Trapping of Waves by Solitons

Peter D. Miller

Department of Mathematics
University of Michigan

Paraxial Planar Waveguide Optics

$i \beta \frac{\partial f}{\partial z}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}+\beta^{2} \Delta(x, z) f=0$
$f(x, z)$ is the stationary envelope of the electric field.
$\Delta(x, z)$ is the refractive index distribution.
β is a frequency parameter.

M-Soliton Waveguides and Exact Solutions: $\beta=1$

Begin with the expressions:
$a(x, z, \lambda)=\left(\lambda^{M}+\sum_{p=0}^{M-1} \lambda^{p} a^{(p)}(x, z)\right) e^{-2 i\left(\lambda x+\lambda^{2} z\right)}$ and $\vec{b}(x, z, \lambda)=\sum_{p=0}^{M-1} \lambda^{p} \vec{b}^{(p)}(x, z)$.
Choose $\lambda_{1}, \ldots, \lambda_{M}$ in \mathbb{C}_{+}, and corresponding N-vectors $\vec{g}^{(1)}, \ldots, \vec{g}^{(M)}$.
$\forall k$, impose: $a\left(x, z, \lambda_{k}\right)=\vec{g}^{(k) \dagger} \vec{b}\left(x, z, \lambda_{k}\right)$ and $\vec{b}\left(x, z, \lambda_{k}^{*}\right)=-a\left(x, z, \lambda_{k}^{*}\right) \vec{g}^{(k)}$.
Index function: set $\Delta(x, z)=4 \sum_{n=1}^{N}\left|b_{n}^{(M-1)}(x, z)\right|^{2}$.
Corresponding Exact Solutions for $f(x, z)$:

- Dispersive modes for $\lambda \in \mathbb{R}: \Psi_{\mathrm{d}}(x, z, \lambda)=\left(\pi \prod_{k=1}^{M}\left|\lambda-\lambda_{k}\right|^{2}\right)^{-1 / 2} a(x, z, \lambda)$
- M independent bound states: $\left\{\Psi_{\mathrm{b}, 1}(x, z), \ldots, \Psi_{\mathrm{b}, M}(x, z)\right\}$ obtained from $\left\{a\left(x, z, \lambda_{1}^{*}\right), \ldots, a\left(x, z, \lambda_{M}^{*}\right)\right\}$ by Gram-Schmidt in $L^{2}(\mathbb{R})$.

In the background is a nonlinear problem...

$$
i \frac{\partial \psi_{k}}{\partial z}+\frac{1}{2} \frac{\partial^{2} \psi_{k}}{\partial x^{2}}+\left(\sum_{n=1}^{N}\left|\psi_{n}\right|^{2}\right) \psi_{k}=0
$$

and $\psi_{k}(x, z)=2 i b_{k}^{(M-1)}(x, z)$.

Completeness Relation

Theorem 1 (M. and Akhmediev, Physica D, 1998) The functions $\psi_{\mathrm{d}}(x, z, \lambda)$ for $\lambda \in \mathbb{R}$ and $\left\{\Psi_{\mathrm{b}, 1}(x, z), \ldots, \Psi_{\mathrm{b}, M}(x, z)\right\}$ form an orthonormal basis of $L^{2}(\mathbb{R})$ for any fixed z. Thus, for $\phi(x) \in L^{2}(\mathbb{R})$, we have

$$
\phi(x)=\sum_{k=1}^{M} \widehat{\phi}_{k} \Psi_{\mathrm{b}, k}(x, z)+\int_{-\infty}^{\infty} \widehat{\phi}(\lambda) \Psi_{\mathrm{d}}(x, z, \lambda) d \lambda
$$

where

$$
\widehat{\phi}(\lambda)=\int_{-\infty}^{\infty} \Psi_{\mathrm{d}}(x, z, \lambda)^{*} \phi(x) d x \quad \text { and } \quad \hat{\phi}_{k}=\int_{-\infty}^{\infty} \Psi_{\mathrm{b}, k}(x, z)^{*} \phi(x) d x
$$

Solution of Initial Value Problem: $\beta=1$

$$
i \frac{\partial f}{\partial z}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}+\Delta(x, z) f=0
$$

$\Delta(x, z)$ specified by discrete data $\left\{\lambda_{1}, \ldots, \lambda_{M}\right\}$ and $\left\{\vec{g}^{(1)}, \ldots, \vec{g}^{(M)}\right\}$.

1. Project the initial data $f(x, 0)$ orthogonally onto the basis elements $\Psi_{\mathrm{d}}(x, z, \lambda)$ and $\left\{\Psi_{\mathrm{b}, k}(x, z)\right\}$ at $z=0$.
2. Fix the expansion coefficients and let the basis elements evolve explicitly in "time" z.
3. Recover $f(x, z)$ for $z>0$ by the completeness relation.

Bound State Scattering for $\beta=1$

Let $\lambda_{k}=\sigma_{k}+i \rho_{k}$. If $\sigma_{1}, \ldots, \sigma_{M}$ are distinct, then

$$
\Delta(x, z) \sim \sum_{k=1}^{M} 4 \rho_{k}^{2} \operatorname{sech}^{2}\left(2 \rho_{k}\left(x+2 \sigma_{k} z\right)-\delta_{k}^{ \pm}\right) \quad \text { as } \quad z \rightarrow \pm \infty .
$$

Superpositions of $\Psi_{\mathrm{b}, k}(x, z)$ have a similar asymptotic form:

$$
f(x, z) \sim \sum_{k=1}^{M} 4 u_{k}^{ \pm} \rho_{k} \operatorname{sech}\left(2 \rho_{k}\left(x+2 \sigma_{k} z\right)-\delta_{k}^{ \pm}\right) \quad \text { as } \quad z \rightarrow \pm \infty,
$$

for some constants $u_{k}^{ \pm}$. Linear relationship $u_{j}^{+}=\sum_{k=1}^{M} T_{j k} u_{k}^{-}$is explicitly computable. Matrix elements depend only on $\left\{\lambda_{n}\right\}$. For example $(M=2)$:

$$
T=\frac{1}{\lambda_{1}^{*}-\lambda_{2}}\left[\begin{array}{ll}
\lambda_{1}^{*}-\lambda_{2}^{*} & \lambda_{2}^{*}-\lambda_{2} \\
\lambda_{1}^{*}-\lambda_{1} & \lambda_{1}-\lambda_{2}
\end{array}\right] .
$$

M. and Akhmediev (Phys. Rev. E, 1996)

Bound State Scattering for $\beta=1$

 A "Solitonic" 50\%-50\% Power Splitter
X-junction

linear mode

A Minus Sign: Zero-Crosstalk X-Junctions

Can also consider couplings where $\Delta(x, z)=-\sum_{n=1}^{N}\left|\psi_{n}\right|^{2}$ and

$$
i \frac{\partial \psi_{k}}{\partial z}+\frac{1}{2} \frac{\partial^{2} \psi_{k}}{\partial x^{2}}-\left(\sum_{n=1}^{N}\left|\psi_{n}\right|^{2}\right) \psi_{k}=0
$$

The nonlinear properties of solutions of this defocusing equation are different, and lead to qualitatively different behavior of the waveguide $\Delta(x, z)$.

Absolutely zero "crosstalk" between intersecting waveguide channels. Useful in dense optical circuitry.
M. (Phys. Rev. E, 1996)

OSC $=$ Optical Sciences Centre, Australian National University

Periodic Waveguiding Structures: $\beta=1$

- Recall $\lambda_{k}=\sigma_{k}+i \rho_{k}$. If some of the σ_{k} are identical, the waveguide can have a periodic or quasiperiodic character.
- The bound states $\Psi_{\mathrm{b}, k}(x, z)$ are exact independent Floquet solutions of a linear Schrödinger equation with z-periodic coefficients. The potential $\Delta(x, z)$ is like an isolated island in a sea of parametric resonances!

Periodic Waveguiding Structures: Perturbation Theory for $\beta \approx 1$

Modal decomposition provides an excellent starting point for perturbation theory. Frequency detuning: $\beta=1+\epsilon$ with $\in \ll 1$.

- Modal beating is a first order effect in :

- Radiative decay is a second order effect in \in

> even mode:
 odd mode:

Besley, Akhmediev, and M. (Opt. Lett., 1997), (Stud. Appl. Math., 1998) M., Soffer, and Weinstein (Nonlinearity, 2000)

Besley, M., and Akhmediev (Phys. Rev. E, 2000), (Opt. Quantum Electron., 2001)

A Mechanical Model

$H=H_{\text {kinetic }}+H_{\text {potential }}$

$$
H_{\text {kinetic }}=\sum_{n}\left[\frac{1}{2} M \dot{u}_{n}^{2}+\frac{1}{2} m \dot{v}_{n}^{2}\right]
$$

$$
H_{\text {potential }}=\sum_{n} W\left(L+u_{n+1}-u_{n}\right)
$$

$$
+\sum_{n} V\left(\sqrt{\left(L+u_{n+1}-u_{n}\right)^{2}+\left(v_{n+1}-v_{n}\right)^{2}}\right)
$$

A Continuum Limit

- Scaling assumptions: $m=\mu M$ and V scales as $V=\mu U$ for $\mu \ll 1$.
- Small-amplitude long-wave ansatz: for $h \ll 1$, assume

$$
u_{n}(t)=h u(X=h n, T=h t) \quad \text { and } \quad v_{n}(t)=h v(X=h n, T=h t) .
$$

- Assume group velocity matching condition $L W^{\prime \prime}(L)=U^{\prime}(L)$

$$
\text { common velocity: } c:=\sqrt{W^{\prime \prime}(L) / M}
$$

- Change to traveling frame variables: $x=\sqrt{\frac{24}{c}}(X-c T)$ and $t=\sqrt{\frac{24}{c}} h^{2} T$
- Formal limit $h \downarrow 0$ with $\mu \ll h^{2}$:

$$
\begin{gathered}
\frac{\partial A}{\partial t}+\frac{\partial}{\partial x}\left[\frac{1}{2} A^{2}+\frac{\partial^{2} A}{\partial x^{2}}\right]=0 \text { and } \frac{\partial B}{\partial t}+\frac{\partial}{\partial x}\left[\kappa A B+\frac{\partial^{2} B}{\partial x^{2}}\right]=0, \\
A=\frac{W^{\prime \prime \prime}(L)}{M c} \sqrt{\frac{6}{c}} \frac{\partial u}{\partial x} \text { and } B=\sqrt{\frac{24}{c}} \frac{\partial v}{\partial x} \text { and } \kappa:=\frac{L U^{\prime \prime}(L)-U^{\prime}(L)}{L^{2} W^{\prime \prime \prime}(L)} .
\end{gathered}
$$

Integrable Cases

$$
\frac{\partial A}{\partial t}+\frac{\partial}{\partial x}\left[\frac{1}{2} A^{2}+\frac{\partial^{2} A}{\partial x^{2}}\right]=0 \quad \text { and } \quad \frac{\partial B}{\partial t}+\frac{\partial}{\partial x}\left[\kappa A B+\frac{\partial^{2} B}{\partial x^{2}}\right]=0
$$

$A(x, t)$ satisfies the Korteweg-de Vries (KdV) equation.

- $\kappa=1$. $B(x, t)$ satisfies the linearized $K d V$ equation.

1. Simplest nontrivial solution: $B(x, t)=\frac{\partial A}{\partial x}(x, t)$.
2. Particular solutions in terms of "squared eigenfunctions".
3. Completeness of squared eigenfunctions proved by R. L. Sachs (SIAM J. Math. Anal., 1983).

- $\kappa=1 / 2$. Equation for $B(x, t)$ is not a linearized KdV equation for any solution $A(x, t)$.

1. Simplest nontrivial solution: $B(x, t)=A(x, t)$.
2. Other facts to follow. . .

Parametric Instability of Co-propagating Waves

 (General values of coupling κ)One-soliton solution for KdV :

$$
A(x, t)=12 \eta^{2} \operatorname{sech}^{2}(\eta \chi)
$$

where $\chi=x-4 \eta^{2} t-\alpha$. Ansatz for $B(x, t)$:

$$
B(x, t)=e^{\sigma \eta^{3} t} b_{\sigma}(\eta \chi)
$$

Leads to a third-order eigenvalue problem for $b_{\sigma}(\cdot)$ parametrized by κ.

Bifurcation points: $\kappa=\kappa_{n}=(n+1)(n+2) / 12$.
Stable wave trapping appears possible only for $\kappa=1 / 2$ and $\kappa=1$.

Solution Formulas: $\kappa=1 / 2$

- Lax pair:

$$
\begin{aligned}
12 f_{x x} & =-3 \lambda^{2} f-2 A(x, t) f \\
6 f_{t} & =A_{x}(x, t) f+\left(6 \lambda^{2}-2 A(x, t)\right) f_{x}
\end{aligned}
$$

$f=f(x, t, \lambda)$ (Lax eigenfunction) exists when $A(x, t)$ solves KdV.

- Pick $\lambda \in \mathbb{C}$. Define

$$
B(x, t):=\frac{\partial}{\partial x}\left[f e^{ \pm i\left(\lambda x+\lambda^{3} t\right) / 2}\right]
$$

- Exact elementary solutions in terms of linear forms in the Lax eigenfunctions.

Algebraic Nature of N -Soliton Solutions

Kay and Moses (J. Appl. Phys., 1956): consider

$$
f(x, t, \lambda)=\left(1+\sum_{n=0}^{N-1} \lambda^{n-N} f_{n}(x, t)\right) \exp \left(-\frac{i}{2}\left(\lambda x+\lambda^{3} t\right)\right) .
$$

Pick $\eta_{1}>\eta_{2}>\ldots>\eta_{N}>0$ and $\alpha_{1}, \ldots, \alpha_{N} \in \mathbb{R}$. Impose

$$
f\left(x, t, 2 i \eta_{n}\right)=(-1)^{n+1} \exp \left(2 \eta_{n} \alpha_{n}\right) f\left(x, t,-2 i \eta_{n}\right)
$$

for $n=1, \ldots, N$. This determines $f_{n}(x, t)$ for all n.

$$
\begin{aligned}
A(x, t) & :=6 i \frac{\partial f_{N-1}}{\partial x}(x, t) \quad \text { solves KdV } \\
& \sim \sum_{n=1}^{N} 12 \eta_{n}^{2} \operatorname{sech}^{2}\left(\eta_{n}\left(x-\alpha_{n}^{ \pm}\right)-4 \eta_{n}^{3} t\right) \quad \text { as } t \rightarrow \pm \infty
\end{aligned}
$$

$f_{ \pm}(x, t, \lambda):=f(x, t, \pm \lambda)$ are linearly independent solutions of the Lax pair.

Completeness Relation: $\kappa=1 / 2$

Special solutions of linear PDE corresponding to N-soliton $A(x, t)$:

$$
h_{ \pm}(x, t, \lambda):=\frac{\partial g_{ \pm}}{\partial x}(x, t, \lambda) \text { where } g_{ \pm}(x, t, \lambda):=f_{ \pm}(x, t, \lambda) \exp \left(\frac{i}{2}\left(\lambda x+\lambda^{3} t\right)\right) .
$$

Theorem 2 (M. and Clarke, SIAM J. Math. Anal., 2001) Let $\phi(x) \in L^{1}(\mathbb{R})$ be absolutely continuous. Fix $t \in \mathbb{R}$ and $w \in \mathbb{R}$. Define the "mode function":

$$
\begin{gathered}
H(x, \lambda):=\lambda^{N} h_{-}(x, t, \lambda) \quad \text { (entire function of } \lambda \text {), } \\
\text { "amplitudes": } b^{ \pm}(\lambda):= \pm \int_{w}^{ \pm \infty} \frac{\lambda^{N} g_{+}(z, t, \lambda) \exp \left(-i\left(\lambda z+\lambda^{3} t\right)\right)}{\lambda\left(\lambda^{2}+4 \eta_{1}^{2}\right) \cdots\left(\lambda^{2}+4 \eta_{N}^{2}\right)} \phi(z) d z, \\
b(\lambda):=b^{+}(\lambda)+b^{-}(\lambda), \quad b_{0}:=\frac{1}{2} \operatorname{Res}_{\lambda=0}\left(b^{+}(\lambda)-b^{-}(\lambda)\right), \quad b_{n}^{ \pm}:=\mp \operatorname{Res}_{\lambda= \pm 2 i \eta_{n}} b^{\mp}(\lambda) .
\end{gathered}
$$

$$
\begin{aligned}
& \text { Then: } \phi(x)=\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \mathrm{P} . \mathrm{V} \cdot \int_{-R}^{R} b(\lambda) H(x, \lambda) d \lambda \\
& \quad+b_{0} H(x, 0)+\sum_{n=1}^{N}\left[b_{n}^{-} H\left(x,-2 i \eta_{n}\right)+b_{n}^{+} H\left(x, 2 i \eta_{n}\right)\right] .
\end{aligned}
$$

Remarks:

- Representation of arbitrary $\phi(x)$ in terms of a sum of discrete components ("bound states") and a singular integral over a "continuous spectrum".
- Only N independent bound states.
- Asymmetrical nature of the mapping between $\phi(x)$ and its expansion coefficients. Not just inner products.

Main ideas of proof:

1. $g_{ \pm}(x, t, \lambda)$ satisfy an ODE in $x:-i \frac{\partial^{2} g_{ \pm}}{\partial x^{2}}-i \frac{A(x, t)}{6} g_{ \pm}=\lambda \frac{\partial g_{ \pm}}{\partial x}$.
2. Construct "resolvent" by variation of parameters and integrate on large semicircular contours in the λ-plane.
3. Directly prove convergence to the identity operator. Similarities to Fourier expansion apparent for large λ.
4. Exploit nifty residue identities to collapse contours to \mathbb{R}.

Solving the Initial Value Problem for $\kappa=1 / 2$

$$
\frac{\partial A}{\partial t}+\frac{\partial}{\partial x}\left[\frac{1}{2} A^{2}+\frac{\partial^{2} A}{\partial x^{2}}\right]=0 \quad \frac{\partial B}{\partial t}+\frac{\partial}{\partial x}\left[\frac{1}{2} A B+\frac{\partial^{2} B}{\partial x^{2}}\right]=0
$$

Take $A(x, t)$ to be an N-soliton solution of KdV . Solving for $B(x, t)$:

1. Project initial data $B(x, 0)$ onto the modes $H(x, t, \lambda)$ using the expansion formulas.
2. Fix the expansion coefficients and let $H(x, t, \lambda)$ evolve explicitly in time.
3. Recover $B(x, t)$ for $t>0$ by the completeness relation.

Bound State Scattering for $\kappa=1 / 2$

$$
\begin{array}{ll}
A(x, t) \sim \sum_{n=1}^{N} 12 \eta_{n}^{2} \operatorname{sech}^{2}\left(\eta_{n}\left(x-\alpha_{n}^{ \pm}\right)-4 \eta_{n}^{3} t\right) \\
B(x, t) \sim \sum_{n=1}^{N} 12 \beta_{n}^{ \pm} \eta_{n}^{2} \operatorname{sech}^{2}\left(\eta_{n}\left(x-\alpha_{n}^{ \pm}\right)-4 \eta_{n}^{3} t\right)
\end{array}
$$

for some constants $\beta_{n}^{ \pm}$. Linear relationship: $\beta_{j}^{+}=\sum_{k=1}^{N} T_{j k} \beta_{k}^{-}$is explicitly computable. Matrix elements depend only on $\left\{\eta_{n}\right\}$. For example $(N=2)$:

$$
\mathbf{T}=\frac{1}{\eta_{1}^{2}-\eta_{2}^{2}}\left[\begin{array}{cc}
\left(\eta_{1}-\eta_{2}\right)^{2} & 2 \eta_{2}\left(\eta_{1}-\eta_{2}\right) \\
2 \eta_{1}\left(\eta_{1}-\eta_{2}\right) & -\left(\eta_{1}-\eta_{2}\right)^{2}
\end{array}\right]
$$

Bound State Scattering for $\kappa=1 / 2$

Effect of $T_{22}<0$:

M. and Christiansen (Physica Scripta, 2000).

Conclusions

- Linear wave equations parametrically driven by solutions of nonlinear integrable equations arise in physical systems:
- By fortune
- By design
- Integrable structure can be exploited to provide general solutions to these linear equations in the form of generalized transforms.
- Waves can indeed be trapped by solitons, and their mechanics (asymptotics) explicitly calculated, including interactions among the trapping solitons.
- Integrable machinery is a useful starting point for perturbation theory.

