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Exploiting discreteness for switching in waveguide arrays
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A new approach to multiport switching in arrays of nonlinear waveguides is proposed. Whereas other schemes
have relied on suppressing the inherent transverse discreteness of these arrays, this approach takes advantage
of that feature. One of the effects of discreteness is to keep intense beams trapped in a single waveguide for
the length of the array. Switching may be achieved by use of a controlled perturbation to displace such a
trapped beam in the transverse direction. This displacement is quantized to an integer number of waveguides,
thus permitting unambiguous selection of the output channel.  1996 Optical Society of America
All-optical signal processing with integrated nonlinear
waveguide optics has many desirable features. In
particular, it is possible to fabricate components that
are small and capable of high-speed operation, limited
in principle only by the turn-off time of the material
nonlinearity.1 One of the basic tasks of all-optical
signal processing is switching, the ultimate goal being
to achieve dynamic, fully controlled selection of one
output channel among many. Here we consider the
possibility of multiport switching in an array of N
identical regularly spaced nonlinear waveguides, in
which the stationary envelope of the electric field in the
nth waveguide is governed by the discrete nonlinear
Schrödinger equation
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given here in dimensionless units.
The N -core coupler is a device described by Eq. (1),2

in which switching is controlled by changing the power
of a single-core input signal. Unfortunately, the
power discrimination depends on the device length and
decrease rapidly as the number of cores increases. In
fact a complete power transfer into each of the output
channels is no longer possible for more than three
cores,3 and if the number of cores exceeds five, the abil-
ity to control the switching is lost.4 A new approach
is thus required if more than five output channels
are desired. One alternative is to use the collective
properties of the array and suppress its inherent
discreteness by operating it with low-intensity beams
extending over several waveguides.4 In this regime
the array behaves essentially as a bulk medium and,
correspondingly, beams are approximate spatial soli-
tons of the continuous nonlinear Schrödinger equation.
Thus a beam can propagate unhindered and emerge
in a predictable region of the array, thereby selecting
the output channel. In contrast to this approach,
which we refer to as the continuum approach, we
propose to exploit the discrete structure of the array by
operating it at high intensities, at which the effects of
discreteness become especially apparent.

The discrete nonlinear Schrödinger equation,
Eq. (1), has two conserved quantities, the total power
and the Hamiltonian. Thus it is generally only
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completely integrable for N # 2, which explains the
predictability of the two-core coupler.5 For more than
two cores the model can exhibit chaotic behavior,
which leads to, e.g., a high sensitivity of the three-core
coupler to the device length.6 However, even for large
N , Eq. (1) allows beams to exist that can propagate
through the array in a regular and predictable way.
These beams have properties that differ in several
ways from those of beams propagating in a bulk
medium.

Let us brief ly outline the beam properties that are
important for multiport switching in arrays. For a
recent review of discreteness effects in waveguide ar-
rays, see Aceves et al.7 Without the nonlinear term,
Eq. (1) has linear plane-wave solutions of the form
expsikn 2 ibzd, where the propagation constant b is
related to the wave number k by bskd ­ 4 sin2sky2d. A
packet of such plane waves, with wave numbers cen-
tered around k, will propagate in the array at an
angle askd, defined as tansad ; ≠by≠k ­ 2 sinskd,
and diffract subject to the linear diffraction coefficient
Dskd ; 1/2≠2by≠k2 ­ cosskd. At low maximum inten-
sity Im the primary combined effect of nonlinearity and
positive diffraction is to allow for steady and uniform
propagation of beams at angle askd. If terms of or-
der O sImd are neglected, then the low-intensity solu-
tion to Eq. (1) can be found by use of multiple-scale
techniques8:
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The diffraction coefficient Dskd does not appear if
the second difference in Eq. (1) is merely replaced by
a second derivative and indicates correctly how this
approximate solution breaks down for wave numbers
above and close to the zero-diffraction wave number
jkj ­ py2. Thus aspy2d . 63.4± represents an upper
limit of the propagation angle of beams in the array, a
fact that is not considered in the continuum approach.
The constant phase u will play the role of a switching
parameter.

If the intensity is permitted to increase, the propa-
gation of beams at angles a fi 0 will be impeded by
collisions with the periodic transverse structure of
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the array. In fact, at sufficiently high intensities
any beam will quickly become completely trapped and
forced to propagate at an angle a ­ 0, regardless
of its initial wave number. In this regime Eq. (1)
has exact stationary solutions that are remarkably
stable and very localized. These solutions are funda-
mentally different from the solitary beams of the form
of relation (2) and play a key role in our approach to
switching. No analytical formulas exist for such high-
intensity solutions. However, in the limit of large in-
tensity, asymptotic methods can be applied to yield the
approximate solution Enszd ­

p
ImUn exps2ibzd, where

b and Un are given by
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To improve this formula for finite values of Im, we
use Eqs. (3) as an initial guess in a Newton–Raphson
iteration scheme. This yields numerically exact solu-
tions, trapped beams, in the whole intensity range of
interest.

It is thus apparent that two distinct intensity
regimes exist in which beams can propagate through
the array in a predictable way, and for switching appli-
cations it is important to identify them quantitatively.
For arrays of length L # 100 the parameter regimes
for angled beams are

Im # 0.2, jkj , py2 ,

and for trapped beams they are

Im $ 1.7 (4)

can be roughly estimated from numerical simulations
of Eq. (1). Here and below, the number of waveguides
N is chosen to be large enough to avoid boundary
effects.

To exploit the effect of trapping for switching pur-
poses the scheme must involve beams of maximum in-
tensity greater than Im ø 1.7. As pointed out above,
such a trapped beam cannot move transversely in the
array by itself. However, it can be displaced by a suf-
ficiently large perturbation. Let us consider two such
perturbations:

(A). Imposing a linear phase gradient at the input.
Here the initial beam profile is a numerically exact
solution close to Eqs. (3) with maximum intensity
Ihi

m , which is then multiplied by expsiknd to initiate
transverse propagation.

(B). Colliding with a low-intensity angled beam of
the form of relation (2) with parameters (I lo

m , k, u),
launched Dn waveguides away from the trapped beam
of maximum intensity Ihi

m

Figure 1 shows representative examples of these two
possibilities. In both cases the perturbation displaces
the trapped beam in the transverse direction but only
an integer number of waveguides, because of its high
intensity and the subsequent strong trapping imposed
by the discrete structure of the array. We propose to
take advantage of this transversely quantized displace-
ment in switching applications.

Let us look more closely at the switching process
and how we can control it by producing many simu-
lations of the type presented in Fig. 1. In each
simulation the trapped beam is incident upon the
array at n ­ 0 and has the approximate power
Pin ;

P3
23 jEns0dj2. At the output z ­ L we

measure the position nc as the waveguide of
maximum intensity and define the contrast
C ; jEnc sLdj2ysjEnc21sLdj2 1 jEnc sLdj2 1 jEnc11sLdj2d
and the power loss DP ; sPin 2 PoutdyPin, where
Pout ;

Pnc13
nc23 jEnsLdj2 is the approximate output power.

Method A includes two control parameters, the maxi-
mum intensity Ihi

m and the wave number k. The length
of the array and the number of waveguides in the array
are fixed design parameters. Figure 2 shows the dis-
placement of the trapped beam as function of Ihi

m , with
k as a parameter. Clearly, one can operate the array
as a power-controlled switch by using the plateaus on
the displacement curves. Thus switching among up to
seven waveguides can be achieved for k ­ 20.5.

Fig. 1. Examples of methods (A) and (B) of displacing a
trapped beam. Each plot shows the contour of the inten-
sity jEnszdj2 found by numerical integration of Eq. (1) with
the initial condition as explained in the text. Common
parameters: L ­ 80, N ­ 101, I hi

m ­ 2.0. Individual pa-
rameters: (A) k ­ 20.52, (B) I lo

m ­ 0.2, k ­ 0.52, u ­ 0,
Dn ­ 40. The displacement is (A) eight waveguides and
(B) two waveguides.

Fig. 2. Displacement of a trapped beam of maximum
intensity I hi

m after it has been given a linear phase gradient
expsiknd at the input, as a function of I hi

m for different values
of k. The curves are the results of numerical simulation of
Eq. (1) with the initial condition as explained in the text.
Fixed parameters: L ­ 40, N ­ 101.
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Fig. 3. Number of waveguides by which a trapped beam of
maximum intensity I hi

m is displaced after collision with an
angled beam of maximum intensity I lo

m of (a) 0.05, (b) 0.1,
(c) 0.15, and (d) 0.2 as a function of (top) phase constant u
and (bottom) I hi

m . The curves are the results of numerical
simulation of Eq. (1) with the initial condition as explained
in the text. Fixed parameters: L ­ 80, N ­ 101, Dn ­
40, k ­ 0.52, and (top) Ihi

m ­ 3 and (bottom) u ­ 0.

Generally the displacement depends on the strength
of the perturbation compared with the strength of the
trapping exerted on the beam by the discrete structure
of the array. Thus the higher the value of k and
the lower the value of I hi

m , the more the beam is
displaced and the more sensitive the switching is on
the control parameters. The contrast C of the output
beam lies between 0.43 and 0.82, and the power loss
is positive, varying between 3% and 11%. Note that
in all simulations, including the one in Fig. 1(A), most
of the loss in power is converted into a low-intensity
beam that propagates through the array at an angle
that increases with k. Method (A) for switching was
also recently investigated by Aceves et al.7

Method (B) represents a switching process entirely
different from Method (A). Because of the presence
of the colliding beam, method (B) has four control
parameters, the maximum intensities Ihi

m and I lo
m , the

wave number k, and the phase u. The array in method
(B) must be longer than in method (A) because the
center of action of the perturbation is no longer at
the input but is at some distance determined by k
and the initial separation Dn [see Fig. 1(B)]. Thus we
consider L, N , k, and Dn as fixed design parameters.

The top set of curves in Fig. 3 shows the displace-
ment of the trapped beam as a function of u for
different values of I lo

m . Because of the relatively
high intensity of the trapped beam, Ihi

m ­ 3, switch-
ing can be achieved only among three waveguides,
but the displacement curves are cleaner than in
Fig. 2. Furthermore, the contrast is extremely good,
ranging from 0.76 to 0.89. The power loss is now gen-
erally negative, 210% # DP # 0%, and thus the input
beam is amplified by the collision process. This am-
plif ication seems to be a general mechanism in discrete
systems.9 The bottom set of curves in Fig. 3 shows
how power-controlled switching can be achieved with
method (B). The oscillatory behavior of the curves
is due to resonances between the intensity-dependent
propagation constants of the two beams. The contrast
C ranges from 0.59 to 0.91, and the input beam is still
amplif ied by the collision, 216% # DP # 0%.

Thus controlled switching can be achieved in ar-
rays of nonlinear waveguides operated in the high-
intensity regime, in which the properties of beams
differ drastically from those of beams in bulk me-
dia. Correspondingly, the approaches to switching
presented here are fundamentally different from the
continuum approach.4

In the continuum approach the displacement of the
input beam happens gradually over the whole length
of the array. Thus the eff iciency of the switching
depends critically on the control of the angle, in that
even slight variations change the waveguide in which
the output signal is detected. The input contrast is
C ­ 0.45 for the maximum intensity Im ­ 1.1 used in
Ref. 4. The output contrast will be somewhat less, in
part because this value of Im is outside the regime
defined by Eq. (4), where beams resemble spatial
solitons of a bulk medium.

By contrast, in both methods (A) and (B) the displace-
ment of the trapped beam takes place in a small re-
gion in sn, zd space, which means that the efficiency
of the switch can be insensitive to variations of the
array length. The input beam is extremely localized,
and this sharp contrast is maintained at the output,
0.43 # C # 0.91. As noted in Ref. 10, maximizing the
contrast is important for practical implementations.
In addition, the two-beam method (B) provides the con-
stant relative phase u as a novel control parameter.
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