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Abstract
Norman Zabusky coined the word “soliton” in 1965 to describe a curious feature he and Martin

Kruskal observed in their numerical simulations of the initial-value problem for a simple nonlinear

partial differential equation. This talk will describe several of the aspects of solitons that have

become important in pure and applied mathematics since their accidental discovery 40 years ago

in a (by today’s standards) primitive numerical experiment. In particular, a soliton is at once (i) a

particular solution of one of many special “integrable” nonlinear partial differential equations, (ii) an

eigenvalue of a linear operator, and (iii) a robust coherent structure with particle-like properties.
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What is . . . a wave?

The wave equation:

utt − c
2
uxx = 0

was known as a mathematical model for wave propagation in vibrating strings as early as

the mid-18th century.
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What is . . . a wave?

The wave equation:

utt − c
2
uxx = 0

was known as a mathematical model for wave propagation in vibrating strings as early as

the mid-18th century.

Its success as a model for vibrations in a medium hinges on the fact that it is the simplest

second-order equation exhibiting “wave-like” solutions:

u(x, t) = a cos(k(x± ct− x0)) .
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What is . . . a wave?

Each one of these wave-like solutions may be viewed as the real part of a complex-valued

solution given by

u(x, t) = Ae
i(kx−ωt)

.

In this case, we have ω2 = c2k2.
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What is . . . a wave?

Each one of these wave-like solutions may be viewed as the real part of a complex-valued

solution given by

u(x, t) = Ae
i(kx−ωt)

.

In this case, we have ω2 = c2k2. The parameters in this solution formula are

• The (complex) amplitude A. Its magnitude determines the peak-to-trough depth of

the wave and its phase determines the location of the peaks when x = t = 0.

• The wavenumber k. This determines the peak-to-peak wavelength λ := 2π/|k|.
• The frequency ω. This determines the period T := 2π/|ω| of the wave motion.

The wave propagates rigidly at the phase velocity v = ω/k, which in this case is ±c. It

is a traveling wave.
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What is . . . a wave?

The importance of solutions of the form u = Aei(kx−ωt) goes beyond the fact that they

represent periodic traveling waves. Since the wave equation is a linear homogeneous

equation, it obeys the superposition principle:

utt − c
2
uxx = 0 and vtt − c

2
vxx = 0 implies (u+ v)tt − c

2
(u+ v)xx = 0 .

In this way, the simple traveling wave solutions may be combined by superposition to form

more complicated solutions, often called “wavepackets”.
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What is . . . dispersion?

For the more accurate modeling of vibrations in various media, the wave equation

becomes insufficient. The feature of its periodic traveling wave solutions that is most

glaringly incorrect in many applications is that they all travel with the same speed |c|.
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What is . . . dispersion?

For the more accurate modeling of vibrations in various media, the wave equation

becomes insufficient. The feature of its periodic traveling wave solutions that is most

glaringly incorrect in many applications is that they all travel with the same speed |c|.

For example, in the theory of surface waves driven by gravity on deep water of depth h, it

was known since about 1840 (due to Airy) that the frequency of such waves was not just

a constant multiple of the wavenumber k. The correct formula is in fact:

ω
2
= gk tanh(kh) , g = 9.8m/s

2
.

This means that the phase velocity v = ω/k varies with the wavenumber k for ocean

waves (shorter waves travel more slowly on the ocean).
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What is . . . dispersion?
It is easy to derive from physical laws simple equations that like the wave equation are

low-order linear, but that exhibit traveling wave solutions with variable phase velocity.
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example, ut − uxxx = 0 has solutions u(x, t) = Aei(kx−ωt) with ω = k3, so the phase

velocity is v = v(k) = k2.
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What is . . . dispersion?
It is easy to derive from physical laws simple equations that like the wave equation are

low-order linear, but that exhibit traveling wave solutions with variable phase velocity. For

example, ut − uxxx = 0 has solutions u(x, t) = Aei(kx−ωt) with ω = k3, so the phase

velocity is v = v(k) = k2.

The dependence of phase velocity on wavenumber is called dispersion. This is because

while the superposition principle applies to linear dispersive wave equations, relative

motion of the wave components leads to distortion of wavepackets:
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Who was . . . John Scott-Russell?

The phenomenon of wave dispersion was well-known by the early 19th century. One of

the key principles of linear dispersive wave theory is that the only traveling waves, i.e.

solutions of the form u(x, t) = F (x− vt) for some velocity v, are spatially extended

(in particular, periodic in x). The whole subject was driven by the analysis of periodic

traveling waves (AKA wavetrains) and the dispersion of wavepackets.
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Who was . . . John Scott-Russell?

The phenomenon of wave dispersion was well-known by the early 19th century. One of

the key principles of linear dispersive wave theory is that the only traveling waves, i.e.

solutions of the form u(x, t) = F (x− vt) for some velocity v, are spatially extended

(in particular, periodic in x). The whole subject was driven by the analysis of periodic

traveling waves (AKA wavetrains) and the dispersion of wavepackets.

John Scott-Russell (1808–1882) was a Scottish engineer specializing in water waves and

their influence on boats. In 1834 he made an accidental discovery that would change the

theory of waves forever. He observed a surface water wave in the Union Canal between

Edinburgh and Glasgow that appearred to be a spatially localized traveling wave. Given

his expertise with the existing wave theory, he was very, very surprised; so much that his

excitement is still clear in this account written ten years later:
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Who was . . . John Scott-Russell?

I believe I shall best introduce the phaenomenon by describing the circumstances of my own first acquaintance with it.

I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the

boat suddenly stopped — not so the mass of water in the channel which it had put in motion; it accumulated round

the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,

assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its

course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and

overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet

long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I

lost it in the windings of the channel.

John Scott-Russell, “Report on Waves” to the British Association, 1844
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Who was . . . John Scott-Russell?

Here is a recent re-creation of Scott-Russell’s “solitary wave” in the Scott-Russell

Aqueduct of the Union Canal, named in the honor of this portentious observation:
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Who were . . . Korteweg and de Vries?

One of the most obvious features of Scott-Russell’s “solitary wave” is its enormous size.

The wave height is a significant fraction of the channel depth.

D. J. Korteweg and G. de Vries, Philos. Mag. Ser. 5, 39, 422–443, 1895.
Also due independently to Boussinesq, about 20 years earlier.
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Who were . . . Korteweg and de Vries?

One of the most obvious features of Scott-Russell’s “solitary wave” is its enormous size.

The wave height is a significant fraction of the channel depth.

This suggests that a mathematical model capable of reproducing “solitary waves” should

be nonlinear: a higher wave would feel the effect of the bottom more, so any equation

modeling such large waves should not be invariant under scaling u→ αu.

D. J. Korteweg and G. de Vries, Philos. Mag. Ser. 5, 39, 422–443, 1895.
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Who were . . . Korteweg and de Vries?

One of the most obvious features of Scott-Russell’s “solitary wave” is its enormous size.

The wave height is a significant fraction of the channel depth.

This suggests that a mathematical model capable of reproducing “solitary waves” should

be nonlinear: a higher wave would feel the effect of the bottom more, so any equation

modeling such large waves should not be invariant under scaling u→ αu.

In 1895, D. J. Korteweg and G. de Vries published a paper in which they derived from the

physical laws governing water wave motion in a channel the following equation governing

the height u(x, t) of a disturbance:

ut + uux + uxxx = 0 .

This nonlinear equation is now called the Korteweg-de Vries equation or, KdV for short.

D. J. Korteweg and G. de Vries, Philos. Mag. Ser. 5, 39, 422–443, 1895.
Also due independently to Boussinesq, about 20 years earlier.
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Who were . . . Korteweg and de Vries?

In their paper, Korteweg and de Vries noted that for any speed v > 0 their equation

admits localized traveling wave solutions of the exact form

u(x, t) = 3vsech
2

„√
v

2
(x− x0 − vt)

«
.
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admits localized traveling wave solutions of the exact form
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They also made the observation that this formula has a shape similar to the “solitary

wave” shape described by Scott-Russell.
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What is . . . a solitary wave?

On one level, a solitary wave is simply a localized traveling-wave solution of a nonlinear

wave equation.
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What is . . . a solitary wave?

On one level, a solitary wave is simply a localized traveling-wave solution of a nonlinear

wave equation. For example, for the equation ut + u3ux + uxxx = 0 we seek a solution

of the form u = f(x− vt) where v is a wave speed parameter. Thus,

−vf ′ + f
3
f
′
+ f

′′′
= 0 , f

′
:=

df

dξ
, ξ = x− vt .
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On one level, a solitary wave is simply a localized traveling-wave solution of a nonlinear

wave equation. For example, for the equation ut + u3ux + uxxx = 0 we seek a solution

of the form u = f(x− vt) where v is a wave speed parameter. Thus,

−vf ′ + f
3
f
′
+ f

′′′
= 0 , f

′
:=

df

dξ
, ξ = x− vt .

Integrate once using f and f ′′ tending to zero as ξ →∞ (for localization):

f
′′
+ 1

4f
4 − vf = 0 .
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What is . . . a solitary wave?

On one level, a solitary wave is simply a localized traveling-wave solution of a nonlinear

wave equation. For example, for the equation ut + u3ux + uxxx = 0 we seek a solution

of the form u = f(x− vt) where v is a wave speed parameter. Thus,

−vf ′ + f
3
f
′
+ f

′′′
= 0 , f

′
:=

df

dξ
, ξ = x− vt .

Integrate once using f and f ′′ tending to zero as ξ →∞ (for localization):

f
′′
+ 1

4f
4 − vf = 0 .

Multiply by f ′ and integrate once again:„
df

dξ

«2

= vf
2 − 1

10f
5
.
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What is . . . a solitary wave?

On one level, a solitary wave is simply a localized traveling-wave solution of a nonlinear

wave equation. For example, for the equation ut + u3ux + uxxx = 0 we seek a solution

of the form u = f(x− vt) where v is a wave speed parameter. Thus,

−vf ′ + f
3
f
′
+ f

′′′
= 0 , f

′
:=

df

dξ
, ξ = x− vt .

Integrate once using f and f ′′ tending to zero as ξ →∞ (for localization):

f
′′
+ 1

4f
4 − vf = 0 .

Multiply by f ′ and integrate once again:„
df

dξ

«2

= vf
2 − 1

10f
5
.

This equation is separable. For any v ≥ 0, f(ξ) = (10v)1/3sech2/3(3
2

√
vξ +K).
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What is . . . a solitary wave?

A solitary wave is a localized traveling wave achieving a dynamical balance between

dispersion and nonlinear effects:
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What is . . . a solitary wave?

A solitary wave is a localized traveling wave achieving a dynamical balance between

dispersion and nonlinear effects:

Dispersion Alone

Nonlinearity Alone

Both Together
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What is . . . a solitary wave?

As another way to think about the competition of nonlinearity and dispersion leading to

the formation of solitary waves, consider a group of kids walking on a sidewalk:
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What is . . . a solitary wave?

The kids are all listening to their iPods and not paying any attention to each other as

they walk. Naturally, the taller kids take bigger steps and eventually get ahead of the

shorter kids. The group disperses:
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What is . . . a solitary wave?

But put those same kids on a giant trampoline, or a rubber sidewalk:
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What is . . . a solitary wave?

But put those same kids on a giant trampoline, or a rubber sidewalk:

The dispersion is inhibited because now the taller kids have to walk uphill, while the

shorter kids get to run downhill! The kids walk as a single collective object.
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What is . . . a solitary wave?

But put those same kids on a giant trampoline, or a rubber sidewalk:

The dispersion is inhibited because now the taller kids have to walk uphill, while the

shorter kids get to run downhill! The kids walk as a single collective object. This is an

essentially nonlinear effect: the size of the deformation is greater if there are more kids.



What is . . . a soliton? March 5, 2009

What is . . . the Fermi-Pasta-Ulam problem?

In the 1950’s, E. Fermi, J. Pasta, and S. Ulam observed that the energy equipartition

principle appears to be at odds with the simplest models for solid materials.
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What is . . . the Fermi-Pasta-Ulam problem?

In the 1950’s, E. Fermi, J. Pasta, and S. Ulam observed that the energy equipartition

principle appears to be at odds with the simplest models for solid materials.

The principle of equipartition of energy states that a mechanical system in thermodynamic

equilibrium has its energy distributed equally among all of its “normal modes” of vibration.
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What is . . . the Fermi-Pasta-Ulam problem?

In the 1950’s, E. Fermi, J. Pasta, and S. Ulam observed that the energy equipartition

principle appears to be at odds with the simplest models for solid materials.

The principle of equipartition of energy states that a mechanical system in thermodynamic

equilibrium has its energy distributed equally among all of its “normal modes” of vibration.

The simplest atomic model for a solid is the mass-and-spring system is

m
d2qn

dt2
= V

′
(qn+1 − qn)− V

′
(qn − qn−1)

where qn is the displacement from equilibrium position xn of the nth atom, m is the

atomic mass, and V is the potential energy of the springs.

xn

qn

xn−1 xn+1

qn+3
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What is . . . the Fermi-Pasta-Ulam problem?

If one assumes that Hooke’s law holds: V (x) =
a

2
x

2

then the equations of motion are linear, and the normal modes are just the Fourier modes:

m
d2qn

dt2
= a (qn+1 − 2qn + qn−1) is solved by qn(t) = e

i(kn−ωt)

where ω2 = 2a(1− cos(k))/m. The energy in mode k is proportional to the square of

its Fourier coefficient. As these are all constants, unless the system is in equipartition at

t = 0 it never approaches equipartition!
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What is . . . the Fermi-Pasta-Ulam problem?

FPU reasoned that nonlinearity is essential for transport of energy among the normal

(Fourier) modes and carried out very simple numerical experiments on the Maniac

computer at Los Alamos with the anharmonic potential

V (x) =
a

2
x

2
+
b

3
x

3
.

The numerical experiments were actually performed by a rarely credited
woman assistant, Mary Tsingou.
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FPU reasoned that nonlinearity is essential for transport of energy among the normal

(Fourier) modes and carried out very simple numerical experiments on the Maniac

computer at Los Alamos with the anharmonic potential

V (x) =
a

2
x

2
+
b

3
x

3
.

FPU put all of the energy into only one mode at t = 0 (one Fourier coefficient nonzero)

and observed:

• There was an initial phase of motion in which energy leaked into other Fourier modes.

The numerical experiments were actually performed by a rarely credited
woman assistant, Mary Tsingou.
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FPU reasoned that nonlinearity is essential for transport of energy among the normal

(Fourier) modes and carried out very simple numerical experiments on the Maniac

computer at Los Alamos with the anharmonic potential

V (x) =
a

2
x

2
+
b

3
x

3
.

FPU put all of the energy into only one mode at t = 0 (one Fourier coefficient nonzero)

and observed:

• There was an initial phase of motion in which energy leaked into other Fourier modes.

• But after an unexpectedly short time most of the energy returned to one mode.

The numerical experiments were actually performed by a rarely credited
woman assistant, Mary Tsingou.
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What is . . . the Fermi-Pasta-Ulam problem?

FPU reasoned that nonlinearity is essential for transport of energy among the normal

(Fourier) modes and carried out very simple numerical experiments on the Maniac

computer at Los Alamos with the anharmonic potential

V (x) =
a

2
x

2
+
b

3
x

3
.

FPU put all of the energy into only one mode at t = 0 (one Fourier coefficient nonzero)

and observed:

• There was an initial phase of motion in which energy leaked into other Fourier modes.

• But after an unexpectedly short time most of the energy returned to one mode.

Even with the nonlinearity, equipartition seemed short-lived.

The numerical experiments were actually performed by a rarely credited
woman assistant, Mary Tsingou.
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What is . . . the Zabusky-Kruskal experiment?

In 1965, Norman Zabusky and Martin Kruskal observed that by taking a suitable

continuum limit of the Fermi-Pasta-Ulam chain with cubic potential, the displacement

qn(t) is approximated by a function εq(x, t) where x = εt and ε is the equilibrium

particle spacing, and u(x, t) = qx(x, t) satisfies (approximately) the KdV equation in

the form

ut + uux + ε
2
uxxx = 0 .
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What is . . . the Zabusky-Kruskal experiment?

In 1965, Norman Zabusky and Martin Kruskal observed that by taking a suitable

continuum limit of the Fermi-Pasta-Ulam chain with cubic potential, the displacement

qn(t) is approximated by a function εq(x, t) where x = εt and ε is the equilibrium

particle spacing, and u(x, t) = qx(x, t) satisfies (approximately) the KdV equation in

the form

ut + uux + ε
2
uxxx = 0 .

Incidentally, this fact illustrates the universality of the KdV equation. The same equation

arises from many different physical settings by taking an appropriate asymptotic limit.
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What is . . . the Zabusky-Kruskal experiment?

Zabusky and Kruskal wanted to see if they could observe the FPU recurrence in a

numerical simulation of the initial-value problem for the KdV equation. Here is their

simulation with ε = 2/
√

6 ≈ 0.816 and initial data u(x, 0) = 1 + cos(πx/20).
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What is . . . the Zabusky-Kruskal experiment?

Zabusky and Kruskal wanted to see if they could observe the FPU recurrence in a

numerical simulation of the initial-value problem for the KdV equation. Here is their

simulation with ε = 2/
√

6 ≈ 0.816 and initial data u(x, 0) = 1 + cos(πx/20).
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Note that the FPU recurrence effect is also obvious in the KdV simulation.
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What is . . . the Zabusky-Kruskal experiment?

The following features were rather less expected:

• The waves that are generated from the breaking all have the correct shape and

speed/height relationship as the solitary wave solutions of KdV:

u(x, t) = 3vsech
2

„√
v

2ε
(x− vt)

«
.
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• The solitary waves appear to survive interactions with one another.
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What is . . . the Zabusky-Kruskal experiment?

The following features were rather less expected:

• The waves that are generated from the breaking all have the correct shape and

speed/height relationship as the solitary wave solutions of KdV:

u(x, t) = 3vsech
2

„√
v

2ε
(x− vt)

«
.

• The solitary waves appear to survive interactions with one another.

This latter feature is not to be expected from a nonlinear equation (no superposition

principle). Since the KdV solitary waves seem to have identity and behave as

indestructible particles, Zabusky and Kruskal named them solitons.
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What is . . . the Zabusky-Kruskal experiment?

To give a better idea of what distinguishes solitons from solitary waves, compare these

two simulations.
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ut + u3ux + uxxx = 0 ut + uux + uxxx = 0

Unlike solitons, solitary waves generally do not survive collisions with one another

(completely intact, at least). The KdV equation is apparently special among nonlinear

dispersive wave equations supporting solitary waves.
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Hamiltonian Structure of KdV

The KdV equation can be formulated as a Hamiltonian system on the phase space of

fields u(x):
∂u

∂t
= J

δH

δu
where the Hamiltonian operator J and Hamiltonian functional H are

J :=
∂

∂x
, H[u] := −

Z +∞

−∞

»
1

6
u(x)

3
+

1

2
u(x)uxx(x)

–
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The KdV equation can be formulated as a Hamiltonian system on the phase space of

fields u(x):
∂u

∂t
= J

δH

δu
where the Hamiltonian operator J and Hamiltonian functional H are

J :=
∂

∂x
, H[u] := −

Z +∞

−∞

»
1

6
u(x)

3
+

1

2
u(x)uxx(x)

–
dx .

This is an infinite-dimensional analogue of the classical situation:
du

dt
= J∇uH, where

u = (q1, . . . , qN , p1, . . . , pN)
T ∈ R2N

, J :=

»
0 IN
−IN 0

–
, H = H(u) .
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According to the Liouville-Arnold Theorem, a Hamiltonian system on R2N is completely

integrable if there exist N “sufficiently independent” functions of u whose values remain

constant as u evolves. Complete integrability implies a canonical map to “action-angle

variables” in terms of which the initial-value problem can be solved explicitly.
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Hamiltonian Structure of KdV
According to the Liouville-Arnold Theorem, a Hamiltonian system on R2N is completely

integrable if there exist N “sufficiently independent” functions of u whose values remain

constant as u evolves. Complete integrability implies a canonical map to “action-angle

variables” in terms of which the initial-value problem can be solved explicitly.

The Zabusky-Kruskal experiment suggests that there could be a large number of

independent constants of motion for the KdV equation: the amplitudes of the solitons.

A mini-industry sprung up in the late 1960’s to seek conserved quantities. For example,

F1[u] :=

Z +∞

−∞
u(x) dx , F2[u] :=

Z +∞

−∞
u(x)

2
dx , F3[u] := H[u]

are conserved by KdV. Several more were soon found. Eventually, a pattern emerged, and

it was shown that KdV conserves an infinite number of functionals.

So could KdV be an infinite-dimensional analogue of a Liouville-Arnold integrable system?

If so, how could KdV be solved? What could the action-angle variables be?
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A nonlinear equation that superficially resembles KdV is Burgers’ equation:

ut + uux − 3uxx = 0 .

Here, instead of dispersion, we have diffusion to balance nonlinear effects.
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Burgers’ Equation and the Cole-Hopf Transformation

A nonlinear equation that superficially resembles KdV is Burgers’ equation:

ut + uux − 3uxx = 0 .

Here, instead of dispersion, we have diffusion to balance nonlinear effects.

The Cole-Hopf transformation is the substitution u = −6 log(ψ)x which converts

Burgers’ equation (nonlinear) into the heat equation (linear):

ψt − 3ψxx = 0 .

This effectively solves Burgers’ equation, since the initial-value problem for the heat

equation can be solved by a Fourier transform.
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The Breakthrough: Spectral Theory for Schrödinger Operators
Since KdV involves more derivatives, perhaps instead of

u = −6
ψx

ψ
(Cole-Hopf) one should try u = −6

ψxx

ψ
.

Or, since a symmetry of KdV is u 7→ u+ E corresponding to a Galilean boost by

velocity E, a more appropriate substitution might be

u+ E = −6
ψxx

ψ
.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Breakthrough: Spectral Theory for Schrödinger Operators
Since KdV involves more derivatives, perhaps instead of

u = −6
ψx

ψ
(Cole-Hopf) one should try u = −6

ψxx

ψ
.

Or, since a symmetry of KdV is u 7→ u+ E corresponding to a Galilean boost by

velocity E, a more appropriate substitution might be

u+ E = −6
ψxx

ψ
.

In fact, this substitution does not lead to a linear equation for ψ.

In 1967, Gardner, Greene, Kruskal, and Miura thought to rewrite the “substitution” as

−6ψxx − uψ = Eψ ,

which is the Schrödinger equation for the wavefunction of a quantum particle with energy

eigenvalue E moving in a potential V (x) = −u(x).

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Breakthrough: Spectral Theory for Schrödinger Operators

GGKM considered calculating well-known scattering data for this problem consisting of:

• discrete eigenvalues E = Ej = −κ2
j < 0, j = 1, . . . , n.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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• discrete eigenvalues E = Ej = −κ2
j < 0, j = 1, . . . , n.

• norming constants cj associated to corresponding “bound state” eigenfunctions ψj(x)

normalized so that ‖ψj‖ = 1: ψj(x) = cje
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√
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GGKM considered calculating well-known scattering data for this problem consisting of:

• discrete eigenvalues E = Ej = −κ2
j < 0, j = 1, . . . , n.

• norming constants cj associated to corresponding “bound state” eigenfunctions ψj(x)

normalized so that ‖ψj‖ = 1: ψj(x) = cje
−κjx/

√
6(1 + o(1)) as x→ +∞.

• reflection coefficient r(k) for E = k2 > 0 corresponding to “scattering” solutions

satisfying

ψ(x) = e
ikx/

√
6
+ r(k)e

−ikx/
√

6
+ o(1) , x→ −∞

and

ψ(x) = t(k)e
ikx/

√
6
+ o(1) , x→ +∞

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Breakthrough: Spectral Theory for Schrödinger Operators

GGKM considered calculating well-known scattering data for this problem consisting of:

• discrete eigenvalues E = Ej = −κ2
j < 0, j = 1, . . . , n.

• norming constants cj associated to corresponding “bound state” eigenfunctions ψj(x)

normalized so that ‖ψj‖ = 1: ψj(x) = cje
−κjx/

√
6(1 + o(1)) as x→ +∞.

• reflection coefficient r(k) for E = k2 > 0 corresponding to “scattering” solutions

satisfying

ψ(x) = e
ikx/

√
6
+ r(k)e

−ikx/
√

6
+ o(1) , x→ −∞

and

ψ(x) = t(k)e
ikx/

√
6
+ o(1) , x→ +∞

If the potential V (x) = −u(x) is not fixed but depends on a parameter t as u evolves

according to the KdV equation, one expects that the scattering data

S = ({Ej}, {cj}, r(·)) will also vary with t.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Breakthrough: Spectral Theory for Schrödinger Operators

The miracle found by GGKM is this: by direct calculation, when u = u(x, t) solves KdV,

the scattering data S = S(t) evolves in a very simple manner:

• The discrete eigenvalues are constants of motion: Ej(t) = Ej(0).

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The miracle found by GGKM is this: by direct calculation, when u = u(x, t) solves KdV,

the scattering data S = S(t) evolves in a very simple manner:

• The discrete eigenvalues are constants of motion: Ej(t) = Ej(0).

• The norming constants obey cj(t) = cj(0)e
Aκ3j t for some overall constant A ∈ R.

• The reflection coefficient satisfies r(k; t) = r(k; 0)eiBk
3t for some overall constant

B ∈ R.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
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the scattering data S = S(t) evolves in a very simple manner:

• The discrete eigenvalues are constants of motion: Ej(t) = Ej(0).

• The norming constants obey cj(t) = cj(0)e
Aκ3j t for some overall constant A ∈ R.

• The reflection coefficient satisfies r(k; t) = r(k; 0)eiBk
3t for some overall constant

B ∈ R.

Moreover, it turns out that the discrete eigenvalues correspond to solitons in the solution.

Even if they are not obvious in the potential V (x) = −u(x, t) at a given time t, they

become visible as t→ ±∞ as they separate from one another and from “radiative”

components of u(x, t) associated with the continuous spectrum.
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The Breakthrough: Spectral Theory for Schrödinger Operators

The miracle found by GGKM is this: by direct calculation, when u = u(x, t) solves KdV,

the scattering data S = S(t) evolves in a very simple manner:

• The discrete eigenvalues are constants of motion: Ej(t) = Ej(0).

• The norming constants obey cj(t) = cj(0)e
Aκ3j t for some overall constant A ∈ R.

• The reflection coefficient satisfies r(k; t) = r(k; 0)eiBk
3t for some overall constant

B ∈ R.

Moreover, it turns out that the discrete eigenvalues correspond to solitons in the solution.

Even if they are not obvious in the potential V (x) = −u(x, t) at a given time t, they

become visible as t→ ±∞ as they separate from one another and from “radiative”

components of u(x, t) associated with the continuous spectrum. Thus KdV is an

isospectral flow for the Schrödinger operator, and a soliton is . . . an eigenvalue of the

Schrödinger operator.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Inverse Scattering Transform

To solve the Cauchy initial-value problem for KdV:

ut + uux + uxxx = 0

u(x, 0) u(x, t)

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Inverse Scattering Transform

To solve the Cauchy initial-value problem for KdV:

ut + uux + uxxx = 0

u(x, 0) u(x, t)

S(0)

Direct Scattering

S

Scattering map S calculated via spectral analysis of Schrödinger operator with potential

V (x) = −u(x, 0).

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Inverse Scattering Transform

To solve the Cauchy initial-value problem for KdV:

ut + uux + uxxx = 0

u(x, 0) u(x, t)

S(0) S(t)
e
Aκ

3

j t
, e

iBk
3
t

Direct Scattering

S

Explicit and simple time evolution of the scattering data S(t) as u(x, t) evolves

according to KdV.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Inverse Scattering Transform

To solve the Cauchy initial-value problem for KdV:

ut + uux + uxxx = 0

u(x, 0) u(x, t)

S(0) S(t)
e
Aκ

3

j t
, e

iBk
3
t

Direct Scattering Inverse Scattering

S S
−1

Construction of the inverse scattering map S −1 was a previously solved problem:

Gelfand, Levitan, and Marchenko in the 1950’s.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Inverse Scattering Transform

A special case occurs when the initial data is reflectionless, i.e. r(k) ≡ 0, k ∈ R.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.



What is . . . a soliton? March 5, 2009

The Inverse Scattering Transform

A special case occurs when the initial data is reflectionless, i.e. r(k) ≡ 0, k ∈ R.

• This condition is preserved under time evolution.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
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The Inverse Scattering Transform

A special case occurs when the initial data is reflectionless, i.e. r(k) ≡ 0, k ∈ R.

• This condition is preserved under time evolution.

• The only relevant data is discrete: {κj}nj=1 and {cj}nj=1.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Inverse Scattering Transform

A special case occurs when the initial data is reflectionless, i.e. r(k) ≡ 0, k ∈ R.

• This condition is preserved under time evolution.

• The only relevant data is discrete: {κj}nj=1 and {cj}nj=1.

• Moreover, the inverse scattering map S −1 reduces to a problem in n-dimensional

linear algebra.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Inverse Scattering Transform

A special case occurs when the initial data is reflectionless, i.e. r(k) ≡ 0, k ∈ R.

• This condition is preserved under time evolution.

• The only relevant data is discrete: {κj}nj=1 and {cj}nj=1.

• Moreover, the inverse scattering map S −1 reduces to a problem in n-dimensional

linear algebra.

This linear algebra problem can be solved by Cramer’s rule.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Inverse Scattering Transform

Computing S −1 in the reflectionless case yields an explicit formula for u(x, t) in terms

of determinants known as the Kay-Moses formula (the {xj} are related to the {cj}):

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Inverse Scattering Transform

Computing S −1 in the reflectionless case yields an explicit formula for u(x, t) in terms

of determinants known as the Kay-Moses formula (the {xj} are related to the {cj}):

u(x, t) = 12
∂2

∂x2
log(τ) , τ := det

„
δjk +

FjFk

κj + κk

«
, Fj := e

κj(x−xj)−4κ3j t .

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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The Inverse Scattering Transform

Computing S −1 in the reflectionless case yields an explicit formula for u(x, t) in terms

of determinants known as the Kay-Moses formula (the {xj} are related to the {cj}):

u(x, t) = 12
∂2

∂x2
log(τ) , τ := det

„
δjk +

FjFk

κj + κk

«
, Fj := e

κj(x−xj)−4κ3j t .

E.g. n = 3 with κ1 = 0.274, κ2 = 0.387, κ3 = 0.474:

!100 !50 0 50 100
x

!100

!50

0

50

100

t

!100 !50 0 50 100
x

!100

!50

0

50

100

t
x1 = x2 = x3 = 0 x1 = 10, x2 = −10, x3 = 0

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev.
Lett., 19, 1095–1097, 1967.
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Lax Formalism
In 1968, Peter Lax observed that if one defines linear differential operators by

L := −6
d2

dx2
− u , B := −4

d3

dx3
− u

d

dx
−

1

2
ux ,

then the KdV equation is equivalent to the operator equation
dL

dt
+ [L,B] = 0.
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Lax Formalism
In 1968, Peter Lax observed that if one defines linear differential operators by

L := −6
d2

dx2
− u , B := −4

d3

dx3
− u

d

dx
−

1

2
ux ,

then the KdV equation is equivalent to the operator equation
dL

dt
+ [L,B] = 0.

In particular, this implies that the spectrum σ(L) is independent of t, and also

d

dt
(L− λI)−1

+ [(L− λI)−1
, B] = 0 , λ 6∈ σ(L) .

Since the resolvent is trace-class, and commutators are traceless,

d

dt
trace(L− λI)−1

= 0 , λ 6∈ σ(L) .

This explains the infinite number of constants of motion for KdV: the trace of the

resolvent is a generating function for them!
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The Lax formalism also shows how the mathematical structure underlying the KdV

equation and its solitons may be generalized to other equations:



What is . . . a soliton? March 5, 2009

Lax Formalism

The Lax formalism also shows how the mathematical structure underlying the KdV

equation and its solitons may be generalized to other equations:

• The operator B could be replaced by another one as long as [L,B] works out to be

a multiplication operator. There is an infinite sequence of such B operators, and this

gives a hierarchy of integrable equations called the KdV hierarchy. This immediately
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and Shabat took L to be the Dirac operator from quantum mechanics, and by

constructing an appropriate sequence of B operators found a new hierarchy of which

the nonlinear Schrödinger equation is a member.
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Lax Formalism

The Lax formalism also shows how the mathematical structure underlying the KdV

equation and its solitons may be generalized to other equations:

• The operator B could be replaced by another one as long as [L,B] works out to be

a multiplication operator. There is an infinite sequence of such B operators, and this

gives a hierarchy of integrable equations called the KdV hierarchy. This immediately

shows that KdV is not alone!

• The operator L could be replaced by another one too. For example, in 1971 Zakharov

and Shabat took L to be the Dirac operator from quantum mechanics, and by

constructing an appropriate sequence of B operators found a new hierarchy of which

the nonlinear Schrödinger equation is a member.

• The operators L and B could be generalized to difference operators which should

yield hierarchies of discrete integrable equations. Integral operators lead to integral

equations.
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The Zoo of Integrable Systems

Here is a very partial list of some integrable systems fitting into this framework.

PDE in 1+1 dimensions:

• KdV: ut + uux + uxxx = 0. This is the universal equation governing unidirectional weakly nonlinear
dispersive long waves, applicable to: surface and internal water waves, plasma vibrations, lattice vibrations
in solid state physics (acoustic phonons), and many other physical problems.
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The Zoo of Integrable Systems

Here is a very partial list of some integrable systems fitting into this framework.

PDE in 1+1 dimensions:

• KdV: ut + uux + uxxx = 0. This is the universal equation governing unidirectional weakly nonlinear
dispersive long waves, applicable to: surface and internal water waves, plasma vibrations, lattice vibrations
in solid state physics (acoustic phonons), and many other physical problems.

• Boussinesq equation: utt − uxx + 3(u2)xx − uxxxx = 0. More general than KdV as it takes into
account waves propagating in two opposite directions. Here L is a third-order differential operator.
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Here is a very partial list of some integrable systems fitting into this framework.

PDE in 1+1 dimensions:

• KdV: ut + uux + uxxx = 0. This is the universal equation governing unidirectional weakly nonlinear
dispersive long waves, applicable to: surface and internal water waves, plasma vibrations, lattice vibrations
in solid state physics (acoustic phonons), and many other physical problems.

• Boussinesq equation: utt − uxx + 3(u2)xx − uxxxx = 0. More general than KdV as it takes into
account waves propagating in two opposite directions. Here L is a third-order differential operator.

• Cubic nonlinear Schrödinger (NLS) equation: iψt+
1
2ψxx±|ψ|

2ψ = 0. This is the universal equation
governing packets of weakly nonlinear waves in the presence of dispersion, applicable to: wavetrains
on deep water, optical fiber transmission systems, optical waveguide theory, and many other physical
problems. Here L is the Dirac operator.

• Modified KdV: ut+ u2ux+ uxxx = 0. This equation arises nearly as often as does KdV, but requires
some extra symmetry in the physical system. This equation is strangely not in the KdV hierarchy, but is
actually a “higher” NLS equation.

• sine-Gordon: utt − uxx + sin(u) = 0. This equation is a model for coupled pendulum motion and
arises in the theory of superconducting Josephson junctions. It is also in the NLS hierarchy.
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PDE in 2+1 dimensions:

• The Kadomtsev-Petviashvili (KP) equation: ±uyy = [ut + uux + uxxx]x. This is a two-dimensional
generalization of KdV, arising in all of the same application problems. The integrable theory of the KP
equation has had a remarkable impact in the pure mathematical subject of algebraic geometry, where it
was used to solve the Schottky problem, a long-standing problem in the field.
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PDE in 2+1 dimensions:

• The Kadomtsev-Petviashvili (KP) equation: ±uyy = [ut + uux + uxxx]x. This is a two-dimensional
generalization of KdV, arising in all of the same application problems. The integrable theory of the KP
equation has had a remarkable impact in the pure mathematical subject of algebraic geometry, where it
was used to solve the Schottky problem, a long-standing problem in the field.

• The Davey-Stewartson equation:

iψt + 1
2(ψxx ± ψyy)± |ψ|2ψ = uψ , uxx ∓ uyy = ±2(|ψ|2)xx .

This is a two-dimensional generalization of NLS applicable in certain problems of water wave propagation.
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Integro-differential equations:

• The Benjamin-Ono equation: ut + uux +Huxx = 0 , Hf(x) :=
1

π
−
Z +∞

−∞

f(y) dy

y − x
arising in the theory of internal waves, also in the atmosphere. Thought to model the famous “Morning
Glory” wave regularly seen near Burketown, Queensland, Australia:
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• The Benjamin-Ono equation: ut + uux +Huxx = 0 , Hf(x) :=
1

π
−
Z +∞

−∞

f(y) dy

y − x
arising in the theory of internal waves, also in the atmosphere. Thought to model the famous “Morning
Glory” wave regularly seen near Burketown, Queensland, Australia:

• The intermediate long wave equation

ut +
1

δ
ux + uux + T [uxx] = 0 , Tf(x) :=

1

2δ
−
Z +∞

−∞
coth

»
π

2δ
(y − x)

–
f(y) dy .
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Differential-difference equations:

• The Toda lattice equations:
d2qn

dt2
= V

′
(qn+1 − qn)− V

′
(qn − qn−1) , V (∆) := e

∆
.

This is a special case of the Fermi-Pasta-Ulam model, with exponential spring forces, and an isospectral
flow for the Jacobi matrix

L :=

26664
. . . . . . . . .

bn−1 an bn
bn an+1 bn+1

. . . . . . . . .

37775 , an :=
1

2

dqn

dt
, bn :=

1

2
e
(qn+1−qn)/2

.

It is also important in Hermitian random matrix theory and the theory of real orthogonal polynomials.
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• The Toda lattice equations:
d2qn

dt2
= V

′
(qn+1 − qn)− V

′
(qn − qn−1) , V (∆) := e

∆
.

This is a special case of the Fermi-Pasta-Ulam model, with exponential spring forces, and an isospectral
flow for the Jacobi matrix

L :=

26664
. . . . . . . . .

bn−1 an bn
bn an+1 bn+1

. . . . . . . . .

37775 , an :=
1

2

dqn

dt
, bn :=

1

2
e
(qn+1−qn)/2

.

It is also important in Hermitian random matrix theory and the theory of real orthogonal polynomials.

• The Ablowitz-Ladik equations:

i
dψn

dt
+ (1± |ψn|2)(ψn+1 + ψn−1) = 0 .

This may be viewed as a spatial discretization of the NLS equation. It is also important in unitary
random matrix theory and the theory of orthogonal polynomials on the unit circle.
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The Painlevé transcendents for w = w(z):

PI: w
′′

= 6w
2

+ z . PII: w
′′

= 2w
3

+ zw + a .

PIII: w
′′

=
(w′)2

w
−
w′

z
+
aw2 + b

z
+ cw

3
+
d

w
.

PIV: w
′′

=
(w′)2

2w
+

3w3

2
+ 4zw

2
+ 2(z

2 − a)w +
b

w
.

PV: w
′′

=

„
1

2w
+

1

w − 1

«
(w

′
)
2 −

w′

z
+

(w − 1)2

z2

„
aw +

b

w

«
+
cw

z
+
dw(w + 1)

w − 1
.

PVI: w
′′

=
1

2

„
1

w
+

1

w − 1
+

1

w − z

«
(w

′
)
2 −

„
1

z
+

1

z − 1
+

1

w − z

«
w
′

+
w(w − 1)(w − 2)

z2(z − 1)2

»
a+

bz

w2
+
c(z − 1)

(w − 1)2
+
dz(z − 1)

(w − z)2

–
.
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Conclusions

A soliton is . . .

• A particular solution of an integrable equation that has “particle-like” properties:

? Solitons “survive” interactions despite lack of a simple superposition principle.

? Spectral interpretation as an eigenvalue means that the soliton is always there, even

if it is not obvious in the field.
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? Bits in digital optical fiber transmission systems.

? Fantastic internal waves in the atmosphere.



What is . . . a soliton? March 5, 2009

Conclusions

A soliton is . . .

• A particular solution of an integrable equation that has “particle-like” properties:

? Solitons “survive” interactions despite lack of a simple superposition principle.

? Spectral interpretation as an eigenvalue means that the soliton is always there, even

if it is not obvious in the field.

• A coherent structure in nature modeled by integrable equations:

? Scott-Russell’s great solitary wave.

? Coherent packets of phonons obstructing equipartition in solids.

? Bits in digital optical fiber transmission systems.

? Fantastic internal waves in the atmosphere.

• An eigenvalue of an isospectral family of operators L.



What is . . . a soliton? March 5, 2009

Conclusions

A soliton is . . .

• A particular solution of an integrable equation that has “particle-like” properties:

? Solitons “survive” interactions despite lack of a simple superposition principle.

? Spectral interpretation as an eigenvalue means that the soliton is always there, even

if it is not obvious in the field.

• A coherent structure in nature modeled by integrable equations:

? Scott-Russell’s great solitary wave.

? Coherent packets of phonons obstructing equipartition in solids.

? Bits in digital optical fiber transmission systems.

? Fantastic internal waves in the atmosphere.

• An eigenvalue of an isospectral family of operators L. Thank You!


