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Paraxial Planar Waveguide Optics
of 192f
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f(x,z) is the stationary envelope
of the electric field.

)y A(z,z) is the refractive index dis-
tribution.

3 is a frequency parameter.




M-Soliton Waveguides and Exact Solutions: g =1

Begin with the expressions:

M-1 M-1
alz,z,\) = [ MM + Z Na®P)(z, 2) | e 2o +32) and b(z, 2, \) = Z W) (g, 2).
p=0 p=0
Choose A1,...,Ay in Cy, and corresponding N-vectors g1, ... gD,

Vk, impose: a(z, z, \y) = §®1b(z, 2, \x) and b(z, z, \* 5) = —a(x, z, A} )g(k)

Index function: set A(z,2) = 4 Z M= (g, 2)|°.

n=1

Corresponding Exact Solutions for f(x, z):

M

—1/2
e Dispersive modes for A € R: Wqy(x,z,\) = <7r H A — Ak|2> a(x,z,\)
k=1

e ) independent bound states: {Wyi(x,z),..., Wy M(a: z)} obtained from
{a(z,z,A}),...,a(z, 2, \},)} by Gram- Schmldt in L2 (R).



In the background is a nonlinear problem. ..
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and Yp(z,z) = 2ib,(€M_1)(:13,z).

Completeness Relation

Theorem 1 (M. and Akhmediev, Physica D, 1998) The functions Wq(x, z,\)
for A € R and {Wp1(z,z2),...,Wp y(x,2)} form an orthonormal basis of L?(R)
for any fixed z. Thus, for ¢(z) € L?(R), we have

M 00
42) = 3" dns(e. ) + [ BO)Wola,z ) dA
k=1 -
where

d(N) =/ Wq(z, 2, \)*¢(x)dx and qgk:/ Wy i(z, 2) p(x) do .



Solution of Initial Value Problem: g =1
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—+§@+A($az)f—o

A(z, z) specified by discrete data {\1,..., Ay} and {1, ... gD},

1. Project the initial data f(x,0) orthogonally onto the basis elements
Wq(x,z,A) and {Wy(z,2)} at z = 0.

2. Fix the expansion coefficients and let the basis elements evolve explicitly
in “time” z.

3. Recover f(z,z) for z > 0 by the completeness relation.



Bound State Scattering for g =1

Let \x = o, + ipr. If 01,...,0 are distinct, then
M
Az, z) ~ Z 4p2sech?(2p,(x + 2042) — 5,::) as z — *+oo.
k=1

Superpositions of Wy, (z,2) have a similar asymptotic form:

M
f(x,z) ~ Z 4ufpksech(2pk(az + 2042) — 5]::) as z — *oo,
k=1
M
for some constants ukjE Linear relationship uf = ZTjku,; is explicitly com-
k=1

putable. Matrix elements depend only on {\,}. For example (M = 2):

- 1 [,\;—,\; ,\3—/\2].
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M. and Akhmediev (Phys. Rev. E, 1996)
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A “Solitonic” 50%-50% Power Splitter

X-junction linear mode



A Minus Sign: Zero-Crosstalk X-Junctions

N
Can also consider couplings where A(x,z) = — Z [4,|? and
n=1
N
.3¢k 132¢k 2
- — - n - O .
Z@z +28:I:2 n=1|¢ =)

The nonlinear properties of solutions of this defocusing equation are different,
and lead to qualitatively different behavior of the waveguide A(x, z).

Absolutely zero ‘“crosstalk” be-
tween intersecting waveguide
channels. Useful in dense optical
circuitry.

M. (Phys. Rev. E, 1996)

OSC = Optical Sciences Centre, Australian National University
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e Recall \y = o1 + t1pr. If some of the o, are identical, the waveguide can
have a periodic or quasiperiodic character.

e The bound states Wy ,(z,2) are exact independent Floquet solutions of
a linear Schrodinger equation with z-periodic coefficients. The potential
A(x,z) is like an isolated island in a sea of parametric resonances!

waveguide even mode odd mode superposition



Periodic Waveguiding Structures: Perturbation
Theory for 8~ 1

Modal decomposition provides an excellent starting point for perturbation
theory. Frequency detuning: =14 with < 1.

e Modal beating is a first order effect in

e Radiative decay is a second order effect in

even mode: - odd mode:

Besley, Akhmediev, and M. (Opt. Lett., 1997), (Stud. Appl. Math., 1998)
M., Soffer, and Weinstein (Nonlinearity, 2000)

Besley, M., and Akhmediev (Phys. Rev. E, 2000), (Opt. Quantum Electron.,
2001)



A Mechanical Model

MWW WY WY W

— L —~ M

H = Hyjnetic + Hpotential

1. 1 .
Hinetic = Z IEMU% T Em"’%]

n

Hpotential = Z W(L 4+ up41 — un)

+ Z |4 (\/(L + upt1 — un)? + (V41 — Un)2>
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A Continuum Limit
Scaling assumptions: m = M and V scales as V = uU for p < 1.

Small-amplitude long-wave ansatz: for h < 1, assume

up(t) = hu(X = hn, T = ht) and v,(t) = hv(X = hn,T = ht).

Assume group velocity matching condition LW"(L) = U'(L)

common velocity: c:= \/W”(L)/M.

Change to traveling frame variables: z = |/2(X —cT') and t =

Formal limit ~ J 0 with p < h?:
DA [1 42 0% A

—+_ 2 +8w2

0B o, 0°B
=0,
ox 0x?

]:o and 8—+_ kKAB + ——

A= — and B = — and k=

%hQT

Mc c 833 ¢ Oz L2W" (L)

W (L) 4 Ov LU"(L) — U'(L)
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Integrable Cases

— = d —+ — |kAB+ —
2 “ O an 8+8xh} +8a:

A(x,t) satisfies the Korteweg-de Vries (KdV) equation.

2 2
%_I__[ 8A] 0B 8[ 8B] 0

e «x = 1. B(xz,t) satisfies the linearized KdV equation.

0A
1. Simplest nontrivial solution: B(z,t) = a—(a:,t).
xr

2. Particular solutions in terms of *squared eigenfunctions’.
3. Completeness of squared eigenfunctions proved by R. L. Sachs (SIAM
J. Math. Anal., 1983).
e x = 1/2. Equation for B(z,t) is not a linearized KdV equation for any
solution A(z,t).
1. Simplest nontrivial solution: B(z,t) = A(x,t).
2. Other facts to follow. ..
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Parametric Instability of Co-propagating Waves
(General values of coupling k)

One-soliton solution for KdV:
A(z,t) = 12n°%sech?(nx)
where y = x — 4n°t — a. Ansatz for B(x,t):
B(z,t) = €”""by (nx)

Leads to a third-order eigenvalue problem
for b,(-) parametrized by «.

Im{c}

Bifurcation points: xk =k, =(n+1)(n+2)/12.

Stable wave trapping appears possible only for k =1/2 and x = 1.
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Solution Formulas: x =1/2

e Lax pair:
12fre = —=3X°f —2A(z,t)f

6fi = Au(x,t)f+ (61 —2A(z,1))fs
f = f(x,t,\) (Lax eigenfunction) exists when A(z,t) solves KdV.

e Pick A € C. Define

0 : 3
B(a:,t) — 8_x feztz()\x—i—)\ t)/2

e Exact elementary solutions in terms of linear forms in the Lax eigenfunc-
tions.

14



Algebraic Nature of N-Soliton Solutions
Kay and Moses (J. Appl. Phys., 1956): consider

N-1 .
fla,t, ) = <1 + > /\"an(a:,t)) exp (—%(/\a: + /\3t)) :

n=0

Pick n1 >n2>...>ny >0 and ai1,...,ay € R. Impose
f(z,t,2in,) = (=1)" T exp(2nnan) f(z, t, —2in,) ,

forn=1,...,N. This determines f,(x,t) for all n.
Ofn_
A(xz,t) = 61 ](;N 1(a:,t) solves KdV
N xr
~ Z 12n2sech?(n,(z — aF) — 4n3t) as t — +oo
n=1

fe(z,t, ) := f(x,t,£N) are linearly independent solutions of the Lax pair.
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Completeness Relation: k =1/2
Special solutions of linear PDE corresponding to N-soliton A(x,t):

ha(z,t,\) := aaﬁ 2, t,0) where gi(z,t,)\) = fi(z,t,\)exp (%()\w + )\3t)) .
Xr

Theorem 2 (M. and Clarke, SIAM J. Math. Anal., 2001) Let ¢(xz) € L' (R)
be absolutely continuous. Fix t € R and w € R. Define the “mode function”:

H(z,)\) := XVh_(z,t,\) (entire function of \),

+oo \ NV . 3
A t.\)e —1(Az + N7t
“amplitudes” : bi()\) :_—i/ g+(2t,A) exp(—i(Az )

b = bF () 57 (N), boi= o Res (5H(0) ~b (V) b i=F Res 7).
=0 A=+2in,

. 1 1 R
Then: ¢(z) = |lim TP'V'/ b(AN)H(xz, \) d\

R—oo 271 R
N
+ boH(x,0) + Y [b, H(w, —2in,) + b H(x, 2in,)] .
n=1
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Remarks:

e Representation of arbitrary ¢(x) in terms of a sum of discrete components
(“bound states” ) and a singular integral over a “continuous spectrum™.

e Only N independent bound states.

e Asymmetrical nature of the mapping between ¢(z) and its expansion
coefficients. Not just inner products.

Main ideas of proof:

0? A(x,t 0
1. gu(xz.t,\) satisfy an ODE in o —i2. 9% _A@D 99+
Ox2 6 ox

2. Construct “resolvent” by variation of parameters and integrate on large
semicircular contours in the X-plane.

3. Directly prove convergence to the identity operator. Similarities to Fourier
expansion apparent for large \.

4. Exploit nifty residue identities to collapse contours to R.
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Solving the Initial Value Problem for k = 1/2

8A 0B 0 1 823

Take A(w,t) to be an N-soliton solution of KdV. Solving for B(a;,t):

82A]

1. Project initial data B(z,0) onto the modes H(x,t,\) using the expansion
formulas.

2. Fix the expansion coefficients and let H(x,t, \) evolve explicitly in time.

3. Recover B(xz,t) for t > 0 by the completeness relation.
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Bound State Scattering for kK =1/2

N
A(z,t) ~ Y 12n2sech®(n.(z — o;) — 4nit)
n=1 as t — +oo

N
B(z,t) ~ Y 128inisech®(n(z —ap) — 4nit)
n=1

N
for some constants B. Linear relationship: B;r = ZTjkﬁk_ is explicitly com-
k=1
putable. Matrix elements depend only on {n,}. For example (N = 2):
T— 1 (m —n2)*  2n2(m — 12)
2 —n2 | 2m(m —m2) —(m —n2)?
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Bound State Scattering for kK =1/2

Effect of 15> < O:

Before Interaction

M. and Christiansen (Physica Scripta, 2000).
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Conclusions

Linear wave equations parametrically driven by solutions of nonlinear in-
tegrable equations arise in physical systems:

— By fortune

— By design

Integrable structure can be exploited to provide general solutions to these
linear equations in the form of generalized transforms.

Waves can indeed be trapped by solitons, and their mechanics (asymp-
totics) explicitly calculated, including interactions among the trapping
solitons.

Integrable machinery is a useful starting point for perturbation theory.
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