
What do water waves have to do with algebraic
geometry?

Peter D. Miller

Department of Mathematics, University of Michigan

May 14, 2007

Abstract
This talk will discuss a remarkable and quite symmetrical interaction bwetween the applied

mathematical subject of nonlinear wave motion and the pure mathematical subject of algebraic

geometry. As an example, we will talk about how algebraic geometry can be used to generate

solutions of nonlinear wave equations. Then we will discuss how nonlinear wave theory solves a

long-standing problem of algebraic geometry. Other topics may also be discussed if there is time.
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Modeling Water Waves: Physical Model
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Modeling Water Waves: Physical Model
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Modeling Water Waves: Physical Model

Cauchy-Kovaleskaya series solution of Laplace’s equation subject to φz = 0 for z = −1:

φ(x, y, z, t) = φ0(x, y, t) +

∞X
k=1

(−1)k

(2k)!

h
∆
k
x,yφ0(x, y, t)

i
(z + 1)

2k
.



What do water waves have to do with algebraic geometry? May 14, 2007

Modeling Water Waves: Physical Model

Cauchy-Kovaleskaya series solution of Laplace’s equation subject to φz = 0 for z = −1:

φ(x, y, z, t) = φ0(x, y, t) +
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(−1)k

(2k)!
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∆
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Here ∆x,y denotes the two-dimensional (horizontal) Laplacian:

∆x,y :=
∂2

∂x2
+

∂2

∂y2
.

It remains to determine the leading coefficient φ0(x, y, t).
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Modeling Water Waves: Physical Model

Cauchy-Kovaleskaya series solution of Laplace’s equation subject to φz = 0 for z = −1:

φ(x, y, z, t) = φ0(x, y, t) +

∞X
k=1

(−1)k

(2k)!

h
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k
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i
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2k
.

Here ∆x,y denotes the two-dimensional (horizontal) Laplacian:

∆x,y :=
∂2

∂x2
+

∂2

∂y2
.

It remains to determine the leading coefficient φ0(x, y, t).

Note that this series has a nonzero radius of convergence about z = −1 at (x, y) if

φ0(x, y, t) is an analytic function of x and y.
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Modeling Water Waves: Weakly Nonlinear Long Waves
Key assumption for long waves: for some small dimensionless parameter ε > 0 we

introduce new independent variables X, Y , and T with respect to which one unit

measures the size of a typical wave by

X := ε
1/2
x , Y := ε

1/2
y , T := ε

1/2
t .
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Modeling Water Waves: Weakly Nonlinear Long Waves
Key assumption for long waves: for some small dimensionless parameter ε > 0 we

introduce new independent variables X, Y , and T with respect to which one unit

measures the size of a typical wave by

X := ε
1/2
x , Y := ε

1/2
y , T := ε

1/2
t .

Considering φ0 = w(X,Y, T ), the series for φ gets a new interpretation as an

asymptotic series in the limit ε ↓ 0:

φ = w −
ε
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2
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) , ∆ := ∆X,Y .
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measures the size of a typical wave by
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Key assumption for weak nonlinearity (small amplitude): the free surface is displaced only

slightly from its mean location of z = 0. We therefore set

h = εG(X,Y, T ) .
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Modeling Water Waves: Weakly Nonlinear Long Waves
Key assumption for long waves: for some small dimensionless parameter ε > 0 we

introduce new independent variables X, Y , and T with respect to which one unit

measures the size of a typical wave by

X := ε
1/2
x , Y := ε

1/2
y , T := ε

1/2
t .

Considering φ0 = w(X,Y, T ), the series for φ gets a new interpretation as an

asymptotic series in the limit ε ↓ 0:

φ = w −
ε

2
(z + 1)

2
∆w +

ε2

24
(z + 1)

4
∆

2
w +O(ε

3
) , ∆ := ∆X,Y .

Key assumption for weak nonlinearity (small amplitude): the free surface is displaced only

slightly from its mean location of z = 0. We therefore set

h = εG(X,Y, T ) .

For consistency, scale the velocity potential with ε as well: w = ε1/2N(X,Y, T ).
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Modeling Water Waves: Weakly Nonlinear Long Waves

The two functions G(X,Y, T ) and N(X,Y, T ) are to be determined by imposing the

kinematic and force-balance boundary conditions at z = h = εG(X,Y, T ).
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Modeling Water Waves: Weakly Nonlinear Long Waves

The two functions G(X,Y, T ) and N(X,Y, T ) are to be determined by imposing the

kinematic and force-balance boundary conditions at z = h = εG(X,Y, T ).

The kinematic boundary condition ht + φxhx + φyhy = φz takes the form

GT +∆N + ε

»
∇G · ∇N +G∆N −

1

6
∆

2
N

–
= O(ε

2
) , ∇ :=

„
∂
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,
∂

∂Y

«
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The force-balance boundary condition φt +
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2(φx)

2 + 1
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2 + 1
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2 + h = 0 reads
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Modeling Water Waves: Weakly Nonlinear Long Waves

The two functions G(X,Y, T ) and N(X,Y, T ) are to be determined by imposing the

kinematic and force-balance boundary conditions at z = h = εG(X,Y, T ).

The kinematic boundary condition ht + φxhx + φyhy = φz takes the form
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The force-balance boundary condition φt +
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2 + h = 0 reads
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Eliminating G (assuming derivatives of O(ε2) are O(ε2)):

NTT −∆N + ε

»
1

6
∆
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N −
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∆NTT + 2∇N · ∇NT +NT∆N

–
= O(ε

2
) .
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Modeling Water Waves: The KdV Equation

Korteweg and de Vries (1895) considered the case of waves in a thin channel, which

means they sought solutions independent of Y . In this case, the equation for N becomes

NTT −NXX + ε

»
1

6
NXXXX −

1

2
NXXTT + 2NXNXT +NTNXX

–
= O(ε

2
) .

D. J. Korteweg and G. de Vries, Philos. Mag. Ser. 5, 39, 422–443, 1895.
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Modeling Water Waves: The KdV Equation

Korteweg and de Vries (1895) considered the case of waves in a thin channel, which

means they sought solutions independent of Y . In this case, the equation for N becomes

NTT −NXX + ε

»
1

6
NXXXX −

1

2
NXXTT + 2NXNXT +NTNXX

–
= O(ε

2
) .

This looks like a perturbation of the wave equation NTT = NXX, which has solutions of

the form of arbitrary functions of X ± T . To examine the right-going waves (say), go

into a moving frame of reference with the change of coordinates ξ := X − T and

τ := εT . The equation for N then becomes

2Nξτ +
1

3
Nξξξξ + 3NξNξξ = O(ε) .

D. J. Korteweg and G. de Vries, Philos. Mag. Ser. 5, 39, 422–443, 1895.
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Modeling Water Waves: The KdV Equation

Korteweg and de Vries (1895) considered the case of waves in a thin channel, which

means they sought solutions independent of Y . In this case, the equation for N becomes

NTT −NXX + ε

»
1

6
NXXXX −
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2
NXXTT + 2NXNXT +NTNXX

–
= O(ε

2
) .

This looks like a perturbation of the wave equation NTT = NXX, which has solutions of

the form of arbitrary functions of X ± T . To examine the right-going waves (say), go

into a moving frame of reference with the change of coordinates ξ := X − T and

τ := εT . The equation for N then becomes

2Nξτ +
1

3
Nξξξξ + 3NξNξξ = O(ε) .

Neglecting O(ε) and setting F = Nξ leads to the Korteweg-de Vries (KdV) equation:

Fτ +
3

2
FFξ +

1

6
Fξξξ = 0 .

D. J. Korteweg and G. de Vries, Philos. Mag. Ser. 5, 39, 422–443, 1895.
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Modeling Water Waves: The KP Equation
Recall the general equation governing weakly nonlinear long waves:

NTT −∆N + ε

»
1

6
∆

2
N −

1

2
∆NTT + 2∇N · ∇NT +NT∆N

–
= O(ε

2
) .

B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl., 15, 539–541, 1970.
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Modeling Water Waves: The KP Equation
Recall the general equation governing weakly nonlinear long waves:
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1

6
∆

2
N −

1

2
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–
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Kadomtsev and Petviashvili (1970) were interested in instabilities of the Y -independent

waves that break this symmetry. To consider waves propagating “primarily in the positive

X-direction” with weak dependence on Y , use the coordinate system ξ := X − T ,

η := ε1/2Y , τ := εT .

B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl., 15, 539–541, 1970.
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Modeling Water Waves: The KP Equation
Recall the general equation governing weakly nonlinear long waves:
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∆NTT + 2∇N · ∇NT +NT∆N

–
= O(ε
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) .

Kadomtsev and Petviashvili (1970) were interested in instabilities of the Y -independent

waves that break this symmetry. To consider waves propagating “primarily in the positive

X-direction” with weak dependence on Y , use the coordinate system ξ := X − T ,

η := ε1/2Y , τ := εT . Thus, one obtains

2Nξτ +Nηη +
1

3
Nξξξξ + 3NξNξξ = O(ε) .

B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl., 15, 539–541, 1970.



What do water waves have to do with algebraic geometry? May 14, 2007

Modeling Water Waves: The KP Equation
Recall the general equation governing weakly nonlinear long waves:
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Kadomtsev and Petviashvili (1970) were interested in instabilities of the Y -independent

waves that break this symmetry. To consider waves propagating “primarily in the positive

X-direction” with weak dependence on Y , use the coordinate system ξ := X − T ,

η := ε1/2Y , τ := εT . Thus, one obtains

2Nξτ +Nηη +
1

3
Nξξξξ + 3NξNξξ = O(ε) .

Neglecting O(ε), taking ∂/∂ξ and setting (as in the KdV case) F = Nξ, one arrives at

the Kadomtsev-Petviashvili (KP) equation:
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B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl., 15, 539–541, 1970.
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Modeling Water Waves: Physical Phenomena

John Scott-Russell, “Report on Waves” to the British Association, 1844:

I believe I shall best introduce the phaenomenon by describing the circumstances of my own first acquaintance with it. I

was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat

suddenly stopped — not so the mass of water in the channel which it had put in motion; it accumulated round the prow

of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming

the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course

along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook

it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a

foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the

windings of the channel.
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Modeling Water Waves: Physical Phenomena

John Scott-Russell, “Report on Waves” to the British Association, 1844:

I believe I shall best introduce the phaenomenon by describing the circumstances of my own first acquaintance with it. I

was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat

suddenly stopped — not so the mass of water in the channel which it had put in motion; it accumulated round the prow

of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming

the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course

along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook

it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a

foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the

windings of the channel.

Scott-Russell’s “solitary wave” corresponds to a special solution (the soliton) of the KdV equation in the
form ut + uux + uxxx = 0:

u(x, t) = 3c sech
2
„√

c

2
(x− x0 − ct)

«
, wavespeed is c > 0.
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Modeling Water Waves: Physical Phenomena

Scott-Russell’s wave re-created in the Scott-Russell Aqueduct of the Union Canal

(Scotland):
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Modeling Water Waves: Physical Phenomena

The KdV and KP equations are universal in applied mathematics, and their importance

there extends far beyond the theory of surface water waves. Another application is in the

modeling of internal waves in the atmosphere. The “Morning Glory” wave (Burketown,

Queensland, Australia):

Return to outline.



What do water waves have to do with algebraic geometry? May 14, 2007

Solutions of KdV and KP: Lax Pair for KdV

The hallmark of integrability of a nonlinear equation is its capacity to be represented as

the compatibility condition for an overdetermined system of two linear equations (a Lax

pair).

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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Solutions of KdV and KP: Lax Pair for KdV

The hallmark of integrability of a nonlinear equation is its capacity to be represented as

the compatibility condition for an overdetermined system of two linear equations (a Lax

pair).

The Lax pair for KdV (Gardner, Greene, Kruskal, and Miura, 1967) consists of the two

linear equations

−6φxx − uφ = λφ and φt = −4φxxx − uφx −
1

2
uxφ

where λ is a complex parameter (eigenvalue) and u = u(x, t) is a nonconstant

coefficient.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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Solutions of KdV and KP: Lax Pair for KdV

The hallmark of integrability of a nonlinear equation is its capacity to be represented as

the compatibility condition for an overdetermined system of two linear equations (a Lax

pair).

The Lax pair for KdV (Gardner, Greene, Kruskal, and Miura, 1967) consists of the two

linear equations

−6φxx − uφ = λφ and φt = −4φxxx − uφx −
1

2
uxφ

where λ is a complex parameter (eigenvalue) and u = u(x, t) is a nonconstant

coefficient.

The condition for the compatibility of this Lax pair amounts to an equation governing

u = u(x, t), namely, the KdV equation in the form

ut + uux + uxxx = 0 .

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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Solutions of KdV and KP: Solitons in KdV

This means: whenever u(x, t) satisfies ut + uux + uxxx = 0 there is a basis of

functions φ that simultaneously satisfy both linear equations of the Lax pair.
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Solutions of KdV and KP: Solitons in KdV

This means: whenever u(x, t) satisfies ut + uux + uxxx = 0 there is a basis of

functions φ that simultaneously satisfy both linear equations of the Lax pair.

Example 1: the simplest solution of KdV is u(x, t) ≡ 0. In this case, by direct

calculation, the simultaneous solution is

φ(x, t, k) = e
kx−4k3t

, where k :=

r
−
λ

6
.

A second solution, linearly independent for k 6= 0, is obtained by replacing k with −k.
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Solutions of KdV and KP: Solitons in KdV

This means: whenever u(x, t) satisfies ut + uux + uxxx = 0 there is a basis of

functions φ that simultaneously satisfy both linear equations of the Lax pair.

Example 1: the simplest solution of KdV is u(x, t) ≡ 0. In this case, by direct

calculation, the simultaneous solution is

φ(x, t, k) = e
kx−4k3t

, where k :=

r
−
λ

6
.

A second solution, linearly independent for k 6= 0, is obtained by replacing k with −k.

Example 2: another solution of KdV is the soliton u(x, t) = 3c sech2(ξ) with

ξ :=
√
c(x− x0 − ct)/2. Since u→ 0 for large x and t, it is reasonable to seek φ in

the form φ = ψekx−4k3t, and it is easy to solve for ψ:

φ(x, t, k) =

„
1−

√
c

2k
tanh

„√
c

2
(x− x0 − ct)

««
e
kx−4k3t

.
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Solutions of KdV and KP: Solitons in KdV

Recall the function φ in Example 2:

φ(x, t, k) =

„
1−

√
c

2k
tanh

„√
c

2
(x− x0 − ct)

««
e
kx−4k3t

.
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Solutions of KdV and KP: Solitons in KdV

Recall the function φ in Example 2:

φ(x, t, k) =

„
1−

√
c

2k
tanh

„√
c

2
(x− x0 − ct)

««
e
kx−4k3t

.

This formula has an interesting property: the exponential factor is a part of the tanh

whenever k = ±
√
c/2. This implies a relation between the two functions

φ(x, t,±
√
c/2):

φ(x, t,−
√
c/2)

φ(x, t,
√
c/2)

= e
−
√
cx0 =: γ1 = constant (independent of x and t) .
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Solutions of KdV and KP: Solitons in KdV

Recall the function φ in Example 2:

φ(x, t, k) =

„
1−

√
c

2k
tanh

„√
c

2
(x− x0 − ct)

««
e
kx−4k3t

.

This formula has an interesting property: the exponential factor is a part of the tanh

whenever k = ±
√
c/2. This implies a relation between the two functions

φ(x, t,±
√
c/2):

φ(x, t,−
√
c/2)

φ(x, t,
√
c/2)

= e
−
√
cx0 =: γ1 = constant (independent of x and t) .

We can try to generalize these features in a straightforward manner. . .
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Solutions of KdV and KP: Solitons in KdV

Perhaps for N = 0, 1, 2, . . . , there are solutions of KdV corresponding to φ of the form

φ(x, t, k) =
“
1 + φ

−
1 (x, t)k

−1
+ · · ·+ φ

−
N(x, t)k

−N
”
e
kx−4k3t

(1)

that, for some data 0 < κ1 < · · · < κN and {γn > 0}Nn=1 satisfy relations of the form

φ(x, t,−κn) = (−1)
N−n

γnφ(x, t, κn) , n = 1, . . . , N . (2)

That this works is the consequence of some simple facts.
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Solutions of KdV and KP: Solitons in KdV

Perhaps for N = 0, 1, 2, . . . , there are solutions of KdV corresponding to φ of the form

φ(x, t, k) =
“
1 + φ

−
1 (x, t)k

−1
+ · · ·+ φ

−
N(x, t)k

−N
”
e
kx−4k3t

(1)

that, for some data 0 < κ1 < · · · < κN and {γn > 0}Nn=1 satisfy relations of the form

φ(x, t,−κn) = (−1)
N−n

γnφ(x, t, κn) , n = 1, . . . , N . (2)

That this works is the consequence of some simple facts.
Proposition 1. Fix (x, t) ∈ R2. The set Λ of functions f(k) of a complex variable k having the form

f(k) =
“
f0 + f

−
1 k

−1
+ · · ·+ f

−
Nk

−N
”
e
kx−4k3t

is a vector space of dimension N +1 over C. Given a set of data as above, the subspace Λ0 of functions
obeying (2) satisfies dim(Λ0) = 1. In particular, if f ∈ Λ0 is normalized by f0 = 1, then it is
uniquely determined, and if f ∈ Λ0 satisfies f0 = 0, then f(k) ≡ 0.



What do water waves have to do with algebraic geometry? May 14, 2007

Solutions of KdV and KP: Solitons in KdV

This means that a function of the form (1) is uniquely determined by the conditions (2).
Now we claim that this function satisfies some linear differential equations.
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Solutions of KdV and KP: Solitons in KdV

This means that a function of the form (1) is uniquely determined by the conditions (2).
Now we claim that this function satisfies some linear differential equations.
Proposition 2. For each set of data, the function φ(x, t, k) satisfies

−6φxx − uφ = λφ

where λ = −6k2, and where the potential function u(x, t) is given in terms of φ by

u(x, t) = −12
∂φ−1
∂x

.
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Solutions of KdV and KP: Solitons in KdV

This means that a function of the form (1) is uniquely determined by the conditions (2).
Now we claim that this function satisfies some linear differential equations.
Proposition 2. For each set of data, the function φ(x, t, k) satisfies

−6φxx − uφ = λφ

where λ = −6k2, and where the potential function u(x, t) is given in terms of φ by

u(x, t) = −12
∂φ−1
∂x

.

Proof. The function w(x, t, k) := 6φxx + uφ + λφ lies in the subspace Λ0 associated with its data;
indeed, by direct calculation, w has the form

w =
“
w0 + · · ·+ w

−
Nk

−N
”
e
kx−4k3t

and it satisfies the relations (2) because they are linear and independent of x. Moreover, the same calculation
shows that w0 = 12φ1,x + u, so by the choice of u we have w0 = 0 and hence w ≡ 0.
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Solutions of KdV and KP: Solitons in KdV
Proposition 3. For each set of data, the function φ(x, t, k) satisfies

φt = −4φxxx − uφx −
1

2
uxφ

where again the potential function u(x, t) is given in terms of φ by

u(x, t) = −12
∂φ−1
∂x

.
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Solutions of KdV and KP: Solitons in KdV
Proposition 3. For each set of data, the function φ(x, t, k) satisfies

φt = −4φxxx − uφx −
1

2
uxφ

where again the potential function u(x, t) is given in terms of φ by

u(x, t) = −12
∂φ−1
∂x

.

Proof. The proof is similar. The function z(x, t, k) := φt+ 4φxxx+ uφx+ 1
2uxφ is shown to have the

form

z =
“
z0 + · · ·+ z

−
Nk

−N
”
e
kx−4k3t

and satisfy the conditions (2) and therefore lies in the subspace Λ0. One then checks that z0 = 0, which
implies that z ≡ 0.
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Solutions of KdV and KP: Solitons in KdV
Proposition 3. For each set of data, the function φ(x, t, k) satisfies

φt = −4φxxx − uφx −
1

2
uxφ

where again the potential function u(x, t) is given in terms of φ by

u(x, t) = −12
∂φ−1
∂x

.

Proof. The proof is similar. The function z(x, t, k) := φt+ 4φxxx+ uφx+ 1
2uxφ is shown to have the

form

z =
“
z0 + · · ·+ z

−
Nk

−N
”
e
kx−4k3t

and satisfy the conditions (2) and therefore lies in the subspace Λ0. One then checks that z0 = 0, which
implies that z ≡ 0.

These results imply that the function u(x, t) built from the data 0 < κ1 < · · · < κN
and {γn > 0}Nn=1 makes the Lax pair compatible. That is, u(x, t) solves KdV.



What do water waves have to do with algebraic geometry? May 14, 2007

Solutions of KdV and KP: Solitons in KdV

Finding the coefficient φ−1 given the data amounts to solving a system of N linear equations in N

unknowns. Playing with Cramer’s rule yields the Kay-Moses formula:
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Solutions of KdV and KP: Solitons in KdV

Finding the coefficient φ−1 given the data amounts to solving a system of N linear equations in N

unknowns. Playing with Cramer’s rule yields the Kay-Moses formula: with Fn := eκn(x−xn)−4κ3nt,

u(x, t) = −12
∂φ−1
∂x

= 12
∂2

∂x2
log(τ) , where τ := det

 
δjk +

FjFk

κj + κk

!
.

(The {xn} are related to the {γn}.)
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Solutions of KdV and KP: Solitons in KdV

Finding the coefficient φ−1 given the data amounts to solving a system of N linear equations in N

unknowns. Playing with Cramer’s rule yields the Kay-Moses formula: with Fn := eκn(x−xn)−4κ3nt,

u(x, t) = −12
∂φ−1
∂x

= 12
∂2

∂x2
log(τ) , where τ := det

 
δjk +

FjFk

κj + κk

!
.

(The {xn} are related to the {γn}.) E.g. N = 3 with κ1 = 0.274, κ2 = 0.387, κ3 = 0.474:

!100 !50 0 50 100
x

!100

!50

0

50

100

t

!100 !50 0 50 100
x

!100

!50

0

50

100

t
x1 = x2 = x3 = 0 x1 = 10, x2 = −10, x3 = 0
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Solutions of KdV and KP: Krichever Construction

Recall the simultaneous solutions of the Lax pair for the solution u(x, t) ≡ 0:

φ = ekx−4k3t where k2 = −λ/6.
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Solutions of KdV and KP: Krichever Construction

Recall the simultaneous solutions of the Lax pair for the solution u(x, t) ≡ 0:

φ = ekx−4k3t where k2 = −λ/6. A different way to generalize this trivial case is to

notice that the latter relation defines a smooth compact Riemann surface Γ on which φ is

single-valued. Generalizing to k2 = −P (λ) for some polynomial P (λ) = λ2G+1 + · · ·
amounts to replacing Γ with a hyperelliptic Riemann surface:

λ-plane copy A

λ-plane copy B
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Solutions of KdV and KP: Krichever Construction

Recall the simultaneous solutions of the Lax pair for the solution u(x, t) ≡ 0:

φ = ekx−4k3t where k2 = −λ/6. A different way to generalize this trivial case is to

notice that the latter relation defines a smooth compact Riemann surface Γ on which φ is

single-valued. Generalizing to k2 = −P (λ) for some polynomial P (λ) = λ2G+1 + · · ·
amounts to replacing Γ with a hyperelliptic Riemann surface:

λ-plane copy A

λ-plane copy B

Note that k = λ = ∞ is a single point P∞ ∈ Γ, and the function z = k−1 is a

holomorphic local coordinate in a neighborhood of this point.
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Solutions of KdV and KP: Krichever Construction

It is easiest to explain the theory of solutions parametrized by Riemann surfaces by further

generalizing from the KdV context to the KP context. Krichever proposed the following

construction of solutions of KP.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

It is easiest to explain the theory of solutions parametrized by Riemann surfaces by further

generalizing from the KdV context to the KP context. Krichever proposed the following

construction of solutions of KP. Define a set of algebro-geometric data consisting of

1. A compact smooth Riemann surface Γ (not necessarily hyperelliptic) of genus G.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

It is easiest to explain the theory of solutions parametrized by Riemann surfaces by further

generalizing from the KdV context to the KP context. Krichever proposed the following

construction of solutions of KP. Define a set of algebro-geometric data consisting of

1. A compact smooth Riemann surface Γ (not necessarily hyperelliptic) of genus G.

2. A point P∞ ∈ Γ and a local coordinate z = k−1 in a neighborhood U∞ of P∞ with

z(P∞) = 0.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

It is easiest to explain the theory of solutions parametrized by Riemann surfaces by further

generalizing from the KdV context to the KP context. Krichever proposed the following

construction of solutions of KP. Define a set of algebro-geometric data consisting of

1. A compact smooth Riemann surface Γ (not necessarily hyperelliptic) of genus G.

2. A point P∞ ∈ Γ and a local coordinate z = k−1 in a neighborhood U∞ of P∞ with

z(P∞) = 0.

3. A nonspecial integral divisor D = P1 + · · ·+ PG on Γ of degree G.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

It is easiest to explain the theory of solutions parametrized by Riemann surfaces by further

generalizing from the KdV context to the KP context. Krichever proposed the following

construction of solutions of KP. Define a set of algebro-geometric data consisting of

1. A compact smooth Riemann surface Γ (not necessarily hyperelliptic) of genus G.

2. A point P∞ ∈ Γ and a local coordinate z = k−1 in a neighborhood U∞ of P∞ with

z(P∞) = 0.

3. A nonspecial integral divisor D = P1 + · · ·+ PG on Γ of degree G.

A Baker-Akhiezer function associated with this data is a function φ : Γ → C that is

meromorphic on Γ \ U∞ where it satisfies (φ) +D ≥ 0 and that has a representation in

U∞ in the form of a convergent series:

φ =
“
1 + φ

−
1 (x, y, t)k

−1
+ φ

−
2 (x, y, t)k

−2
+ · · ·

”
e
kx+2ik2y−4k3t

.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

The analogue of Proposition 1 in this case is
Proposition 4. For generic (x, y, t) ∈ C3, the space Λ0 of functions f : Γ → C meromorphic on
Γ \ U∞ satisfying (f) +D ≥ 0 and having a representation in U∞ of the form

f =
“
f0 + f

−
1 k

−1
+ f

−
2 k

−2
+ · · ·

”
e
kx+2ik2y−4k3t

, k
−1

= z(P )

has dimension dim(Λ0) = 1. Hence if f ∈ Λ0 and f0 = 1 then f is uniquely determined, and if
f ∈ Λ0 and f0 = 0 then f ≡ 0.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

The analogue of Proposition 1 in this case is
Proposition 4. For generic (x, y, t) ∈ C3, the space Λ0 of functions f : Γ → C meromorphic on
Γ \ U∞ satisfying (f) +D ≥ 0 and having a representation in U∞ of the form

f =
“
f0 + f

−
1 k

−1
+ f

−
2 k

−2
+ · · ·

”
e
kx+2ik2y−4k3t

, k
−1

= z(P )

has dimension dim(Λ0) = 1. Hence if f ∈ Λ0 and f0 = 1 then f is uniquely determined, and if
f ∈ Λ0 and f0 = 0 then f ≡ 0.

The proof that dim(Λ0) ≤ 1 follows from the Riemann-Roch Theorem. The proof that

dim(Λ0) > 0 (that is, there is a nontrivial element of Λ0) is by direct construction.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

The analogue of Proposition 1 in this case is
Proposition 4. For generic (x, y, t) ∈ C3, the space Λ0 of functions f : Γ → C meromorphic on
Γ \ U∞ satisfying (f) +D ≥ 0 and having a representation in U∞ of the form

f =
“
f0 + f

−
1 k

−1
+ f

−
2 k

−2
+ · · ·

”
e
kx+2ik2y−4k3t

, k
−1

= z(P )

has dimension dim(Λ0) = 1. Hence if f ∈ Λ0 and f0 = 1 then f is uniquely determined, and if
f ∈ Λ0 and f0 = 0 then f ≡ 0.

The proof that dim(Λ0) ≤ 1 follows from the Riemann-Roch Theorem. The proof that

dim(Λ0) > 0 (that is, there is a nontrivial element of Λ0) is by direct construction.

Before giving Krichever’s formula for the (unique) Baker-Akhiezer function φ, we examine

some further consequences of dim(Λ0) = 1.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction
The Baker-Akhiezer function satisfies some linear differential equations.
Proposition 5. Define

u(x, y, t) := −12
∂φ−1
∂x

and v(x, y, t) := 12
∂φ−2
∂x

+ 12
∂2φ−1
∂x2

− 12φ
−
1

∂φ−1
∂x

where φ−1 (x, y, t) and φ−2 (x, y, t) are the first two expansion coefficients in the Baker-Akhiezer function
φ(x, y, t, P ) associated with a set of algebro-geometric data. Then for each P ∈ Γ, the Baker-Akhiezer
function satisfies

3iφy + 6φxx + uφ = 0 and φt + 4φxxx + uφx + vφ = 0 .

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction
The Baker-Akhiezer function satisfies some linear differential equations.
Proposition 5. Define

u(x, y, t) := −12
∂φ−1
∂x

and v(x, y, t) := 12
∂φ−2
∂x

+ 12
∂2φ−1
∂x2

− 12φ
−
1

∂φ−1
∂x

where φ−1 (x, y, t) and φ−2 (x, y, t) are the first two expansion coefficients in the Baker-Akhiezer function
φ(x, y, t, P ) associated with a set of algebro-geometric data. Then for each P ∈ Γ, the Baker-Akhiezer
function satisfies

3iφy + 6φxx + uφ = 0 and φt + 4φxxx + uφx + vφ = 0 .

Proof. The functions f(P ) := 3iφy + 6φxx + uφ and g(P ) := φt + 4φxxx + uφx + vφ are

meromorphic on Γ \ U∞ with poles in D because this was true of φ for all (x, y, t) ∈ C3. Moreover, by
direct differentiation of the expansion of φ for P ∈ U∞, one easily checks that

f(P ) = O(k
−1

)e
kx+2ik2y−4k3t

and g(P ) = O(k
−1

)e
kx+2ik2y−4k3t

by choice of u and v in terms of the {φ−j }. By Proposition 4 it then follows that f and g are both the zero

element of Λ0.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction
This result implies a kind of compatibility of the two linear problems satisfied by φ.

Indeed, φ is in the kernel of the commutator:

[L3, L2]φ :=
h
∂t + 4∂

3
x + u∂x + v, 3i∂y + 6∂

2
x + u

i
φ = 0 , P ∈ Γ .

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.



What do water waves have to do with algebraic geometry? May 14, 2007

Solutions of KdV and KP: Krichever Construction
This result implies a kind of compatibility of the two linear problems satisfied by φ.

Indeed, φ is in the kernel of the commutator:

[L3, L2]φ :=
h
∂t + 4∂

3
x + u∂x + v, 3i∂y + 6∂

2
x + u

i
φ = 0 , P ∈ Γ .

And, by direct calculation, the commutator [L3, L2] is a first-order operator:

[L3, L2] = (6uxx − 12vx − 3iuy) ∂x + (ut + uux + 4uxxx − 6vxx − 3ivy) .

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction
This result implies a kind of compatibility of the two linear problems satisfied by φ.

Indeed, φ is in the kernel of the commutator:

[L3, L2]φ :=
h
∂t + 4∂

3
x + u∂x + v, 3i∂y + 6∂

2
x + u

i
φ = 0 , P ∈ Γ .

And, by direct calculation, the commutator [L3, L2] is a first-order operator:

[L3, L2] = (6uxx − 12vx − 3iuy) ∂x + (ut + uux + 4uxxx − 6vxx − 3ivy) .

As P varies in Γ, the function φ spans a linear space of dimension greater than one, and

hence we must have [L3, L2] = 0. This amounts to two nonlinear equations for u and v:

6uxx − 12vx − 3iuy = 0 and ut + uux + 4uxxx − 6vxx − 3ivy = 0 .

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction
This result implies a kind of compatibility of the two linear problems satisfied by φ.

Indeed, φ is in the kernel of the commutator:

[L3, L2]φ :=
h
∂t + 4∂

3
x + u∂x + v, 3i∂y + 6∂

2
x + u

i
φ = 0 , P ∈ Γ .

And, by direct calculation, the commutator [L3, L2] is a first-order operator:

[L3, L2] = (6uxx − 12vx − 3iuy) ∂x + (ut + uux + 4uxxx − 6vxx − 3ivy) .

As P varies in Γ, the function φ spans a linear space of dimension greater than one, and

hence we must have [L3, L2] = 0. This amounts to two nonlinear equations for u and v:

6uxx − 12vx − 3iuy = 0 and ut + uux + 4uxxx − 6vxx − 3ivy = 0 .

Eliminating v between these two gives the KP equation in the form

(ut + uux + uxxx)x = 3
4uyy .

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: KP Hierarchy
This whole construction generalizes to more than three independent variables:

Simply replace e
kx+2ik2y−4k3t

with exp

0@ MX
n=1

tnk
n

1A , M <∞ arbitrary.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: KP Hierarchy
This whole construction generalizes to more than three independent variables:

Simply replace e
kx+2ik2y−4k3t

with exp

0@ MX
n=1

tnk
n

1A , M <∞ arbitrary.

Then (as in Proposition 5) there is a linear differential operator in x = t1 of order n:

Bn := ∂
n
x +

n−2X
k=0

bn,k[{φ
−
j }]∂

k
x , n ≥ 2

such that the Baker-Akhiezer function φ is, for all P ∈ Γ, in the kernel of ∂tn − Bn.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: KP Hierarchy
This whole construction generalizes to more than three independent variables:

Simply replace e
kx+2ik2y−4k3t

with exp

0@ MX
n=1

tnk
n

1A , M <∞ arbitrary.

Then (as in Proposition 5) there is a linear differential operator in x = t1 of order n:

Bn := ∂
n
x +

n−2X
k=0

bn,k[{φ
−
j }]∂

k
x , n ≥ 2

such that the Baker-Akhiezer function φ is, for all P ∈ Γ, in the kernel of ∂tn − Bn.
The equations ∂tnφ = Bnφ satisfied by the Baker-Akhiezer function are called the linear equations of the
KP hierarchy. They are compatible because the kernel of the commutator

[Lj, Lk] := [∂tj − Bj, ∂tk − Bk] = (∂tkBj)− (∂tjBk) + [Bj, Bk]

contains enough functions φ (parametrized by P ∈ Γ) to make [Lj, Lk] = 0. These are nonlinear

equations on the coefficients {bn,k} that may also be simultaneously solved, and they are said to be the

nonlinear equations of the KP hierarchy.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

To give Krichever’s formula for the Baker-Akhiezer function, we need some ingredients.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.



What do water waves have to do with algebraic geometry? May 14, 2007

Solutions of KdV and KP: Krichever Construction

To give Krichever’s formula for the Baker-Akhiezer function, we need some ingredients.

a1 aG

b1 bG

· · ·

• A basis H of homology cycles a1, . . . , aG and b1, . . . , bG on Γ.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

To give Krichever’s formula for the Baker-Akhiezer function, we need some ingredients.

a1 aG

b1 bG

· · ·

• A basis H of homology cycles a1, . . . , aG and b1, . . . , bG on Γ.

• The basis ω1, . . . , ωG of holomorphic differentials on Γ normalized with respect to H,

and the coincident Riemann matrix B:I
aj

ωk = 2πiδj,k , Bj,k :=

I
bj

ωk =

I
bk

ωj . (Note v†<{B}v < 0 for v 6= 0.)

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

• A base point P0 ∈ Γ, the Abel mapping A : Γ → Jac(Γ) given by

A(P ) =

"Z P

P0

ω1, . . . ,

Z P

P0

ωG

#T
,

and its linear extension to divisors.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

• A base point P0 ∈ Γ, the Abel mapping A : Γ → Jac(Γ) given by

A(P ) =

"Z P

P0

ω1, . . . ,

Z P

P0

ωG

#T
,

and its linear extension to divisors.

• The vector k of Riemann constants associated with Γ.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

• A base point P0 ∈ Γ, the Abel mapping A : Γ → Jac(Γ) given by

A(P ) =

"Z P

P0

ω1, . . . ,

Z P

P0

ωG

#T
,

and its linear extension to divisors.

• The vector k of Riemann constants associated with Γ.

• The theta function (multiple Fourier series) with matrix B

Θ(w; B) :=
X
n∈ZG

e
1
2nTBn

e
nTw

.

Note for ek a unit vector and bk a column of B the automorphic relations:

Θ(w + 2πiek; B) = Θ(w; B) and Θ(w + bk; B) = e
−1

2Bkke
−wkΘ(w; B) .

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

• The differentials Ωn holomorphic on Γ \ {P∞} with principal parts

Ωn =
h
nk

n−1
+O(k

−2
)
i
dk , n = 1, 2, 3, . . . ,

(here z(P ) = k(P )−1 is the local parameter in U∞) made unique by the normalizationI
aj

Ωn = 0 for j = 1, . . . , G .

Finally define the corresponding vectors un ∈ CG by

un :=

"I
b1

Ωn, . . . ,

I
bG

Ωn

#T
.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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Solutions of KdV and KP: Krichever Construction

Then, Krichever’s formula for the Baker-Akhiezer function is

φ(P ) = c
Θ(A(P )− A(D)− k +

PM
n=1 tnun; B)

Θ(A(P )−D − k; B)
exp

 
MX
n=1

tn

Z P

P0

Ωn

!
.

Return to outline.
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1. φ(P ) is well-defined modulo c due to the automorphy relations for Θ.
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1. φ(P ) is well-defined modulo c due to the automorphy relations for Θ.

2. φ(P ) is analytic on Γ \ U∞ except where the denominator vanishes. By Jacobi

inversion, Θ(A(P )− A(D)− k) has simple roots at the points of the divisor D.
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2. φ(P ) is analytic on Γ \ U∞ except where the denominator vanishes. By Jacobi
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Return to outline.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.



What do water waves have to do with algebraic geometry? May 14, 2007

Solutions of KdV and KP: Krichever Construction

Then, Krichever’s formula for the Baker-Akhiezer function is
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.

1. φ(P ) is well-defined modulo c due to the automorphy relations for Θ.

2. φ(P ) is analytic on Γ \ U∞ except where the denominator vanishes. By Jacobi

inversion, Θ(A(P )− A(D)− k) has simple roots at the points of the divisor D.

3. φ(P ) has the desired asymptotic behavior near P∞ due to the exponential factor.

Expanding this formula near P∞ we obtain the Its-Matveev formula (x = t1):

u(t1, . . . , tM) = −12∂xφ1 = u0+12∂
2
x log Θ(A(P∞)−A(D)−k+

PM
n=1 tnun; B) .

Return to outline.
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Solutions of KdV and KP: Krichever Construction

Then, Krichever’s formula for the Baker-Akhiezer function is

φ(P ) = c
Θ(A(P )− A(D)− k +

PM
n=1 tnun; B)
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1. φ(P ) is well-defined modulo c due to the automorphy relations for Θ.

2. φ(P ) is analytic on Γ \ U∞ except where the denominator vanishes. By Jacobi

inversion, Θ(A(P )− A(D)− k) has simple roots at the points of the divisor D.

3. φ(P ) has the desired asymptotic behavior near P∞ due to the exponential factor.

Expanding this formula near P∞ we obtain the Its-Matveev formula (x = t1):

u(t1, . . . , tM) = −12∂xφ1 = u0+12∂
2
x log Θ(A(P∞)−A(D)−k+

PM
n=1 tnun; B) .

Note: u is a quasiperiodic “multiphase wave”. Return to outline.

I. M. Krichever, Russ. Math. Surveys, 32, 185–213, 1977.
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The Schottky Problem

One might notice that the Its-Matveev formula for multiphase wave solutions of KP

u(x, y, t) = u0 + 12∂
2
x log Θ(xu + yv + tw + z; B)

involves, when the smoke clears, just a few parameters:
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The Schottky Problem

One might notice that the Its-Matveev formula for multiphase wave solutions of KP

u(x, y, t) = u0 + 12∂
2
x log Θ(xu + yv + tw + z; B)

involves, when the smoke clears, just a few parameters:

• a symmetric matrix B with negative-definite real part; that is, a point in the Siegel

upper half-space,

• four constant vectors u, v, w, z; that is, points in the principally polarized abelian

variety associated with B,

• and a scalar constant u0.

Krichever’s construction shows that the Its-Matveev formula solves the KP equation when

these parameters are associated with a Riemann surface Γ. Perhaps it works more

generally?
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The Schottky Problem: Novikov’s Conjecture

The Schottky problem is a classical problem of algebraic geometry. The problem is:

characterize the Jacobian locus in the moduli space of principally polarized abelian

varieties. In other words, which G×G matrices B in the Siegel upper half-space are

period matrices of Riemann surfaces of genus G?
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KP equation itself provides the acid test that solves the Schottky problem.
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The Schottky Problem: Novikov’s Conjecture

The Schottky problem is a classical problem of algebraic geometry. The problem is:

characterize the Jacobian locus in the moduli space of principally polarized abelian

varieties. In other words, which G×G matrices B in the Siegel upper half-space are

period matrices of Riemann surfaces of genus G?

This problem is related to the question we just posed about the Its-Matveev formula, that

is, whether this formula can represent a solution of the KP equation regardless of whether

the matrix B comes from a Riemann surface. Indeed, if the answer is negative, then the

KP equation itself provides the acid test that solves the Schottky problem.

The conjecture that the Its-Matveev formula in fact solves the Schottky problem was first

formulated by S. P. Novikov.
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The Schottky Problem: Shiota’s Theorem

In fact, Novikov’s conjecture is true! The KP equation determines whether or not a period matrix B comes
from a Riemann surface; the Its-Matveev formula only solves KP if B is a point in the Jacobian locus. This
was proved by Shiota in 1986.

Return to outline.

T. Shiota, Invent. Math., 83, 333-382, 1986.



What do water waves have to do with algebraic geometry? May 14, 2007

The Schottky Problem: Shiota’s Theorem

In fact, Novikov’s conjecture is true! The KP equation determines whether or not a period matrix B comes
from a Riemann surface; the Its-Matveev formula only solves KP if B is a point in the Jacobian locus. This
was proved by Shiota in 1986.
Theorem 1 (Shiota). The following two conditions (A) and (B) for a principally polarized abelian variety
X associated with a point B in the Siegel upper half-space are equivalent:

(A) There exist vectors u 6= 0, v, and w in CG, and a constant u0 such that for any vector z ∈ CG

the Its-Matveev formula

u = u0 + 12∂
2
x log Θ(xu + yv + tw + z; B)

satisfies the KP equation (ut + uux + uxxx)x = 3
4uyy, and the theta divisor of X is irreducible.

(B) X is isomorphic to the Jacobian variety of a complete smooth curve of genus G over C.

Return to outline.

T. Shiota, Invent. Math., 83, 333-382, 1986.
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The Schottky Problem: Shiota’s Theorem

In fact, Novikov’s conjecture is true! The KP equation determines whether or not a period matrix B comes
from a Riemann surface; the Its-Matveev formula only solves KP if B is a point in the Jacobian locus. This
was proved by Shiota in 1986.
Theorem 1 (Shiota). The following two conditions (A) and (B) for a principally polarized abelian variety
X associated with a point B in the Siegel upper half-space are equivalent:

(A) There exist vectors u 6= 0, v, and w in CG, and a constant u0 such that for any vector z ∈ CG

the Its-Matveev formula

u = u0 + 12∂
2
x log Θ(xu + yv + tw + z; B)

satisfies the KP equation (ut + uux + uxxx)x = 3
4uyy, and the theta divisor of X is irreducible.

(B) X is isomorphic to the Jacobian variety of a complete smooth curve of genus G over C.

Of note is that only the KP equation is required, not the whole KP hierarchy. Thus, water wave theory

gives something back to pure mathematics.

Return to outline.

T. Shiota, Invent. Math., 83, 333-382, 1986.
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Segal-Wilson Theory

Observe:

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

Observe:

• For N -soliton solutions of KdV, the function φ (and hence the corresponding solution

of KdV via the coefficient φ−1 ) was specified by the discrete data 0 < κ1 < · · · < κN
and {γn > 0}Nn=1.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

Observe:

• For N -soliton solutions of KdV, the function φ (and hence the corresponding solution

of KdV via the coefficient φ−1 ) was specified by the discrete data 0 < κ1 < · · · < κN
and {γn > 0}Nn=1.

• For multiphase wave solutions of KP, the function φ (and hence the corresponding

solution of KP via the coefficient φ−1 ) was specified by the algebro-geometric data Γ,

P∞ ∈ Γ, k(P ), and D.

In 1985, Segal and Wilson proposed a theory in which both types of solutions are put into

a common framework. Both types of data correspond to points in an infinite-dimensional

Grassmannian.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

Let H := L2(S1) be the Hilbert space of square integrable functions on the unit circle in

the k-plane. There is a natural orthogonal decomposition H = H+ ⊕H− where

H+ :=
n
f ∈ H , f = f0 + f

+
1 k + f

+
2 k

2
+ · · ·

o
is the Hardy space of functions in H that are boundary values of functions analytic for

|k| < 1, and

H− :=
n
f ∈ H , f = f

−
1 k

−1
+ f

−
2 k

−2
+ · · ·

o
is the Hardy space of functions in H that are boundary values of functions analytic for

|k| > 1 that vanish as k →∞.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

The orthogonal projection onto H+, π+ : H → H+, is defined by:

π+ :

∞X
n=1

f
−
n k

−n
+ f0 +

∞X
n=1

f
+
n k

n 7→ f0 +

∞X
n=1

f
+
n k

n
.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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n
.

An infinite-dimensional Grassmannian GrH is then defined as follows:

GrH =
˘

subspaces W ⊂ H for which π+

˛̨
W

: W → H+ is a Fredholm operator
¯
.

Important subsets are T ⊂ Gr0H ⊂ GrH:

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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˘

subspaces W ⊂ H for which π+

˛̨
W

: W → H+ is a Fredholm operator
¯
.

Important subsets are T ⊂ Gr0H ⊂ GrH:

• Gr0H consists of those subspaces W for which the restricted projection operator

π+

˛̨
W

has index zero.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

The orthogonal projection onto H+, π+ : H → H+, is defined by:

π+ :

∞X
n=1

f
−
n k

−n
+ f0 +

∞X
n=1

f
+
n k

n 7→ f0 +

∞X
n=1

f
+
n k

n
.

An infinite-dimensional Grassmannian GrH is then defined as follows:

GrH =
˘

subspaces W ⊂ H for which π+

˛̨
W

: W → H+ is a Fredholm operator
¯
.

Important subsets are T ⊂ Gr0H ⊂ GrH:

• Gr0H consists of those subspaces W for which the restricted projection operator

π+

˛̨
W

has index zero.

• T consists of those subspaces W for which the restricted projection operator π+

˛̨
W

is

a bijection. Such subspaces are called transversal. If W is transversal and f ∈ W ,

then (1− π+)f is a function of π+f .

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

Note that if t := {t1, t2, t3, . . . } is a sufficiently rapidly decaying sequence of complex

numbers, then the function

exp

 ∞X
n=1

tnk
n

!
= 1 + g

+
1 (t)k + g

+
2 (t)k2

+ · · ·

is an example of a function in the subspace H+.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

Note that if t := {t1, t2, t3, . . . } is a sufficiently rapidly decaying sequence of complex

numbers, then the function

exp

 ∞X
n=1

tnk
n

!
= 1 + g

+
1 (t)k + g

+
2 (t)k2

+ · · ·

is an example of a function in the subspace H+. Let W ∈ GrH. A family of functions

φ(t) ∈ H parametrized by t is said to be a Baker function associated with W if

φ(t) ∈ W and

exp

 
−

∞X
n=1

tnk
n

!
φ(k; t) = 1 + φ

−
1 (t)k−1

+ φ
−
2 (t)k−2

+ · · · ∈ 1 +H− .

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

Theorem 2. Let W ∈ GrH. If exp(−
P∞

n=1 tnk
n)W is transversal for t in some

open set, then for each such t there is a unique Baker function φ = φW (k; t), and
furthermore φ satisfies all the linear equations of the KP hierarchy.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

Theorem 2. Let W ∈ GrH. If exp(−
P∞

n=1 tnk
n)W is transversal for t in some

open set, then for each such t there is a unique Baker function φ = φW (k; t), and
furthermore φ satisfies all the linear equations of the KP hierarchy.

Proof. Since exp(−
P∞

n=1 tnk
n)W is transversal, the series 1 + φ−1 (t)k−1 +

φ−2 (t)k−2 + · · · is obtained uniquely by pulling back the function 1 via π+, which

proves existence and uniqueness of φ.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

Theorem 2. Let W ∈ GrH. If exp(−
P∞

n=1 tnk
n)W is transversal for t in some

open set, then for each such t there is a unique Baker function φ = φW (k; t), and
furthermore φ satisfies all the linear equations of the KP hierarchy.

Proof. Since exp(−
P∞

n=1 tnk
n)W is transversal, the series 1 + φ−1 (t)k−1 +

φ−2 (t)k−2 + · · · is obtained uniquely by pulling back the function 1 via π+, which

proves existence and uniqueness of φ. Next, since φ lies in the fixed space W for all t in

some open set, so does (∂tj − Bj)φ as this only involves linear operations among φ for

different t. Moreover, by definition of the differential operators Bj, we have

exp

 
−

∞X
n=1

tnk
n

!
·
“
∂tj − Bj

”
φ = O(k

−1
)

which vanishes identically by transversality again.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

Example 1: Let 0 < |κ| < 1 and 0 < |κ′| < 1, and let γ ∈ C. Consider the subspace

Wκ,κ′,γ ∈ GrH given by

Wκ,κ′,γ :=
n
f(k) = f

−
1 k

−1
+ f0 + f

+
1 k + f

+
2 k

2
+ · · · , f(κ

′
) = γf(κ)

o
.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

Example 1: Let 0 < |κ| < 1 and 0 < |κ′| < 1, and let γ ∈ C. Consider the subspace

Wκ,κ′,γ ∈ GrH given by

Wκ,κ′,γ :=
n
f(k) = f

−
1 k

−1
+ f0 + f

+
1 k + f

+
2 k

2
+ · · · , f(κ

′
) = γf(κ)

o
.

This subspace is transversal if γ 6= κ/κ′. Indeed, from the relation f(κ′) = γf(κ),

f
−
1 =

κκ′

κ− γκ′

h
(γ − 1)f0 + (γκ− κ

′
)f

+
1 + (γκ

2 − κ
′2
)f

+
2 + · · ·

i
,

so if γ 6= κ/κ′ we can solve for f−1 in terms of π+f .

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Example 1: Let 0 < |κ| < 1 and 0 < |κ′| < 1, and let γ ∈ C. Consider the subspace

Wκ,κ′,γ ∈ GrH given by

Wκ,κ′,γ :=
n
f(k) = f

−
1 k

−1
+ f0 + f

+
1 k + f

+
2 k

2
+ · · · , f(κ

′
) = γf(κ)

o
.

This subspace is transversal if γ 6= κ/κ′. Indeed, from the relation f(κ′) = γf(κ),

f
−
1 =

κκ′

κ− γκ′

h
(γ − 1)f0 + (γκ− κ

′
)f

+
1 + (γκ

2 − κ
′2
)f

+
2 + · · ·

i
,

so if γ 6= κ/κ′ we can solve for f−1 in terms of π+f . Also, by direct calculation,

exp

 
−

∞X
n=1

tnk
n

!
Wκ,κ′,γ = Wκ,κ′,γ(t) , γ(t) := γ exp

 ∞X
n=1

tn(κ
n − κ

′n
)

!
.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

To find the Baker function associated with Wκ,κ′,γ for γ 6= κ/κ′, note that the series

1 + φ−1 (t)k−1 + φ−2 (t)k−2 + · · · lies by definition in exp(−
P∞

n=1 tnk
n)Wκ,κ′,γ, a

subspace we have shown to be equal to Wκ,κ′,γ(t), so

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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n=1 tnk
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• φ−n (t) ≡ 0 for n ≥ 2,
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Segal-Wilson Theory

To find the Baker function associated with Wκ,κ′,γ for γ 6= κ/κ′, note that the series

1 + φ−1 (t)k−1 + φ−2 (t)k−2 + · · · lies by definition in exp(−
P∞

n=1 tnk
n)Wκ,κ′,γ, a

subspace we have shown to be equal to Wκ,κ′,γ(t), so

• φ−n (t) ≡ 0 for n ≥ 2, and

• since φ0 = 1,

φ
−
1 (t) =

κκ′ · (γ(t)− 1)

κ− γ(t)κ′
.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

To find the Baker function associated with Wκ,κ′,γ for γ 6= κ/κ′, note that the series

1 + φ−1 (t)k−1 + φ−2 (t)k−2 + · · · lies by definition in exp(−
P∞

n=1 tnk
n)Wκ,κ′,γ, a

subspace we have shown to be equal to Wκ,κ′,γ(t), so

• φ−n (t) ≡ 0 for n ≥ 2, and

• since φ0 = 1,

φ
−
1 (t) =

κκ′ · (γ(t)− 1)

κ− γ(t)κ′
.

The Baker function for Wκ,κ′,γ is thus determined uniquely, and in particular, the

function u := −12∂t1φ
−
1 (t) satisfies the KP equation.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

To find the Baker function associated with Wκ,κ′,γ for γ 6= κ/κ′, note that the series

1 + φ−1 (t)k−1 + φ−2 (t)k−2 + · · · lies by definition in exp(−
P∞

n=1 tnk
n)Wκ,κ′,γ, a

subspace we have shown to be equal to Wκ,κ′,γ(t), so

• φ−n (t) ≡ 0 for n ≥ 2, and

• since φ0 = 1,

φ
−
1 (t) =

κκ′ · (γ(t)− 1)

κ− γ(t)κ′
.

The Baker function for Wκ,κ′,γ is thus determined uniquely, and in particular, the

function u := −12∂t1φ
−
1 (t) satisfies the KP equation.

This is the soliton solution of KP.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

In the Segal-Wilson theory, the KdV hierarchy arises as a special case by considering only

subspaces W ∈ GrH that satisfy k2W ⊂ W . This restriction on Wκ,κ′,γ forces

κ′ = −κ. The dependence on the even times t2j then disappears from γ(t):

γ(t) = γ exp

0@ ∞X
j=0

2t2j+1κ
2j+1

1A .

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

In the Segal-Wilson theory, the KdV hierarchy arises as a special case by considering only

subspaces W ∈ GrH that satisfy k2W ⊂ W . This restriction on Wκ,κ′,γ forces

κ′ = −κ. The dependence on the even times t2j then disappears from γ(t):

γ(t) = γ exp

0@ ∞X
j=0

2t2j+1κ
2j+1

1A .

For c > 0 and x0 ∈ R, write κ =
√
c

2 , γ = e−
√
cx0, t1 = x, and t3 = −4t. Then,

φ
−
1 (x, t) = −

√
c

2
tanh

„√
c

2
(x− x0 − ct)

«
, assuming t2j+1 = 0 for j ≥ 2

and therefore we recover the soliton solution of KdV:

u(x, t) = −12∂xφ
−
1 (x, t) = 3c sech

2

„√
c

2
(x− x0 − ct)

«
.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

Example 2: Given a Riemann surface Γ of genus G, a local coordinate z(P ) = k−1

defined on U∞ containing a point P∞ with z(P∞) = 0, and a nonspecial integral divisor

D on Γ of degree G, define an element of GrH by:

WΓ,k,D :=
n
f
˛̨
|k|=1

, where f is meromorphic on Γ \ U∞ with (f) +D ≥ 0
o
.

That in fact the subspace WΓ,k,D lies in GrH, and moreover is transversal, is a

consequence of the Riemann-Roch theorem. The coincident Baker function is exactly the

Baker-Akhiezer function of Krichever.

Return to outline.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Segal-Wilson Theory

Example 2: Given a Riemann surface Γ of genus G, a local coordinate z(P ) = k−1

defined on U∞ containing a point P∞ with z(P∞) = 0, and a nonspecial integral divisor

D on Γ of degree G, define an element of GrH by:

WΓ,k,D :=
n
f
˛̨
|k|=1

, where f is meromorphic on Γ \ U∞ with (f) +D ≥ 0
o
.

That in fact the subspace WΓ,k,D lies in GrH, and moreover is transversal, is a

consequence of the Riemann-Roch theorem. The coincident Baker function is exactly the

Baker-Akhiezer function of Krichever.

Thus we see that both the class of soliton solutions and the class of algebro-geometric

multiphase wave solutions of the KP hierarchy may be identified with transversal points in

the Segal-Wilson Grassmannian.

Return to outline.

G. Segal and G. Wilson, Publ. Math. IHES, 63, 1–64, 1985.
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Conclusions

Some things to keep in mind:

• Integrable systems arise as universal models in applied mathematics. Their solutions

accurately predict real physical phenomena.

• Algebraic geometrical methods are useful to applied mathematicians as a toolbox for

obtaining solutions of integrable nonlinear wave equations.

• The theory of integrable systems, while historically a subject of applied interest, is

having a real impact in pure mathematical subjects.

Thank You!

Return to outline.


