Sources of Nonuniformity

Sequence of matrix functions:

$$\mathrm{M}(\lambda) o \mathrm{N}(\lambda) o \mathrm{\tilde{N}}(\lambda) o \mathrm{O}(\lambda) o \mathrm{\tilde{O}}(\lambda)$$

Ad-hoc steps:

- 1. Continuum Limit of Jump Matrix: $\mathbf{N}(\lambda) \to \mathbf{\tilde{N}}(\lambda)$
- 2. Pointwise Asymptotics of Jump Matrix: $O(\lambda) \to \tilde{O}(\lambda)$

Both of these break down near $\lambda = 0$.

Inner Asymptotics near $\lambda = 0$

Discrepancy of approximation of $N(\lambda)$ by $\hat{N}_{out}(\lambda)$ is the quotient $N(\lambda)\hat{N}_{out}(\lambda)^{-1}$.

Convenient to introduce a conjugation by an explicit, holomorphic matrix $\mathbf{C}(\lambda)$ and look at

$$F(\lambda) := C(\lambda)^{-1}N(\lambda)\hat{N}_{out}(\lambda)^{-1}C(\lambda)$$
.

Exact jump relation: $F_{+}(\lambda) = F_{-}(\lambda)v_{F}(\lambda)$ with

$$\Gamma_{\text{GIZ+1}}^{+} \qquad \Gamma_{0}^{+} = \begin{pmatrix} C_{0+}^{+} & I_{0}^{+} & C_{0-}^{+} \\ -ie^{\delta/h}e^{(\tilde{\varphi}(\lambda)-\tilde{\varphi}(0))/h}(1-d(\lambda)) & 1 \end{pmatrix}, \qquad \lambda \in \Gamma_{G/2+1}^{+} \\ \begin{pmatrix} 1 & ie^{-i(\theta(\lambda)-\theta(0))/h} \\ 0 & 1 \end{pmatrix}, \qquad \lambda \in C_{0+}^{+} \end{pmatrix}$$

$$\Gamma_{\text{GIZ+1}} \qquad V_{F}(\lambda) = \begin{cases} \begin{pmatrix} 1 & ie^{-i(\theta(\lambda)-\theta(0))/h} \\ ie^{i(\theta(\lambda)-\theta(0))/h} & 1 \end{pmatrix}, \qquad \lambda \in C_{0-}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & ie^{-i(\theta(\lambda)-\theta(0))/h} \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{bmatrix}, \qquad \lambda \in I_{0}^{+} \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0))/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0))/h}d(\lambda) & 1+d(\lambda) \end{pmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0)/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0)/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0)/h}d(\lambda) \end{bmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0)/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0)/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta(0)/h}d(\lambda) \end{bmatrix}$$

$$\begin{bmatrix} 1 & -d(\lambda) & ie^{-i(\theta(\lambda)-\theta(0)/h}d(\lambda) \\ ie^{i(\theta(\lambda)-\theta($$

Approximating the Jump Matrix Near the Origin

- 1. Approximate $\theta(\lambda) \theta(0)$ and $\tilde{\phi}(\lambda) \tilde{\phi}(0)$ near the origin with the first term in their Taylor series.
- 2. Approximate $d(\lambda)$ uniformly away from the imaginary axis using the "ladder of eigenvalues".

Express asymptotics in terms of a rescaled variable $\zeta = -i\rho^0(0)\lambda/\hbar$.

Ultimately: we'll use the approximation we are developing in place of $\hat{N}_{\text{out}}(\lambda)$ in a neighborhood of $\lambda=0$ of radius \hbar^{ϵ} with $1/2<\epsilon<1$. Later: error is optimized with $\epsilon=2/3$.

Define
$$u = u(x,t)$$
 and $v = v(x,t)$:

$$e^{(\tilde{\phi}(\lambda) - \tilde{\phi}(0))/\hbar} = e^{u\zeta} e^{O(\lambda^2/\hbar)} \qquad e^{\pm i(\theta(\lambda) - \theta(0))/\hbar} = e^{\pm iv\zeta} e^{O(\lambda^2/\hbar)}$$

Take all contours except I_0^{\pm} to be straight rays (w.l.o.g.). Then replace I_0^{\pm} by their tangent rays.

The Model Riemann-Hilbert Problem Near the Origin

$$\mathbf{v}_{\mathbf{f}}(\zeta) = \xi$$

$$\mathbf{v}_{\mathbf{f}}(\zeta) := \begin{cases} \begin{bmatrix} 1 & 0 \\ -i(1-h(\zeta))e^{(u-2\pi)\zeta} & 1 \end{bmatrix}, & \arg(\zeta) = \xi, \\ \begin{bmatrix} 1 & ie^{-iv\zeta} \\ 0 & 1 \end{bmatrix}, & \arg(\zeta) = \kappa/2 + \pi/4, \\ \begin{bmatrix} 1 & 0 \\ ie^{iv\zeta} & 1 \end{bmatrix}, & \arg(\zeta) = \kappa/2, \\ \begin{bmatrix} 1 - h(\zeta) & ih(\zeta)e^{-iv\zeta} \\ ih(\zeta)e^{iv\zeta} & 1 + h(\zeta) \end{bmatrix}, & \arg(\zeta) = \kappa. \end{cases}$$

$$h(\zeta) = 1 - \frac{\Gamma(1/2 + i\zeta)}{\Gamma(1/2 - i\zeta)} (-i\zeta)^{-2i\zeta} e^{(2i+\pi)\zeta} \quad \text{and} \quad \mathbf{v}_{\widehat{\mathbf{F}}}(\zeta) = \sigma_2 \mathbf{v}_{\widehat{\mathbf{F}}}(\zeta^*)^* \sigma_2$$

Riemann-Hilbert Problem: Find $\widehat{\mathbf{F}}(\zeta)$ analytic in $\mathbb{C}\setminus\Sigma_{\widehat{\mathbf{F}}}$ with

- 1. $\hat{\mathbf{F}}(\zeta) \to \mathbb{I}$ as $\zeta \to \infty$
- 2. Continuous boundary values satisfying $\hat{F}_{+}(\zeta) = \hat{F}_{-}(\zeta)v_{\hat{F}}(\zeta)$.

Solvability of the Model

Fact: There is a unique solution of this Riemann-Hilbert problem with the additional property that

$$\widehat{\mathbf{F}}(\zeta) - \mathbb{I} = O(|\zeta|^{-1}).$$

Proof based on general theory of RHPs with jump matrices in Hölder spaces. Correspondence with systems of singular integral equations of Fredholm type.

Normalization matrix \mathbb{I} at infinity — an inhomogeneity. The Fredholm alternative applies because

- 1. $v_{\hat{F}}(\zeta)$ is Hölder continuous (but not Lipschitz) on each ray.
- 2. $\mathbf{v}_{\hat{\mathbf{F}}}(\zeta) \mathbb{I} = O(|\zeta|^{-1})$ as $\zeta \to \infty$.
- 3. Cyclic relation holds at the self-intersection point.

Unique solvability follows upon ruling out homogeneous solutions. We exploit the Schwartz reflection symmetry of $v_{\hat{F}}(\zeta)$ to do this.

Decay estimate for the solution at infinity: vanishing of the sum of the moments of $v_{\hat{F}}(\zeta) - \mathbb{I}$ over all rays.

Local Parametrix Near the Origin

The relation

$$\mathbf{N}(\lambda) = \mathbf{C}(\lambda)\mathbf{F}(\lambda)\mathbf{C}(\lambda)^{-1}\hat{\mathbf{N}}_{\text{out}}(\lambda)$$

holds exactly.

From $\hat{\mathbf{F}}(\zeta(\lambda))$, build an approximation $\hat{\mathbf{G}}(\lambda)$ for $\hat{\mathbf{F}}(\zeta(\lambda))$ by "unstraightening" I_0^{\pm} for $|\lambda| < \hbar^{2/3}$.

Since $\widehat{\mathbf{G}}(\lambda)$ is expected to be a good approximation to $\mathbf{F}(\lambda)$, we build an improved approximation to $\mathbf{N}(\lambda)$ valid near $\lambda=0$ by setting

$$\hat{\mathbf{N}}_{\text{origin}}(\lambda) := \mathbf{C}(\lambda)\hat{\mathbf{G}}(\lambda)\mathbf{C}(\lambda)^{-1}\hat{\mathbf{N}}_{\text{out}}(\lambda)$$

Variational Theory of the Complex Phase

Green's function for upper half-plane: $G(\lambda; \eta) := \log \left| \frac{\lambda - \eta^*}{\lambda - \eta} \right|$

External field:

$$\varphi(\lambda) := -\int G(\lambda; \eta) d\mu^{0}(\eta) - \Re \left(i\pi\sigma \int_{\lambda}^{iA} \rho^{0}(\eta) d\eta + 2iJ(\lambda x + \lambda^{2}t) \right)$$

 $d\mu^0$ = nonnegative asymptotic WKB eigenvalue measure on [0, iA]

Energy functional:
$$E[d\mu] := \frac{1}{2} \int d\mu(\lambda) \int G(\lambda; \eta) d\mu(\eta) + \int \varphi(\lambda) d\mu(\lambda)$$

Equilibrium Property

Theorem 1 Let $\rho(\eta)$ be an admissible density function on the oriented loop contour C surrounding [0,iA]. Then

$$E[-\rho(\eta) d\eta] = \inf_{d\mu} E[d\mu]$$

where the infimum is taken over all nonnegative Borel measures supported on C and having finite mass and finite Green's energy.

Idea of proof: let $d\Delta(\eta) := d\mu(\eta) + \rho(\eta) d\eta$. Then

$$E[d\mu] - E[-\rho(\eta) \, d\eta] = \frac{1}{2} \int d\Delta(\lambda) \int G(\lambda; \eta) \, d\Delta(\eta) + \int \Re(\tilde{\phi}(\lambda)) \, d\Delta(\lambda)$$

- 1. First term is nonnegative because positive and negative parts of $d\Delta$ have finite mass and Green's energy.
- 2. Second term is nonnegative because:
 - (a) $\Re(\tilde{\phi}(\lambda)) \equiv 0$ when λ is in the support of $\rho(\eta) d\eta$
 - (b) $\Re(\tilde{\phi}(\lambda)) \leq 0$ when λ is outside the support of $\rho(\eta) d\eta$, and consequently where $d\Delta(\lambda) = d\mu(\lambda) > 0$.

S-Property

Theorem 2 Let $\rho(\eta)$ be an admissible density function on an oriented loop contour C surrounding [0,iA]. For each $\kappa(\eta)$ analytic in the support of $-\rho(\eta) d\eta$ on C and satisfying $\kappa(0) = 0$ and for each sufficiently small ϵ let $d\mu_{\epsilon}^{\kappa}$ be the pull-back of the measure $-\rho(\eta) d\eta$ under the near-identity map

$$\nu_{\epsilon}^{\kappa}:\eta\to\eta+\epsilon\kappa(\eta)$$
.

Then

$$\left. \frac{d}{d\epsilon} E[d\mu_{\epsilon}^{\kappa}] \right|_{\epsilon=0} = 0.$$

Idea of proof: Using the pull-back property,

$$E[d\mu_{\epsilon}^{\kappa}] = \frac{1}{2} \int_{d} \mu_{0}^{\kappa}(\lambda) \int G(\nu_{\epsilon}^{\kappa}(\lambda); \nu_{\epsilon}^{\kappa}(\eta)) d\mu_{0}^{\kappa}(\eta) + \int \varphi(\nu_{\epsilon}^{\kappa}(\lambda)) d\mu_{0}^{\kappa}(\lambda)$$

where $d\mu_0^{\kappa}(\eta) = -\rho(\eta) d\eta$. Find that

$$\frac{d}{d\epsilon} E[d\mu_{\epsilon}^{\kappa}]\Big|_{\epsilon=0} = -\int \Re \left[\kappa(\lambda) \frac{d}{d\lambda} \tilde{\phi}(\lambda) \right] d\mu_{0}^{\kappa}(\lambda)$$

which vanishes because $\tilde{\phi}(\lambda)$ is a constant function along the contour in the support of $-\rho(\eta) d\eta$.

Nature of the Critical Point. Max-Min Problem.

Energy functional is:

- 1. Minimized by $-\rho(\eta) d\eta$ over measures supported on the fixed contour C.
- 2. Stationary with respect to deformations of ${\cal C}$ with the measure "held fixed".

Can assign an equilibrium energy $E_{\min}[C]$ to arbitrary loop contours C. But property 2 not necessarily equivalent to $E_{\min}[C]$ being stationary with respect to deformations of C.

Want to pose a "max-min" problem: For each contour C find the equilibrium energy $E_{\min}[C]$ over all positive Borel measures $d\mu$ supported on C. Then pick C so as to maximize $E_{\min}[C]$.

Generalization of the method of Lax and Levermore for zero dispersion Kortewegde Vries. But, energy problem does not play as central a role in our analysis. Further understanding is required.

We hope: study of the variational problem will provide existence, uniqueness, and regularity (finite number of bands and gaps) for the complex phase. A "hunting licence". Maybe an upper bound on the number of bands.

Seeking the Complex Phase by Ansatz

Suppose that C passes through iA and all bands lie on one half, C_I :

Guess a number of bands and gaps on C_I (2G + 2 complex endpoints, in conjugate pairs, with G even), and seek scalar $F(\lambda)$ analytic in $\mathbb{C} \setminus (C_I \cup C_I^*)$ satisfying

$$F(\lambda^*) = -F(\lambda)^*$$
 and $F(\lambda) = O(1/\lambda)$ as $\lambda \to \infty$

and on C_I ,

$$F_{+}(\lambda) + F_{-}(\lambda) = -4iJ(x+2\lambda t), \quad \lambda \text{ in a band}$$

 $F_{+}(\lambda) - F_{-}(\lambda) = -2\pi i \rho^{0}(\lambda), \quad \lambda \text{ in a gap}$

Then get a "candidate density function" via

$$\rho(\eta) = \rho^{0}(\eta) + \frac{1}{2\pi i} (F_{+}(\eta) - F_{-}(\eta)).$$

- 1. Consistency of this procedure imposes G+1 real "moment conditions" on the endpoints.
- 2. Procedure guarantees only that $\rho(\eta) \equiv 0$ in the gaps and $\tilde{\phi}(\lambda)$ is constant in the bands.
- 3. G/2 additional real "vanishing conditions" may be imposed to ensure that $\tilde{\phi}(\lambda)$ is purely imaginary in the bands.
- 4. G/2+1 additional real "measure reality conditions" are required if $\rho(\eta) d\eta$ is to be real in the bands (i.e. for $\theta(\eta)$ to be real).

Total of 2G + 2 real conditions on 2G + 2 independent real unknowns.

Once $F(\lambda)$ is found, pull contour C away from iA:

Finally verify:

- 1. That there are actually contours connecting the band endpoints along which $\rho(\eta)\,d\eta$ is real,
- 2. That the inequalities $\Re(\tilde{\phi}(\lambda)) < 0$ in gaps and $\rho(\eta) d\eta < 0$ in bands are satisfied.

These conditions would select the genus G as a function of x and t.

Genus Zero

Only one complex endpoint $\lambda_0 = a_0 + ib_0 \in \mathbb{C}_+$ and two real conditions:

$$M_0 = -2J\pi(x + 2a_0t) + 2\Re\left(\int_{\lambda_0}^{iA} \frac{i\pi\rho^0(\eta)}{R(\eta)} d\eta\right) = 0$$

$$R_0 = -Jtb_0^2 + \Im\left(\int_{\lambda_0}^{iA} \rho^0(\eta) \frac{\partial R}{\partial \eta}(\eta) d\eta\right) = 0$$

Here $R(\eta)^2 = (\eta - \lambda_0)(\eta - \lambda_0^*)$, branch cut along the bands I_0^{\pm} and $R(\eta) \sim -\eta$ as $\eta \to \infty$.

The G=0 Ansatz for t=0

Using formula for $\rho^0(\eta)$ in terms of A(x) one finds that for t=0 $a_0(x)=0$ and $b_0(x)=A(x)$

follow from the conditions $M_0 = R_0 = 0$.

Small Time Results

Theorem 3 Let A(x) be real-analytic, even, and monotone decreasing in |x|. Then for each fixed $x \neq 0$, a genus zero ansatz satisfies all properties of a complex phase function for t sufficiently small.

Idea of proof:

- 1. Use properties of A(x) to compute the Jacobian of the transformation $(\lambda_0, \lambda_0^*) \to (M_0, R_0)$ and show it is nonzero for t = 0. This shows persistence of the endpoints for t small.
- 2. Appeal to a fixed-point argument showing the persistence of the contour band and gaps for t small. Show that the ansatz can be rigged so that the band moves *away* from [0, iA].

Theorem 4 For sufficiently small t, the semiclassical soliton ensemble $\psi(x,t)$ associated with A(x) is pointwise $\hbar^{1/3}$ -close to $\tilde{\psi}(x,t) := A(x,t)e^{iS(x,t)}$ where A(x,t) and S(x,t) are the unique analytic solutions of the genus zero elliptic modulation equations with initial data A(x,0) = A(x) and S(x,0) = 0.

Finite
$$t$$
 with $A(x) = A \operatorname{sech}(x)$

About the endpoint $\lambda_0 = a_0 + ib_0$:

• Reality condition $R_0 = 0$ consistent only if $\sigma Jt \geq 0$, and then

$$a_0^2 = t^2 b_0^4 \frac{A^2 - b_0^2 + t^2 b_0^4}{A^2 + t^2 b_0^4}$$

• Two solutions for the endpoint $\lambda_0(x,t)$, in left/right half-planes. One at infinity when t=0.

Computer-assisted exploration. For given (x,t), chose one of the two possible endpoints. Then construct the candidate density $\rho(\eta)$ and

- 1. Numerically follow the orbit $\rho(\eta) d\eta < 0$ from the origin and see whether it makes it to λ_0 safely. This determines whether the band I_0^+ can exist.
- 2. If I_0^+ exists, numerically construct $\Re(\tilde{\phi}(\lambda))$ and see where it is negative. Determine whether the contour C can be closed around [0,iA] in such a region.

Comparing the two possible endpoints before breaktime:

And after breaktime:

Breakdown of the ansatz: Failure of inequality in the gaps.

"Dual" ansatz: reverse roles of bands and gaps!

Another example of inequality failure in the gaps. No dual ansatz.

Complete scan of the (x, t)-plane:

Modes of Failure of the Ansatz. Phase Transition.

The ansatz can fail at some (x,t) in several ways:

- 1. The region admitting a gap contour can "pinch off".
- 2. A complex zero of $\rho(\eta)$ can move onto a band.
- 3. A band can strike the interval [0, iA].
- 4. The endpoint functions can fail to be analytic.

Apparently the ansatz can be chosen so that case 1 is the mode of failure.

Theorem 5 If the genus zero ansatz fails at a point $(x_{\text{crit}}, t_{\text{crit}})$ due to the pinching off of a gap at a point $\hat{\lambda}$ (not in the shadow of I_0^+) then for $|x| - |x_{\text{crit}}| < 0$ and small enough in magnitude, a genus two ansatz suffices to generate a complex phase function.