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The Semiclassical Linear Schrödinger Equation

Consider the initial-value problem:

iε
∂ψ

∂t
+
ε2

2
∂2ψ

∂x2
= 0 , ψ(x, 0) = A(x)eiS(x)/ε .

ε is a small positive parameter. In quantum mechanics, ε is ~, Planck’s
constant.

Goal: With A(x) and S(x) given fixed functions, compute asymptotics
for the solution ψ(x, t) in the vicinity of fixed x and t in the semiclassical
limit of ε ↓ 0.
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Exact Solution via Fourier Transform

For any ε > 0, the solution to the initial-value problem is

ψ(x, t) =
e−iπsgn(t)/4√

2πε|t|

∫ ∞

−∞
A(y)eiθ(y)/ε dy
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Exact Solution via Fourier Transform

For any ε > 0, the solution to the initial-value problem is

ψ(x, t) =
e−iπsgn(t)/4√

2πε|t|

∫ ∞

−∞
A(y)eiθ(y)/ε dy

where the phase is

θ(y) := S(y) +
(x− y)2

2t
.

Asymptotic analysis of ψ(x, t) in the limit ε ↓ 0 with x and t held fixed can
be accomplished via the method of stationary phase.
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Stationary Phase Analysis

Dominant contributions to ψ(x, t) come from points y of stationary phase:

θ′(y) ≡ S′(y) +
y − x

t
= 0 .
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Stationary Phase Analysis

Dominant contributions to ψ(x, t) come from points y of stationary phase:

θ′(y) ≡ S′(y) +
y − x

t
= 0 .

For t small: ∃ a unique stationary phase point, y1(x, t) ≈ x. For larger t,
there may be several, y1(x, t), . . . , yN(x, t). Then,

ψ(x, t) =
e−iπsgn(t)/4√

|t|

N∑
k=1

eiπsgn(θ′′(yk))/4√
|θ′′(yk)|

A(yk)eiθ(yk)/ε +O(ε) ,

a linear combination of smoothly modulated, rapidly oscillatory
exponentials, one for each stationary phase point.
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Images of Solutions

Images of |ψ(x, t)|2 over a fixed region of the x (↔) and t (l) plane.
Initial conditions: A(x) = 2 sech2(x) and S(x) = 4 sech2(x).

ε = 0.2 ε = 0.1 ε = 0.05
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Features of Solutions in the Semiclassical Limit

Two scales present in the evolution.

Microstructure:

• oscillations with O(ε) wavelength and period, O(1) amplitude;

• emergent;

• due to the semiclassical scaling of the PDE.
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Features of Solutions in the Semiclassical Limit

Macrostructure:

• modulation of amplitude, wavelength, period, etc. over O(1) scales;

• built-in from the initial conditions (dependence of A and S on x);

• asymptotically sharp “caustic curves” in the (x, t)-plane

? separate different “phases” (nonequilibrium thermodynamics),
? due to bifurcation of stationary phase points.

Simultaneous presence of microstructure and macrostructure ⇒ accurate
computation hindered by numerical stiffness.
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The Fluid Dynamics Analogy

Define the “fluid density” ρ := |ψ|2 and the “velocity” u := ε=[log(ψ)x].

Then Schrödinger’s equation becomes, exactly,

∂ρ

∂t
+

∂

∂x
(ρu) = 0

∂u

∂t
+ u

∂u

∂x
=

ε2

2
∂

∂x

(
1
2ρ
∂2ρ

∂x2
−
[

1
2ρ
∂ρ

∂x

]2)

with initial data ρ(x, 0) = A(x)2 and u(x, 0) = S′(x).
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Formal Expansions (WKB Method)

Try ρ = ρ0 + ε2ρ1 + . . . and u = u0 + ε2u1 + . . .. Balance powers of ε:

• The eikonal equation:
∂u0

∂t
+ u0

∂u0

∂x
= 0 (geometrical optics).

• The transport equation:
∂ρ0

∂t
+

∂

∂x
(u0ρ0) = 0 (physical optics).

Eikonal equation solved by the method of characteristics. We discover:

Characteristic lines x = u0t + yk (rays) through a
given point (x, t) = (X,T ) ⇔ stationary phase points
yk(X,T ).
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Implications

• Presence of phase transitions requires singularity formation in the solution
of the eikonal equation (gradient catastrophe).

• No phase transition can occur if S′(x) ≡ 0 (zero initial velocity).

• Oscillatory region in the (x, t)-plane corresponds to multi-valued region
for the solution of the eikonal equation.

• Ray interpretation justifies terminology of “caustics” for phase transition
boundaries (interfaces).

Back to outline
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The Role of Nonlinearity

• Our previous results are typical of weakly-dispersive linear waves.

• More accurate mathematical modeling: bring in additional terms
representing physical phenomena (dominant balance). Especially
important when dispersion is weak.

• For conservative dynamics, a natural choice is to include a nonlinear
term.
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Some Implications of Including Nonlinearity

• Failure of the superposition principle. No Fourier integral representation
of the solution of the initial-value problem.

• Bifurcation of the velocity implies phase transitions can occur even if
S′(x) ≡ 0 (more details later. . . ).

• Appearance of solitary waves and solitons.
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Solitary Waves

Solitary waves: localized traveling waves achieving a dynamical balance
between dispersion and nonlinear effects:

Dispersion Alone

Nonlinearity Alone

Both Together
1 ε
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Solitons

In integrable systems, solitary waves are known as solitons. Solitons

• survive collisions and other nonlinear interactions;

• are associated with eigenvalues of an associated linear operator.

But how are solitary waves or solitons generated from general initial data?
By means of a process that is more dramatic the smaller the dispersion.
We are thus led to a study of semiclassical (singular) asymptotics in the
nonlinear setting.

Back to outline
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Physical Phenomena

Many interesting physical phenomena involve weak dispersion in a
nonlinear setting and the generation of solitary waves and solitons.

These phenomena may motivate a study of singular asymptotics for
nonlinear waves.
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River

Land
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Incoming
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mouth.

Wave pattern generated called a tidal
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Weak bores are undular. Generated
waves propagate upstream.
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Atmospheric Internal Waves: Morning Glory

• Morning glory is a dramatic
phenomenon observed many
mornings near Burketown,
Queensland (population 126).
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Atmospheric Internal Waves: Morning Glory

• Morning glory is a dramatic
phenomenon observed many
mornings near Burketown,
Queensland (population 126).

• Thought to be a solitary wave at
the leading edge of an undular
bore.
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Water Waves II: Wave Packets in Deep Water

Benjamin-Feir sideband instability of packets of waves in deep water:
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Water Waves II: Wave Packets in Deep Water

Benjamin-Feir sideband instability of packets of waves in deep water:

Instability saturates with the formation of structures of size proportional to
the dispersion in the system.
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Pulse Propagation in Optical Fibers

“Optical shocks” in fibers with weak normal dispersion:

LASER

Modulational instability in fibers with weak anomalous dispersion:

LASER

Back to outline
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The Cubic Nonlinear Schrödinger Equation (NLS)

Two model problems for studying singular asymptotics with nonlinearity:

Defocusing NLS (NLS−)
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The Cubic Nonlinear Schrödinger Equation (NLS)

Two model problems for studying singular asymptotics with nonlinearity:

Defocusing NLS (NLS−)

iε
∂ψ

∂t
+
ε2

2
∂2ψ

∂x2
− |ψ|2ψ = 0

Focusing NLS (NLS+)

iε
∂ψ

∂t
+
ε2

2
∂2ψ

∂x2
+ |ψ|2ψ = 0

Consider both posed with initial data of the form: ψ(x, 0) = A(x)eiS(x)/ε.
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Relevance of the Selected Models

• Applicability to physical problems:

? NLS− applies to capillary gas dynamics with positive pressure, and
to pulse propagation in optical fibers with weak normal dispersion
(among many other phenomena).

? NLS+ applies to surface wave packets in deep water, capillary gas
dynamics with negative pressure (supercooled van der Waals gas), and
to pulse propagation in optical fibers with weak anomalous dispersion
(among many other phenemena).

• Complete integrability. The existence of a suite of exact solution
techniques despite the (strong) nonlinearity.
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Complete Integrability of NLS±

Let ψ(x, t) be an arbitrary complex function of x and t. Consider the two
linear ODEs for an auxiliary vector v:

ε
∂v
∂x

=
(
−iλ ψ
∓ψ∗ iλ

)
v (rewrite as Lε

±[ψ]v = λv)

iε
∂v
∂t

=
(

λ2 ∓ |ψ|2/2 iλψ − εψx/2
∓iλψ∗ ∓ εψ∗x/2 −λ2 ± |ψ|2/2

)
v

Compatibility demands that ψ(x, t) satisfy NLS±.

Solution method may be based on spectral theory of the operator Lε
±[ψ].

Back
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NLS− in the Semiclassical Limit: Images of Solutions

Images of |ψ(x, t)|2 over a fixed region of the x (↔) and t (l) plane.

Initial conditions: A(x) = e−(x/8)10 + (1− 64x2)2+ and S(x) ≡ 0.

ε = 0.2 ε = 0.1 ε = 0.05
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NLS− in the Semiclassical Limit: Features of Solutions

• Oscillations (microstructure) appear even though S′(x) ≡ 0.

• Asymptotically sharp “caustics” separate the oscillatory and quiescent
regions. Breaking time independent of ε at leading order.
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NLS− in the Semiclassical Limit: Fluid Analogy

Define the “fluid density” ρ := |ψ|2 and the “velocity” u := ε=[log(ψ)x].

Then NLS− becomes, exactly,

∂ρ

∂t
+

∂

∂x
(ρu) = 0

∂u

∂t
+
∂ρ

∂x
+ u

∂u

∂x
=

ε2

2
∂

∂x

(
1
2ρ
∂2ρ

∂x2
−
[

1
2ρ
∂ρ

∂x

]2)

with initial data ρ(x, 0) = A(x)2 and u(x, 0) = S′(x).
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NLS− in the Semiclassical Limit: Formal Expansions

Try ρ = ρ0 + ε2ρ1 + . . . and u = u0 + ε2u1 + . . .. Balance powers of ε.
Eikonal and transport equations now coupled:

∂u0

∂t
+ u0

∂u0

∂x
+
∂ρ0

∂x
= 0

∂ρ0

∂t
+

∂

∂x
(u0ρ0) = 0
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∂u0

∂t
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∂u0
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+
∂ρ0
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∂ρ0
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+

∂
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√
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NLS− in the Semiclassical Limit: Formal Expansions

Try ρ = ρ0 + ε2ρ1 + . . . and u = u0 + ε2u1 + . . .. Balance powers of ε.
Eikonal and transport equations now coupled:

∂u0

∂t
+ u0

∂u0

∂x
+
∂ρ0

∂x
= 0

∂ρ0

∂t
+

∂

∂x
(u0ρ0) = 0

Hyperbolic system with two characteristic velocities: c± = u0 ±
√
ρ0 ⇒

singularities may form even if S′(x) ≡ 0 (zero initial velocity).
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NLS− in the Semiclassical Limit: Question

Valid modeling to set ε = 0 and use the fluid equations before breaking?

Answer: Yes. Two approaches:

• Classical PDE Approach (E. Grenier, 1998).

? Applies to general defocusing nonlinearities in arbitrary dimensions.
? Establishes convergence for a small but fixed time before breaking.

• Integrable Approach (Jin, Levermore, D. McLaughlin, 1999).

? Applies only to the cubic problem in one space dimension.
? Provides results beyond breaking. Global description of the limit.
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NLS− in the Semiclassical Limit: Lax-Levermore Theory

• Central object: N ×N determinant with N ∼ ε−1 (τ -function).

? Potential function for all conserved local densities.
? Expanded as a sum of positive principal minors; asymptotically

dominated by the largest term in the sum.

• Discrete extremal problem.

? Becomes an extremal problem for measures as N →∞.
? Moments of extremal measure ⇔ weak limits of conserved local

densities.
? Gaps in support of extremal measure ⇔ phase transitions.
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NLS− in the Semiclassical Limit: Caustics

The nature of the “caustic” curves separating the different phases in the
(x, t)-plane is fundamentally different than in the linear theory:“Caustics”

• are not envelopes of characteristics of the leading-order problem.

• do not bound multivalued regions of solutions of the leading-order
problem, although they do emerge from gradient catastrophes.

• characterize bifurcations in the support of the extremal measure.

Upshot: unlike in the linear theory, “caustics” cannot be deduced from the
leading-order problem alone.
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Something to Keep in Mind

A key property of the semiclassical limit of the initial-value problem for
NLS− is the hyperbolicity of the leading-order problem. This implies:

• The semiclassical limit for NLS− exists, and is described for small time
by the leading-order hyperbolic system, with only reasonable smoothness
assumptions on the initial data A(x) and S(x).

• The semiclassical asymptotics in the neighborhood of fixed x and t
depend in a continuous fashion on the initial data.

In short, the semiclassical limit for NLS− is a well-posed problem. Back
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NLS+ in the Semiclassical Limit: Images of Solutions

Images of |ψ(x, t)|2 over a fixed region of the x (↔) and t (l) plane.
Initial conditions: A(x) = 2 sech2(x) and S(x) ≡ 0.

ε = 0.2 ε = 0.1 ε = 0.05
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NLS+ in the Semiclassical Limit: Features of Solutions

• Oscillations (microstructure) appear even though S′(x) ≡ 0 (again).

• Asymptotically sharp “caustics” separate the oscillatory and quiescent
regions. Breaking time independent of ε at leading order (again).
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NLS+ in the Semiclassical Limit: Fluid Analogy

Define the “fluid density” ρ := |ψ|2 and the “velocity” u := ε=[log(ψ)x].

Then NLS+ becomes, exactly,

∂ρ

∂t
+

∂

∂x
(ρu) = 0

∂u

∂t
−∂ρ
∂x

+ u
∂u

∂x
=

ε2

2
∂

∂x

(
1
2ρ
∂2ρ

∂x2
−
[

1
2ρ
∂ρ

∂x

]2)

with initial data ρ(x, 0) = A(x)2 and u(x, 0) = S′(x).
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NLS+ in the Semiclassical Limit: Formal Expansions

Try ρ = ρ0 + ε2ρ1 + . . . and u = u0 + ε2u1 + . . .. Balance powers of ε.
Eikonal and transport equations again coupled:

∂u0

∂t
+ u0

∂u0

∂x
−∂ρ0

∂x
= 0

∂ρ0

∂t
+

∂

∂x
(u0ρ0) = 0
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Try ρ = ρ0 + ε2ρ1 + . . . and u = u0 + ε2u1 + . . .. Balance powers of ε.
Eikonal and transport equations again coupled:

∂u0

∂t
+ u0

∂u0

∂x
−∂ρ0

∂x
= 0

∂ρ0

∂t
+

∂

∂x
(u0ρ0) = 0

Elliptic system with complex characteristic velocities: c± = u0 ± i
√
ρ0
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NLS+ in the Semiclassical Limit: Formal Expansions

Try ρ = ρ0 + ε2ρ1 + . . . and u = u0 + ε2u1 + . . .. Balance powers of ε.
Eikonal and transport equations again coupled:

∂u0

∂t
+ u0

∂u0

∂x
−∂ρ0

∂x
= 0

∂ρ0

∂t
+

∂

∂x
(u0ρ0) = 0

Elliptic system with complex characteristic velocities: c± = u0 ± i
√
ρ0 ⇒

initial-value problem is ill-posed. Solution requires analyticity of A(x) and
S(x).
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NLS+ in the Semiclassical Limit: Question

Valid modeling to set ε = 0 and use the fluid equations before breaking?

Answer: Yes. Two approaches:

• Classical PDE Approach (P. Gérard, 1993).

? Applies to general subcritical nonlinearities in arbitrary dimensions.
? Establishes convergence for a small but fixed time before breaking.

• Integrable Approach (Kamvissis, K. McLaughlin, Miller, 2003).

? Applies only to the cubic problem in one space dimension.
? Provides results beyond breaking. Global description of the limit.
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NLS+ in the Semiclassical Limit: Inverse Scattering

What is the inverse-scattering transform? A clever representation of
ψ(x, t) with ψ(x, 0) = A(x)eiS(x)/ε (Zakharov and Shabat, 1972).

Three steps.

Step 1: Spectral analysis of the (nonselfadjoint) operator Lε
+[AeiS/ε].

Find: • Discrete L2 eigenvalues: {λk}.

• Auxiliary discrete spectrum: {γk}.

• Reflection coefficient for real λ: r(λ).
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Step 2: Modification of the scattering data to encorporate explicit
parametric dependence on x and t.

Set
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r(λ) → rx,t(λ) := r(λ)e2i(λx+λ2t)/ε .
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NLS+ in the Semiclassical Limit: Inverse Scattering

Step 2: Modification of the scattering data to encorporate explicit
parametric dependence on x and t.

Set
γk → γk,x,t := γke

2i(λkx+λ2
kt)/ε

and
r(λ) → rx,t(λ) := r(λ)e2i(λx+λ2t)/ε .

(Note: eigenvalues {λk} remain fixed!)
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NLS+ in the Semiclassical Limit: Inverse Scattering

Step 3: Solve a Riemann-Hilbert problem for m(λ), 2× 2 with properties:

Analyticity of m(λ)

Jump on R, m+ = m−v, in terms of rx,t

Residues at simple poles at λk and λ∗k in
terms of γk,x,t

m = I + m(1)/λ+ . . . as λ→∞.

Then ψ(x, t) = 2im(1)
12 .
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+[ψ] is

purely imaginary (Klaus and Shaw, 2001).
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NLS+ in the Semiclassical Limit: Soliton Ensembles

Fact: S(x) ≡ 0 and A(x) single hump ⇒ discrete spectrum of Lε
+[ψ] is

purely imaginary (Klaus and Shaw, 2001). Asymptotic behavior:

Turning points:
y

x

y=A(x)

x x+

y=-i λ

-

get x±(λ) for λ ∈ [0, iAmax].

Scaled density of eigenvalues:

ρ0(λ) :=
λ

π

∫ x+(λ)

x−(λ)

dx√
A(x)2 + λ2
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WKB approximation:
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WKB approximation:

• Approximate λk’s obtained via Bohr-Sommerfeld quantization rule.

• Approximate γk’s also written in terms of ρ0(λ).

• Reflection coefficient r(λ) negligible.

Correspondence between discrete spectrum and soliton components of the
solution motivates the terminology of a semiclassical soliton ensemble for
the exact solution of NLS+ associated with this reflectionless approximate
data.
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• Absence of reflection ⇒ ∃ a determinantal formula for all conserved local
densities as was the case for NLS−. But,

• Lax-Levermore method inapplicable due to indefiniteness of the principal
minors. No term dominates. Extremal problem not obvious.

• Strategy: construct m(λ) instead; obtain ψ(x, t) from it after the fact.

• Useful fact: if A(x) is an analytic function, then ρ0(λ) is an analytic
function. Thus ∃ a natural analytic interpolant for the residues of m(λ)
at its poles.
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NLS+ in the Semiclassical Limit: Removal of Poles

m(λ) is meromorphic with many poles.

Encircle them with two conjugation-symmetric but
otherwise arbitrary contours.

Introduce explicit meromorphic change of variables
m(λ) →M(λ) := m(λ)v(λ) in the domains.

The poles have been removed at the price of a jump
across the contours. M+(λ) = M−(λ)v(λ).

Key idea 1: Advantage of choice of contours is like the steepest-descent or
saddle-point method for integration.



Singular Asymptotics for Nonlinear Dispersive Waves May 31, 2003

NLS+ in the Semiclassical Limit: Stabilizing the Problem

Introduce a new unknown N(λ):



Singular Asymptotics for Nonlinear Dispersive Waves May 31, 2003

NLS+ in the Semiclassical Limit: Stabilizing the Problem

Introduce a new unknown N(λ):

M(λ) = N(λ)
(
eg(λ)/ε 0

0 e−g(λ)/ε

)
.



Singular Asymptotics for Nonlinear Dispersive Waves May 31, 2003

NLS+ in the Semiclassical Limit: Stabilizing the Problem

Introduce a new unknown N(λ):

M(λ) = N(λ)
(
eg(λ)/ε 0

0 e−g(λ)/ε

)
.

Scalar function g(λ) should



Singular Asymptotics for Nonlinear Dispersive Waves May 31, 2003

NLS+ in the Semiclassical Limit: Stabilizing the Problem

Introduce a new unknown N(λ):

M(λ) = N(λ)
(
eg(λ)/ε 0

0 e−g(λ)/ε

)
.

Scalar function g(λ) should

be analytic away from the contours,



Singular Asymptotics for Nonlinear Dispersive Waves May 31, 2003

NLS+ in the Semiclassical Limit: Stabilizing the Problem

Introduce a new unknown N(λ):

M(λ) = N(λ)
(
eg(λ)/ε 0

0 e−g(λ)/ε

)
.

Scalar function g(λ) should

be analytic away from the contours,

satisfy the symmetry condition g(λ∗) + g(λ)∗ = 0,



Singular Asymptotics for Nonlinear Dispersive Waves May 31, 2003

NLS+ in the Semiclassical Limit: Stabilizing the Problem

Introduce a new unknown N(λ):

M(λ) = N(λ)
(
eg(λ)/ε 0

0 e−g(λ)/ε

)
.

Scalar function g(λ) should

be analytic away from the contours,

satisfy the symmetry condition g(λ∗) + g(λ)∗ = 0, and

satisfy the normalization condition g(λ) → 0 as λ→∞.



Singular Asymptotics for Nonlinear Dispersive Waves May 31, 2003

NLS+ in the Semiclassical Limit: Stabilizing the Problem

Introduce a new unknown N(λ):

M(λ) = N(λ)
(
eg(λ)/ε 0

0 e−g(λ)/ε

)
.

Scalar function g(λ) should

be analytic away from the contours,

satisfy the symmetry condition g(λ∗) + g(λ)∗ = 0, and

satisfy the normalization condition g(λ) → 0 as λ→∞.

Otherwise, g(λ) may be chosen for our convenience.
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NLS+ in the Semiclassical Limit: Choice of g(λ)

• We may write: g(λ) = −sgn(x)
2

∫
contours

log(λ− η) dν(η) .

• Key idea 2: Choose

? The precise location of the contours
? The measure ν = µ− µ∗, with µ ≥ 0 and supp(µ) ⊂ C+

so that (with some additional deformations . . . ) the jump matrix is
pointwise close to piecewise constant.

• A leading-order approximation of N(λ) may then be built from Riemann
Θ-functions.
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NLS+ in the Semiclassical Limit: Variational Principle

Energy of the positive charge µ in the upper half-plane:

E[µ] :=
1
2

∫ ∫
log
∣∣∣∣λ− η∗

λ− η

∣∣∣∣ dµ(λ) dµ(η)︸ ︷︷ ︸ +
∫
ϕx,t(λ) dµ(λ)︸ ︷︷ ︸ .

self-energy external field energy

• Choose µ so that E is minimized over all positive measures on the upper
contour loop.

• Choose the contour loop so that the minimum value of E is stationary.

This is a generalized Lax-Levermore variational principle for µ.
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NLS+ in the Semiclassical Limit: Results

A theory based on these principles establishes the following:

1. Semiclassical soliton ensembles associated with initial data of the form
ψ(x, 0) = A(x), with A(x) positive, bell-shaped, even, and analytic,
converge as ε→ 0 to

* A(x) if t = 0

* solutions of the elliptic leading-order problem with initial data ρ0(x, 0) =
A(x)2 and u0(x, 0) ≡ 0, for t less than the singularity-formation time.
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NLS+ in the Semiclassical Limit: Results

2. There is a specific curve in the (x, t)-plane, the primary caustic, beyond
which the elliptic leading-order problem is meaningless. Immediately
beyond the primary caustic the microstructure is described in terms of
Riemann Θ-functions of genus two.

3. Further phase transitions are possible and are known to occur.

4. The asymptotics are described globally in x and t in terms of a function
g(λ) having a variational interpretation that is a natural extension of the
Lax-Levermore variational principle. Macrostructure obeys elliptic
Whitham equations.

Fundamental observation: the semiclassical limit for NLS+ with analytic
data is an ill-posed problem.
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NLS+ in the Semiclassical Limit: Open Questions

More questions remain than have been answered. Among them:

• Is it possible to give a rigorous spectral analysis of the nonselfadjoint
operator Lε

+[A(x)eiS(x)/ε] in the semiclassical limit

? even if S(x) ≡ 0 and A(x) is positive and bell-shaped?
? if S(x) 6≡ 0 but both A(x) and S(x) are analytic functions?
? if neither A(x) nor S(x) are analytic functions?

• What model equations, if any, describe the semiclassical asymptotics (for
small time) if the initial condition is not analytic?

• Is there any sense (perhaps statistical in nature) in which the dynamics
of the semiclassical limit depend continuously on the initial data?
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• Progress has been made with the assumption of analytic data.

? Some aspects of the theory that emerges (e.g. the variational
representation of g(λ)) may have meaning beyond the analytic case.

? A general theory should contain the analytic theory as a special case.

• Even with totally nonanalytic data, we still have an exact representation
of each semiclassical soliton ensemble (sometimes also the solution of
the corresponding initial-value problem) for all ε. It remains to deduce
the asymptotics. There is a limit out there; we just have to find it!

Back to outline
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Conclusion

• The defocusing nonlinear Schrödinger equation

iε
∂ψ

∂t
+
ε2

2
∂2ψ

∂x2
− |ψ|2ψ = 0

is a little bit country. . .

• But the focusing nonlinear Schrödinger equation

iε
∂ψ

∂t
+
ε2

2
∂2ψ

∂x2
+ |ψ|2ψ = 0

is a little bit rock ’n’ roll.
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Location of Burketown

Back to Morning Glory


