiperiod 2 solution can be written in the form 

Qn(t) = exp (i( ½7rn - 2t - 00 (°) (u, v, w, y) )) Q(Trn - 010) (u, v, w, y);  u, v ) ,  (53) 

R, (t)  = exp ( - i( l~'n - 2t - 00 (°) (u, v, w, y) ))/~(Trn - 010) (u, v, w, y);  u, v ) ,  (54) 

where 2 (0 ;  u, v) and R(0; u, v) are given functions having period 27r in 0, and whose shape is determined by 
the parameters u and v. Thus, we see that we have derived modulation equations not only for the action variables 
that describe the wave shape, but also for the arbitrary phase constants. Moreover, these phase constants are 
not hidden variables, in the sense that they may be unambiguously observed, but their values do not affect the 
self-consistent modulational evolution of u and v. 

3. Connection with the fmite genus theory 

The Ablowitz-Ladik equations ( I )  are integrable. Concretely, this means that the nonlinear system (1) is 
merely the consistency condition for two linear problems in which the functions Q,(t) and Rn(t) appear as 
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Fig. 6. A numerical simulation of the defocusing Ablowitz-Ladik equations, with large amplitude modulated antiperiod 2 initial data. 
Compare this simulation with that given in Fig. 3. 
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Fig. 7. A numerical simulation of the defocusing Ablowitz-Ladik equations, with small amplitude modulated antiperiod 2 initial data. 
Compare this simulation with that given in Fig. 4. 

coefficients. The two linear problems further involve an arbitrary complex parameter z, and are said to make 

up a Lax pair. In the case when Q , ( t )  and R , ( t )  solve (1) ,  there exists a basis of simultaneous solutions to 

both problems of the Lax pair for almost all values of the parameter z. The values of z for which the basis 

of simultaneous solutions degenerates are called branch points; the branch points do not depend on n or t. The 

Lax pair consists of a difference equation ( in n) for a vector function u 



14 P.D. Miller et al. / Physica D 92 (1996) 1-27 

[ z Qn(t) ] Un(t,z ) 
u , + l ( t , z ) =  ZRn(t) 1 (55) 

and a differential equation in t for u 

_ ia tu , ( t , z )  = [z - l - Q n ( t ) R n - l ( t )  Qn(t) - z - l Q n - l ( t )  ] 
zRn- l ( t )  - Rn(t) 1 -  Z - l  ÷ Rn(t)Qn_l(t)  u n ( t , z ) .  (56) 

There are many solutions Qn(t) and Rn(t) of the Ablowitz-Ladik equations (1) for which the number of 
branch points zk is finite. This class of solutions (studied in [21] ) includes all spatially periodic solutions and 
in particular the antiperiod 2 solutions described in Section 2. It can be shown that there is a special basis 

of functions, u+(t, z) and u~-(t, z ), such that analytic continuation (in z) of the two basis elements through 
a closed loop around one of the branch points results in permutation of the functions. Thus, the functions 
u + (t, z ) and u~- (t, z ) can be considered to be stereographic projections of a single function u, (t, P )  where P 
is a point on a finite-genus hyperelliptic Riemann surface that is a two-sheeted branched cover of the z-plane. 
In this way, we may associate a fixed Riemann surface with each such solution to the Ablowitz-Ladik equations 
(1).  The branch points zt are constants of motion that play the role of action variables. 

So, choose 2g ÷ 2 nonzero distinct complex numbers Zk and let F be the Riemann surface of the relation 

2g+2 

r2 = I X  ( Z -- Zk ) . 
k=l 

(57) 

The values of z and r, linked by (57) provide coordinates for points on F. Define cx~ + (respectively o o - )  to 
be the point on F over z = c~ near which r = zg+l(1 + O ( z - l ) )  (respectively r = -zg+l (1  + O ( z - l ) ) )  for 
large z. Choose a number r/ satisfying 

2g+2 

~2 = r l z k  ' (58) 

and define 0 + (respectively 0 - )  to be the point on F over z = 0 near which r -- 7/(1 + O ( z ) )  (respectively 
r = - r / ( l  + O ( z ) ) )  for small z. Finally, choose almost any set of g points on F, Pj. Then, according to 
Lemmas 2.3 and 2.4 of [21 ], there is a unique function u having asymptotic expansions of the form 

zn(cll2(,  ,2,,t +c l ,  n,  )Z + O ( Z 2 ) )  P ---~0-, 

e x p ( i ( 1 -  z-1)t)(d~12(t)+d~E)~(t)z + O ( z 2 ) ) ,  P ---~0 +, 
ul,n(t ,P) = 

, , (2)( t)z-I  ÷ O ( z - 2 ) )  P ~ cx3 +, znexp( i (z  - 1)t) (1 +~l,n 

(1) (2) + bl,n ( t )z  - l  + O ( z - 2 ) ,  P bl, n ( t ) ~ oo-,  

(59) 
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zn+l (C2, .(1) ( t )  + c(22),(t)Z + O(Z2) ) ,  P --~ 0 - ,  

exp(i(1 - z - l ) t )  (1 + d ( 2 ) ( t ) z  + O(zZ))  P ---+ 0 +, 
uz,n( t, P ) = 2,n ' 

(2) - I  O ( Z - 2 ) ) ,  p 0(3+ n • {-(1)(t) ÷a2 ,n ( t ) z  -k- ~ , Z exp(t(Z -- 1)t) ku2, . 

(2) -1 z(b(21)n(t)+b2,n(t)z + O(z-2)) , P ---+ (x)-, 

15 

(60) 

and otherwise holomorphic, except at the points Pj where both components have simple poles. Moreover, as 
shown in Lemmas 3.1 and 3.2 of [21], this function is a simultaneous solution of (55) and (56), provided 

that the functions Qn (t) and R~(t) are taken to be determined by the function u according to 

(1) 
Q, ( t )=a l l )n + l ( t ) ,  R , ( t )=a2 ,n+l ( t  ) .  (61) 

It then follows from the consistency that these two functions solve the Ablowitz-Ladik equations. Further 

solutions may be obtained from (61) through the scaling symmetry: 

( Q . ( t ) , R . ( t )  ) H ( ( Q . ( t ) , ( - l R n ( t )  ) . (62) 

The data involved in specifying the solution were the 2g + 2 branch points, the number r/, the g + 1 points Pj, 
and the complex scaling constant s c. 

If  one chooses a canonical basis of homology cycles (al . . . . .  ag, bl . . . . .  bg) for a Riemann surface F of 

genus g, then there is associated with F a well-defined Riemann thetafunction, O(wl . . . . .  Wg). The function u 
as well as the corresponding solution Qn(t) and Rn(t) to (1) are given in terms of this theta function, which 

is a function on Cg that is periodic in each (real) direction 7 with period 27r. The function Q , ( t )  is given by 

O(Ol . . . . .  Og) (63) 
Q . ( t )  = A exp(i00) 0(01 + fll . . . . .  Og + fig) 

(compare with Eq. (3.12) of [21]) where Oj = k j n -  wit  + aj,  and flj and A are complex constants. The 
wavenumbers k j, frequencies w], and the numbers /9] are determined by the Riemann surface F with choice 

of homology cycles. In the focusing and defocusing cases, it is always possible to choose a canonical basis 

of homology cycles so that all frequencies and wavenumbers are real. With this choice, it is evident from the 
formula (63) and the periodicity of the theta function that Q.( t )  will be a multiperiodic function of n and t 

individually referred to as a multiphase solution. On the other hand, the initial phases aj are not determined by 
the branch points. They represent the location of the orbit in the g + 1 torus when n = 0 and t = 0. 

A generic Riemann surface F will give rise to frequencies and wavenumbers that cause the evolution in 
either n or t to cover the g + 1 torus. In this case, the initial phase information (the values of aj )  will not 
be accessible to a macroscopic observer of the multiphase solution Qn (t) ,  since the motion that fills the torus 

is fast on the scales X and T. The only information available to the macroscopic observer of the multiphase 
solution Qn(t) is the set of frequencies wj and wavenumbers kj, which could be recovered by Fourier analysis 
at fixed n (for the frequencies) and fixed t (for the wavenumbers). The 2g + 2 branch points zk are, in this 
generic case, equivalent information to the g + 1 frequencies and the g + 1 wavenumbers. Thus, the astute 
macroscopic observer of a typical multiphase solution Qn (t)  sees a fixed Riemann surface F of some genus 

7 See Dubrovin [6] for a discussion of theta functions. Note that Dubrovin uses a normalization in which the theta function has imaginary 
periods. 
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g, and nothing else, all other information being higher order in the limit h I 0. This statement was put on 
a rigorous basis by Lax and Levermore in the context of the zero-dispersion limit, and it was used as an 
assumption in the constructive modulation theory of Flaschka, Forest, and McLaughlin. 

The theory of modulated generic multiphase solutions in integrable systems, and in particular in the Ablowitz- 
Ladik equations, is thus a theory of slowly deforming Riemann surfaces F(X, T). This theory is described in 
Section 7 of [21 ], in which several of the formulas appearing below are derived. If the branch points are distinct 
for all X at T = 0, then any infinitesimal deformation will preserve the genus, and the evolution in T may be 
constrained to any fixed genus g. From formulas for the function u that solves the Lax pair, it is possible to 
show that in the focusing and defocusing cases (to which we restrict attention from this point onward), the 
modulation equations describing the evolution of F(X, T) can be written in the compact form 

0tO(3) = 0x12(2), (64) 

where 12(2) and ,0(3 ) are unique differentials on F of the second and third kind respectively. The wavenumbers 
kj and frequencies wj are expressed in terms of these two differentials: 

oo + 

kooi/I  3, dz - ~ - i - ]  ' (65) 
0 + 

kj = - i  f /2 (3  / , (66) 

b1 

CO+ 

/[ COo 2 i 12(2) idz (67) 
Z 2 ' 

0 + 

wj = i f ,,("~(2) (68) 
b1 

(compare with Eqs. (2.15), (3.14) and (3.15) of [21]) where j = 1 . . . . .  g. From these formulas, it is easy 
to see that spatio-temporal modulation described by (64) implies conservation of waves in each phase variable 
independently: 

Orkj+ Oxwj = O, (69) 

where j = 0 . . . . .  g. As F evolves under (64), the branch points Zk also evolve, and they are described by a 
closed system of quasilinear partial differential equations. Moreover the branch points themselves are Riemann 
invariants, that is, the modulation equations take the form 

OTZk -~- C( Zk'~ Zl . . . . .  Zg)OXZk "~ O ,  (70) 

for k = 1 . . . . .  2g + 2. The characteristic speeds c are real (and thus the modulation equations are hyperbolic) 
if the branch points lie on the unit circle in the z-plane, as is known to hold in the defocusing case when 

]Qn[ < 1 for all n. 
The antiperiod 2 waves studied in Section 2 correspond to surfaces of genus g = 1, so we should go into a 

little more detail for this special case. The general modulation equations for the slow deformation of a genus 
g = 1 Riemann surface F(X,T) under (1) can be written in the form (64) with 
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= z - Tr  + + - y  - + d z  , 

17 

(71) 

~1 ( ) ~ 4 C(2r) ] . [ 1 (  1 1 ~/ 77 1 z 
/ ~ 2 ) = t  2 / \ 1 +  + 2  z - ~ + ~ r  - ~ z r  zj 4r Z z j +  dz ,  (72) 

= j=l 

where the constants C ~2) and C O) are chosen so that integrals of the two differentials over the a cycle of 
F vanish. From Eqs. (64) one obtains four closed modulation equations in Riemann invariant form (70) by 

expanding near the branch points zk. 
The modulation theory of the antiperiod 2 waves, as developed in Section 2, does not fit this generic 

description because only the quantities u and v depend on the four branch points, whereas the quantities w and 
y have nothing to do with F(X,  T) at all. Furthermore, the two remaining degrees of freedom among the four 
branch points are fixed throughout the modulation. To describe the situation in more detail, let us begin with 

Proposition 1. Exact solutions of the Ablowitz-Ladik equations satisfying antiperiod 2 boundary conditions are 
described by Riemann surfaces of genus g -- 1 satisfying the constraints 

4 

r l = - l ,  Z ( Z k +  1 )  = 0 .  (73) 
k=l 

The remaining degrees of freedom among the four branch points of F are described in terms of u and v by 

4 

Z Z k  = 4iv, Z Z k Z j  = 2(2exp(u)  -- 1 -- 2v2) . (74) 
k=-I k<j 

Proof. First, we will show how antiperiod 2 boundary conditions lead to (73) and (74). In order to do this, 
we need to obtain the description of the antiperiod 2 exact solution in terms of the spectral data (F, r/) from 
the values of Qn and Rn at some fixed time. The tool for this translation is the raonodromy matrix: 

[~ y ] [ z Qn+l(t)] [ z Qn(t)] (75) 
Sn(t) = 1 zRn+l(t) 1 zRn(t) 1 ' 

which encodes all dynamical information about the antiperiod 2 solution. It is easy to see from the Lax pair 
(55) and (56) and the antiperiod 2 boundary conditions that the polynomial 

P ( z )  = (TrS)  2 - 4DetS 

= Z 4 + 2(Qn+lRn - QnRn+l )Z 3 + ( ( Q n + l R n  -- QnRn+l )2 _ 2 

+4(1 - QnRn)(1 - Qn+lRn+t) )z 2 - 2(Qn+lRn - QnRn+l)z + 1 

= z 4 - 4ivnz 3 + 2(2 exp(un) - 1 - 2v2)z 2 + 4iVnZ + 1 (76) 

is independent of n and t. In writing the last line we have used the definitions of Un and vn from Section 2. This 
polynomial defines the Riemann surface F associated with the exact solution through the relation r 2 = P (z ) .  
The value of ~7 that we should choose is also built into the monodromy matrix. It is given by 

= - - ( a l l  - S22 ) lz=O = - 1 .  (77) 
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Thus, we see that the spectral data (F, r/) of an exact solution of ( 1 ) satisfying antiperiod 2 boundary conditions 
gives rise to a Riemann surface of genus g = 1 satisfying (73), and that the remaining branch point information 
is described by u and v according to (74). 

Now, we will prove the converse, that the constraints (73) imply that the solution given by the formula (63) 
satisfies antiperiod 2 boundary conditions. We need to calculate the wavenumbers k0 and kl according to the 
formulas (65) and (66). Note that the constraints (73) imply that there is a holomorphic involution on F: 

(15) H : ( z , r )  ~ - 7 '  " (78) 

The a cycle on F, chosen so that the modulation equations have the form (64), will be transformed by H 
into H ( a )  which may be smoothly deformed into - a .  Then the b cycle can be chosen so that H(b)  may be 
smoothly deformed into b. Thus we may replace integrals of/2(3) over H(b)  by integrals over b at the cost of 
the integral residues.of/2(3). Also, we hav, e H(cxz ±) = 0 :F. The pull-back of H operates on/2(3) as 

H*/2(3) = -/2~3) • (79) 

We compute 

l.<..:l...<.>:-/.<..:-l.<.>+,oi. (80) 
b H(b) H(b) b 

and thus kl =Tr modulo 27r. Similar arguments, again using the involution H, show that (73) leads to k0 = 7r/2. 
The periodicity of the theta function and the complex exponential then shows that the formula (63) satisfies 
antiperiod 2 boundary conditions. [] 

These arguments, along with the formula (63), yield the representation of the class of antiperiod 2 solutions 
given at the end of Section 2. An unusual feature of the antiperiod 2 solutions in the context of general genus 
g = 1 solutions is that making the cho~fee k0 = 7r/2 and kl = ~" fixes the frequencies to the values w0 = 2 
and Wl = 0. Choosing arbi'trary values of the two wavenumbers introduces two constraints on the four branch 
points. Now, for a generic choice of the wavenumbers the two frequencies parametrize the possible surfaces F 
subject to these constraints. The fact that antiperiod 2 waves are not generic in the sense that the frequencies are 
independent of the remaining degrees of freedom in F is related to the fact that y is a macroscopic observable 
and is responsible for preserving the conditions k0 = 7r/2 and kl = 1r under modulation. 

So only two of the variables U, v, w; and y making up the macroscopic description of a modulated antiperiod 
2 wavetrain contain information about the Riemann surface F, the remaining two degrees of freedom of F being 
fixed by the constraints (73). As we have seen, generic self-consistent modulations of genus g = 1 wavetrains 
are described by (64) (or equivalently (70)) and involve slow motion of all four independent branch points 
of F. In spite of these structural features that set the special case of modulation theory for antiperiod 2 waves 
in stark contrast to the general modulation theory of genus g = 1 waves, the general modulation equations for  

the Riemann surface continue to hold. These equations are consistently constrained by (73), and are equivalent 
to the system of equations for u and v, (32) and (33). We make these facts precise in 

Proposition 2. Let the g = 1 Riemann surface F satisfy the constraints (73) identically in X at T = 0. Then, 
- The general g = 1 modulation~ equations (64) preserve the constraints (73) for all T > 0. 
- The general g = 1 modulation equations (64), subject to the consistent constraints (73) take the simple form 

of Eqs. (32) and (33). 
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Proof The fact that the constraints (73) are preserved by (64) follows from conservation of waves (69) and 

the fact that the frequencies are constant over the whole class of antiperiod 2 exact solutions. Suppose that at 
T = 0 the constraints are satisfied so that for all X, k0 = ¢r/2 and kl = 7r. Then, also too = 2 and o)l = 0 for all 
X. Conservation of waves then guarantees that Orko = Orkl = 0, and hence the antiperiod 2 boundary conditions 

(equivalently the constraints (73))  are preserved. 
Proving the second part of the proposition requires imposing the constraints (73) on the modulation equations 

(64). The holomorphic involution H used in the proof of Proposition 1 assists in the simplification of the 

resulting equations. One first expands the differentials/2(2) and /2(3) in asymptotic series in z near the point 

0 + on F. Equating powers of z in (64) into which the expansions have been substituted leads to equations of 

the form 

Orv + A(v)Oxv = O, (81) 

where v = (r/,0-1,0-2,0"3) and 

0-1 = - -Z lZ2Z3  --  ZlZ2Z4 - -  ZlZ3Z4 --  Z2Z3Z4 ,  

0-2 = ZlZ2 + ZlZ3 "]- ZlZ4 -t- Z2Z3 + Z2Z4 "t- Z3Z4 , 
(82) 

0"3 = - - Z l  - -  Z2 - -  Z3 - -  Z 4 .  

The constraints (73) require that we impose 7/= - 1  and 0-1 + 0"3 = 0 on the matrix A(v) .  Doing this, and 

evaluating the elliptic integrals using the involution H yields that 

OaT(O"1 + 0 " 3 )  = 0 ,  tgT' 0 = 0. (83) 

These equations express what we already knew from conservation of waves, namely that the constraints (73) 

are preserved under modulation. The remaining two equations can be rewritten by using (76) to find 

0-1 = 4iv, 0-2 = 2(2exp(u)  - 1 - 2v z) , 0-3 = -4iv ,  (84) 

and then applying the chain rule to obtain equations for u(X,T) and v(X,T).  The resulting equations are 

exactly (32) and (33). [] 

So, the modulation theory obtained by multiphase averaging continues to hold in the special case of self- 
consistent modulations of antiperiod 2 wavetrains. However, comparing the modulational description obtained 

in Section 2 to the two propositions leads to 

Corollary 1. Modulations of the fields w and y are not described by the modulation equations (64) obtained 
by multiphase averaging. 

The description of the macroscopic dynamics provided by multiphase averaging is valid for modulated 

antiperiod 2 waves, but it is not complete because it does not describe the evolution of w(X,T)  and y(X, T), 
quantities that can be unambiguously observed on the macroscopic scales and whose modulations, as we have 
seen in Section 2, can be modeled by partial differential equations. The variables w and y are independent of 
the Riemann surface F as it varies in the class of antiperiod 2 waves. They contain information about, on the 
one hand the phase constants 00 (°~ and O} °~ in (53) and (54), and on the other hand the point P1 and the 
constant ~: that are involved in the specification of the solution from algebro-geometric data. 
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Near fixed values of X and T, the evolution of a modulated genus g = 1 wavetrain is described by a flow on 
the toms: 

(n, t )  H ( k o n  - toot - O(o°),kln - tolt - 01°)). (85) 

Generally the wavenumbers, frequencies, and phase constants will depend on X and T. However, for general 

values of the wavenumbers and frequencies, the fast motion will cover the torus, making any macroscopic 

measurements of the phase constants imprecise, and thus the multiphase averaging theory that leads to (64) 
does not involve the phase constants. 

But in the antiperiod 2 case, the fast motion described by the map (85) does not cover the toms. Instead, 

the motion only covers two parallel circles, as illustrated in Fig. 8. The location of this pair of circles in 

the torus is determined by the phase constant 0~ °) (modulo ~).  Macroscopic observation of this quantity is 

unambiguous, and this phase constant contains information about the quantity w. This situation, where the fast 

motion in space and time fails to cover the torus and hence makes some phase information observable, is a 

c las s i ca l  r e s o n a n c e  that is a direct generalization of the resonance condition for completely integrable systems 

of ordinary differential equations. In the ODE case, each resonance among the phase variables Oj = t o j t  - t9~ O) 

is characterized by a vector m of integers. The resonance occurs for those values of toj for which 

(too . . . . .  t O s ) m  = 0. (86) 

A classical resonance of a multiphase wavetrain in a spatio-temporal system can be defined analogously. The 
A(0) 

resonance conditions for the phase variables Oj = kin - tojt - vj are the condition (86) and the spatial 

resonance condition 

(ko . . . . .  k g ) m  = 0,  (87) 

which should hold modulo 27r when the spatial variable is restricted to integer values in spatially discrete systems 

like the Ablowitz-Ladik equations. For modulated antiperiod 2 waves, the vector m = (0, 2) T characterizes the 

classical resonance that permits the observation of the quantity w. 

Now, consider another integer vector, m g = (4,0) r. The phase of a modulating antiperiod 2 solution in the 

direction of this vector (which is tangent to the flow along the two circles in the torus) is given by 

(0o,  0 1 ) m  g = 4kon  - 4 w o t  - 400 ~°) = 2zrn - at - 400 C°) = - a t  - 400 ~°) modulo 2~-, (88) 

o 

2rt 

- - 0  0 
2r~ 

Fig. 8. The subtorus of the antiperiod 2 resonance consists of two parallel circles separated by a distance of 7r in the 01 direction. The 
vector m points in the 01 direction. 
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The vector mg does not characterize a classical resonance as described above because the phase in this direction 
grows linearly with fast time t. However, since the frequency a~0 = 2 is fixed throughout the modulation, the fast 
growth of this phase variable can be removed by considering the difference between the values of (00, 01 )m g at 
two neighboring lattice points. Scaling by the lattice spacing h yields a quantity Ox(O~o °) , 010) )mg which can be 
macroscopically observed. This kind of generalized resonance occurs precisely because the frequencies do not 
modulate. The macroscopic quantity made visible by the generalized resonance characterized by m8 = (4, 0) 7" 
is proportional to y. 

The modulation theory of antiperiod 2 waves can be characterized as a closed, consistently constrained motion 
of the four branch points under the equations (64), which drives the slow motion of the phase constants. The 
above analysis for modulation of antiperiod 2 waves suggests that when the usual modulational prescription 
breaks down due to resonances, the partial dynamical description (32) and (33) that results may be augmented 
by appropriate phase equations (51) and (52) which then provide a complete description of the constrained 
modulated dynamics. It is this structure that we expect to be mirrored in more general cases. 

4. Critical wavenumbers and multiphase resonances 

Here, we will suggest a general framework that embraces the specific phenomena described in Section 2 and 
placed in context in Section 3, and allows extension to the modulation theory of multiphase waves in arbitrary 
integrable spatio-temporal systems. In the theory of multiphase solutions in integrable systems, each solution is 
associated with a Riemann surface of finite genus, whose branch points are constants of motion that play the 
role of action variables. In the multiphase averaging theory, the macroscopic description of the genus g solutions 
is given by a closed system of first-order quasilinear partial differential equations in the slow spatial variable 
X and the slow temporal variable T for which the branch points Zk of the Riemann surface F are Riemann 
invariants. As we have seen, a fundamental consequence of this theory is that the modulation equations imply 
conservation o f  waves in each phase variable independently. That is, if Oj = k jx  - tojt is one of the phase 
variables in the modulating multiphase wavetrain, then kj and wj  are functions of the branch points that satisfy 
(69). 

It has been pointed out by Forest and Lee [ 10] that when periodic boundary conditions are enforced on the 
microscopic oscillations, one should generally expect no spatial or temporal modulation in the absence of any 
external perturbations. Another way of saying this that both generalizes the statement and also avoids reference 
to any external enforcement of boundary conditions is the following. If at time T = 0 the wavenumbers k j (X ,  O) 

of a modulated multiphase wavetrain are independent of X, then generally the wavenumbers will not remain 
constant for T > 0 unless all macroscopic quantities are independent of X at T = 0. 

This is because the requirement that the wavenumbers kj not evolve in time allows one to deduce from 
conservation of waves (69) that the frequencies toj do not depend on X at T = 0. From a generic set 
of wavenumbers kj  and frequencies toj it is possible to solve for the branch points Zk. So, if the initial 
wavenumbers k j (X ,  0) are also taken to be independent of X, then in fact the whole set of branch points zk 
must be independent of X at T = 0. The modulation equations in Riemann invariant form (70) then imply that 
no modulation occurs at all. 

This argument depends crucially on our ability to solve for the branch points in terms of the frequencies 
and wavenumbers. As was demonstrated by the example of the modulated antiperiod 2 wavetrains, it is in 
fact possible to have self-consistent spatio-temporal modulation of a solution with fixed wavenumbers on the 
microscopic level, as long as the wavenumbers are carefully chosen. This kind of modulation will occur even 
in absence o f  any external perturbation. 
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Let us describe the wavenumbers for which nontrivial modulation is possible. In general, the g + 1 wavenum- 
bers and frequencies are determined from the 2g + 2 branch points 

k j  = k j ( Z l  . . . . .  Z2g+2) , 

tOj = (-oj( Zl . . . . .  Z2g+2)  • 

We introduce g + 1 additional functions of  the branch points 

(89) 

(9o) 

P j  = p j ( Z l  . . . . .  Z2g+2), ( 9 1 )  

which we will call amplitudes. The purpose of  these functions is to allow us to solve for the branch points 
without involving the frequencies: 

Zj = z j ( k l  . . . . .  k g + l ,  P l  . . . . .  Pg+l  ) • (92) 

In the g = 1 case described in Section 3, the functions U ( Z l ,  Z2, Z3, Z4) and U(Zl, z2, z3, z4) defined by (74) 
served as amplitudes. Then, using the formulas (90) for the frequencies as functions of  the branch points, one 
obtains the dispersion relations 

tOj = t o j ( Z l  . . . . .  Z2g+2) = f j ( k l  . . . . .  kg+l, Pl . . . . .  Pg+l ) • (93) 

We define a critical set ofwavenumbers U 1 . . . . .  kg+l as a set of  wavenumbers for which the frequencies do not 
depend on the amplitudes: 

ap, f j( k~ . . . . .  k g + l ,  P l  . . . . .  Pg+l ) - -  O ,  ( 9 4 )  

for i , j  = 1 . . . . .  g + 1. This definition is independent of  exactly how we chose the amplitude functions 
pj(Zl . . . . .  z2g+2). The wavenumbers ko = ~r/2 and kl = 7r are critical for the genus g = 1 solutions of  

the Ablowitz-Ladik equations, because fixing these wavenumbers automatically determines the frequencies 

wo = 2 and tOl = 0 independently of  the amplitudes u and v. 
I f  the wavenumbers of  a modulated multiphase wavetrain are taken to be spatially constant at T = 0, and 

are taken to be critical, then the frequencies will be spatially constant at T = 0 regardless of  the values of 
the amplitudes. Conservation of  waves (69) then guarantees that the criticality will be preserved, and the 

amplitudes p j, if  initially varying in space, will undergo nontrivial self-consistent modulation. This is why the 
quantities u and v are able to experience modulation in the case of  antiperiod 2 waves in the Ablowitz-Ladik 
equations. The point is that modulation of  waves with critical wavenumbers is a self-consistent modulation 

of  the amplitudes only (and possibly the phase constants, if  resonances are present).  All wavenumbers and 
frequencies are independent of  the macroscopic independent variables X and T. 

Aside from allowing the possibility of  self-consistent spatio-temporal modulation, criticality of  wavenumbers 
requires a generalization of  the notion of  a classical resonance. First, let us describe classical resonance in 
some detail. Multiphase wavetrains in general spatio-temporal systems are described by functions of  space x 
and time t of  the form 

¢ ( x ,  t) = F(Ol . . . . .  ON), (95) 

where F is periodic with period 2~r in each of  its arguments, and Oj = k j x  - t o j t  - 0J 0) . This solution is for 
fixed x (resp. t) a linear flow in t (resp. x)  on the N-toms. For generic choices of  the wavenumbers kj and 
frequencies wj, at least one of  these two linear flows will densely cover the N-toms;  such a solution ~O(x, t) 
is called ergodie or nonresonant. 
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Now, suppose that we are given a set of C linearly independent N-vectors mc, 0 _< C 

components such that 

23 

< N, with integer 

(kl . . . . .  k N ) m c  = 0 

(ml . . . . .  m N ) m c  = 0 
0 < c < C.  (96) 

In this case, we say that the the solution ~b is resonant with codimension C. The span (over the rationals) of 
the vectors mc completely characterizes the resonance 8. Resonances are not generic because the components 

of the vectors mc must be integers. 

In the absence of resonance, the modulational description given by multiphase averaging is complete because 
it is a closed system of equations for all quantities that can be accurately measured on the macroscopic length 
and time scales. The phase constants 0) °) are not included in the description, but this is fine since their precise 

measurement is hindered by the fast winding on the N-toms. This description changes when there is a resonance 
that is preserved under modulation. In particular, the equations given by the multiphase averaging prescription 
remain closed, but the description of the macroscopic dynamics offered by these equations will no longer be 

complete. 

The complete  modulational description of a resonant wavetrain must a constrained special case of the 

multiphase averaging theory, extended to model the evolution of slow phases, as was done in Section 2 with 

the derivation of modulation equations for the quantities w and y. The constraints on the wavenumbers and 

frequencies that cause resonance imply constraints on the branch points of the associated Riemann surface F 
that must be compatible with the modulation equations; otherwise the resonance will not be preserved. In any 

case, to have a complete description of all macroscopically observable quantities near some X and T where 

a resonance occurs, the multiphase averaging equations must be augmented because the solution ~ no longer 
covers the N-torus as it evolves in space and time; it only covers a subtorus (or in the discrete case a finite 
family of subtori) of codimension C. The location of this subtorus within the N-torus becomes macroscopically 
observable information. This information is the vector of slow phases (O~ °) . . . . .  8~ °) ) m o  Other equations must 

be adjoined to the modulation equations to describe these slow phases. 
If  the wavenumbers kj  are critical, then two new features appear that change the way that resonances 

affect macroscopic dynamics. First, and most importantly, we have seen from conservation of waves (69), that 

criticality of wavenumbers is preserved under modulation. Thus, unlike ordinary resonances, those that occur 

for critical wavenumbers (and their corresponding fixed frequencies) will  persis t  under modulat ion.  This means 
that the presence of slow phases for these cases is a permanent feature of the macroscopic theory, and not 
merely transient as the action variables pass near a resonance in the course of their evolution. Resonances that 
follow from critical wavenumbers are permanent, and modeling the slow phases is essential for a complete 
description of the dynamics. 

Furthermore, if the wavenumbers are critical it is not necessary to have both conditions (96) satisfied in 
order for slow phase information to be macroscopically observable. This will lead to the idea of a general ized 

resonance. Suppose that only the spatial resonance condition is satisfied by some integer vector rag: 

(k~ . . . . .  k % ) m  ~ = 0 ,  (97) 

but that the temporal resonance condition is not satisfied. The phase in the spatially resonant direction tit g is 

8 The example dispersive wave equation we have addressed in this paper is discrete in space. In such discrete cases, we replace x by n, 
an integer; the condition (kl . . . . .  kN )mc = 0 should then hold modulo 2,r. 
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(81 . . . . .  8 N ) m  g = --(tO1 . . . . .  t oN)m g t + (O~ °) . . . . .  8~ °))rag • (98) 

In the context of a general modulation, this quantity will be slowly varying in space, and rapidly varying 
(linearly) in time. However, the criticality of the wavenumbers guarantees that the frequencies do not undergo 
any spatial or temporal modulation - they do not depend on slow space or time. Thus, we can eliminate the 
fast dependence on time by differentiating with respect to the slow spatial variable X. For critical wavenumbers 
satisfying (97),  the quantity 

ax( 81 ..... 8N) m s = aX ( 8~ °) ..... 8(N °))mg (99) 

is a function of slow space X and time T that must be modeled in order to provide a complete modulational 
description. In this way, the notion of resonance is generalized when the wavenumbers are critical. 

Although we have presented only one example of multiphase modulation theory with critical wavenumbers, 
we believe that other examples must surely exist. We plan to study the microscopic behavior that locally 
develops when the antiperiod 2 modulation equations break down due to the appearance of hyperbolic shocks 
in order to look for other cases of modulated wavetrains with critical wavenumbers. 

5. Discussion 

In this paper, we have started an investigation of some of the phenomena associated with resonances in 
spatio-temporal systems. Aided by the criticality of the wavenumbers in the antiperiod 2 case, we were able to 
explore phase modulation in a convenient mathematical laboratory where the resonance of interest was preserved 
by the macroscopic dynamics. We found that the multiphase averaging prescription continued to hold in the 
presence of resonance, but became incomplete as it did not model the slow evolution of the phase constants. 
In this case, we were able to supplement the modulation equations with PDEs describing these phase constants 
by a straightforward asymptotic analysis of the microscopic system. 

However, we have avoided the truly difficult problems associated with generalizing the KAM theory of 
ordinary differential equations to the infinite dimensional context. Multiphase averaging in integrable wave 
systems is a generalization of the averaging theory used to handle small perturbations of integrable Hamiltonian 
systems [2]. It is known that in such systems with one degree of freedom, the averaging prescription always 
gives the correct description of the perturbed dynamics to first-order in the perturbation parameter. However, 
when the unperturbed system has two or more degrees of freedom, resonances can arise that require one to 
use techniques of partial averaging in order to avoid the small denominators that spoil the ordering of terms 
in the asymptotic expansion of the solution. Unfortunately, exact resonances are dense in the phase space of 
the unperturbed system; however, as long as one avoids parts of phase space near serious resonances (that is, 
those corresponding to vanishing rational combinations of frequencies, with coefficients having small integer 
denominators), the KAM theory predicts that the full averaging prescription should be locally valid. 

The corresponding problems of resonance looming on the horizon of the multiphase averaging theory are 
both more complicated and less understood. Some of the problems have to do with finding the regions of 
validity in phase space (if  any) of the multiphase averaging theory, which assumes that the multiple phases 
of the modulated solution are independent over the rationals. Although dense, the resonances form a set of 
measure zero in the phase space, and one would like to think that it is possible to ignore them most of the 
time, as was guaranteed in finite dimensional problems by the KAM theory. The problem is that in the infinite 
dimensional context, it is harder to avoid the resonances. When a spatially modulated wavetrain (wavenumbers 
and frequencies varying smoothly) is given as an initial condition for a dispersive wave system, resonances will 
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be densely distributed in physical space, and not just in phase space. In an attempt to justify the nonresonant 

modulation theory obtained from multiphase averaging, Chierchia, Ercolani, and McLaughlin have given a 
KAM-like estimate of the allowable resonances in wavenumber distributions that are functions of physical 
space by defining a "local nonresonance" condition that is generic in an appropriate sense [4]. Dobrokhotov, 
on the other hand, reasonably prefers a derivation of modulation equations in which one does not have to make 
such restrictions on the initial data [5]. He takes the point of view that the density of resonances in space 
causes the nonresonant multiphase averaging theory to fail in all genuinely multiphase cases. In his words, 
"Since these [resonant] points are placed in the [physical] space, it is impossible to throw them away together 
with their small neighborhoods as was done in the KAM-theory." 

In spite of these arguments, the nonresonant modulation equations of multiphase averaging seem to be valid 
in several contexts where no particular nonresonance constraints are imposed on initial conditions. Indeed, the 
modulation equations derived formally in [9] were simultaneously derived rigorously by Lax and Levermore 
[ 16,17] as describing the zero-dispersion limit, generally a weak limit, of solutions of the Korteweg-deVries 
equation. This was done by analyzing the associated inverse spectral problem rather than by averaging explicit 
multiphase solutions, and considered a broad class of initial data that certainly includes functions that have 
resonances densely occupying physical space. Similar results have been found in other integrable systems for 
which a zero-dispersion limit makes sense (see [ 14] for the defocusing cubic nonlinear Schr6dinger equation 
[8], for the focusing modified Korteweg-de Vries equation, and [20] for the Toda lattice). This theory and its 
applications have been recently reviewed in [ 18]. The reason that the multiphase averaging theory appears to 
have trouble with resonances is that it derives the modulation equations from a local N-phase ansatz for the 
microstructure of the oscillations, and the validity of the ansatz itself is called into question near a resonance. 
On the other hand, the Lax-Levermore theory avoids making any assumptions about the microstructure of the 
solution, and thereby manages to characterize the limit globally in terms of quantities that can be interpreted 
as well-defined parameters of oscillation either through the higher-order theory of Venakides [24] or when 
combined with a consistent local multiphase ansatz. We remark that the theory of Venakides captures the 
microstructure of the multiphase wavetrain, but does not model the evolution of the phase constants, as those 

dynamics appear at yet higher order. Finally, note that the problem of  formally deriving modulation equations in 
resonant cases disappears if one considers not torus averages as in [9], but space-time averages, as is done in 
[21 ] for the Ablowitz-Ladik equations. From these considerations, it is not at all surprising that the modulation 
equations hold in spite of resonance, since they may be derived in several ways without any reference to 
multiphase torus averages. 

Other problems have to do with dealing with resonances rather than learning when it is possible to ignore 
them. In the perturbation theory of ODEs, the solution to the problem of constructing the first-order correction 
to a resonance is given by the prescription of partial averaging, which describes temporal modulation of phase 
information made visible by resonance, as well as modulation of action variables. We have been able to describe 
phase modulation in a spatio-temporal context, but our derivation did not make use of any of the beautiful 
geometrical structure of the integrable system we were studying. We would like to understand how to lift our 
derivation to the level of the geometrical data ( I ,  ~7; PI . . . . .  Pg, ~) used to describe the multiphase wavetrains. 
It is at this level that the modulation equations obtained from multiphase averaging take their most elegant form, 
involving deformations of an invariant object F ( X ,  T) .  We expect that an equally elegant prescription must 
exist, certainly generalized from the partial averaging idea for ODEs, that describes modulations of resonant 
combinations of the points Pl . . . . .  Pg and the scaling constant s c (which determine the phase constants). 

Let us conclude with a few observations. First, we want to point out that the phenomenon of algebraic 
constraints being consistent with modulation equations (as is the case for critical wavenumbers) has been 
observed in other models. For example, in a neighborhood of the initial location of a shock in the Toda lattice, 
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the long time behavior is given by a degenerate case of modulated genus g = 2 oscillations, the degeneracy being 
described by two algebraic conditions on the six branch points. This degeneracy is required in order to allow a 
globally odd shock solution in which the particle at the origin is fixed for all time. In this way, the degeneracy 
constraints effectively introduce boundary conditions on a semi-infinite chain, much as the constraints (73) 
introduce antiperiod 2 boundary conditions in the Ablowitz-Ladik equations. Bloch and Kodama [3] found 
in the Toda shock problem that the full genus g = 2 modulation equations respect these constraints. In that 
problem the constraints persist because they amount to simply fixing the values of two of the branch points, 
and it is easy to see from the modulation equations in Riemann invariant form (70) that such constraints are 
always preserved under modulation. In another example, Ercolani, Forest, McLaughlin, and Sinha study the 
perturbed sine-Gordon equation with periodic boundary conditions imposed on the microscopic level [7]. As 
these wavenumbers are not critical, there is no spatial modulation at all, and temporal modulations are only 
present due to the presence of non-autonomous perturbations. The spatial periodicity of the perturbation matches 
that of the modulating wavetrain, and the modulation PDEs are consistently constrained to become ordinary 
differential equations. 

Finally, we should point out that the modulational stability of the antiperiod 2 solutions in the focusing 
case surprised us at first. This was because in the focusing case there is no spectral symmetry argument for 
the modulation equations that guarantees the reality of the characteristic velocities (unlike the defocusing case 
when [Qnl < 1 for all n, where the velocities must be real). Indeed, one lesson to be learned from the example 
of antiperiod 2 waves is that there may be modulationally stable solutions of integrable problems even in 
the absence of any spectral symmetry to guarantee reality of the characteristic velocities. The facts for the 
Ablowitz-Ladik equations are (see [21]):  
- the branch points of focusing solutions cannot lie on the unit circle in the z-plane without being double, and 
- if a branch point zk lies on the unit circle, then its corresponding characteristic velocity is real. 
It simply does not follow that focusing configurations cannot have real characteristic velocities. Now, it is 
known that the focusing modulation equations are elliptic for g = 0 [ 12], but aside from the antiperiod 2 waves 
which we have seen to be stable, more complicated focusing solutions have not been specifically analyzed for 
their stability properties. It would seem that stability of focusing waves must be determined on a case by case 
basis. If there are other stable wavetrains in the focusing case, perhaps they will appear when the antiperiod 
2 modulation equations develop singularities. Thus, we plan to investigate the local behavior in the focusing 
problem near points X where infinite derivatives appear in the fields u, v, w, and y for antiperiod 2 oscillations. 
We would like to know if other microscopic oscillations can spontaneously appear that also may be smoothly 
modulated. 
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