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Abstract
I will discuss several situations in which an asymptotic limit of interest leads one to consider

the construction of a matrix-valued meromorphic function with principal part data specified at

asymptotically many poles. Applications include semiclassical asymptotics of integrable nonlinear

wave problems (KdV, NLS, sine-Gordon) as well as statistical combinatorics (discrete orthogonal

polynomial ensembles, i.e. discrete analogues of random matrix theory).
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Introduction

Recall the analysis of Lax and Levermore (1983) of the zero-dispersion limit of the Cauchy

problem for the Korteweg-de Vries equation. For each ε > 0 there exists a unique global

solution of

ut + uux + ε
2
uxxx = 0 , x ∈ R , t > 0 ,

subject to ε-independent initial data u(x, 0; ε) = u0(x). The “zero-dispersion limit”

analyzed by L&L refers to the asymptotic analysis of the family of solutions u(x, t; ε) as

ε→ 0.

P. D. Lax and C. D. Levermore, Comm. Pure Appl. Math., 36, 253–290,
571–593, and 809–830, 1983.
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Recall the analysis of Lax and Levermore (1983) of the zero-dispersion limit of the Cauchy

problem for the Korteweg-de Vries equation. For each ε > 0 there exists a unique global

solution of

ut + uux + ε
2
uxxx = 0 , x ∈ R , t > 0 ,

subject to ε-independent initial data u(x, 0; ε) = u0(x). The “zero-dispersion limit”

analyzed by L&L refers to the asymptotic analysis of the family of solutions u(x, t; ε) as

ε→ 0.

L&L used inverse-scattering to solve the Cauchy problem, assuming that u0(x) > 0,

rapidly decreasing as |x| → ∞, and having a single critical point (local max). The first

step: analyze the stationary Schrödinger equation

−6ε
2
ψxx + V (x)ψ = Eψ

where E is the spectral parameter and V (x) := −u0(x) is a potential well.

P. D. Lax and C. D. Levermore, Comm. Pure Appl. Math., 36, 253–290,
571–593, and 809–830, 1983.
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Introduction

The (real) spectrum is continuous for E > 0 and has a bounded discrete component for E < 0. The
presence of ε (small parameter) makes the spectral problem “semiclassical”, which provided L&L with
spectral asymptotics via the WKB approximation.

P. D. Lax and C. D. Levermore, Comm. Pure Appl. Math., 36, 253–290,
571–593, and 809–830, 1983.
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The (real) spectrum is continuous for E > 0 and has a bounded discrete component for E < 0. The
presence of ε (small parameter) makes the spectral problem “semiclassical”, which provided L&L with
spectral asymptotics via the WKB approximation. In particular:

1. The reflection coefficient for E > 0 fixed is “as small in ε as V is smooth”.

P. D. Lax and C. D. Levermore, Comm. Pure Appl. Math., 36, 253–290,
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Introduction

The (real) spectrum is continuous for E > 0 and has a bounded discrete component for E < 0. The
presence of ε (small parameter) makes the spectral problem “semiclassical”, which provided L&L with
spectral asymptotics via the WKB approximation. In particular:

1. The reflection coefficient for E > 0 fixed is “as small in ε as V is smooth”.

2. The number N(ε) of discrete eigenvalues (all simple) is large, proportional to ε−1. The eigenvalues are
approximately located according to the Bohr-Sommerfeld quantization rule: En = E0

n +O(ε2) where

Φ(E
0
n) = πε

„
n+

1

2

«
, n = 0, . . . , N(ε)− 1 , Φ(E) :=

1
√

6

Z x+(E)

x−(E)

q
E − V (s) ds .

Here x−(E) < x+(E) are the turning points (branches of V −1). The asymptotic number of
eigenvalues is

N(ε) =

$
1

2
+

1

πε
√

6

Z +∞

−∞

q
−V (x) dx

%
.

P. D. Lax and C. D. Levermore, Comm. Pure Appl. Math., 36, 253–290,
571–593, and 809–830, 1983.
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Introduction

L&L therefore modified the spectral data associated with V (x) = −u0(x) by taking the

reflection coefficient to be zero and using the approximate eigenvalues {E0
n}. Thus, the

approximate solution of the KdV Cauchy problem is a pure ensemble of N(ε) solitons.

P. D. Lax and C. D. Levermore, Comm. Pure Appl. Math., 36, 253–290,
571–593, and 809–830, 1983.
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Introduction

L&L therefore modified the spectral data associated with V (x) = −u0(x) by taking the

reflection coefficient to be zero and using the approximate eigenvalues {E0
n}. Thus, the

approximate solution of the KdV Cauchy problem is a pure ensemble of N(ε) solitons.

The multisoliton solution of KdV is specified by a collection of N(ε) discrete eigenvalues

and a “norming constant” for each. For such purely discrete data, the inverse-scattering

procedure collapses to a problem of linear algebra in dimension N(ε). Cramer’s rule leads

to the Kay-Moses determinantal formula

u(x, t; ε) = 12ε
2 ∂

2

∂x2
log(τ) where τ := det

„
δjk +

FjFk

κj + κk

«
.

Here κn =
√
−En and Fn = e(κnx−4κ3nt+βn)/ε and {βn} amount to the norming

constants.

P. D. Lax and C. D. Levermore, Comm. Pure Appl. Math., 36, 253–290,
571–593, and 809–830, 1983.
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Introduction

A natural approach is to expand τ :

τ = 1 +
X

subsets S of {0, . . . , N(ε)− 1}

det

 
FαFβ

κα + κβ

˛̨̨̨
α,β∈S

!
.

P. D. Lax and C. D. Levermore, Comm. Pure Appl. Math., 36, 253–290,
571–593, and 809–830, 1983.
S. Venakides, Comm. Pure Appl. Math., 43, 335–361, 1990.
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subsets S of {0, . . . , N(ε)− 1}

det

 
FαFβ

κα + κβ

˛̨̨̨
α,β∈S

!
.

L&L observed: each term in the sum is positive. They proved that as N(ε) →∞ the

sum is dominated by its largest term. This leads to a discrete variational problem that

may be further approximated by a variational problem for an absolutely continuous

equilibrium measure. In this way, L&L proved that u(x, t; ε) has a weak limit u(x, t).

P. D. Lax and C. D. Levermore, Comm. Pure Appl. Math., 36, 253–290,
571–593, and 809–830, 1983.
S. Venakides, Comm. Pure Appl. Math., 43, 335–361, 1990.
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A natural approach is to expand τ :

τ = 1 +
X

subsets S of {0, . . . , N(ε)− 1}

det

 
FαFβ

κα + κβ

˛̨̨̨
α,β∈S

!
.

L&L observed: each term in the sum is positive. They proved that as N(ε) →∞ the

sum is dominated by its largest term. This leads to a discrete variational problem that

may be further approximated by a variational problem for an absolutely continuous

equilibrium measure. In this way, L&L proved that u(x, t; ε) has a weak limit u(x, t).

Venakides (1990) obtained strong asymptotics for u(x, t; ε) by “going to higher order”,

in particular by quantizing the mass of the equilibrium measure. He found strongly

nonlinear oscillations of unit amplitude about the mean u(x, t) modeled by

algebro-geometric multiphase wave solutions of KdV.

P. D. Lax and C. D. Levermore, Comm. Pure Appl. Math., 36, 253–290,
571–593, and 809–830, 1983.
S. Venakides, Comm. Pure Appl. Math., 43, 335–361, 1990.
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Introduction

The accuracy achieved by the Venakides extension of the L&L method is reminiscent of that achieved in a
single step by the steepest descent method of Deift and Zhou. The latter method applies to a different kind
of problem: a matrix Riemann-Hilbert problem.
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single step by the steepest descent method of Deift and Zhou. The latter method applies to a different kind
of problem: a matrix Riemann-Hilbert problem.

Given an oriented contour Σ, a matrix function V : Σ → GL(k) (adapted to Σ), a constant matrix
M0 ∈ GL(k) and a point z0 ∈ C \ Σ, seek M : C \ Σ → GL(k) such that
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2. M takes continuous boundary values M±(z), z ∈ Σ, that are related

by M+(z) = M−(z)V(z) (+ means left, − means right).
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Introduction

The accuracy achieved by the Venakides extension of the L&L method is reminiscent of that achieved in a
single step by the steepest descent method of Deift and Zhou. The latter method applies to a different kind
of problem: a matrix Riemann-Hilbert problem.

Given an oriented contour Σ, a matrix function V : Σ → GL(k) (adapted to Σ), a constant matrix
M0 ∈ GL(k) and a point z0 ∈ C \ Σ, seek M : C \ Σ → GL(k) such that

1. M is analytic in its domain of definition.

2. M takes continuous boundary values M±(z), z ∈ Σ, that are related

by M+(z) = M−(z)V(z) (+ means left, − means right).

3. M(z0) = M0.

Steepest descent in a nutshell: a systematic construction of a “global parametrix” M̂(z) such that the

linear substitution M(z) = E(z)M̂(z) results in a “small-norm” Riemann-Hilbert problem for the error

E(z). By definition, a small-norm problem is one for which simple estimates can establish that E(z) ≈ I in

a suitable sense.
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Introduction

In inverse-scattering problems, Σ is identified with the continuous spectrum, and V 6= I only where the
reflection coefficient is nonzero. If there is any discrete spectrum, the Riemann-Hilbert problem must be
modified: M may have poles at the eigenvalues, and homogeneous conditions involving the norming
constants are imposed to relate the principal part of the Laurent expansion at each pole to the regular part.

P. Deift and X. Zhou, Comm. Pure Appl. Math., 44, 485–533, 1991.
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Introduction

In inverse-scattering problems, Σ is identified with the continuous spectrum, and V 6= I only where the
reflection coefficient is nonzero. If there is any discrete spectrum, the Riemann-Hilbert problem must be
modified: M may have poles at the eigenvalues, and homogeneous conditions involving the norming
constants are imposed to relate the principal part of the Laurent expansion at each pole to the regular part.
For example, if k = 2, a pole may be allowed at z = zp such that for some constant c 6= 0:

Res
z=zp

M(z) = lim
z→zp

M(z)

»
0 c
0 0

–
.

P. Deift and X. Zhou, Comm. Pure Appl. Math., 44, 485–533, 1991.
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In inverse-scattering problems, Σ is identified with the continuous spectrum, and V 6= I only where the
reflection coefficient is nonzero. If there is any discrete spectrum, the Riemann-Hilbert problem must be
modified: M may have poles at the eigenvalues, and homogeneous conditions involving the norming
constants are imposed to relate the principal part of the Laurent expansion at each pole to the regular part.
For example, if k = 2, a pole may be allowed at z = zp such that for some constant c 6= 0:

Res
z=zp

M(z) = lim
z→zp

M(z)

»
0 c
0 0

–
.

If the singularity at zp remains separated from the rest of the spectrum in the asymptotic limit of interest,
the pole may be removed at the expense of augmenting Σ and V as follows: make the substitution

N(z) := M(z)

»
1 −c(z − zp)

−1

0 1

–
for |z − zp| < δ, and N(z) := M(z) for |z − zp| > δ.

N(z) is analytic for z ∈ C \ Σ ∪ Σp, where Σp is a small, positively oriented circle about zp of radius δ.

P. Deift and X. Zhou, Comm. Pure Appl. Math., 44, 485–533, 1991.
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In inverse-scattering problems, Σ is identified with the continuous spectrum, and V 6= I only where the
reflection coefficient is nonzero. If there is any discrete spectrum, the Riemann-Hilbert problem must be
modified: M may have poles at the eigenvalues, and homogeneous conditions involving the norming
constants are imposed to relate the principal part of the Laurent expansion at each pole to the regular part.
For example, if k = 2, a pole may be allowed at z = zp such that for some constant c 6= 0:

Res
z=zp

M(z) = lim
z→zp

M(z)

»
0 c
0 0

–
.

If the singularity at zp remains separated from the rest of the spectrum in the asymptotic limit of interest,
the pole may be removed at the expense of augmenting Σ and V as follows: make the substitution

N(z) := M(z)

»
1 −c(z − zp)

−1

0 1

–
for |z − zp| < δ, and N(z) := M(z) for |z − zp| > δ.

N(z) is analytic for z ∈ C \ Σ ∪ Σp, where Σp is a small, positively oriented circle about zp of radius δ.

Then, N+(z) = N−(z)V(z) for z ∈ Σ and N+(z) = N−(z)

»
1 −c(z − zp)

−1

0 1

–
for z ∈ Σp.

P. Deift and X. Zhou, Comm. Pure Appl. Math., 44, 485–533, 1991.
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Introduction

This “one-at-a-time” procedure for removing the poles from the problem becomes

impractical exactly in situations like that faced by L&L: the poles are accumulating as

ε→ 0.

Return to outline.

P. Deift, S. Venakides, and X. Zhou, Internat. Math. Res. Notices, 6,
286–299, 1997.
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Introduction

This “one-at-a-time” procedure for removing the poles from the problem becomes

impractical exactly in situations like that faced by L&L: the poles are accumulating as

ε→ 0.

It is interesting to consider how the Deift-Zhou steepest descent method can be applied

to such problems. Indeed, by working with different initial data u0(x) for which there is

no discrete spectrum but for which WKB analysis predicts an asymptotic formula for the

reflection coefficient, Deift, Venakides, and Zhou (1997) showed how the method can

reproduce strong asymptotics in a single step (rather than by going to higher order as

required in the L&L approach).

Return to outline.

P. Deift, S. Venakides, and X. Zhou, Internat. Math. Res. Notices, 6,
286–299, 1997.
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Introduction

This “one-at-a-time” procedure for removing the poles from the problem becomes

impractical exactly in situations like that faced by L&L: the poles are accumulating as

ε→ 0.

It is interesting to consider how the Deift-Zhou steepest descent method can be applied

to such problems. Indeed, by working with different initial data u0(x) for which there is

no discrete spectrum but for which WKB analysis predicts an asymptotic formula for the

reflection coefficient, Deift, Venakides, and Zhou (1997) showed how the method can

reproduce strong asymptotics in a single step (rather than by going to higher order as

required in the L&L approach).

Moreover, there are a number of problems involving “lots of discrete spectrum” to which

the L&L method does not apply at all, but for which the Riemann-Hilbert problem offers

an alternative approach. . .

Return to outline.

P. Deift, S. Venakides, and X. Zhou, Internat. Math. Res. Notices, 6,
286–299, 1997.
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The Semiclassical Focusing Nonlinear Schrödinger Equation

A problem with many apparent similarities:

iεψt +
ε2

2
ψxx + |ψ|2ψ = 0 , x ∈ R , t > 0 ,

subject to initial data ψ(x, 0; ε) = A(x)eiS(x)/ε where A(·) and S(·) are real and independent of ε.
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Note: formal zero-dispersion limit of KdV is inviscid Burgers’ equation: ut + uux = 0 (hyperbolic). Fact:
the well-posed Cauchy problem for this equation governs the early stages of the zero-dispersion limit for
KdV.
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The Semiclassical Focusing Nonlinear Schrödinger Equation

A problem with many apparent similarities:

iεψt +
ε2

2
ψxx + |ψ|2ψ = 0 , x ∈ R , t > 0 ,

subject to initial data ψ(x, 0; ε) = A(x)eiS(x)/ε where A(·) and S(·) are real and independent of ε.

Note: formal zero-dispersion limit of KdV is inviscid Burgers’ equation: ut + uux = 0 (hyperbolic). Fact:
the well-posed Cauchy problem for this equation governs the early stages of the zero-dispersion limit for
KdV. For focusing NLS we need to introduce Madelung’s fluid dynamical variables to repeat the analogous
calculation: with

ρ := |ψ|2 and u := ε[={log(ψ)}]x
the focusing NLS Cauchy problem becomes exactly

ρt + uρx + ρux = 0 and ut − ρx + uux = ε
2
F [ρ] ,

subject to ρ(x, 0; ε) = A(x)2 and u(x, 0; ε) = S′(x).
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The Semiclassical Focusing Nonlinear Schrödinger Equation

A problem with many apparent similarities:

iεψt +
ε2

2
ψxx + |ψ|2ψ = 0 , x ∈ R , t > 0 ,

subject to initial data ψ(x, 0; ε) = A(x)eiS(x)/ε where A(·) and S(·) are real and independent of ε.

Note: formal zero-dispersion limit of KdV is inviscid Burgers’ equation: ut + uux = 0 (hyperbolic). Fact:
the well-posed Cauchy problem for this equation governs the early stages of the zero-dispersion limit for
KdV. For focusing NLS we need to introduce Madelung’s fluid dynamical variables to repeat the analogous
calculation: with

ρ := |ψ|2 and u := ε[={log(ψ)}]x
the focusing NLS Cauchy problem becomes exactly

ρt + uρx + ρux = 0 and ut − ρx + uux = ε
2
F [ρ] ,

subject to ρ(x, 0; ε) = A(x)2 and u(x, 0; ε) = S′(x). The formal limit (neglecting ε2F [ρ]) is a

Cauchy problem for an elliptic system. This is an ill-posed (formal) limit problem!
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The relevant spectral problem for inverse-scattering is the nonselfadjoint Zakharov-Shabat system

εux =

"
−iλ A(x)eiS(x)/ε

−A(x)e−iS(x)/ε iλ

#
u , where λ ∈ C is the spectral parameter.

M. Klaus and J. K. Shaw, Phys. Rev. E, 65, 36607–36611, 2002.
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The continuous spectrum is λ ∈ R, and the discrete spectrum consists of complex-conjugate pairs.
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#
u , where λ ∈ C is the spectral parameter.

The continuous spectrum is λ ∈ R, and the discrete spectrum consists of complex-conjugate pairs.

A remarkable fact: Klaus and Shaw (2002) showed that if S(x) ≡ 0 and A(x) is a positive L1(R)
function with a single critical point (a local max) then all eigenvalues are purely imaginary numbers.
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A remarkable fact: Klaus and Shaw (2002) showed that if S(x) ≡ 0 and A(x) is a positive L1(R)
function with a single critical point (a local max) then all eigenvalues are purely imaginary numbers.

WKB calculations for Klaus-Shaw potentials yield results analogous to those for the Schrödinger operator:

1. For λ ∈ R, λ 6= 0, the reflection coefficient is as small in ε as A(·) is smooth.

M. Klaus and J. K. Shaw, Phys. Rev. E, 65, 36607–36611, 2002.
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The relevant spectral problem for inverse-scattering is the nonselfadjoint Zakharov-Shabat system

εux =

"
−iλ A(x)eiS(x)/ε

−A(x)e−iS(x)/ε iλ

#
u , where λ ∈ C is the spectral parameter.

The continuous spectrum is λ ∈ R, and the discrete spectrum consists of complex-conjugate pairs.

A remarkable fact: Klaus and Shaw (2002) showed that if S(x) ≡ 0 and A(x) is a positive L1(R)
function with a single critical point (a local max) then all eigenvalues are purely imaginary numbers.

WKB calculations for Klaus-Shaw potentials yield results analogous to those for the Schrödinger operator:

1. For λ ∈ R, λ 6= 0, the reflection coefficient is as small in ε as A(·) is smooth.

2. Bohr-Sommerfeld quantization rule for eigenvalues λn ∈ [0, imaxA(x)]: λn ≈ λ0
n where

Ψ(λ
0
n) = πε

„
n+

1

2

«
, n = 0, . . . , N(ε)− 1 , Ψ(λ) :=

Z x+(λ)

x−(λ)

q
A(s) + λ2 ds .

Here x−(λ) < x+(λ) are turning points. The asymptotic number of positive imaginary eigenvalues is

N(ε) =

$
1

2
+

1

πε

Z +∞

−∞
A(x) dx

%
.

M. Klaus and J. K. Shaw, Phys. Rev. E, 65, 36607–36611, 2002.
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The Semiclassical Focusing Nonlinear Schrödinger Equation

This suggests an approach completely parallel to that applied by L&L to KdV: neglect the

reflection coefficient and consider the asymptotic behavior of the “semiclassical soliton

ensemble” given by the reflectionless potential associated with the WKB approximations

to the eigenvalues.
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The Semiclassical Focusing Nonlinear Schrödinger Equation

This suggests an approach completely parallel to that applied by L&L to KdV: neglect the

reflection coefficient and consider the asymptotic behavior of the “semiclassical soliton

ensemble” given by the reflectionless potential associated with the WKB approximations

to the eigenvalues. The formula analogous to the Kay-Moses formula for KdV is in this

case

|ψ(x, t; ε)|2 = ε
2 ∂

2

∂x2
log(τ) , where τ := det(I + B∗B) and Bjk :=

EjE
∗
k

i(λj − λk)
.

Here {λk} are the eigenvalues in the upper half-plane and Ek := ei(λkx+λ
2
kt+βk)/ε

where {βk} are like the norming constants.
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reflection coefficient and consider the asymptotic behavior of the “semiclassical soliton

ensemble” given by the reflectionless potential associated with the WKB approximations

to the eigenvalues. The formula analogous to the Kay-Moses formula for KdV is in this

case

|ψ(x, t; ε)|2 = ε
2 ∂

2

∂x2
log(τ) , where τ := det(I + B∗B) and Bjk :=

EjE
∗
k

i(λj − λk)
.

Here {λk} are the eigenvalues in the upper half-plane and Ek := ei(λkx+λ
2
kt+βk)/ε

where {βk} are like the norming constants.

The Lax-Levermore method fails because the principal minors expansion of τ consists of

both positive and negative terms!
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The Semiclassical Focusing Nonlinear Schrödinger Equation

The inverse-scattering problem was considered from the point of view of matrix

Riemann-Hilbert problems by Kamvissis, McLaughlin, and M (2003). General Klaus-Shaw

initial data is considered with further assumptions:

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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The inverse-scattering problem was considered from the point of view of matrix

Riemann-Hilbert problems by Kamvissis, McLaughlin, and M (2003). General Klaus-Shaw

initial data is considered with further assumptions:

1. The parameter ε > 0 is restricted to a discrete sequence decreasing to zero:

ε = εN :=
1

πN

Z +∞

−∞
A(x) dx , N = 1, 2, 3, . . . .

This makes the reflection coefficient uniformly small. Note N(ε) = N .

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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The inverse-scattering problem was considered from the point of view of matrix

Riemann-Hilbert problems by Kamvissis, McLaughlin, and M (2003). General Klaus-Shaw

initial data is considered with further assumptions:

1. The parameter ε > 0 is restricted to a discrete sequence decreasing to zero:

ε = εN :=
1

πN

Z +∞

−∞
A(x) dx , N = 1, 2, 3, . . . .

This makes the reflection coefficient uniformly small. Note N(ε) = N .

2. A(−x) = A(x). This allows a simple derivation via WKB of the proportionality

constants (related to norming constants): γ0
k := (−1)k+1.

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.



Riemann-Hilbert Problems with Lots of Discrete Spectrum: Asymptotics and Applications June 28, 2007

The Semiclassical Focusing Nonlinear Schrödinger Equation

The inverse-scattering problem was considered from the point of view of matrix

Riemann-Hilbert problems by Kamvissis, McLaughlin, and M (2003). General Klaus-Shaw

initial data is considered with further assumptions:

1. The parameter ε > 0 is restricted to a discrete sequence decreasing to zero:

ε = εN :=
1

πN

Z +∞

−∞
A(x) dx , N = 1, 2, 3, . . . .

This makes the reflection coefficient uniformly small. Note N(ε) = N .

2. A(−x) = A(x). This allows a simple derivation via WKB of the proportionality

constants (related to norming constants): γ0
k := (−1)k+1.

3. A(·) is analytic. This comes in by making Ψ(λ) analytic, not by allowing solution of

the limiting (ill-posed) Cauchy problem.

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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The Semiclassical Focusing Nonlinear Schrödinger Equation

Neglecting the reflection coefficient and taking the WKB eigenvalues and proportionality constants as exact
spectral data, let

ck(x, t) :=
1

γk
Res
λ=λk

W (λ) , W (λ) := e
2i(λx+λ2t)/ε

N−1Y
n=0

λ− λ∗n
λ− λn

.

The Riemann-Hilbert problem of inverse scattering is to find a 2× 2 matrix m(λ), λ ∈ C, with the
following properties:

1. m(λ) is a rational function of λ with simple poles confined to {λn, λ∗n} such that for k = 0, . . . , N−1:

Res
λ=λk

m(λ) = lim
λ→λk

m(λ)

»
0 0

ck(x, t) 0

–
, Res

λ=λ∗
k

m(λ) = lim
λ→λ∗

k

m(λ)

»
0 −ck(x, t)∗
0 0

–
.

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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W (λ) , W (λ) := e
2i(λx+λ2t)/ε

N−1Y
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λ− λ∗n
λ− λn

.

The Riemann-Hilbert problem of inverse scattering is to find a 2× 2 matrix m(λ), λ ∈ C, with the
following properties:

1. m(λ) is a rational function of λ with simple poles confined to {λn, λ∗n} such that for k = 0, . . . , N−1:

Res
λ=λk

m(λ) = lim
λ→λk

m(λ)

»
0 0

ck(x, t) 0

–
, Res

λ=λ∗
k

m(λ) = lim
λ→λ∗

k

m(λ)

»
0 −ck(x, t)∗
0 0

–
.

2. lim
λ→∞

m(λ) = I.

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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2i(λx+λ2t)/ε

N−1Y
n=0

λ− λ∗n
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.

The Riemann-Hilbert problem of inverse scattering is to find a 2× 2 matrix m(λ), λ ∈ C, with the
following properties:

1. m(λ) is a rational function of λ with simple poles confined to {λn, λ∗n} such that for k = 0, . . . , N−1:

Res
λ=λk

m(λ) = lim
λ→λk

m(λ)

»
0 0

ck(x, t) 0

–
, Res

λ=λ∗
k

m(λ) = lim
λ→λ∗

k

m(λ)

»
0 −ck(x, t)∗
0 0

–
.

2. lim
λ→∞

m(λ) = I.

The semiclassical soliton ensemble itself is given by ψ(x, t; ε) = 2i lim
λ→∞

λm12(λ).

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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The Semiclassical Focusing Nonlinear Schrödinger Equation
This is not a traditional RHP: no jumps, just poles. Indeed it seems to be simple, solvable by partial
fractions:

m(λ) = I +

N−1X
k=0

ak
λ− λk

+

N−1X
k=0

bk
λ− λ∗

k

where ak and bk are matrix coefficients determined by the residue conditions, leading to a linear algebra
problem for the coefficients.

P. D. Miller and S. Kamvissis, Phys. Lett. A, 247, 75–86, 1998.
G. D. Lyng and P. D. Miller, Comm. Pure Appl. Math., 60, 951–1026, 2007.
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fractions:

m(λ) = I +

N−1X
k=0

ak
λ− λk

+

N−1X
k=0

bk
λ− λ∗

k

where ak and bk are matrix coefficients determined by the residue conditions, leading to a linear algebra
problem for the coefficients. Note: the determinant of this system is τ , which resists evaluation by the L&L
method!

P. D. Miller and S. Kamvissis, Phys. Lett. A, 247, 75–86, 1998.
G. D. Lyng and P. D. Miller, Comm. Pure Appl. Math., 60, 951–1026, 2007.
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The Semiclassical Focusing Nonlinear Schrödinger Equation
This is not a traditional RHP: no jumps, just poles. Indeed it seems to be simple, solvable by partial
fractions:

m(λ) = I +

N−1X
k=0

ak
λ− λk

+

N−1X
k=0

bk
λ− λ∗

k

where ak and bk are matrix coefficients determined by the residue conditions, leading to a linear algebra
problem for the coefficients. Note: the determinant of this system is τ , which resists evaluation by the L&L
method!

However, for N reasonably large, it can be solved numerically on a grid of independent (x, t)-values. The
resulting plots reveal marvelous structures (here A(x) = 2 sech(x) and ε = 2/N with N = 40):
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P. D. Miller and S. Kamvissis, Phys. Lett. A, 247, 75–86, 1998.
G. D. Lyng and P. D. Miller, Comm. Pure Appl. Math., 60, 951–1026, 2007.
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The Semiclassical Focusing Nonlinear Schrödinger Equation

Kamvissis, McLaughlin, and M (2003) studied the discrete RHP by removing all the poles

“at once”: the key observation is that it is only necessary to find an analytic function

interpolating the proportionality constants {γk} at the corresponding eigenvalues {λk}.
Such a function may be constructed from the WKB phase integral; indeed

γk = −ie−iΨ(λk)/ε
, k = 0, 1, 2, . . . , N − 1 .

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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Kamvissis, McLaughlin, and M (2003) studied the discrete RHP by removing all the poles

“at once”: the key observation is that it is only necessary to find an analytic function

interpolating the proportionality constants {γk} at the corresponding eigenvalues {λk}.
Such a function may be constructed from the WKB phase integral; indeed

γk = −ie−iΨ(λk)/ε
, k = 0, 1, 2, . . . , N − 1 .

ℜ{λ}

ℑ{λ}

Σ

M(λ) := m(λ)

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.



Riemann-Hilbert Problems with Lots of Discrete Spectrum: Asymptotics and Applications June 28, 2007

The Semiclassical Focusing Nonlinear Schrödinger Equation

Kamvissis, McLaughlin, and M (2003) studied the discrete RHP by removing all the poles

“at once”: the key observation is that it is only necessary to find an analytic function

interpolating the proportionality constants {γk} at the corresponding eigenvalues {λk}.
Such a function may be constructed from the WKB phase integral; indeed

γk = −ie−iΨ(λk)/ε
, k = 0, 1, 2, . . . , N − 1 .

ℜ{λ}

ℑ{λ}

Σ

M(λ) := m(λ)

M(λ) := m(λ)

�

1 0
iW (λ)eiΨ(λ)/ǫ 1

�

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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Kamvissis, McLaughlin, and M (2003) studied the discrete RHP by removing all the poles

“at once”: the key observation is that it is only necessary to find an analytic function

interpolating the proportionality constants {γk} at the corresponding eigenvalues {λk}.
Such a function may be constructed from the WKB phase integral; indeed

γk = −ie−iΨ(λk)/ε
, k = 0, 1, 2, . . . , N − 1 .
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Σ

M(λ) := m(λ)

M(λ) := m(λ)

�

1 0
iW (λ)eiΨ(λ)/ǫ 1

�

M(λ) := σ2M(λ∗)∗σ2
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“at once”: the key observation is that it is only necessary to find an analytic function

interpolating the proportionality constants {γk} at the corresponding eigenvalues {λk}.
Such a function may be constructed from the WKB phase integral; indeed

γk = −ie−iΨ(λk)/ε
, k = 0, 1, 2, . . . , N − 1 .
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M(λ) := σ2M(λ∗)∗σ2

M+(λ) := M
−

(λ)
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�

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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The Semiclassical Focusing Nonlinear Schrödinger Equation
The Deift-Zhou technique may now be applied, the key step of which is to stabilize the problem with a
“g-function”. Supposing that g(λ) is a function analytic in C \ Σ ∪ Σ∗ with g → 0 as λ→∞ and

g(λ) + g(λ∗)∗ = 0 define a new unknown: N(λ) := M(λ)e−g(λ)σ3/ε.

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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The Deift-Zhou technique may now be applied, the key step of which is to stabilize the problem with a
“g-function”. Supposing that g(λ) is a function analytic in C \ Σ ∪ Σ∗ with g → 0 as λ→∞ and

g(λ) + g(λ∗)∗ = 0 define a new unknown: N(λ) := M(λ)e−g(λ)σ3/ε.

Note that for λ bounded away from the eigenvalues a continuum limit of Riemann sums shows that

W (λ) := exp

0@1

ε

242iλx+ 2iλ
2
t+

N−1X
n=0

ε log(λ− λ
∗
n)−

N−1X
n=0

ε log(λ− λn)

351A

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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“g-function”. Supposing that g(λ) is a function analytic in C \ Σ ∪ Σ∗ with g → 0 as λ→∞ and

g(λ) + g(λ∗)∗ = 0 define a new unknown: N(λ) := M(λ)e−g(λ)σ3/ε.

Note that for λ bounded away from the eigenvalues a continuum limit of Riemann sums shows that

W (λ) := exp

0@1

ε

242iλx+ 2iλ
2
t+

N−1X
n=0

ε log(λ− λ
∗
n)−

N−1X
n=0

ε log(λ− λn)

351A
= S(λ)e

F (λ)/ε
, where S(λ) = 1 +O(ε).

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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“g-function”. Supposing that g(λ) is a function analytic in C \ Σ ∪ Σ∗ with g → 0 as λ→∞ and

g(λ) + g(λ∗)∗ = 0 define a new unknown: N(λ) := M(λ)e−g(λ)σ3/ε.

Note that for λ bounded away from the eigenvalues a continuum limit of Riemann sums shows that
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n=0

ε log(λ− λ
∗
n)−

N−1X
n=0

ε log(λ− λn)

351A
= S(λ)e

F (λ)/ε
, where S(λ) = 1 +O(ε).

Thus, the jump condition satisfied by N(λ) on Σ is N+(λ) = N−(λ)

"
eiθ(λ)/ε 0

iS(λ)eφ(λ)/ε e−iθ(λ)/ε

#
,

where θ(λ) := i(g+(λ)− g−(λ)) and φ(λ) := F (λ)− g+(λ)− g−(λ).

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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The Deift-Zhou technique may now be applied, the key step of which is to stabilize the problem with a
“g-function”. Supposing that g(λ) is a function analytic in C \ Σ ∪ Σ∗ with g → 0 as λ→∞ and

g(λ) + g(λ∗)∗ = 0 define a new unknown: N(λ) := M(λ)e−g(λ)σ3/ε.

Note that for λ bounded away from the eigenvalues a continuum limit of Riemann sums shows that

W (λ) := exp

0@1
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t+
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n=0

ε log(λ− λ
∗
n)−

N−1X
n=0

ε log(λ− λn)

351A
= S(λ)e

F (λ)/ε
, where S(λ) = 1 +O(ε).

Thus, the jump condition satisfied by N(λ) on Σ is N+(λ) = N−(λ)

"
eiθ(λ)/ε 0

iS(λ)eφ(λ)/ε e−iθ(λ)/ε

#
,

where θ(λ) := i(g+(λ)− g−(λ)) and φ(λ) := F (λ)− g+(λ)− g−(λ).

One then aims to choose the contour Σ and the function g(λ) so that as ε→ 0 the jump of N takes two

alternative forms. This determines both g and several arcs of Σ ∪ Σ∗. The local dynamics of ψ(x, t; ε)

are given in terms of Θ for the double cover of C with cuts on these arcs.

S. Kamvissis, K. T.-R. McLaughlin, and P. D. Miller, Semiclassical Soliton
Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2003.
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The Semiclassical Focusing Nonlinear Schrödinger Equation

Sometimes this procedure fails, because the contour arcs it predicts intersect the imaginary intervals where
the eigenvalues are accumulating as ε→ 0. Thus, Σ does not completely encircle all of the eigenvalues
and some poles have never been removed!

P. D. Miller, Internat. Math. Res. Not., 383–454, 2002.
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The Semiclassical Focusing Nonlinear Schrödinger Equation

Sometimes this procedure fails, because the contour arcs it predicts intersect the imaginary intervals where
the eigenvalues are accumulating as ε→ 0. Thus, Σ does not completely encircle all of the eigenvalues
and some poles have never been removed!

For example, when t = 0, the theory predicts that one arc of Σ should be contained within the imaginary

interval [0, imaxA(x)]. In M (2002) it is shown how to nonetheless make use of the g-function at t = 0.

The key is to use two different analytic interpolants of the proportionality constants {γk} at the

eigenvalues {λk}:

P. D. Miller, Internat. Math. Res. Not., 383–454, 2002.
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and some poles have never been removed!

For example, when t = 0, the theory predicts that one arc of Σ should be contained within the imaginary

interval [0, imaxA(x)]. In M (2002) it is shown how to nonetheless make use of the g-function at t = 0.
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eigenvalues {λk}:
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Use one interpolant here

P. D. Miller, Internat. Math. Res. Not., 383–454, 2002.



Riemann-Hilbert Problems with Lots of Discrete Spectrum: Asymptotics and Applications June 28, 2007

The Semiclassical Focusing Nonlinear Schrödinger Equation

Sometimes this procedure fails, because the contour arcs it predicts intersect the imaginary intervals where
the eigenvalues are accumulating as ε→ 0. Thus, Σ does not completely encircle all of the eigenvalues
and some poles have never been removed!

For example, when t = 0, the theory predicts that one arc of Σ should be contained within the imaginary

interval [0, imaxA(x)]. In M (2002) it is shown how to nonetheless make use of the g-function at t = 0.

The key is to use two different analytic interpolants of the proportionality constants {γk} at the

eigenvalues {λk}:

ℜ{λ}

ℑ{λ}
Use one interpolant here

Use another here

P. D. Miller, Internat. Math. Res. Not., 383–454, 2002.
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the eigenvalues are accumulating as ε→ 0. Thus, Σ does not completely encircle all of the eigenvalues
and some poles have never been removed!

For example, when t = 0, the theory predicts that one arc of Σ should be contained within the imaginary

interval [0, imaxA(x)]. In M (2002) it is shown how to nonetheless make use of the g-function at t = 0.

The key is to use two different analytic interpolants of the proportionality constants {γk} at the

eigenvalues {λk}:

ℜ{λ}

ℑ{λ}

P. D. Miller, Internat. Math. Res. Not., 383–454, 2002.
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The Semiclassical Focusing Nonlinear Schrödinger Equation
The two interpolants used correspond to two choices of j ∈ Z in the more general formula

γk = −i(−1)
j
e
−i(2j+1)Ψ(λk)/ε

, k = 0, 1, 2, . . . , N − 1 .

We use j = 0 on the left and j = −1 on the right.

Return to outline.

G. D. Lyng and P. D. Miller, Comm. Pure Appl. Math., 60, 951–1026, 2007.
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The Semiclassical Focusing Nonlinear Schrödinger Equation
The two interpolants used correspond to two choices of j ∈ Z in the more general formula

γk = −i(−1)
j
e
−i(2j+1)Ψ(λk)/ε

, k = 0, 1, 2, . . . , N − 1 .

We use j = 0 on the left and j = −1 on the right.

It turns out that the g-function causes headaches not only when extra symmetry is present as at t = 0, but

for other (x, t) as well. Lyng and M (2007) showed that another collision of Σ with the interval

[0, imaxA(x)] occurs somewhere between the primary and secondary caustic curves:

Return to outline.

G. D. Lyng and P. D. Miller, Comm. Pure Appl. Math., 60, 951–1026, 2007.
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It turns out that the g-function causes headaches not only when extra symmetry is present as at t = 0, but

for other (x, t) as well. Lyng and M (2007) showed that another collision of Σ with the interval

[0, imaxA(x)] occurs somewhere between the primary and secondary caustic curves:
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Return to outline.

G. D. Lyng and P. D. Miller, Comm. Pure Appl. Math., 60, 951–1026, 2007.
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G. D. Lyng and P. D. Miller, Comm. Pure Appl. Math., 60, 951–1026, 2007.
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The Semiclassical Focusing Nonlinear Schrödinger Equation
The two interpolants used correspond to two choices of j ∈ Z in the more general formula

γk = −i(−1)
j
e
−i(2j+1)Ψ(λk)/ε

, k = 0, 1, 2, . . . , N − 1 .

We use j = 0 on the left and j = −1 on the right.

It turns out that the g-function causes headaches not only when extra symmetry is present as at t = 0, but

for other (x, t) as well. Lyng and M (2007) showed that another collision of Σ with the interval

[0, imaxA(x)] occurs somewhere between the primary and secondary caustic curves:
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The situation is repaired using three interpolants: j = −1, j = 0, and j = 1. Return to outline.

G. D. Lyng and P. D. Miller, Comm. Pure Appl. Math., 60, 951–1026, 2007.
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Discrete Orthogonal Polynomials

Consider random tilings of a hexagon with rhombus-shaped tiles:

We suppose that all tilings are equally likely.
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Discrete Orthogonal Polynomials

Here is a typical tiling (thanks to Jim Propp):
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Discrete Orthogonal Polynomials

Using an interpretation of random tilings as a problem of nonintersecting random walks, Johansson (2000)
proved the following about the positions of the blue tiles in any vertical slice of the figure:

Theorem 1. [Johansson] Let ξ1 < · · · < ξL denote the integer-valued positions (counted from the

bottom) of the blue tiles in the mth vertical slice (from the left) of the hexagon with side lengths a ≥ b and
c. This slice contains

N := c +
a− |m− a|

2
+

b− |m− b|
2

possible positions of tiles, and L = N − c. Then, the probability Pm(ξ1, . . . , ξL) of finding this
configuration of blue tiles is

Pm(ξ1, . . . , ξL) =
1

Z

Y
1≤j<k≤L

(ξj − ξk)
2
LY
j=1

w(ξj) ,

where

w(ξ) :=
(ξ + |m− a|)!(N − ξ − 1 + |m− b|)!

ξ!(N − ξ − 1)!
.

K. Johansson, Comm. Math. Phys., 209, 437–476, 2000.
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Discrete Orthogonal Polynomials

Note: w(ξ) is the weight function for the family of “discrete orthogonal” Hahn

polynomials {pN,k(z)}N−1
k=0 defined by the orthogonality conditions

N−1X
j=0

pN,k(xN,j)pN,l(xN,j)
∗
w(xN,j) = δkl , xN,j := j .
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Discrete Orthogonal Polynomials

Note: w(ξ) is the weight function for the family of “discrete orthogonal” Hahn

polynomials {pN,k(z)}N−1
k=0 defined by the orthogonality conditions

N−1X
j=0

pN,k(xN,j)pN,l(xN,j)
∗
w(xN,j) = δkl , xN,j := j .

By standard arguments of random matrix theory, all multipoint correlations and gap

probabilities are therefore encoded in the Hahn polynomials, and asymptotics of these

polynomials leads to facts about the scaling limit in which a, b, c →∞.
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Discrete Orthogonal Polynomials

Note: w(ξ) is the weight function for the family of “discrete orthogonal” Hahn

polynomials {pN,k(z)}N−1
k=0 defined by the orthogonality conditions

N−1X
j=0

pN,k(xN,j)pN,l(xN,j)
∗
w(xN,j) = δkl , xN,j := j .

By standard arguments of random matrix theory, all multipoint correlations and gap

probabilities are therefore encoded in the Hahn polynomials, and asymptotics of these

polynomials leads to facts about the scaling limit in which a, b, c →∞.

This leads to the general question of how to correctly formulate and compute asymptotics

for families of discrete orthogonal polynomials, a question we will now discuss.
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Discrete Orthogonal Polynomials

Consider the discrete measure

µ(x) =

N−1X
n=0

wN,nδ(x− xN,n)

where the nodes of orthogonality {xN,n} are prescribed for each N by giving a fixed real-analytic function

ρ0(x) > 0 on an interval [a, b] with Z b

a
ρ
0
(x) dx = 1 ,

and then imposing the conditions (resembling a Bohr-Sommerfeld quantization rule)Z xN,n

a
ρ
0
(x) dx =

2n+ 1

2N
, n = 0, . . . , N − 1 .

The weights {wN,n} are assumed to be of the form

wN,n = e
−NV (xN,n)

N−1Y
m=0
m6=n

|xN,n − xN,m|
−1

for some real analytic function V (x) (only weakly dependent on N , if at all).
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Discrete Orthogonal Polynomials

Let ZN := {0, . . . , N − 1}, ∆ ⊂ ZN , and ∇ := ZN \∆. Set W (z) := e
−NV (z)

Y
n∈∆

(z − xN,n)Y
n∈∇

(z − xN,n)
.

A. Borodin, Internat. Math. Res. Not., 9, 467–494, 2000.
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Discrete Orthogonal Polynomials

Let ZN := {0, . . . , N − 1}, ∆ ⊂ ZN , and ∇ := ZN \∆. Set W (z) := e
−NV (z)

Y
n∈∆

(z − xN,n)Y
n∈∇

(z − xN,n)
.

The DOPs satisfy a (fully discrete) RHP. Seek a 2× 2 matrix Q(z), z ∈ C such that:

1. Q(z) is a rational function of z with simple poles confined to the nodes {xN,n}N−1
n=0 such that

Res
z=xN,n

Q(z) = lim
z→xN,n

Q(z)

240 (−1)
N−1−n

Res
ζ=xN,n

W (ζ)

0 0

35 , n ∈ ∇
Res

z=xN,n
Q(z) = lim

z→xN,n
Q(z)

24 0 0

(−1)
N−1−n

Res
ζ=xN,n

W (ζ)
−1

0

35 , n ∈ ∆ .

A. Borodin, Internat. Math. Res. Not., 9, 467–494, 2000.
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Discrete Orthogonal Polynomials

Let ZN := {0, . . . , N − 1}, ∆ ⊂ ZN , and ∇ := ZN \∆. Set W (z) := e
−NV (z)

Y
n∈∆

(z − xN,n)Y
n∈∇

(z − xN,n)
.

The DOPs satisfy a (fully discrete) RHP. Seek a 2× 2 matrix Q(z), z ∈ C such that:

1. Q(z) is a rational function of z with simple poles confined to the nodes {xN,n}N−1
n=0 such that

Res
z=xN,n

Q(z) = lim
z→xN,n

Q(z)

240 (−1)
N−1−n

Res
ζ=xN,n

W (ζ)

0 0

35 , n ∈ ∇
Res

z=xN,n
Q(z) = lim

z→xN,n
Q(z)

24 0 0

(−1)
N−1−n

Res
ζ=xN,n

W (ζ)
−1

0

35 , n ∈ ∆ .

2. lim
z→∞

Q(z)z
(#∆−k)σ3 = I.

A. Borodin, Internat. Math. Res. Not., 9, 467–494, 2000.
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Discrete Orthogonal Polynomials

Let ZN := {0, . . . , N − 1}, ∆ ⊂ ZN , and ∇ := ZN \∆. Set W (z) := e
−NV (z)

Y
n∈∆

(z − xN,n)Y
n∈∇

(z − xN,n)
.

The DOPs satisfy a (fully discrete) RHP. Seek a 2× 2 matrix Q(z), z ∈ C such that:

1. Q(z) is a rational function of z with simple poles confined to the nodes {xN,n}N−1
n=0 such that

Res
z=xN,n

Q(z) = lim
z→xN,n

Q(z)

240 (−1)
N−1−n

Res
ζ=xN,n

W (ζ)

0 0

35 , n ∈ ∇
Res

z=xN,n
Q(z) = lim

z→xN,n
Q(z)

24 0 0

(−1)
N−1−n

Res
ζ=xN,n

W (ζ)
−1

0

35 , n ∈ ∆ .

2. lim
z→∞

Q(z)z
(#∆−k)σ3 = I.

The monic scaling of pN,k(z) is given by πN,k(z) = z
k

+ · · · = Q11(z)
Y
n∈∆

(z − xN,n).

A. Borodin, Internat. Math. Res. Not., 9, 467–494, 2000.
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Discrete Orthogonal Polynomials
To analyze this RHP, we know based on experience that we should remove the poles. The key is to find an
analytic function that interpolates the signs {(−1)N−1−n} at the nodes {xN,n}. Setting

θ
0
(z) := 2π

Z b

z
ρ
0
(s) ds , we have the identities ie

−iNθ0(xN,n)/2
= −ieiNθ

0(xN,n)/2
= (−1)

N−1−n
.

Return to outline.

J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, and P. D. Miller, Discrete
Orthogonal Polynomials: Asymptotics and Applications, Vol. 164, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2007.
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Discrete Orthogonal Polynomials
To analyze this RHP, we know based on experience that we should remove the poles. The key is to find an
analytic function that interpolates the signs {(−1)N−1−n} at the nodes {xN,n}. Setting

θ
0
(z) := 2π

Z b

z
ρ
0
(s) ds , we have the identities ie

−iNθ0(xN,n)/2
= −ieiNθ

0(xN,n)/2
= (−1)

N−1−n
.

This problem is similar to the t = 0 situation for the focusing NLS. There is a g-function for this problem
and its support lies in the interval [a, b]. Therefore we need both of these interpolants.

Return to outline.

J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, and P. D. Miller, Discrete
Orthogonal Polynomials: Asymptotics and Applications, Vol. 164, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2007.
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Discrete Orthogonal Polynomials
To analyze this RHP, we know based on experience that we should remove the poles. The key is to find an
analytic function that interpolates the signs {(−1)N−1−n} at the nodes {xN,n}. Setting

θ
0
(z) := 2π

Z b

z
ρ
0
(s) ds , we have the identities ie

−iNθ0(xN,n)/2
= −ieiNθ

0(xN,n)/2
= (−1)

N−1−n
.

This problem is similar to the t = 0 situation for the focusing NLS. There is a g-function for this problem
and its support lies in the interval [a, b]. Therefore we need both of these interpolants.Define

R(z) := Q(z)

"
1 ∓ie∓iNθ

0(z)/2W (z)
0 1

#
, z ∈ Ω

∇
±

R(z) := Q(z)

"
1 0

∓ie∓iNθ
0(z)/2W (z)−1 1

#
, z ∈ Ω

∆
± ,

and for all other z ∈ C set R(z) := Q(z). We obtain a traditional RHP! Return to outline.

J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, and P. D. Miller, Discrete
Orthogonal Polynomials: Asymptotics and Applications, Vol. 164, Annals
of Mathematics Studies Series, Princeton University Press, Princeton, 2007.
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The Semiclassical Sine-Gordon Equation

Going back to nonlinear waves, another interesting Cauchy problem is:

ε
2
utt − ε

2
uxx + sin(u) = 0 , x ∈ R , t > 0

subject to initial data of the form u(x, 0; ε) = f(x) and εut(x; 0; ε) = g(x),

independent of ε.

A. C. Scott, F. Chu, and S. Reible, J. Appl. Phys., 47, 3272–3286, 1976.
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Going back to nonlinear waves, another interesting Cauchy problem is:

ε
2
utt − ε

2
uxx + sin(u) = 0 , x ∈ R , t > 0

subject to initial data of the form u(x, 0; ε) = f(x) and εut(x; 0; ε) = g(x),

independent of ε.

This is a model for the phase difference u between quantum wavefunctions on two sides

of a (long) superconducting Josephson junction.

A. C. Scott, F. Chu, and S. Reible, J. Appl. Phys., 47, 3272–3286, 1976.
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The Semiclassical Sine-Gordon Equation

Going back to nonlinear waves, another interesting Cauchy problem is:

ε
2
utt − ε

2
uxx + sin(u) = 0 , x ∈ R , t > 0

subject to initial data of the form u(x, 0; ε) = f(x) and εut(x; 0; ε) = g(x),

independent of ε.

This is a model for the phase difference u between quantum wavefunctions on two sides

of a (long) superconducting Josephson junction.

1. Laboratory experiments of Scott, Chu, and Reible (1976) involved transmission lines of

length `0 = 35 cm.

A. C. Scott, F. Chu, and S. Reible, J. Appl. Phys., 47, 3272–3286, 1976.
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The Semiclassical Sine-Gordon Equation

Going back to nonlinear waves, another interesting Cauchy problem is:

ε
2
utt − ε

2
uxx + sin(u) = 0 , x ∈ R , t > 0

subject to initial data of the form u(x, 0; ε) = f(x) and εut(x; 0; ε) = g(x),

independent of ε.

This is a model for the phase difference u between quantum wavefunctions on two sides

of a (long) superconducting Josephson junction.

1. Laboratory experiments of Scott, Chu, and Reible (1976) involved transmission lines of

length `0 = 35 cm.

2. The Josephson length `J is proportional to Φ
1/2
0 , where the quantum unit of magnetic

flux is Φ0 := h/(2ε) ≈ 2.064× 10−15 V sec.

A. C. Scott, F. Chu, and S. Reible, J. Appl. Phys., 47, 3272–3286, 1976.
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The Semiclassical Sine-Gordon Equation

Going back to nonlinear waves, another interesting Cauchy problem is:

ε
2
utt − ε

2
uxx + sin(u) = 0 , x ∈ R , t > 0

subject to initial data of the form u(x, 0; ε) = f(x) and εut(x; 0; ε) = g(x),

independent of ε.

This is a model for the phase difference u between quantum wavefunctions on two sides

of a (long) superconducting Josephson junction.

1. Laboratory experiments of Scott, Chu, and Reible (1976) involved transmission lines of

length `0 = 35 cm.

2. The Josephson length `J is proportional to Φ
1/2
0 , where the quantum unit of magnetic

flux is Φ0 := h/(2ε) ≈ 2.064× 10−15 V sec.

3. Thus, ε := `J/`0 ≈ 0.0005.

A. C. Scott, F. Chu, and S. Reible, J. Appl. Phys., 47, 3272–3286, 1976.
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The Semiclassical Sine-Gordon Equation
At a more elementary level, it is the equation of motion of a simple mechanical system: a chain of coupled
pendula all attached to the same rod:
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The Semiclassical Sine-Gordon Equation
At a more elementary level, it is the equation of motion of a simple mechanical system: a chain of coupled
pendula all attached to the same rod:

This configuration has “topological charge” equal to zero. Small ε means
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The Semiclassical Sine-Gordon Equation
At a more elementary level, it is the equation of motion of a simple mechanical system: a chain of coupled
pendula all attached to the same rod:

This configuration has “topological charge” equal to zero. Small ε means (i) small mass of each pendulum

bob
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The Semiclassical Sine-Gordon Equation
At a more elementary level, it is the equation of motion of a simple mechanical system: a chain of coupled
pendula all attached to the same rod:

This configuration has “topological charge” equal to zero. Small ε means (i) small mass of each pendulum

bob and (ii) weak coupling between neighborhing pendula.
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The Semiclassical Sine-Gordon Equation

A configuration with unit topological charge is a “kink”:
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The Semiclassical Sine-Gordon Equation

As a first step in analyzing this problem, Buckingham and M (2007) considered special

initial data:

sin
“
f
2

”
:= sech(x) , cos

“
f
2

”
:= tanh(x) , g := 2µ sech(x)

where µ ∈ R is a parameter.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007



Riemann-Hilbert Problems with Lots of Discrete Spectrum: Asymptotics and Applications June 28, 2007

The Semiclassical Sine-Gordon Equation

As a first step in analyzing this problem, Buckingham and M (2007) considered special

initial data:

sin
“
f
2

”
:= sech(x) , cos

“
f
2

”
:= tanh(x) , g := 2µ sech(x)

where µ ∈ R is a parameter. Note:

1. The topological charge is −1 so the profile has a kink-like shape.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

As a first step in analyzing this problem, Buckingham and M (2007) considered special

initial data:

sin
“
f
2

”
:= sech(x) , cos

“
f
2

”
:= tanh(x) , g := 2µ sech(x)

where µ ∈ R is a parameter. Note:

1. The topological charge is −1 so the profile has a kink-like shape.

2. Taking µ = 0 corresponds to the pendulum bobs being stationary at t = 0.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

As a first step in analyzing this problem, Buckingham and M (2007) considered special

initial data:

sin
“
f
2

”
:= sech(x) , cos

“
f
2

”
:= tanh(x) , g := 2µ sech(x)

where µ ∈ R is a parameter. Note:

1. The topological charge is −1 so the profile has a kink-like shape.

2. Taking µ = 0 corresponds to the pendulum bobs being stationary at t = 0.

3. Taking µ 6= 0 correponds to giving the pendula near x = 0 a (large) impulse at t = 0.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation
We found that the spectral problem relevant to solving this Cauchy problem by inverse-scattering can be
solved explicitly in terms of hypergeometric functions for all ε > 0 for this special initial data.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation
We found that the spectral problem relevant to solving this Cauchy problem by inverse-scattering can be
solved explicitly in terms of hypergeometric functions for all ε > 0 for this special initial data. In particular,

1. If ε = εN(µ) :=

q
µ2+1

2N+1 , N = 0, 1, 2, . . . then the problem is exactly reflectionless.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation
We found that the spectral problem relevant to solving this Cauchy problem by inverse-scattering can be
solved explicitly in terms of hypergeometric functions for all ε > 0 for this special initial data. In particular,

1. If ε = εN(µ) :=

q
µ2+1

2N+1 , N = 0, 1, 2, . . . then the problem is exactly reflectionless.

2. The eigenvalues lie on the unit circle for µ = 0 (breathers) and also on two “spines” of the imaginary
axis (kinks/antikinks) for µ 6= 0.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation
We found that the spectral problem relevant to solving this Cauchy problem by inverse-scattering can be
solved explicitly in terms of hypergeometric functions for all ε > 0 for this special initial data. In particular,

1. If ε = εN(µ) :=

q
µ2+1

2N+1 , N = 0, 1, 2, . . . then the problem is exactly reflectionless.

2. The eigenvalues lie on the unit circle for µ = 0 (breathers) and also on two “spines” of the imaginary
axis (kinks/antikinks) for µ 6= 0.
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µ = 0, N = 4 µ = 1, N = 8

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

Among other things, this allows us to numerically handle the inverse-scattering. Here is a plot of cos(u)

over −2.5 < x < 2.5 and 0 < t < 5. Here µ = 0 and N = 0 (ε = 1).

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

Among other things, this allows us to numerically handle the inverse-scattering. Here is a plot of cos(u)

over −2.5 < x < 2.5 and 0 < t < 5. Here µ = 0 and N = 1 (ε = 1/3).

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

Among other things, this allows us to numerically handle the inverse-scattering. Here is a plot of cos(u)

over −2.5 < x < 2.5 and 0 < t < 5. Here µ = 0 and N = 2 (ε = 1/5).

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

Among other things, this allows us to numerically handle the inverse-scattering. Here is a plot of cos(u)

over −2.5 < x < 2.5 and 0 < t < 5. Here µ = 0 and N = 4 (ε = 1/9).

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

Among other things, this allows us to numerically handle the inverse-scattering. Here is a plot of cos(u)

over −2.5 < x < 2.5 and 0 < t < 5. Here µ = 0 and N = 8 (ε = 1/17).

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

Among other things, this allows us to numerically handle the inverse-scattering. Here is a plot of cos(u)

over −2.5 < x < 2.5 and 0 < t < 5. Here µ = 0 and N = 16 (ε = 1/33).

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

And here is a plot of cos(u) over −2.5 < x < 2.5 and 0 < t < 5, now for µ = 1 and N = 0

(ε =
√

2), bringing some kinks into the mix.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

And here is a plot of cos(u) over −2.5 < x < 2.5 and 0 < t < 5, now for µ = 1 and N = 1

(ε =
√

2/3), bringing some kinks into the mix.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

And here is a plot of cos(u) over −2.5 < x < 2.5 and 0 < t < 5, now for µ = 1 and N = 2

(ε =
√

2/5), bringing some kinks into the mix.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

And here is a plot of cos(u) over −2.5 < x < 2.5 and 0 < t < 5, now for µ = 1 and N = 4

(ε =
√

2/9), bringing some kinks into the mix.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

And here is a plot of cos(u) over −2.5 < x < 2.5 and 0 < t < 5, now for µ = 1 and N = 8

(ε =
√

2/17), bringing some kinks into the mix.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

And here is a plot of cos(u) over −2.5 < x < 2.5 and 0 < t < 5, now for µ = 1 and N = 16

(ε =
√

2/33), bringing some kinks into the mix.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

An observation: the points of phase transition at t = 0 correspond to those values of x

for which the initial data is crossing the separatrix in the phase portrait of the simple

pendulum:

−3π −2π −π 0 π

−2

0

2

v

u

Return to outline.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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The Semiclassical Sine-Gordon Equation

An observation: the points of phase transition at t = 0 correspond to those values of x

for which the initial data is crossing the separatrix in the phase portrait of the simple

pendulum:

−3π −2π −π 0 π

−2

0

2

v

u

We are now in a position to analyze the discrete RHP associated with these reflectionless

potentials and generalizations thereof (work in progress).

Return to outline.

R. Buckingham and P. D. Miller, arXiv:0705.3159, 2007
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1. Purely discrete Riemann-Hilbert problems arise in many applications ranging from

applied mathematics (nonlinear waves) to mathematical physics (random matrix theory).
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Conclusions

Here are some points to take home:

1. Purely discrete Riemann-Hilbert problems arise in many applications ranging from

applied mathematics (nonlinear waves) to mathematical physics (random matrix theory).

2. In many asymptotic situations involving accumulating singularities, interpolation

identities admit explicit transformations to equivalent Riemann-Hilbert problems with

only jump discontinuities. The latter frequently admit analysis by the Deift-Zhou

steepest descent technique.
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Conclusions

Here are some points to take home:

1. Purely discrete Riemann-Hilbert problems arise in many applications ranging from

applied mathematics (nonlinear waves) to mathematical physics (random matrix theory).

2. In many asymptotic situations involving accumulating singularities, interpolation

identities admit explicit transformations to equivalent Riemann-Hilbert problems with

only jump discontinuities. The latter frequently admit analysis by the Deift-Zhou

steepest descent technique.

3. The utility of multiple analytic interpolants cannot be underestimated!
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Conclusions

Here are some points to take home:

1. Purely discrete Riemann-Hilbert problems arise in many applications ranging from

applied mathematics (nonlinear waves) to mathematical physics (random matrix theory).

2. In many asymptotic situations involving accumulating singularities, interpolation

identities admit explicit transformations to equivalent Riemann-Hilbert problems with

only jump discontinuities. The latter frequently admit analysis by the Deift-Zhou

steepest descent technique.

3. The utility of multiple analytic interpolants cannot be underestimated!

Thank You!


