Sources of Nonuniformity

Sequence of matrix functions :

M) - NN - N - 0N - 00

Ad-hoc steps:

1. Continuum Limit of Jump Matrix: N(A) — N())

2. Pointwise Asymptotics of Jump Matrix;: O(A) — O(\)

Both of these break down near A = 0.



Inner Asymptotics near A =20

Discrepancy of approximation of N(\) by
Nout(N) is the quotient N(A)Nout(N) 1.

Convenient to introduce a conjugation by an explicit, holomor-
phic matrix C(\) and look at

F(\) := C(A) NNt (M) e .



Exact jump relation: FL(A) = F_(\)vp(A) with
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Approximating the Jump Matrix Near the Origin

1. Approximate 6(\) — 6(0) and &(\) — ¢(0) near the origin with the first
term in their Taylor series.

2. Approximate d(\) uniformly away from the imaginary axis using the “lad-
der of eigenvalues’.

Express asymptotics in terms of a rescaled variable { = —ip®(0)\/A.

Ultimately: we'll use the approximation we are developing in place of Ngut(\)
in a neighborhood of A = 0 of radius A¢ with 1/2 < e < 1. Later: error is
optimized with e = 2/3.

Define u = u(x,t) and v = v(xz,t):

c(BON=BO0) /7 — JuC OO /h)  Fi(B)—0(0)/h — Eiv( O(N/h)

Take all contours except Iét to be straight rays (w.l.o.g.). Then replace Ig)t

by their tangent rays.



The Model Riemann-Hilbert Problem Near the Origin

arg(T)=x
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(—i¢) 2% and  vp(¢) = oavp(¢H) o

Riemann-Hilbert Problem: Find F(¢) analytic in C\ s with

1. F(¢) 5T as ¢ —

2. Continuous boundary values satisfying F(¢) = F_({)vs(0).



Solvability of the Model

Fact: There is a unique solution of this Riemann-Hilbert problem with the
additional property that

PO -T=0(¢™).
Proof based on general theory of RHPs with jump matrices in HOlder spaces.
Correspondence with systems of singular integral equations of Fredholm type.

Normalization matrix I at infinity — an inhomogeneity. The Fredholm alter-
native applies because

1. vg(¢) is HOlder continuous (but not Lipschitz) on each ray.
2. vp(¢) —I=0(|¢|™) as ¢ — co.
3. Cyclic relation holds at the self-intersection point.

Unique solvability follows upon ruling out homogeneous solutions. We exploit
the Schwartz reflection symmetry of v (¢) to do this.

Decay estimate for the solution at infinity: vanishing of the sum of the mo-
ments of vg(¢) — I over all rays.



Local Parametrix Near the Origin

The relation
N(A) = COOFA)C(N) T Ngue(\)

holds exactly.

From F(¢()\)), build an approximation G()\) for F(¢())) by “un-
straightening” Ig for |\| < h2/3.

Since G()) is expected to be a good approximation to F()\), we
build an improved approximation to N(A) valid near A = 0 by
setting

Norigin (A) = C(A)G(A)C(A)_lNouto\)



Variational Theory of the Complex Phase

A—nF
A—1

Green's function for upper half-plane: G(\;n) = Iog‘

External field:

p(A) = — / G(\; ) du®(n) —R <i7w /;A pP(n) dn + 2iJ Az + >\2t)>

du® = nonnegative asymptotic WKB eigenvalue measure on [0, i A]

Energy functional: E[du] := %/d,u(A)/G()\;n) du(??)—l—/ O(A) du(N)



Equilibrium Property

Theorem 1 Let p(n) be an admissible density function on the oriented loop
contour C surrounding [0,iA]. Then

El=p(n) dn] = inf Eldu]
o

where the infimum is taken over all nonnegative Borel measures supported on
C and having finite mass and finite Green’s energy.

Idea of proof: let dA(n) :=du(n) + p(n) dn. Then
Eldu] — E[—p(n) dn] = %/dA()\) /G()\; n) dA(n) + /3?(55()\)) dA(N)

1. First term is nonnegative because positive and negative parts of dA have
finite mass and Green’s energy.

2. Second term is nonnegative because:
(a) R(A(N)) =0 when X is in the support of p(n)dn

(b) R(H(N)) < 0 when X\ is outside the support of p(n) dn, and consequently
where dA(XN) = du(A) > 0.



S-Property

Theorem 2 Let p(n) be an admissible density function on an oriented loop
contour C surrounding [0,iA]. For each k(n) analytic in the support of
—p(n)dn on C and satisfying k(0) = 0 and for each sufficiently small € let
duf be the pull-back of the measure —p(n) dn under the near-identity map

ve in—n—+ex(n).
Then
d

—Z E[du”
. [dp]

=0.
e=0

Idea of proof: Using the pull-back property,

Blas) = /d HEO) [ GEO)vED) din) + [ e disN)

where dug(n) = —p(n) dn. Find that
! =~ [ ]300 dus)

—E[du”
< Eldpc]
which vanishes because #()\) is a constant function along the contour in the
support of —p(n) dn.

€e=
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Nature of the Critical Point. Max-Min Problem.

Energy functional is:
1. Minimized by —p(n) dn over measures supported on the fixed contour C.

2. Stationary with respect to deformations of C' with the measure “held
fixed" .

Can assign an equilibrium energy Emin[C] to arbitrary loop contours C. But
property 2 not necessarily equivalent to En,in[C] being stationary with respect
to deformations of C.

Want to pose a “max-min’”’ problem: For each contour C find the equilibrium
energy Enmin[C] over all positive Borel measures du supported on C. Then pick
C so as to maximize Enmin[C].

Generalization of the method of Lax and Levermore for zero dispersion Korteweg-
de Vries. But, energy problem does not play as central a role in our analysis.
Further understanding is required.

We hope: study of the variational problem will provide existence, uniqueness,
and regularity (finite number of bands and gaps) for the complex phase. A
“hunting licence”. Maybe an upper bound on the number of bands.
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Seeking the Complex Phase by Ansatz

Suppose that C passes through A C,
and all bands lie on one half, Cj:

Cy

Guess a number of bands and gaps on C; (2G 4+ 2 complex endpoints, in
conjugate pairs, with G even), and seek scalar F(\) analytic in C\ (CruU C7)
satisfying

F(\*) =—-F(\)" and F(A\) =0(1/\) as A — o0
and on (f,

Fr(A) + F-(N)
Fi(A) — F-(N)

—4¢J(x + 2Xt), X in a band
—2mip® (), A in a gap
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Then get a “candidate density function” via
1
p(n) = p°(n) + 5= (F(n) — F-(n))

1. Consistency of this procedure imposes GG + 1 real “moment conditions”
on the endpoints.

2. Procedure guarantees only that p(n) = 0 in the gaps and ¢()\) is constant
in the bands.

3. G/2 additional real “vanishing conditions” may be imposed to ensure
that ¢()\) is purely imaginary in the bands.

4. G/241 additional real “measure reality conditions” are required if p(n) dn
is to be real in the bands (i.e. for 6(n) to be real).

Total of 2G + 2 real conditions on 2G 4+ 2 independent real unknowns.
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Once F()) is found, pull contour C away
from zA:

Finally verify:

1. That there are actually contours connecting the band endpoints along
which p(n) dn is real,

2. That the inequalities R®(4(\)) < 0 in gaps and p(n)dn < 0 in bands are
satisfied.

These conditions would select the genus G as a function of x and ¢.
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Genus Zero

Only one complex endpoint A\g = ag + ibg € C4 and two real
conditions:

iA jo 0
Mg = —2Jn(z + 2agt) + 2R (//\ ”]5(;;7) dn> —0
0]

Ry = —th% + < </}\ 0(77)—(77) dn) =0

Here R(n)2 = (n — \o)(n — Ay), branch cut along the bands IS—L
and R(n) ~ —m as n — oo.
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The G =0 Ansatz fort =20

Using formula for p%(n) in terms of A(x) one finds that for ¢t = 0
ao(z) =0 and bo(z) = A(x)
follow from the conditions My = Rg = 0.

FJ+ | r]+

o ib,(x)

‘ Deform, respecting
R(A(N)) < 0 in the

My gaps:
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Small Time Results

Theorem 3 Let A(x) be real-analytic, even, and monotone decreasing in |z|.
Then for each fixed x # 0, a genus zero ansatz satisfies all properties of a
complex phase function for t sufficiently small.

Idea of proof:

1. Use properties of A(xz) to compute the Jacobian of the transformation
(Ao, A§) = (Mo, Ro) and show it is nonzero for t = 0. This shows persis-
tence of the endpoints for ¢ small.

2. Appeal to a fixed-point argument showing the persistence of the contour
band and gaps for ¢ small. Show that the ansatz can be rigged so that
the band moves away from [0,iA].

Theorem 4 For sufficiently small t, the semiclassical soliton ensemble v (x,t)
associated with A(z) is pointwise hl/3-close to (x,t) := A(x,t)e’S@t where
A(z,t) and S(x,t) are the unique analytic solutions of the genus zero elliptic
modulation equations with initial data A(xz,0) = A(x) and S(z,0) = 0.
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Finite ¢ with A(x) = Asech(xz)
About the endpoint Ao = ag + 2bo:

e Reality condition Ro = 0 consistent only if oJt > 0, and then
A2 — bg + thg
A2 4+ t2bg

as = t°b

e Two solutions for the endpoint \o(z,t), in left/right half-planes. One at
infinity when ¢ = 0.

Computer-assisted exploration. For given (x,t), chose one of the two possible
endpoints. Then construct the candidate density p(n) and

1. Numerically follow the orbit p(n) dn < 0 from the origin and see whether
it makes it to Ao safely. This determines whether the band I} can exist.

2. If IgL exists, numerically construct R(¢4()\)) and see where it is negative.
Determine whether the contour C can be closed around [0,¢A] in such a

region.
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Comparing the two possible endpoints

x = 0.3, t = -0.246, 0,>0, o=+1
T T

4 =T T

Imaginary part of A
S

Real part of A

And after breaktime:

x = 0.3, t = 0.3 a<0, 0=—1
4 T T T

Imaginary part of A
S
L B B 44 LA B

no Liifity

Real part of A

before breaktime:

Imaginary part of A

Imaginary part of A

[
T T T T T T T T

[N}
L L 4 U B

x = —0.2,

t = 0.248, 0,<0, o=+1
T

x = 0.3,

Real part of A

t = 0.3, a,>0, 0=—1
T T

Real part of A

no Liifity
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Breakdown of the ansatz: Failure of inequality in the gaps.

Imaginary part of A

HDuaIH

Imaginary part of A

x = =0.307, t = —0.4, a,>0, o=+1
T

x = —0.303, t = -0.4, a,>0, o=+1
4 4r T
sk S
<
S
T
I3
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| g |
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| <
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| ]
[ | [ ]
5 | = ]
" ]
o) & S 0k P S R B I S SR
-2 -1 [0} 1 2 -2 =1 0 1 2
Real part of A

ansatz: reverse

Real part of A

roles of bands and gaps!

4L

x = =0.307, t = —0.4, a,>0, 0=—1
T T
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Another example

of inequality failure in

x = —0.815, t = 0.7, 0,<0, 0=—1
T

Imaginary part of A

the gaps. No dual ansatz.

x = —0.816, t = 0.7, 0,<0, 0=—1
T

[
T

Imaginary part of A
S
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Complete scan of the (z,t)-plane:

Existence of Compactly Supported Negative Measures

LY L e B B S B SR
1.0~ - = .
0 5; N N=20: Concentrations  of Density in White
L 4 0 0.5 1.0 1.5 2.0
L 1,2 11, .. I 1 20
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r e /0 I\ e, 1
705— —
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F B t
710— —
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15l e ]
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Modes of Failure of the Ansatz. Phase Transition.

The ansatz can fail at some (z,t) in several ways:
1. The region admitting a gap contour can “pinch off"”.
2. A complex zero of p(n) can move onto a band.
3. A band can strike the interval [0,7A].
4. The endpoint functions can fail to be analytic.

Apparently the ansatz can be chosen so that case 1 is the mode of failure.

Theorem 5 If the genus zero ansatz fails at a point (xcrit, terit) due to the

pinching off of a gap at a point X (not in the shadow oflj) then for |z|—|xerit| <
O and small enough in magnitude, a genus two ansatz suffices to generate a
complex phase function.
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