Abstract
Norman Zabusky coined the word “soliton” in 1965 to describe a curious feature he and Martin
Kruskal observed in their numerical simulations of the initial-value problem for a simple nonlinear
partial differential equation. This talk will describe several of the aspects of solitons that have
become important in pure and applied mathematics since their accidental discovery 40 years ago
in a (by today's standards) primitive numerical experiment. In particular, a soliton is at once (i) a
particular solution of one of many special “integrable” nonlinear partial differential equations, (ii) an

eigenvalue of a linear operator, and (iii) a robust coherent structure with particle-like properties.
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u(x,t) = acos(k(x £ ct — xp)) .
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e The wavenumber k. This determines the peak-to-peak wavelength \ := 27 /|k]|.

Depantonct of

MATHEMATICS

University of Michigan




What is ... a soliton? March 5, 2009

What is . . . a wave?

the wave and its phase determines the location of the peaks when x =t = 0.
e The wavenumber k. This determines the peak-to-peak wavelength \ := 27 /|k]|.

e The frequency w. This determines the period T' := 27 /|w| of the wave motion.

The wave propagates rigidly at the phase velocity v = w/k, which in this case is £c. It
Is a traveling wave.
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What is . . . dispersion?

w’ = gktanh(kh), g =9.8m/s>.

This means that the phase velocity v = w/k varies with the wavenumber k for ocean
waves (shorter waves travel more slowly on the ocean).
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John Scott-Russell (1808-1882) was a Scottish engineer specializing in water waves and
their influence on boats. In 1834 he made an accidental discovery that would change the
theory of waves forever. He observed a surface water wave in the Union Canal between
Edinburgh and Glasgow that appearred to be a spatially localized traveling wave. Given
his expertise with the existing wave theory, he was very, very surprised; so much that his
excitement is still clear in this account written ten years later:
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overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet
long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles |

lost it in the windings of the channel.

John Scott-Russell, “Report on Waves” to the British Association, 1844
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In 1895, D. J. Korteweg and G. de Vries published a paper in which they derived from the
physical laws governing water wave motion in a channel the following equation governing
the height u(x, t) of a disturbance:
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In 1895, D. J. Korteweg and G. de Vries published a paper in which they derived from the
physical laws governing water wave motion in a channel the following equation governing
the height u(x, t) of a disturbance:

This nonlinear equation is now called the Korteweg-de Vries equation or, KdV for short.
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f”—l—%f‘l—vf:O.

Multiply by f’ and integrate once again:

(i)
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What is . . . a solitary wave?

ntegrate once using INg TtO Zero as

' +iff—wuf=0.
Multiply by f’ and integrate once again:
df\* _ . 5
(Ge) = o7 =%
This equation is separable. For any v > 0, f(§) = (10v)1/3sech2/3(%\/5£ + K).
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X

The dispersion is inhibited because now the taller kids have to walk uphill, while the
shorter kids get to run downhill! The kids walk as a single collective object.
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What is . . . a solitary wave?

X

The dispersion is inhibited because now the taller kids have to walk uphill, while the
shorter kids get to run downhill! The kids walk as a single collective object. This is an
essentially nonlinear effect: the size of the deformation is greater if there are more kids.

Depantonct of

MATHEMATICS

University of Michigan




What is ... a soliton? March 5, 2009

What is . . . the Fermi-Pasta-Ulam problem?

Depantment of

MATHEMATICS

University of Michigan




What is ... a soliton? March 5, 2009

What is . . . the Fermi-Pasta-Ulam problem?

Depantonct of

MATHEMATICS

University of Michigan




What is ... a soliton? March 5, 2009
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d“qn
m a2 = V/(Qn—l—l — Qn) = V,(Qn — Qn—l)

where q,, is the displacement from equilibrium position x,, of the nth atom, m is the
atomic mass, and V' is the potential energy of the springs.

dn dn+3
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its Fourier coefficient. As these are all constants, unless the system is in equipartition at
t = O it never approaches equipartition!
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FPU put all of the energy into only one mode at ¢ = O (one Fourier coefficient nonzero)
and observed:

e There was an initial phase of motion in which energy leaked into other Fourier modes.
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FPU put all of the energy into only one mode at ¢ = O (one Fourier coefficient nonzero)
and observed:

e There was an initial phase of motion in which energy leaked into other Fourier modes.
e But after an unexpectedly short time most of the energy returned to one mode.
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What is . . . the Fermi-Pasta-Ulam problem?

FPU put all of the energy into only one mode at ¢ = O (one Fourier coefficient nonzero)
and observed:

e There was an initial phase of motion in which energy leaked into other Fourier modes.
e But after an unexpectedly short time most of the energy returned to one mode.

Even with the nonlinearity, equipartition seemed short-lived.
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What is . . . the Zabusky-Kruskal experiment?

Incidentally, this fact illustrates the universality of the KdV equation. The same equation
arises from many different physical settings by taking an appropriate asymptotic limit.
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e The solitary waves appear to survive interactions with one another.
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What is . . . the Zabusky-Kruskal experiment?

e The solitary waves appear to survive interactions with one another.

This latter feature is not to be expected from a nonlinear equation (no superposition
principle). Since the KdV solitary waves seem to have identity and behave as
indestructible particles, Zabusky and Kruskal named them solitons.
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This is an infinite-dimensional analogue of the classical situation: i IV H, where

0 In

i 0] , H=H(u).

T 2N
u:(QI7°-°aQN7p1a°'°7pN) € R ’ ::[
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A mini-industry sprung up in the late 1960’s to seek conserved quantities. For example,
+o00 Hee >
F[u] ::/ u(x)dr, Fsrlu]:= / w(x) dr, Fslu]:= H[u]

are conserved by KdV. Several more were soon found.
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A mini-industry sprung up in the late 1960’s to seek conserved quantities. For example,

+o00 Hee
F[u] ::/ u(x)dr, Fsrlu]:= / w(z)’dz, Fslu] := H[u]

— 00 — 0

are conserved by KdV. Several more were soon found. Eventually, a pattern emerged, and
it was shown that KdV conserves an infinite number of functionals.
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Hamiltonian Structure of KdV

A mini-industry sprung up in the late 1960’s to seek conserved quantities. For example,

+o00 Hee
i [u] ::/ w(z)de, Fulul ::/ w(z)?ds, Fiu] = Hul

— 00 — O

are conserved by KdV. Several more were soon found. Eventually, a pattern emerged, and
it was shown that KdV conserves an infinite number of functionals.

So could KdV be an infinite-dimensional analogue of a Liouville-Arnold integrable system?
If so, how could KdV be solved? What could the action-angle variables be?
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Burgers’ Equation and the Cole-Hopf Transformation

Burgers' equation (nonlinear) into the heat equation (linear):

Vi — 3z = 0.
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Burgers’ Equation and the Cole-Hopf Transformation

Burgers' equation (nonlinear) into the heat equation (linear):

Vi — 3z = 0.

This effectively solves Burgers' equation, since the initial-value problem for the heat
equation can be solved by a Fourier transform.
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In fact, this substitution does not lead to a linear equation for 2.
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The Breakthrough: Spectral Theory for Schrodinger Operators

In fact, this substitution does not lead to a linear equation for 7.

In 1967, Gardner, Greene, Kruskal, and Miura thought to rewrite the “substitution” as

—6%y — utp) = B,
which is the Schrodinger equation for the wavefunction of a quantum particle with energy
eigenvalue £ moving in a potential V(z) = —u(x).
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() = ™V L p(k)e VO L o(1), 2 — —oo
and '
W(z) = t(k)e™™ Vo 4 o(1), = — +oo
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The Breakthrough: Spectral Theory for Schrodinger Operators

satisfying
(a) = V0 r(k)e V0 £ 0(1), @ — —oo
and .
¥(2) = t(k)e™ 4 0(1), = — too
If the potential V' (x) = —wu(x) is not fixed but depends on a parameter ¢ as u evolves

according to the KdV equation, one expects that the scattering data
S =HE;},{ci}, r(-)) will also vary with ¢.
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The Breakthrough: Spectral Theory for Schrodinger Operators

o The reflection coefficient satisfies r(k;t r(k;0)e’ ™" " for some overall constant
B € R.

Moreover, it turns out that the discrete eigenvalues correspond to solitons in the solution.
Even if they are not obvious in the potential V (z) = —wu(x, t) at a given time ¢, they
become visible as t — £ 00 as they separate from one another and from “radiative”
components of u(x, t) associated with the continuous spectrum.
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The Breakthrough: Spectral Theory for Schrodinger Operators

o The reflection coefficient satisfies r(k;t) = r(k; 0)eP** for some overall constant
B € R.

Moreover, it turns out that the discrete eigenvalues correspond to solitons in the solution.
Even if they are not obvious in the potential V (z) = —wu(x, t) at a given time ¢, they
become visible as t — £ 00 as they separate from one another and from “radiative”
components of u(x, t) associated with the continuous spectrum. Thus KdV is an
isospectral flow for the Schrodinger operator, and a soliton is . . . an eigenvalue of the

Schrodinger operator.
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The Inverse Scattering Transform

Scattering map . calculated via spectral analysis of Schrodinger operator with potential

V(z) = —u(x,0).
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The Inverse Scattering Transform

Explicit and simple time evolution of the scattering data S(t) as u(x, t) evolves

according to KdV.
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The Inverse Scattering Transform

Construction of the inverse scattering map .~ ! was a previously solved problem:

Gelfand, Levitan, and Marchenko in the 1950's.
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The Inverse Scattering Transform

This linear algebra problem can be solved by Cramer’s rule.
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Computing .7 in the reflectionless case yields an explicit formula for w(x, t) in terms
of determinants known as the Kay-Moses formula (the {x;} are related to the {c;}):

0? F;F (o) dr3
u(x,t) = 12@ log(T), 7 := det <5jk + J—k> , Fj:=e jE—wj)=angt
x
E.g n =3 with ki = 0.274, kg = 0.387, k3 = 0.474:

i Vi
W, i/ _

-100 -50 0 50 100 -100 -50 0
X X

100 100

50 50

- 0

-50 -50

0

1 =x9 =23 =0 xz1 = 10, z9g = —10, z3 =0

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rewv.
Lett., 19, 1095-1097, 1967.
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Lax Formalism

—(L =AD"+ [(L=XAI)"",B]=0, A¢&o(L).
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Lax Formalism

d
—(L - M)+ [(L—AI)"",B]=0, A&o(L).
Since the resolvent is trace-class, and commutators are traceless,
d
—trace(L — M) =0, Ago(L).

This explains the infinite number of constants of motion for KdV: the trace of the
resolvent is a generating function for them!
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Lax Formalism

shows that KdV is not alone!

e The operator L could be replaced by another one too. For example, in 1971 Zakharov
and Shabat took L to be the Dirac operator from quantum mechanics, and by
constructing an appropriate sequence of B operators found a new hierarchy of which
the nonlinear Schrodinger equation is a member.

Depantonct of

MATHEMATICS

University of Michigan




What is ... a soliton? March 5, 2009

Lax Formalism

gives a hierarchy of integrable equations called the KdV hierarchy. This immediately
shows that KdV is not alonel!

e The operator L could be replaced by another one too. For example, in 1971 Zakharov
and Shabat took L to be the Dirac operator from quantum mechanics, and by
constructing an appropriate sequence of B operators found a new hierarchy of which
the nonlinear Schrodinger equation is a member.

e The operators L and B could be generalized to difference operators which should
yield hierarchies of discrete integrable equations. Integral operators lead to integral
equations.
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account waves propagating in two opposite directions. Here L is a third-order differential operator.

e Cubic nonlinear Schrédinger (NLS) equation: 1) + %qux + |1p|2¢ = 0. This is the universal equation
governing packets of weakly nonlinear waves in the presence of dispersion, applicable to: wavetrains
on deep water, optical fiber transmission systems, optical waveguide theory, and many other physical
problems. Here L is the Dirac operator.
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account waves propagating in two opposite directions. Here L is a third-order differential operator.

e Cubic nonlinear Schrédinger (NLS) equation: 1) + %zpm + |1p|2¢ = 0. This is the universal equation
governing packets of weakly nonlinear waves in the presence of dispersion, applicable to: wavetrains
on deep water, optical fiber transmission systems, optical waveguide theory, and many other physical
problems. Here L is the Dirac operator.

e Modified KdV: u; + u2um + uzzz = 0. This equation arises nearly as often as does KdV, but requires
some extra symmetry in the physical system. This equation is strangely not in the KdV hierarchy, but is
actually a “higher” NLS equation.
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e Boussinesq equation: w¢t — Ugpr + 3(u2)m; — Ugzzz = 0. More general than KdV as it takes into
account waves propagating in two opposite directions. Here L is a third-order differential operator.

e Cubic nonlinear Schrédinger (NLS) equation: 1) + %'gwa + |1p|2¢ = 0. This is the universal equation
governing packets of weakly nonlinear waves in the presence of dispersion, applicable to: wavetrains
on deep water, optical fiber transmission systems, optical waveguide theory, and many other physical
problems. Here L is the Dirac operator.

e Modified KdV: us + u2um + uzzz = 0. This equation arises nearly as often as does KdV, but requires
some extra symmetry in the physical system. This equation is strangely not in the KdV hierarchy, but is
actually a “higher” NLS equation.

e sine-Gordon: wu¢t — ugg + sin(uw) = 0. This equation is a model for coupled pendulum motion and
arises in the theory of superconducting Josephson junctions. It is also in the NLS hierarchy.
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1t + %("pwm £ Pyy) = |¢|2'€b =uY, Ugz F Uyy = :|:2(|¢|2):m: .

This is a two-dimensional generalization of NLS applicable in certain problems of water wave propagation.
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e The intermediate long wave equation

1 1 ptoo
ut + <Ug + utg + Tluge]) =0, Tf(x):= %][

— o0

coth | 2y — 2)| £} dy.
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It is also important in Hermitian random matrix theory and the theory of real orthogonal polynomials.
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On  An41  On+1 . 2 dt V 2

It is also important in Hermitian random matrix theory and the theory of real orthogonal polynomials.
e The Ablowitz-Ladik equations:

Gn
dt

This may be viewed as a spatial discretization of the NLS equation. It is also important in unitary
random matrix theory and the theory of orthogonal polynomials on the unit circle.

+ (1% [¥n®) (Wng1 + Y1) =0.
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n w(w —1)(w — 2) [a

22(z — 1)2
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Conclusions

e A coherent structure in nature modeled by integrable equations:
Scott-Russell's great solitary wave.
Coherent packets of phonons obstructing equipartition in solids.
Bits in digital optical fiber transmission systems.
Fantastic internal waves in the atmosphere.
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Bits in digital optical fiber transmission systems.
Fantastic internal waves in the atmosphere.

e An eigenvalue of an isospectral family of operators L.
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